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THE USE OF TRANSFORMS IN CONNECTION WITH

DIFFERENCE-DIFFERENTIAL EQUATIONS and RIELATED TOPICS.

I. INTRODUCTION.

The study of difference-differential equations has
been pursued in considerable detail during the present
century, and much information about these equations has
been obtained by the use of transforms and similar
operators. The first paper of importance was published
by Schmidt (29)* in 1911. His method of finding a
solution involves the use of a formula which is seen to
be equivalent to the inversion formuls of a transform.
From 1911 onwards the study of the subject has develorped
continuously, éulminating in the rigorous discussions by
Wright (42-47), published in the last few years., His
work is based almost entirely on the use of transforms.

By a difference-differentiel equation is meant here

an equation of the form

* References of the form (1), (2), ... are to the
Bibliography, those of the form (1.1), (1.2), cee

(2-1), ... &are to the equations.
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where the ‘é}k are independent of Xx , and (y.{x}
is the unknown function. Of such equations, the type

first discussed was the linear equation,
~ Z (v
Vv,
s Z A5y b, ) = i),
M=o V=0

where each term contains only one function #‘”’Ob+b%)
and the functions /&~Jx) and ¢(x) are known. I
shall be mainly concerned here with the linear equation,
making only brief comments on the non-linear equation,
gince the theory of that type is still being developed.
Some of the methods used for the solution of
linear differential equations may be adapted to the
solution of linear difference-differential equations,
although the analysis is ususlly more complicated.
For example, when simple exponential solutions are
cpnsidered, the usual suxiliary equation is found to be
a transcendental equation. With the development
of the Operational Calculus, however, a method of
solving differential equations by Laplace transforms
was evolved, and this may be applied to difference-

differential equations with considerable success.

(1-1)

(1-2)
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In considering the transform method a number of
problems are found to érise and, in particular, it is
seen that the order at infinity of a solution is of
great importance to the validity of the method. One
of the first steps in a rigorous approach is the proof
of en existence theorem stating conditions uﬁder which
the equation has solutions of a certain type. The
asymptotic behaviour of solutions under certain conditions
is also of interest, together with the question of
obtaining an actual solution in certaiﬁ simple cases.

It seems convenient in discussing limear
difference-differential equations to follow a
chronological scheme, beginning with Schmidt's work
in 1911, but first the transcendental equation, already

mentioned, is considered.

I should like to acknowledge my indebtedness to
Miss B.G, Yates for the valuable help which I have

received from her in freguent discussions.
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‘II. THE TRANSCENDENTAL EQUATION,

Certain points of notation which are used throughout
the dissertation will be stated here so that repetition
may be avoided.

The number C: is a positive constant which is not
always the same at each occurrence, while f?, K, ¢, Cg,
... are positive constants each of which has the same
value at each occurrence. The numbers A,,Bz,jk, (2=14,--")
represent arbitrary constants, and ® is any small
positive number.

The general linear equation is taken in the form
(1.2) where ?f,m(x)g ;/Jc) and O0: b<4 <" & by
It is also supposed that m > 1, A > |, The
linear equation which is considered in greatest detail

is that with constant coefficients, namely an equation

of the form

M ”n
5 2 a,, p 7 b)) = an) (2:1)
ae . ‘

where ths numbers are real or complex constants.

A,
This is referred to as the non-homogensous eguation, and
the equation
" v
(~)
2 8, 4 [x+b) =0 (2-2)

o “v=o

Nk

/L
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as the homogeneous equation.
As in the case of linear differential equations
it is clear that the most general solution of (2.1)
is given by adding any particular solution of (2-1)
to the general solution of (2.2). By analogy, the
general solution of (2.2) is sometimes called the
complementary function.
Occasionally it is convenient to use the
operator A defined by
» (v}
Mgz 22 ag ¢ (e, (4:3)
p=o v=0 .
in which case equation (2.2) may be written in the
form
Afb”’”} = 0,
The number 4 is a complex quantity given by
A - 0~+iT where ¢~ and T are real, unless it is

otherwise stated. It is seen immediately that

pje** )z a)e

‘where
) 2 S a#” A e . (2-4)
/4:0 ~Ze
An X
Thus %17)5 [ is a solution of (2.2) if 4,
represents a root of the equation
(2-5)

Yi8) = O .



This equation (2.5) is called the associated
transcendental equation of (2.2) and (2.1)., and it
corregsponds to the auxiliary equation found in the
solution of a linear differential equation.

The case when T(A) has a multiple zero is of
interest, and it will now be shown that if A, is

zero of 7T/») of order «, +/ , then a solution of

jo

a

X
(2.2) is given by e multiplied by a polynomial

An X

M
in x. An expression of the form X € y Where

M 1is a positive integer, is considered first.
A‘{ a” e } /l{ :a__”c: }
’8)&

z 2% {ae*)]
cr

= 2" {T/J,,)e's"x}
245

e,S;;J( Z )

A0

m

If it is supposed that M & ¢ , then
T(8r) = "T’l{,é,;) = . i ¢ = T'(”)(A;;) = O,
80 that
M P3N .
N { T e } = 0.

M 8§y X

Thus y/x) =X ¢ is a solution of (2.2) for

Clearly

i A
g "y ) X,
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M ¢ % » and it therefore follows that if T¥x) is a
polynomial of degree less than or equal to 5 then
73()() e’s"x is also a solution of (2.2).

In general ~}(§) has an infinity of zeros, and it
is clear that information about these zeros is of the
utmost importance in any discussion of the exponential
solutions of equation (2:2). Wright considers the
question in detail in his paper (47) published in
1949, He calls mainly on results given by Langer in a
paper (23) on the roots of a transcendental equation,
referring also to papers (41) and (35) by Wilder and
Tamarkin,

One of the most important properties is that the
zeros of 7g) all lie to the left of some liﬁe parallel
to the imaginary axis provided &,,¥ 0. 1In other
words, the zeros are bounded on the right, and similarly

if Q,,# O they are bounded on the left. Langer

himself quotes this result from Wilder and Tamarkin, both

of whom deal with the question in detail. The truth of
the‘proposition can, however, be seen quite clearly from
elementary considerationé. If 7/s) is written in the
form | ‘

Iom - Mot r4 n

pJ n " a e A
7’/5) = amn € 4 * a‘m‘é r f(:l pa y

N 01/-’
$5 5 a4, e

N0 wv=ze



§.

‘6;4,8 "
then it is clear that the term Apn € P} can be

made to exceed the sum of all the others in absolute
value provided o~ is sufficiently large and positive,
while the same is true of the term Apn ,“S"t provided
0~ 1is sufficiently large and negative. Thus
positive constants C,, (4 exist such that

(1) I1f a,%# 0 , then |1¥i4)) 0 for o 7> (y,

(i1) If a,,#0 » then (7(g)]y0 for o <~Cs,
and this gives the required result. If both a,, ¢
and Q,,% O , then all the zeros of 7(4) 1lie in the
strip of finite width given by - (3 & 0 £ c,.
Moreover it can be shown that, for large |[A51] , the
zeros of 7/8) approach asymptotically the zeros of

the coefficient of /S"t in 7/s) , namely the zeros

of
, iy ~6;‘/.,
= e
g1s) = 2. a, :
/&:0

Another point which follows directly from Wilder's
paper is that 7T(8) has only a finite number of zeros
in any strip of finite width parallel to the real axis.

In fact, in each of the strips

Tet <T+ (G, -T-G<t ¢~-T,

(4-6)
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the number of zeros actually lies between
Cobm 4
ar
for large enough [T/.
Wright also gives a detailed account of the
situation when Q,,=0. In this case zeros
of (8) exist for which Oy 7~ It can be
shown, however, that zeros to the left of a line

=~ C, 1lie within strips of finite width enclosing

the curves

6 = —olf' {og 1T (£=42, -

where the of/; are known positive constants and J is
fixed. For convenience it may be said that the zeros
of T/s) lie asymptotically about curves of exponential
type. From the form of these curves it is seen that
for any Cy and suitable C, the function 7(s) has
no zeros in the region
laﬂf("s)‘<%~”ca‘, Ml?Cé.
Finally, Wright points out that if
/5{,3) = max lqﬂdéyebp‘sl
N

then ’7’(8)//5(/5) is uniformly bounded from zero for all 3
uniformly distant from the zeros of T/3). .

This completes the information needed about Y(5)

. T)

/



in the general case, but there is a further point of

importance in the special case when only one term

of (2.2) involves an viX derivative of 4 =0 that
a;m:'o(/“*’”’ a 2 0O

for some positive integer »n less than or equal to ¥y .

An

It may be supposed, without loss of generality, that
Gypn = | , so that (2.2) becomes
$ e k) f_ pv & A
-a v=0
and the associated transcendental equation is
A=/ 4- g
/t
" -
T8z A e + g & Au = 0,
/&:o vz
In any strip |o/¢ C it is seen that, for /s/ large

enough,

-4 ¢ n oz tut
vl S e st =5 Z 1187 e
/“:0 a0
> ci" - ¢S 181”7

> 0,
Further, 7T4) is an integral function and therefore
can have only a finite number of zeros in a finite part
of the plane. It follows that “™(5) has only a finite

number of zeros in any strip Jo-/$C.

(2%

(2.¢)
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III. SCHMIDT,

In a paper (29) published in 1911, Schmidt finds
a solution for am equation of the form
mo A=
{#) (v) -
y M+ 5 5 a, ¢ (- h,) =),
/4:0 v 0 .
where the ﬁﬂ are positive constants. For simplicity,

however, he actually considers the equation

IRVIEOE y ™)+ 42_ a,,(y“'{:/—ﬁ.,) =w(x)

v z0

in which only one difference occurs with each derivative.
Both these equations have associated transcendental
equations of the form (2.8) so that the results obtained
by Schmidt for equation (3-2), depending as they do on
this fact, may be extended to (3:1) without difficulty.
As Schmidt's method of solution is clearly associated
with the later applications of transforms to difference-
differential equations, it is of interest to study it in
some detail.

Schmidt first lays down very restrictive conditions
on the nature of a function which he will recognise as a
proper solution, He assumes that ¢7x)is continuous
for all real Xx , and of order 1l as lx| —> o« , for:

some positive or negative &« . He then considers y(x)

(31’}

(3-2)
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to be a proper solution only if %“ﬁﬁ) is continuous
for all X and of order lxlﬁ as |x/-> o« for some
constant 4 , where v=20,1, -+ (n-1), In such

a case it follows from the difference-differential
equation itself that %J“Hw) must also be continuous
for all X , and must satisfy a similar order condition
as |x) > o0 ,

In considering solutions of the homogeneous equation,
these restrictions clearly exclude all simple exponentisl
solutions 'eéz:, except those for which A is purely
imaginary. In fact the only exponential solutions which

Schmidt considers are those of the form
£t

%{x) = €

where T is a real root of the associated transcendental

equation, which here takes the form

"/ v iRut
)z ()t S oa, (0t) e ‘R = O, (3:3)

vzo
The corresponding function 7T (s) , obtained by writing A
for 4t in the function ¢(f) , is therefore of the
form (2.8) and has only a finite number of zeros in any
strip of finite width parallel to the imaginary axis,
Thus, if T is thought for the moment to Be complex,
it is clear that in the Z-plane -f(£) has only a finite

number of zeros in any strip of finite width parallel to
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the real axis, and in particular it has only a finits
number of real zeros. By this means, therefore,

Schmidt limits himself to considering a finite number

of simple exponential solutions of the homogeneous
equation, instead of an infinity of such solutions.  He
also discusses the case when the transcendental equation
has multiple roots, obtaining his results as in Section II.
If ¢(t) has precisely 9 zeros counted according to their
multiplicities, he writes the general solution of the

homogeneous equation in the form
4
2 By #atlx), (3:4)
A=

the functions ¢n (x) being the g,functions of the form

it Ity 2 Jt'x
,; Xe ; X € J

where % runs through all the real zeros of #(t), ©'
through the double and higher zeros, t" through the triple
and higher zeros, and so on.

Schmidt is thus left with the problem of obtaining
a particular‘solution of the non-homogeneous equation.
In order to do this he introduces a new function, in terms
of which his particular solution is eventually expressed,
In the T -plane he takes first a strip of finite width
given by

19 £ ¥y

Since f(t) has only a finite number of zeros in any such
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strip he is able to choose a line t=ifs, (1] ¢ “41),
parallel to the real axis and lying within the strip, on
which there are no zeros of Y(€) . The new function

is then defined as an integral evaluated along this line

by the formula .
N 0+ P e-«'!t _ga' (3 5)
Q/“}) T oar Dit)  (F+K0)*R ’
-0+ 54
where § is a real variable.
It is interesting to notice here the connection
between this function and the inversion formula for the

Laplace transform. The Iaplace transform of a function

3(3) ie the function F(s) given by

F(s) = J'"g!me 434z,

Then the complex inversion formula, as given by Widder
(40, p.66), for example, states that
Rri'®
4
i) = L. Fis) e ¥ ds , (3>0)
M ,
k' .
for suitable Kk. If, therefore, .5 is replaced by

4% this gives formally

S ia
I(3) = f F(zf)e df,
R
and it can then be seen that the function 505) is expressed

in the same form as q% (3).
Further, in considering <@5(§), the presence of the
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factor (T+/072 in the denominator should be mentioned.
The sole purpose of this factor is to ensure the
convergence of the integral after differentiation under
the integral sign, and, as will be shown later, its
effect on the solution is eventually annulled by a device
of differentiation.

Schmidt uses some straightforward inequalities to
show that Gﬁ(j) repregents an absolutely and uniformly
convergant integral in every finite interval of }
Moreover, he shows that it may be differentiated at least
. times under the integral sign. Thus, by operating
on q%(g) by AS y it follows that

00*)—4

e f =
Ag{q/s(g)} ,17 b Ay fe f_m) (s Ki)*

u-oa+ﬁ4

o+ ps
VR A Y s
7 RY.
C-Rtr b, (f+A/l)

KE A2t(A*He (§M

z € € C{/‘

e’ )
a7 A

- +B4K)
where ,/°+K >0 since I € K/q-
This integral may be evaluated by using a semi-

circular contoﬁr, with centre {ﬂ+K)[ and radius R .



say. If %50 , it is found that the integral round
a semicircle taken above the centre will tend to zero
as R >x , while if F ¢ o0 the semicircle must be
taken below the centre for this to happen. In both
cases the convergence is due to the squared factor in
the denominator of the integrand. Moreover the
integrand is regular apart from a double pole at the
origin at which the residue is 4§ . Therefore,

letting R->o , it is found that

0 (§70)
A (z)} : | ’
16 ro ¥ <o
or, putting X-U= 5 where Y and 4« are real,
0 . (x % u) :
Y/ q (x-u)} = e ., (3-6)
x[ A .} (x-u)€ K( ) (2¢u)

Schmidt next forms a solution of equation (3+2) in

terms of the function (; » by taking

g » .
g(x)= f ,(f(u)qy(x-u)olu + J u-(u)q_r/x"u)d“
-0 [+
and
pix) = = "(x) + qkg'(x) - K* Bx),

where 0<y« "/g, and no zeros of Y(¢) 1lie on the
lines T =+ iY . By considering /A, {(y(Jf)} he

shows that this function é‘[") satisfies the equation.

(3-7)
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Leaving for the moment the justification of the processes
and the whole question of order conditions, it is clear

that formally

Ny { #(x) :l’ = J () Ny, {G’{x- u)}aﬁu +JV/“)/‘x{ ("_r/r-a)] du.

-

®© K(x -u)
o [ rew e da
P
by (3+6), so that
A PIX)Y = Uy (x) (3-8)
say. Then
Mo {gin)]= - M{g "0}t K ATH X)) = K0, [4(x)]
.- d? Ny {801)] rakd n g} =K Jex}
e da |
- —,0:1”(1) +‘a?/(.(/3’(-’()- /(2,1/;(!), , {3"7}
But by differentiating u;(x) it is found that
06
6 (x) = je“’"“ﬂrmm + Koy (x)
X

and
. 2
" (x) = =w(x) + dK0 (x) - K 4y (%)
and hence it follows from (3.9) that

A, fy(x)} = ur(x),



Thus it is seen formally that éﬁ(x) , as defined above,
satisfies equation (3.2).
Schmidt's justification of these results is quite

straightforward. Using the fact that ¢7x) is of order

[x|¥ as Ix] —> ®© , he easily obtains inequalities
to show that ¢@(x) may be differentiated at least W
times under the integral sign. But &L[)() is defined in
terms of ¢'(x), ¢"(x) as well as @(x), and therefore in
order to show that f(x) has n continuous derivatives,
it is necessary to show that ¢/x) has (n+4) continuous
derivatives. This is done by considering the continuity

of Vy(x) , and then writing equation (3:8) in the form

™M (x)= 1y (0 - 6\”_’[9{".’21-—fn.,)' o= a, §lx-K,).
It is shown that the right hand side of this equation
possesses at least two continuous derivatives, so that
the left-hand side must have the same property and
¢“""’(,()’ gM3)(x) do in fact exist and are continuous.
It is interesting to notice at this point how the
convergence factor in the denominator of C/, (§) is
annulled by the differentiation of ¢ . If the
integrals for qn, (X-4) are writtem in full, the

definition of @g(x) TYbecomes
oty e Ax-a) Ae
——

gix) = L fa,u/u}‘{‘f e ,
amo| ‘ Cwsyr A1E) (4 Ki)*

w-5i (3 -n) E
o o Lrd [ e
A o Aa) t+Ki)?

-y



Then, by differentiating formally under the integral

sign, it is seen that the solution (;((Jt) is of the form

ylx) = = 9" (%) + dKQ'(x) = K2 ¢(x)

o wHrES weu) b
= L f rlal du e
JT - L(t)

-0 54 (3-10)

vy 1/)( #lt
fﬂ'[u/duf € . dr
{(t)

On the other hand, if q is defined without the convergence

factor, so that

q / N @+ 54 ¢ { Yt
R T i
A 2T
vent+ i )
then
L(x-a) b
¢/X} B 'k O O{Z_
f vlu) d ~€(tl
M'I‘T‘
0~ ¥ 4(1 al €
,,7’77 ’”'(“)d“f T wt) ’

which is of precisely the same form as the solution
given in (3+10). In other words, the solution is now

given by @ (x) itself, instead of by the expression
{- g"(x)+ IKP'(x) - K* {W)}'

However, if q{s(g) is defined in this way, differentiation
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—

Wt times under the integral sign cannot be justified,
for it is the squared factor in the denominator which
ensures this,

Finally it is of interest to mention here that the
solution #/X) obtained in (3+10) is of the same form as
that which Wright obtains later by his direct use of the
Laplace transfornm,

It is therefore seen that the function

, 9
glx) = = ¢+ K G a) ~K2APlx) + 5 B, @5 ()

N sl
is a general solution of the non-homogeneous equation

(3.2). Schmidt proceeds to prove that all possible
solutions are of this form, and for this purpose the
function
o © .
wlx) = fq,m.a) A )} du +f¢_r/x-a1 N W] du
0

J—w

is considered. It is now assumed that ) is chosen so
that there are no zeros of ¢(f) in 15(1')/.4“( except those
on the real axis. Schmidt shows that, if the two

integrals in this definition of #/x) are integrated by

parts . times, then the operators A are transferred from

(3-n)

(3:12)

the é‘ functions to the ¢ functions, a sum of terms g, (x)

being added at the same time., . In fact

Vix) = fo Ax{lex-u)} V{“)d“+f7'¥{q-r(x'“)} ét{u)o{u
- .

+ 23, ¢,(x)



*

' Kix-u) v
ie. ’W?/Hf(x—u)e g(u}du + 2 D @y (x)

X A s

by (3°6), so that
q/
Wix) = g, (%) + 2_, D Paix) (3:13)
A E
say. Then, as before for (;(x), it can be proved that

% ! a -
-4 (x) + Ky, [x) - K 4, (x) = é{{x),
Further, differentiating a sum of terms ¢n(x)gives simply

another sum of the same type, so that by (3.13)
" , [z
=y () FIRY (x) K Pln) =y (x) = 2 Ay Oo (), (3-74)
N =1

Now if &/X) is any solution of the non-homogeneous
equation, the definition of ¥x)in (3:12) reduces to
that of @(x) in (3+7), and so yﬁﬁ as given by (3.14) is
in the same form as in (3.11).

Collecting these results, Schmidt has therefore
proved that, if (ﬁﬂ has g, real zeros, then the general

solution of the homogeneous equation is
4
yro = Z A2, (x)
A=y R /
while that of the non-homogeneous equation is

yix)s - 9"0X) + 2K P10 - K0 = 2 Aagy (3),

A=t

In particular, if Y(f) has no real zeros, then the




homogeneous equation has one and only one solution
y(x) = 0,
while the non-homogeneous equatioﬁ has one and only
one solution
gix) =z~ g"(x)+ 2K ¢'(x) - K* Plx),

In view of Schmidt's conditions on a proper
solution, all these results have to be completed by a
discussion of the order at infinity of the solutions
obtained. It is sufficient to consider ;‘”’(x) for

v=0,1, -/(,1-:} as the result for vz then follows

from the difference-differentiaén equation itself, as was

pointed out before. Thus it is sufficient to consider
¢ (x) for v = 0,1, - - +,(a+s)), Schmidt's method is

to write ¢Ux) in the form

6 (x) = j_w(x) - ﬁ;m; {q;”u-d}- q'_‘;’ (x-u ] dut.

)
By means of simple inequalities he compares _é.w(x}, /v;o,; .

with the integral

® “n)x-ul

f [ar(a) | € dy , (220
-

and he proves that, if ({x) is of order nddas Ix{ > o

then this integral is also of order !?CI“. The second term

in the expression for ¢W(’x) , however, reduées by

;n)

(3:15)




Cauchy's Regidue Theorem to the form
7 ~ X
— Z_ EJL J s u) ¢A(’(’a}d"‘/ (vzo,1, -, n)
= 0

where the E, are constants.

Now if €(t) has no real zeros this sum vanishes
and then ¢"V’(x) is of order ledfor v=o, *° -, N
By considering +§GQ——and-tgﬁU it is seen that this
result is also true for ~=n+1 . Thus <g"”[zc} is of
order %)% for mw=01, -, %,

On the other hand, if 9 1is the greatest multiplicity
of the zeros of ¥¢(t) , the 4 functions ¢, (x) are of

v
the form X 7 e‘t"x

where "(n is zero or a positive
integer less than or equal to (yp-/) . It then follows,
for large Ix/ , that

x ¥ 1%
IL () falx -u) Au' s Ix] ™ ,. {lb"(u)li' Ilr(-a)[]c{u

o .
1xi .

§ Ioc,*"‘J” { 1wl jr(-a)[}dca,
o

Therefore since v(u) is of order (ulY as (uf-yw, it

is seen that

O (1) ***) (4> -1)
() . - ’
A I A P R T I R

v o(m)*") (w¢-)

)




and by considering ¢+fx}—end (;(x) these results are
found to hold also for ~vza-1 and v = /.

Finally, Schmidt's reference to a wider class of
solutions of exponential order is interesting, as in
all the later work on difference-differential equations
it is solutions of this type which are most important.
If the condition on ¢(x) is relaxed, so that, instead of

the original order condition, it satisfies
/
rix) = 0eM ) as x> w0,

where 7 is positive, then the integrals in the definition
of 55 will converge absolutely and uniformly, provided
that Y < ¥ . A particular solution can then be formed
in terms of ¢ precisely as before, but this time it will
be of order e"”" as x| o for some positive constant

AT . This can be shown by a method similar to that
which Schmidt uses in the original case.

If the general solution of the difference-differential
equation is also to satisfy this last order condition, it
is clear that the only simple exponential solutions which
may be included in the complementary function are those
which are themselves of order em’ as Ix| =2 » . In

other words, the only possible solutions of the form ¢& st
where T is a root of (3.3), are those for which

| Ste) ] ¢ M,




but this inequality defines a strip of finite width
parallel to the real t-axis, and as has been mentioned
earlier “(t) has only a finite number of zeros in any
such strip. Thus the complementary function will
consist of a finite number of terms only, so that again
no question of the convergence of an infinite series

arises,




"
IV, SCHURIR.

In 1912 and 1913 Sch&rer published three papers,
(30), (31) and (32), dealing with a difference-
differential equation of the simplest possible type.

The equation, of the form
y'lee ) = agix), (47

is one which frequently occurs in practical problems,
as will be seen in Section X.

Sch&rer‘doee not use transforms to find a
solution. Instead he connects equation (4+1) with an
integral equatioh of the type studied by Herglotz in a
paper (17) published in 1908, and he then uses the
solution obtained for the latter. By this means a
solution of (4+1) is found, which is of precisely the
same form as that given by Wright's transform method.
In order to compare these results later, it is
convenient to outline Schlurer's argument here.

Herglotz discusses the homogeneous integral

equation of the form

0= dit) - | "bte-w) Kiu) da (4-2)

This is & well-known integral equation, and it is

interesting to notice that it may itself be solved




straightforwardly by means of transforms. This is done,
for example, by Titchmarsh (36).

Herglotz, however, points out that it has a solution
of the form

- A ks
Py (t) = €

provided 4, is a root of

i) = [le Tt =

He then proves by a methdd of contour integration,
together with an application of Fourier's Integral
Formula, that any arbitrary function ¢f)may be expanded

in the form

o ! ) ! .
Fua=i s z"j(,ﬂ pinje ™™ AMJK(UMMJ‘G (oct 1)

where

g (t) = "j {¢(t+o) + ¢/t—0)} 5

and he finally considers the position when such a
function ¢#(t) is a solution of (4.2).

/In order to use these results Schurer connects
equation (4.1) with the homogeneous integral equation

in the following way. In equation (4.2) he puts
8§t
Ktw) = - v, #e)=v'{t), yit)=e yit)




where o«,) are constants. Then it becémes
-
O= € “—{ y'(t) + x#(t—) + Yﬂ(t} -Ye y(t—O}

and putting

Xz - )/} t - x+l,
this gives
it'(a(-l-l) P rarg(x’)
ie.  y'(x+1)= a g (x)
where

v
a = ¥Ye .

This links the two equations and thus Schurer ran

express the solution #{x) of (4.1) in Herglotz's

expansion form. In the case of (4°¢1l) it is easily
M X

seen that ?.Uh’z € is a solution provided that
A, 1is a root of |
Ts) = se-a = 0O, (4-3)

Thus, on making the necessary changes of variable,

Schurer obtains a solution of the form

;Z'(x) = 21(”64"7( ’ (0¢cox <)
P4y

where

1+4,

Ky = 2 EJ piwe P du + ;‘{é‘(”} ’
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Whether this expansion represents a finite or an
infinite series depends on the roots of (4.3). In the
notation of Section II, it is seen that Ann# 0, a,,= 0O,
so thet the zeros of TLU are bounded on the right, while
on the left they lie asymptoticelly about curves of
exponential type. For this particular 7T/s) it is
easily shown that there is an infinity of zeros, of which
at most two are real, the others occurring in conjugate
complex pairs with real parts decreasing to -~-x . Thus
if the zeros are at the points

/8;\:0—;4“1‘#7,, _-_O-;—'l Ay

Ay

they cen be ordered so that 0, ,€6,, 6, > -0 as A7 -

There are two points to notice from these properties.
First, by grouping together the termé from conjugate
pairs of zeros, it is clear that the series solution may
be written in terms of real quantities, since the
corresponding pairs of coefficients K; are also
conjugates. Thus Sch&rer's condition that a proper
solution must be resl, one-valued, finite and have at
least one derivative in any finite interval, is not quite
80 restricti#e as it appears; 7

Secondly, since there is an infinity of zeros, the
question of the convergence of the series for ‘y(t}must

be discussed, When the equation is solved by Laplace




transforms this question is dealt with implicitly in
the method, as will be seen later, Schurer's method
is based on long, but elementary, arguments. He first
takes the series given for %(x} in [0,’) , and by
comparing it with ii Y he establishes its absolute
and uniform convergence in that interval, provided ffx)
satisfies certain conditions. He next shows that the
expansion for an arbitrary function ijj is unique if /(x)
is a solution of (4-1), and also thet in any other unit
interval the same convergence properties hold, so that,
by repetition, they hold in every finite interval.
Finally, he discusses the converse result, showing that
any such infinite series, if convergent, does in fact
represent a continuous solution of (4.1).

In the following section, Schurer introduces an
order condition on his solutions, thus limiting himself
to a finite number of simple exponentisl solutions. His
condition is less restrictive than Schmidt's, being of
the form

} as X > — %

}/xjs ol(e
Since the zeros are ordered ss above this clearly means
that the exponential solutions e(r,;,,,t/‘ t',,,,)lx e(a;m:tif,m):\: ©r
must be excluded, so that any solution #/k) is simply

a sum of constant multiples of the finite number of simple




31.

exponentisal solutions €mhh)}‘t S (qzit")’f An
order condition for x ->- », instead of I1X) > w» , is
sufficient here, because of the form of the particular
Y/5) given by (4+3), for since the zeros 4, are
themselves bounded on the right there is no need for a
condition to limit the exponentiel solutions in that

direction. If, however, the condition

Glagao (e s T ) a5 w1 w
(ostit)x loj',,;fjt;-:)x
is imposed, then the exponential solutions € ; €

must also be excluded, so that the only possible

solution is

Ay X — 2y X
ylx)= K,oe 4+ k e )

or, writing it in real form,

k)= de 67[78/#,,)&6/3,1- f{())aéal}’f],

In the last part of paper (30) Schurer discusses,
at great length, the zefos of a solution #Jx) of (4-1).
These results are not importent in themselves, but they
are connected with the methods used in a later paper (33),

in which Scharer discusses the more general équation

a,t;“’(x) ra,_, V“(.n-r}(x)*_ o+ oa, f/x); /(Jr-l), (4 4)

where q,#¥0 and v 7 /. Basing his arguments on the

number of zeros possessed by a solution f(x) of (4-4),




he shows thet if the solution is to satisfy

. X
At / as X > - ®

ot,/tx)*O(e

where o7 is the real part of a root of the transcendental

Py
equation associated with (4+4), then there can be only a
finite number of simple exponential solutions.

The need for this more delicate argument arises
because 714} here is more complicated then in the
earlier case, and Schurer cannot order its zeros so
easily. However, using the properties of 7T/s) given
in Section II, it is interesting to see that since «,#OC
the zeros are bounded on the right, while on the left
they lie asymptotically about curves of exponential
type, Just as in the simple case, Moreover, since
equation (4.4) is of form (2:7) there is only a finite
number of zeros of /%) in any strip of finite width,
rarallel to the imaginary A -axis, and, in particular,
only & finite number on any line parallel to the
imaginary esxis. Thus the zeros may be ordered so that

0., § 05 , 65 =2 —® as n > . This means that, if

X d}
the order condition is

yx)=o(e™ ) a x5 - a,
Flx) :

then the solution édx) must again be formed from a finite

number of simple exponential solutions, corresponding to




the finite number of zeros of 7T/3) with real parts
greater than O .

Finally it is of interest to notice Schurer's
comments in the case of a multiple root of the
transcendental equation. For the simple equation (4°1),
the only possible multiple zero of the corresponding
given by (4.3), is a double zero at A4=-/ in the case
when a=-—'e . Schurer shows by a simple limiting
process, that, if this is so, then the function I€~x y as
well es €~ ", is a solution of (4.1). Similarly if the
(4) corresponding to equation (4.4) haes multiple zeros,
he shows that the equation has solutions of the form
obtained in Section II. His method in the latter case

is to link his solutions with those of a linear

differential equation.




V. HILB,

In 1918 another paper (19) was published on the
subject of difference-differential equations, It is
& long account by Hilb of the solution of the
homogeneous linear equation with constant coefficients.
He obtains a solution by considering an expansion of an
arbitrary function, similar to that used by Schurer.
As he does not use transforms in his work I shall not
be concerned with his paper in detail, but an indication
of his method is of interest as his results can be
related to those obtained later by using transforms.
Hilb refers in his introduction to the results
obtained by Schmidt fbr particular types of linear
equation with constant coefficients, but he himself
considers the general homogeneous equation of this type,

nanmely the equation

> 2 4, ¢ ek o

Az0 vVED

Instead of taking the expansion given by Herglotz

which Schurer used for his special equation, Hilb works

with an expansion given by Picard in his "Traité d!' Analyse®

(25, p.167). This expansion is found by an

application of Cauchy's Residue Theorem round a series
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of circular contours increesing indefinitely in size,
Hilb shows that these circles may be repleced by any
series of curves S,o in the .§ -plane on which /3]

is greater than any fixed number if / is sufficiently
large. The resulting expansion of any real continuous
function #(x} » which satisfies Dirichlet's Fourier

series conditions, is of the form
X

ylx)= - Ze B Wf;;) e " FIHAR (X exex),
Xo

where ~/[3), T(5) are two integral functions of .3 ,
the /KA being the zeros of 7(4). Further, if

T (s) =VIB)+ X(4), the following conditions for X
in (¥, X') are necessary for the velidity of the

formula: - )

. S(x X
() Am W o am ATTR
e V() " e tw T

, . t,
(8) Am  xy) -, w28
core  T(A) cr-w T4)

(c) I%PT%; ’(M,/ /% /4/)1 , in small angles

about the imaginary axis,
It is also clear from the method of proof not only that
the series for ;L(xj is convergent, buﬁ also that it is
uniformly convergent in all finite intervals of X .

Hilb first uses this expansion to find a solution

(5.4




of the ordinary difference eguation
as (x) + a, y (x+4,) + a, y/ﬁé;} = 0,

In this case the associated transcendental equation is

¢, v,
Y(5) z d, + 4 €' +a,e 2" =0,

and Hilb replaces 7/8) in (5:2) by the function 7(4)
in two different ways, by taking

0,5 b2 4

) w(a) = a, x(») = a,¢€ + 4, € s

b5
G) ers)=a,+a,e4”3 ., X(y) =a, € 0,

Clearly these are all integral functions and it can be
shown that, in the first casé, the conditions (A) and
(B) are satisfied for X, £ 2,, X,-'- J’,+[', while, in the
second case, they are satisfied for Xo= Xot &, X
where X, is any fixed number. After showing ;bhat
curves S/ exist for which condition (C) is also
satisfied, he obtains from (5-2) the expansions

Yot b,

d, -4 # A,\’{
1) = {~ - fe ’ )dﬂ]e , (L <x¢ndt,)
{ | ; Y(35) . y//“ |

: . ; .(’,A)t Xo# 6: ‘1 by
. - d,+ 4, - ~dy A |
ylx) ; i) e W/‘)a//‘jf
J’o-ﬁ /h /

5%4'64/

(1,44, €2 & Tot (/,1),

(55)

(5-3)




This, however, does not complete the problem, as the
important step is to obtain one expansion valid for the
whole interval (xz,, x,.;.ﬁ-‘). This is done by considering

the new functions
y () (Ko & X & Xp+ 4,)

Fr“() = { 0 (Xg+ 4, < X< 2’;4—4,)
and
(o (t ¢ x <1, 44,)
F,(x) =
y(xj
Then it is seen that
&/1)’- F',/X)f Fl/x)

( %, + 4, <X <X+ by)

for ¥, < x ¢ 2,4 }4 y, except at the point x = l‘a+4,.
Moreover, /-/r) has an expansion of the form (5.4),
while /(%) has an expansion of the form (5.5), both
of which hold for the whole interval except for the '

point x = 2,+¢4, . |THence it follows that

Kn (%) ¢ il

09.()()= AZ -

Y'(8r) | |
where ; 4
X 403 45 Xot V1 :
Knlly) = {%f e My dr +a€ fe"”"‘wl o(f‘} )
Ao ./";Y,-&ﬁ,

the expansion holding for the whole interval i, ¢ X < X+ by
except at the point x = X, + 4.
So far this expansion holds for any function which

satisfies the necessary conditions, but Hilb next shows
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by differentistion that if such a function is a solution
of equation (5.3) then the coefficient K, (x,) is
independent of X,. Thus by repeatedly taking the
expansion for different X, over intervals of lengths ?,
and Nh-@) a solution of (5.3) is found in the form of

a series which converges uniformly in any fixed interval
of Xx . Further, such a series can be shown to be
unique,

Hilb also obtains the result of Section II for a
double zero of 774 by using e limiting process.

His next step is to extend his results to more
complicated equations. He first considers a difference
equation of order v , then the particular equation of
form (5.1) for which =3 .\ =4 and finally the general
equation of form (5.1). By putting 7/8) in the form

ydg)+‘xﬁw in a sufficient number of ways, he obtains an
expansion in the case of the difference equation in
precisely the same way as above. For the difference-
differential equations, however, a further point must be

considered. In the general case an expanéion of the form

Kn (2s)  Aax

uix)= 5 (5. 6)
v Tss) ’
where el " x‘,.;J-A
3] g
Knlty) = s Z,a/vv/sﬂ € f e "’“y(f‘)a(:“’
/4=0 ANMED )’,4 %
[44) [, w~!
v v) ~Ap X
- 2- 2 a;w/s)t ZJL ("3+d7‘} e %o
p=0 v=y w,z0 /SJL”'H /
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is obtained, which is valid in the interval (X,, X, +4, )
except at the points 44, . . - x,+4 . . In order
to show that K,(X) is independent of X, if 4(¥ is a
solution, and that the series converges uniformly in
every fixed interval of X , two more conditions are found

to be necessary. If neither a,, nor 4a,, is zero y(ofj

”
must have v continuous derivatives for sgll reel X ,
while if one of d,, or a, 1is zero $ix) must have continuous
derivatives of every order for all real x . Then, by
differentiating K,(v,) w.r.t. X, it is easily shown
that (5.1) has a solution of the form (5.6) which
converges uniformly in every fixed interval of X .

As Hilb points out, Schurer's particular equation

g i) = aylx). |

is of the form (5-1), but only one interval (X,, R
is involved, and sd it does not display the real
difficulty of obtaining a solution which is valid over
a number of intervels (%, X,+4,), - (”o*fé,.,,»?;*é.). It is

of interest to notice, however, that on putting

W

m=1, wel, 78 o, 'é'/'://

~

a,o:-a/ ao/=0/ 0,0:-0/ a,,—//
in (5+6) we obtain

Xo ot/
/5/,2”

Ky (1) = -af e My dp — yoar)e T,
X,
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Then since kﬁ(x,) is independent of X, , we may choose %,

to be zero, so that

o= e[ yudr -y,

Also, in this case

A
T8 = st -a and 3, = o
and therefore (5.6) gives
J/\v’( ! "’bhf‘ 7
;(x)z. fr_e, f;h{ﬁe ;L{Ndf* +-‘;#(1)"/,
A »

which is of the same form as the solution obtained by

i)
Schurer.



VI, HOHSISAL,

It was not until four years later, in 1922, that
Hoheisel published a paper (20) on linear difference-
differential equations with polynomial coefficients, in
which he uses results obtained by Schmidt for the
constant coefficient equation.and retains the same order
condition on a solution. His method, however, is more
directly related to Wright's transform method and is
therefore df interest here.

Hoheisel first indicates how his equation is
connected with that of Schmidt. He considers an equation

of the form

L((y) = "DO{X)J(A} (x)+ fi)'lx)(yl"")(x_g,).‘, e 4 74(11)&[)(-&;} :(/’(’{;6")

where the T,’V(X) are polynomials in x . If ﬁ(x) is of
degree g, and the other coefficients F,/x) are of degree

less than or equal to 9 it is seen that
_ v q-1 . e 4 {
L((H: X /]‘y{(y)aL x N, (¢) * A )
where A¢” e, ﬁa are operators with constant
coefficients of the form discussed by Schmidt.
It is clear that real zeros of Ebd will be of

importance in a consideration of the solutions of (6-1),

Just as in the corresponding case for pure differential



equations, Therefore, in confining himself to
equations in which the coefficients are linear functions
of X , Hoheisel still has to distinguish between the
case for which ﬁ,/)() has a real zero, and the case for
which it has no real zero. In the former case he

considers an equation of the form

Lig) = (4x+f) g 'I5) + (Fn+ 5}g/}/+)€) -~ ailx).

where «, 5, ¥, § are real, pointing out that this may be

reduced by real linear transformations to the form
Lig)z xy'lx] + (ax+ &) ylxts) =wlx),

In the latter case he considers

Liy) 2 (x+i M) y'lx) + (0o + 6] g (51 1) = 4r(x)

where a,6 4,7 are real and non-zero, so that the
coefficient of the highest derivative has no real zero.

The homogeneous equation associated with (6+2) is

of the form

Lig) 2 x N 1y)+ Noly) =0,
where

Nyl z g(x) + a g i)
and

Nolyl Z $y (2+ 1) .
As usual it follows that
AY AX , _ A
A (e* )z e Ale7T) = Ta)e

(6-2)

(63

(6-4)



where

» A
Y (s)z 8+ a€ , Y. (4)= be

/

the funetions 7 (») 7,(2) having only a finite number of
zeros in any strip of finite width parasllel to the
imaginary axis. Moreover, it is easily seen that zeros
which lie on the imaginary axis occur only for particular
values of @ and ¥ , so that if these values are
excluded, it is possible to choose ), so that no zeros of
Y,(8) or T, (3) lie in the strip
[ (s) | <Y, .

Hoheisel sketches formally a method of solving (6-2)
and (6.4), leaving aside for the moment the question of
the convergence and order of the solution obtained. He

assumes that

g (%) '-/ e ur(d) dy, (6.5)
g

where the contour / , and the function «74) are to be
found by substituting this }/X} in the equation. This
i1s equivalent to the solution of differential equations
by Laplace Integrals., By substituting in (6:4) it is

seen that

o = f x p,(e*7) wir) oy + f A (e?7) wris) ol
4 £
e, O = fg J(e'“[ "r,(;)“rmd/s + fe’w‘ra{&) wr(4) ds

4
e 0= [ mm wiy], — [ e Afun) b i)



where

A{aw® )z Vg (5)+ PCHRACERATI S

Thus for ;(U to be a solution of (6-4) it is necessary
first that the contour & should be chosen so that the
integrated term in (6.6) vanishes, and secondly that «~($)
should be a solution of

Afwm} = 0 . (6:7)
This is a linear differential equation, its solution

being of the form
gkl dz
~, (7
wis)= C. L ¢ ,
7, /3)

A solution of (6-4) is then given by substituting this

value of «7%) in (6.5). As Hoheisel points out, the

function 4«4 is a Laplace transform if the contour

is chosen to be a line parallel to the imaginary axis;
In order to extend this method to equation (6-2)

Hoheisel uses Fourier's Integral Formula. This gives
-4 . ~
- L A YL VT
tf(x)—iﬂf e d’?f e ) Aun
_ - -0
and, putting = /. 4 , it is seen formally that
/‘

& o0
(x| = L f e ™4 f e~ () du .
v e | As y _

A -
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——

The equation corresponding to (6.6) is then considered.
If E is taken as the imaginary axis itself the
integrated term vanishes, and for #(x} to be a solution
of (6.2) it is necessary that
‘o
JT4
. -x

Thus «7%) must be a root of

-

a0
- J.._ -~AA .
A fw(é)} =T i e uria) da

-

Since « is simply a parameter here, it is sufficient to

find a solution «/4u) of the simple equation

- - A
A{ w(/s)} = €
and then take

»
L
wls) = = e Jj‘o wih 4] 1 u) du

as a solution of (6:8). Then the solution of (6-2) is
given by substituting for w(4) in (6:5), as before.

However, when he comes to justify these formal

methods, Hoheisel discovers that a convergence factor must

be introduced into the solution, and so, instead of (6-9),

he considers the equation
-4 -
Afats) ] = e (41 k)77

where K Y,70 . The effect of the extra factor is

annulled later in the same way as for Schmidt's equation.

% ;o
’-j e ds fe‘“y(u)o‘“ = .-f Ala8)}) €™ Jy

4.3/

(6-9)

(6-10)



Now (6.10) is another linear differential equation and

its solution is of the form y

22 d, (4 -7 % do
wis, u) = - e,j " zje'y“(:wﬂ)"e TodY. (6-4)
p)

(4

Hoheisel chooses the two solutions, &, and «J, say, given
by $ =240 , the path of integration being taken along
the imaginary exis in each case. It can be shown that

W, and «g are absolutely convergent, and that, if

'
. 0 r &)
u” (x, 4) = J.iaoe w4 &) os (6"2)

Uy w) = (TP s wds Jo

then these integrals are also absolutely convergent,
uniformly convergent with respect to x and differentiable
once under the integral sign. The function a=u,+ l/;_ may
therefore be orperated on by [ , and by employing the
following differentiation device a solution of (6-2) can
be obtained. The operation | |

by, {ovws ] = o™ (w) F3Kr" W)+ sm%mn K3 o)
is introduced, end instead of considering a solution of

the form

.4 .
-1 vin) Ui o) du,

17/-4' -

Hoheisel considers the function

) |
- L wix) . - L v Ulx ) du.
J/TL' 7 d;ﬂ-‘» j-was;“{ } | ‘



This mey be operated on by L , and it is found that

L{ - & Wm} = o(x) + C,

’
where CV is independent of x but varies with each
different function ¢(Xx) ., Thus -Jﬁr,*V(X) is
a solution of v

Liy) = vlx) + Cp | (6-13)
or, in other words, it is a solution of (6.2) apart from
an additive constant. In fact, the problem of solving
(6+2) has been reduced to that of solving

Lig)=1, (6-74)

but it will be shown later that this equation is insoluble
in Hoheisel's sense. First, however, since the solution
of (6+13) obtained above is in the form of an infinite
integral, its convergence must be discussed, and to
discover whether it is a proper solution in Hoheisel's
sense its order at infinity must also be considered. To
deal with both of these problems Hoheisel transfers the
paths of integration, in (6.11) and (6.12), from the
imaginary exis to a parallel line through the point s=)
where (¥I< ). From the definition of ¥, given above
it is clear that the value of the integral is unchanged.
In the new form a chtor ‘ﬁ_ruis present in the integrand

and it can be shown, by choosing the sign of Y properly,

that W(x) 1is absolutely and uniformly convergent, and



may be differentisted once under the integral sign.

In fact straightforward inequalities give the result

@
w0 | <6j”,ﬂwwwj le™™" " +cjmgl,‘mw)l€'”“'olu.
-0 ~00
Here the first term on the right is of the form (3.15)
discussed by Schmidt. Ftom his results it follows that
if v(u) is of order Jul® as juf => 0 , then this term is
of order [X|* as x| = o . Moreover the second term
on the right is independent of X , so that W(x) itself
must be of order ,x,/s as |x|-> o , where /5 is a
positive constant or zero and /53 X . This result can
be made more precise, however, by using the fact that

— L w(x) is a solution of (6:13). This eguation may

AT
be written in the form

P (W)= - Aot = Mo (W) _ i

X X

l.e. A:(W) = ‘V{x),
n-! '
where Y/X) is a function of order [X] as x| —> .
Now this is itself a difference~differential equation of
Schmidt's type, and 7(8) has no purely imaginary zeros,
80 by his results it follows that
- /5-!

Wix)= 0021 ) , Wita) = 0(x)"7)

as |x|=> o . This argument cen be repeated until the

stage

Wix)= o(x1™™')  w'(x)= 001x1""")
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is reached. The function YW(x) cannot be reduced to a
lower order than this, however, because of the term
involving (x), so that this is the final order result
satisfied by the solution - J= wix) of (6.13).

Hoheisel next discusses the same problems for a
solution of (6.3) énd its associated homogeneous equation.
The methods used are similar, but the question of
convergence is found to be much simpler because of the
new form of 7Y,(8). In this cese the factor /,H-K)-J' is
sufficient to ensure convergence, and only one solution
arf4u) of the equation corresponding to (6-.10) need be
considered. Moreover a solution of (6.3) itself is
obtained without the addition of the constant C,, and
this solution satisfies the same order condition as above.

The order of a solution of the homogeneous eguation
(6.4) has yet to be considered, and to deal with this
Hoheisel next shows that if #‘/x) is a continuous solution
of (6.4) then b(.’(x} is also continuous, even at ¥=0,

By writing the equation in the form
My = Noly)
x

e, Noly)= vix),

it is seen-that w(x) is of order %)%’

if (y.(x) is of
order IDCI" as |X| = x . Thus by Schmidt's results

the last equation must have & solution }(x) for which



Ylx) = o(1x1*" ), y'Ux)=00x1*"),

In this case the process may be repeated any number of
times and it follows that
f(x) = 007) , gllx)= 0(1x1°¢), (6:15)

for any C, no matter how large.

Hoheisel proceeds to use a method similar to that
employed later by Wright in his solution by Laplace
transforms, the only difference being that he uses a
two-sided instead of a2 one-sided transform. He supposes
that y{){) is a solution of (6+4) of the correct order at
infinity and he defines @(a) by the equation

4 -AY
gld) = f e y/x) oo
-n

From (6.15) it follows thst this integral, snd all its
derivatives, will converge if o« is purely imaginary.
-aX
It is therefore justifiable to multiply (6.4) by €

and integrate w.r.t. x over (-#, ®) giving

® e-dof . 0
Loe Ly ax=0

This integral may be written in terms of /, and /I

and simplified, and it is found to reduce to
A ¢(;/)} =0,
Thus : N4 ”,
| . J > dz
(4) « L=
/ ¥, (4)



and this is bounded on the imaginary « -axis. It
therefore follows that

| k2 @(a) | —> »
as X -7 © along the imaginary axis. On the other

hand
0 ~-A4X

2
v? @) =f Aie Y (x) dx

-0

o -4X " .
c dx

f_” e y'(x)dx,
and it can be shown by elementery arguments that y "(x)
is continuous and of order )] "% , so that Jf: l},"(x)lﬂkr

exists, This means that on the imaginary axis

fa? p(d)| < fi }y"()()'d/:l(

< C

J

which contradicts the result found above. Thus the only
possibility is for ¢/«) to be zero if X 1is purely
imaginary. It then follows from Fourier's Integral
Formula that
?f{” £ 0,

In other words the only solution of (5;4) which satisfies
the necessary order condition is thé zero solution.

Finally, Hoheisel considers the order of solutions
of (6+2); the problem of solving this equation has been
reduced to that of solving (6.14). By a method similar
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to that Jjust used for the homogeneous equation, it is
shown that if #{x) is a solution satisfying the proper
order condition, then s contradiction can be avoided only

it ,
y'(x) z 0,

Moreover, from the equation itself, it is easily seen that
the given condition for ylx) can be reduced here to the
condition

yin) = 0(%),
It therefore follows that

%(-’C) 0,

which does not satisfy (6.14). In other words,(6:14)
has no solution of the correct order at infinity.

Hoheisel has therefore shown that equation (6,2) has
no solution of the correct order at infinity, and that the
only such solution of (6+4) is the zero solution. A
solution of (6:3) of the correct order does exist, however,
although the homogeneous equation associated witﬁ (6-3)
again has only the zero solution, a2s may be shown by a
method similar to that used for (6+4).

The results of these simple equations which Hoheisel
has considered in detail may be extended, without
difficulty, to the cases fof which |

L{#)s zyw(x) + 2 %—_' P}W(Jt)cy(ﬂ (X-ﬁ,‘)

Iu;o v=0
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and
o,

Lig) & (x+a )3 ()4
/4

-
-

"-
S Pty (x-k,)

o v=o

where the /';’w{x) are linear functions of X . The only

possible difficulty arises if, in the first case, there

is & term involving #M.’}/X} whose coefficient has a

real zero. In such a case, however, it can be shown,

by choosing a different convergence factor, that the

same results are true.

Hoheisel does not discuss the case of quadratic
coefficients in any detail, but he makes a few comments
on equations for which

L(}l} : (1 F 2) Y ‘(x) + (G '+ 4,24 I;)t’/{:u 1) .

If a,<0 , the coefficient of f’(x} has real zeros, and
a solution of

Lly) = w(2) + (, X+
can he found. The equation

Liy) = ¢ X+ (4
can be shown to be insoluble, however, so that in general
the equation

Liy) = ()
is also insoluble. On the other hand, if 4, >0 , the
coefficient of ¥ '/x) has no real zeros, and a
solution of

L(}} = ,(/'(x}

can be shown to exist. If ¢(x) is of order IDCI4 as
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-2
|X) => © , then this solution is of order JxI ¥

as one would expect. Further, the homogeneous equation
has no proper solution other than the zero solution.
These results may, in turn, be generalized for the

case when

Lig) = (x‘+aa)yw(x)+~2. 3 Pﬂvfff/u‘"’(x-ﬁﬁ}

/(,-_a v Z0o

where the wa (x) are quadraties in X ,



VII. BOCHNZR,

The next important contribution to the subject is
due to Bochner, who makes explicit use of transforms in
finding a solution of a difference-differential equation.
He confines himself entirely to linear equations with
constant coefficients of the form (2:1), 2nd in his first
three papers on the subject, (5), (6) and (7), published
in 1930 and 1931, he assumes further that the function

4(x) is almost periodic. In his book (9) on Fourier
integrals, published in 1932, however, he establishes
similar results in the case where «(x) is any function
whose Fourier transform is readily calculable. The
latter case will be considered in some detail here, with
only a brief reference to the earlier papers.

Bochner's methods are based on the systematic theory
of Fourier transforms as developed in his book (9). In
order to use these methods it is necessary to give a
brief account of his notation. The Fourier transform

E(t) of a function d{x} is givén by the formula

-t
E(t) = ;’;:rf Joje U7 da,

the integral bYeing teken in the Lebesgue sense, and then

the cbrresponding inversion formula is



1(x) = Jﬂn ci) e F b

under certain specified conditions. These are the
definitions taken by Doetsch (13) and Titchmarsh (36),
apart from a change of sign and a change in the
constant 3ﬁﬁ' respectively. Bochner also defines the

resultant of  ¢,(%), {,/x) to be the function

= f” L3 (x- 5)d3

in the usual way, so that the properties of 2 resultant
may be assumed,

For convenience he then mekes the following
definitions. The class £ is the class of all
functions #(x) which are absolutely integrable in (-@, »)
and , is the cless of all functions which are Fourier

transforms of functions of F, . Further, the notation
P (xC
ye)~ [° B e dt
R

is teken to mean that /%) 1is the function from F, whose
Fourier transform is KE(t¥) , whether the integral converges
or not.

Finally, Bochner introduces three special definitions
in order to state his methods and results as neatly as
possible, TFirst, a function ffﬂ is said to be

differentiable A times in ¥ if, together with its first
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N derivatives, it is absolutely integrable in (-, »),
Secondly, he supposes that to a function ¢/x) there

corresponds an ath integral F(x) such that

("

Fa (x) = (1),

where F,(x) is unique apart from a polynomial of degree
(A-1) in X . Then {(x) is said to be integrable X
times in J if (¥} belongs to 7 and if F,(x) is
differentiable A times in @ . Thirdly, a function
) is sa2id to be a multiplicator w.r.t. £ (f) if
M(t)E(L) is the tra.nsform of some function V{ﬂ (x), say,
and if this is true for every transform £(¢) then [(¢)
is said to be a general multiplicator.

The question of the existence of a solution of (2-1)

can now be discussed, Bochner maekes his own restriction

on the type of fu.hction &{x} which he will consider as a
solution, requiring in this case that it shall be

differentiable n times in & . He supposes that
o x
-0

Then it is known that

.4 Ic {_
#lw (x) ~ f C{'l')y}?((i')e ' 0[(—/ (veo,y
p”

and therefore

‘x

(1)

» .
%(V) [ 3+ }/&) " f (1’1‘)1’64@1}5{:'}6‘ At, (vzo,1-;2)
- '



It follows that
» 2t
sy~ [ ere) o) et (7-2)
-2

where
o

" S E
(] = /‘%0 f_”aw wt)ve AT,
The function 'f/f) thus corresponds to the transcendental
function M4} , in which .4 is replaced by /T, as in
Schmidt's parper. The reason for using this form is
again due to the fact that only the real zeros of <(¢)/
are of interest, since in (7.1) X is a real, not a

complex, variable,

If now

Cin
rix) o~ [T v e T de

then it is seen from (7-2) that éL/Jl} is a solution of
(2-1) if and only if g(¢) satisfies

L) ge) = V(t) (73)
This means that V(t)/f{t) must be a function of [

and further, that 7()4 » given by

?yt) o UM Y (7
grx) o~ f_m w4 74)

must be differentisble +L times in 7.
Before discussing these conditions in greater detail

the homogeneous equation (2.2) is considered. In this



case (7.3) becomes

(i) g(t) = 0.
Thus if ¢(£) has no real zeros, it follows that ¢#/¢) must
be zero for all real < , and consequently that the only
solution of (2.2) is y/x)s O . Further, it is clear
that ¢(t] 1is a regular function whose zeros are isolated,
go that @%7 must in any case be zero almost everywhere.
It therefore follows again that the only possible solution
&[x) is the zero solution. The usual simple
exponential solutions given by real zeros of ‘{hﬁ} are
omitted here because they do not belong to 5% and so they
are not solutions in Bochner's restricted sense.

Returning to the non-homogeneous equation (2.1), it

is next supposed that Y(#) has zeros at

T, f}, Ty, f),
of multiplicities

P P, s Py
respectively. Then in a small interval (djl/g), including
the zero Z;, but no others, it is assumed that

te) =z fi -t} g, 08

where fﬁ(t) is non-zero and differentiable any number

of times in this interval. Thus, in [4,,6 ()



v oL {4’(#-(‘,,)}-49” V(t) (7.5)
L) T 4

Then if (2+1) has a solution (y/)t) of form (7.4) it can

be seen formally that the function

-

Jite 6] 7 e

must belong to .7; for each N . Bochner proves this
result rigorously, using the technique of multiplicators.
He also shows that an equivalent condition is that the

function .
-d f/t Y
e (x)

should be integrable y, times in },.
In order to consider sufficient conditions for (2.1)
to have a solution é"(x) it must be remembered that the
solution y/x} itself is to be differentisble < times in % .
From (7.4) it therefore follows that the functions
| v
£)7 vt
L VE ey ) 079
{(t)
must belong to J; , and this is so if it can be proved
that the functions

. ut)
H.,(t) = -é—(;—(—;}— ) (v= 0O+, ) (7.%)

are general multiplicators.



Bochner points ocut that there are considerable
gsimplifications if, instead of the general equation

(2.1), the equation

N-4

;‘w ) 2 0, #m(x"“h./" s x) (7-3)

,A'..o v o0
is considered. The corresponding function ﬂ@) is then
of the same form as that discussed by Schmidt, and has
only a finite number of real zeros. Bochner supposes
first that {(t) has no real zeros, and it is then easily
proved that H,(t) is a general multiplicator, His
method is quite straightforward, involving a lemma in
which he proves that the functions #,(£) are absolutely
integrable for all &, together with the general
properties of multiplicators. It therefore follows that
" (7+8) has a solution if and only if

[it =501 vet)
belongs to JC. By the theory of resultants, the

solution is of the form

g,t(x);- L ”K/j)r(:-l) ds (7-9)
T J .

where

0 i
= € 0{1_
K(3) wﬁ;j}
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Secondly, Bochner supposes that ¥(#) has a finite
number of real zeros [, (2</3 - g). In order to obtain
the same results here, he introduces a series of general
multiplicators [, (£) , each of which has the value unity
in & small interval about the corresponding zero, and
vanishes outside a slightly larger intervsal. Then by
considering a multiplicator of }@&7 given by

q
) = — 2 [hit)
N El
it is possible to change ?(f) in the neighbourhcod of each
zero into & non-vanishing function ﬁJt) withou@ affecting
the result, The proof then follows in the same way as
before.

A particular case of an equation of this type is a
pure differential equation.,

Returning to the general equation (2+1), Bochner is
again concerned witlhh the real zeros of {hﬂ, which may
now be infinite in number. In order to limit himself to
a finite number, he considers the function which
corresponds to ﬁ/é) , as given by (2:6). In the present

notation this is o
" 1 u
YE) = 2 % © /

=0
and it is called by Bochner the "principal part® of f{t},

He supposes that
(Y(E)| 2 ¢ >0




for all ¥ , so that Y(f) is uniformly bounded from

ZEero. Then
m A=t Y X2
t) Bt qv(‘ f) —g—-/‘ }
¥ {Q ) ,ué:'a »vzza # 0'(1')

it

{(t)

Yit) {, (t)

say, the function {,(f) being of the same form as 5)

in (2.8). Thus 4 (t) , and consequently +(t), have
only a finite number of real zeros. Bochner then shows

in the same way as before that the functions

_('i‘_t_’z‘v = __(_f_g,)._: (v=0,1 -, n)
{(t) 4 ) ¥it)

are general multiplicators. Therefore, provided that
the principal part of €(t) is uniformly bounded from

zero, it follows that (2.1) has a solution if and only if
' - fa
fiet-t,) ] veit)

belongs to JC R

A particular case of an equation of this type is a
pure difference equation.

In the last part of his book, Bochner considers
certain generalizations of the classes 9; and Jﬁ , and a
corresponding extension in the results for difference-
differential equations. The class f is defined as the

class of 211 functions yhj for which #{xh/wk is
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absolutely integrable in (-w,®) . Also, the functions
pLt), Y(t) are said to be %-equivalent if the difference
between them is a polynomial in € of degree (k-/) at

most. Bochner denotes this relation by

A
) <X Vit).
Then the X-transform of J/x) is the function £ (¥, R)

given by

E(t &) \ﬁ/ L . (x) -e-“t,— LI

T .wr[ v e
-0

where Lk is a polynomial of degree (A-/) in x for /[¥/& |

and zero elsewhere, TFurther, Jg is the class of all

transforms E (f, k). It follows from these definitions

that a function of the form

erl't';‘x (0$ A.‘k_g)

/
where 11 is real, belongs to the class p’i .

Returning to the equation (2:1), Bochkner now
restricts his solutions to be functions of \%t y and so
it is clear that if {’(t'/ has 9 real zeros ,Z;Lof
multiplicities ﬂ‘ then the complementary function is

of the form

where

ny = s (paml, R2) (=g g),
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The particular solution of (2¢1) is then discussed by
methods similar to those used before, and, in particular,
if ¥(t) has no real zeros, it is found to be of form
(7.9) again., From this it is seen that certain properties
of (7x) will also be possessed by the corresponding
solution #{x} » for example, if y(x) is almost periodic,
then #(4} will also be almost periodic. This is the
case discussed by Bochner in his earlier papers (5), (6)
and (7). In these papers Bochner obtains results on the
existence of solutions which are the same as those found
when «(x) is a general function, but he goes further in
discussing the question of convergence of solutions.

In (5) he considers an equation of the form (2.:1)
where ((x) is almost periodic, meaning by this that it
has & Fourier series given by .

VI Y4

i) ~ J‘Za,,e ’
the Xa being real, He does not restrict his solutions
in the same way as above, supposing instead that the
solution, together with its first +# derivatives, is
almost periodic. Thus, provided that the complementary
function of (2-1) satisfies this condition, it may be
included in the solution, so that terms of the form €‘whx
where I;is real, can arise. Bochnert's method of

obtaining his results here is based on Fourier series

instead of transforms, but apart from that the proofs
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follow precisely the same lines as before. He shows that

if the principal part of fdd is uniformly bounded from

zero, for all T , then the necessary and sufficient ‘
condition for the existence of a solution is that the ‘
function

Y ¢
e T iy

should be integrable 1@‘ times.

In the case when Y/£) has an infinity of zeros, the
complementary function becomes an infinite series, and
it is necessary to discover whether it is a Fourier
series. This is shown to be the case if the exponents
in the complementary function are bounded.

In paper (é) it is shown further that every solution
which, together with its first ww derivatives, is
convergent and uniformly continuous, is also almost
periodic, In this paper Bochner uses transforms again.
Finally in (7) these convergence results are extended to
the solution of a finite set of difference-differential

equations of the form (2.1).



VIII. TITCHMARSH,

Titchmarsh makes a brief reference to difference-
differential equations in his book on Fourier Integtals
(36, p.298), published in 1937, and the results
established there are extended in a paper (37) published
two years later.

Titchmarsh considers particular linear equations with

constént coefficients of the form (2.1), and he finds
solutions by means of generalized Fourier transforms.
His method follows the same lines as Bochner's, but is
less restrictive, with the result that the complémentary
function does not have to be omitted as in the first case
discussed in Section VII.

The most general equation discussed in (36) is of

the form
Y " (v (81)
é‘( () + 5 ay § (x+b,) = wlx),
A/=0

In the notation of Section II it is seen that a,, is
zero, and thus the zeros of 7/4). are unbounded on the
right. This means tha£ the complementary function will
be an infinite series of form %;~€n€44x which will
certainly not converge for positive x.}(: In order to
overcome this difficulty Titchmarsh limits himself to

, < Ix]
solutions which are of order ¢€ as /x| = 0 , 80
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that exponential terms in the complementary function are
confined to those for which lF;]ssc , and these are
finite in number.

This order condition on solutions is less restrictive
than that of Schmidt and Hoheisel, and it is of importance,
since the exponential solutions of difference-differential
equations are of considerable interest in applications,
as will be seen later. Further, this condition is
essential for justifying the use of transforms, and in
order to see this, Titchmarsh's definitions of generalized
Fourier transforms must now be given, These definitions
are an extension of Bochner's because they are given in
terms of the complex variable &£ = U+/y/~, say, instead of
in terms of real U .,

The generalized Fourier transforms of ¢/x/ are given
by

© .
F+ (t)] = L #{x)elr*dfx;
JaT /o

when (- is sufficiently large and positive, and

© it
F_ () =~J—JETL#”/€ T da

when (& is sufficiently large and negative. Then the
corresponding inversion formula given by Titchmarsh is of

the form
a+ 0 A ibro e :
~4 A -4x
ot + L
Jix)= \Jﬁjl F,(t]e e F.(t)e ping
y .

a-o . iF-»
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where A is sufficiently large and pbsitive, and ¥ is
sufficiently large and negative. Thus if V‘i(.r) is of
<%
order € it is clear that F,(t/ will converge for
ATy, and [ (¢) will converge for 47 <-4 .
These transforms will now be used to find a solution
of (8-.1). The method depends entirely on the application

of & general theorem on transforms, proved by Titchmarsh

in his book (36, p.255). This states that if

farw Cin ihr® [zt

-4 -
J' F(t] e "t +f Fiit) ¢ d- = o,
ia-w {b-0

then it must follow, under certain specified conditions,
that
F (t) = - Rtt)
and also that both F/t] and F(t) tend to zero as 4 7% &
in a certain strip of the X -plane parallel to the real
axis,
For convenience, equation (8-1) is put in terms of

the new function ¢(x) given by

n-r o (n-)
plx)= ylx)=ylo) -xf '(0) ~ -1 47 ().

Then it is seen that ¢(2() and its first (#-/) derivatives

all vanish at XY= 0, and the equation itself becomes

0“0 + 5 a, ¢ (xm k) = VI (89



where Y[x) differs from vfx) by a polynomial of degree
(ﬁ—f) in X .
Now if j;(t‘) represent the generalized Fourier

transforms of ¢(x) , the inversion formula gives

farw

¢lx) = J’W’f _@;{(’} "‘11“0& -l--\[—“?L-,-r d-/t) ._(';rl‘c’&‘

where Q Y «, #<~c. Titchmarsh shows further that,

if the integrals are taken in the L." sense, then the
formulae for ¢M(X)’ (v=1,2,- - #), may be obtained by
differentiating (8.3) under the integral sign. Further
by putting (y+¢,) for x , it is seen that '

(ar : i xb
6 nib,) = L[ -0t)%e g e T A8
W[;-w -

(bt

* G| (-t ’(’”f/t‘/ M‘L"[’L

&.
from which it follows that

¢(41) (X ) + 2, A ¢(W(X+ éw)
Az 0

Llat #® 'é*ﬁ

b
= L[y gt ”olr+i m/.@'(f}e N dr

Jamr

ldw

where
ﬂ'{ . v -“'é/\/t
ar) (-0 + 5 oa, (-<t) e

v e

(93]

(54)



Thus Y(t) corresponds to the usual transcendental

x|
function. It is now supposed that ¢(x) is of order < “

L1X]

as JA| -pn . Then y/x) is also of order <« , and

thus it has generalized Fourier transforms /]; (€), which

satisfy the usual inversion formula

' late ” ) [t @ "
Vix)= -Lj v, 1t e™” AHJJ:r] o) T d- /8:5)
J;ﬂ La~0 4 Py o™
where a y «, F¢ ~ £, .

Thus, by substituting from (8:4) and (8:5) into the

equation (8.2), it is seen that

fara b (bt o b
{E_(t, Nt')—f*(tJ}e' 0&'1— {E/ﬁe{t)_lp:ﬂ-}}e' dt = 0.
‘a-w (b -

From this it follows by the theorem referred to above that
g, - Y )= XL

where Y(t) is regular for £€ & < a, and X(¢] tends to
zero as (Yt e« in this strip.

Since W/x) differs from ¢7x) by a polynomial of
degree [#-1) it follows that, if [{t[t-} are transforms of
u-/)() » then

V@) = V&1 £ T(¥)

where /1 is a polynomial of degree W ., Thus

4
Foele Lo frr) ¢ Ve €) T§ },



and the solution ¢’X¥) is found by substituting this in

(8:3), gziving

‘””“j;/ "h ""‘k”‘**é;‘rf Wty -t 4
T i ,

ot/ {t)
l{a+ s
oL xuv+ﬂ%)-wg} a7 g

Ny /%) J‘7r - trt)

Here ay «, ¢ ~c » but q, (- are now chosen so close
to +«, —~« Trespectively that no zeros of {(t) lie in
frsvi ~L, LLrea- Cauchy's Residue Theorem is next
applied to the last two terms in the expression for ¢(I)’
it being noticed that the poles of the integrands are at
the zeros, I, say, of Y{(f/. It is therefore seen that

these two terms have the value

~if x
L ars (x) + S ¢, ¢ ?
\/37/" ‘ 4 [70 2 A }

where «, is a constant if 1‘4 is a simple zero of &/,
a linear function of x if [, is a double zero, and so
on; p(x) 1is a polynomial of degree ¢ (#-)in ¥ ; and the
sum is taken over all zeros J{, for which /3] ¢ L,

Thus it follows that a solution }/x) of the original
equation (8:1) is of the form

jar® -Ox irt
f/WL,%1 , Wt)
'it}‘x

é_vCA € + ?/(x)
A



where ¢(X) is a polynomial of degree $(n-s)in x, and

the sum is taken over the same zeros. Clearly the first
two terms represent a particular solution of (8.1), while
the last two terms represent the complementary function

and are thus solutions of the corresponding homogeneous
equation, Further, Titchmarsh shows quite simply that
9.(x) can be included in the function 5 , € 'ithx,

so that altogether the solution is of the form

‘a+a0 . (1o
ylx) = Lo Ve (t/e'”"dt- + L e V.[t’)e-*"""o(t-
a7 ‘a0 O(F) ar ip-n E)

+ Z scAe-‘t.Axl

where <, is a polynomial of degree (g —1) if T, is a
zero of {(t) of order #, . It is interesting to compare
this with tke form of solution found by Bochner in (7°4)
for there is a clear analogy between the two. There is
an even closer link with the solution found by Schmidt,
however, and the result here is almost identical in form
with that given by (3.11), (3.4) and (3-10).

In his later paper (37), Titchmarsh avoids making
any assumption on the order of a solution, assuming instegd

the necesgsary differentiability of a solution. In this

case he considers the simple equation

‘t;’(x) —D%Lk[éc()fi-ﬁ)—/("")]"O (8:6)



and instead of using transforms as defin}’ed above he

works with the function

s ot
Y, s (€1 = .\.’1_;,_’_ f wixle .
] K ’
ifbx

His method is to multiply equation (8.6) by <« and
integrate w.r.t. x over (, /), finally expressing the

result in terms of )’,,,/, (t) . This gives

~RT ) Yy ult) = F, (¢ - £4(0)
where |

ite G co-0tR £) _ 4tk (t)
Forr) =gin) e _37([6 () ¢y,

X, a4 R .4
and _é./s ft) 1is of similar form. 1In this case the

inversion formula is given by
1ra+e

¥ )= i?'”,/ );ﬂ/t)ﬁ-j#di* , (4 < wefs)
Y B S

where o is any real number, Titchmarsh takes a to be
small and positive, so that ¥t/ has no zeros on the line

of integration and y(x) is given by
ra+ it iara

J (t) dF + £ 'y
/1) - L L« 4 P (t/ ¢
A fn_” 7t o o

These integrals are evaluated by Cauchy's Residue
Theorem, the contours in both cases being rectangles with

one side along the line of integration. For the second
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integral, a rectangle lying in the upper half-plane is
chosen, and by letting its dimensions tend to infinity

the value of the integral is found to be equal to AT«
times the sum of the residues of the integrand at poles
lying above the line '=a ., In other words, if the
poles are all simple ones, the second integral is equal to

22 €€£l£31‘6 -4, X
Aty R~ !

and this is convergent for 7(4/3-){ y, from the order of _é;j .
Similarly, the first integral is found to be equal to

: Foita) €710
A+ Bx+Dx + 5 AL =T
where the sum is convergent for «x > M+£ , the extra terms
here being due to a triple pole at the origin, which lies
below the line ¢=a since o is positive. It is next
shown, by differentiation, that _Q.',(/t'n), fp(ﬁ) are
independent of A, /’7 respectively, and so the solution

+

is of the form

"l‘t./, X
#(x}: A+ /3:(-*_0.7(2 + f% €

where A,B,]D and «, are constants, and 4, runs

through all the zeros of .Su.tt'ﬁ'i'ﬁ except =0 . The

series clearly converges uniformly in any finite

interval, It is interesting to notice that Hilb found

the same result in the general case by a different method.
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Titchmarsh proceeds to solve a well-known integral
equation by a similar use of Fourier transforms, and this
method is extended in a paper (10) by Miss Busbridge,
published in 1939. The equation considered in the latter

paper is of the form

J() =f’° ki) dix-t) (37)
~ X

and it is assumed that

_at? +x*
% (F)= Ofe a // V{IJ()= 0(@ }
where o< {f<a. It is pointed out that, if
n .
(/¢ R)
b(t) = 2R
0 (11 54R)

and
yix) = f"v{(g) d

then the integral equation (8-7) reduces to a difference-
differential equation of the form (8-6). In this case &
is infinitely large and so 4~ may also be as large as we
please. It is seen that the solution found for (8:7) in

this paper ¥educes in this particular case to
-J'tAX
d)= hx+ 8+ 2 4 €
and thus it follows that
-l‘tAJY

#/x) :A’x1+89(+.:9"—2“::e Y]



which is the same result as that found above.

Further connections with integral equations are
to be found in Pitt's work. He actually deals with
integro-differential equations, considering the
homogeneous case in a paper (26) published in 1944, and
the non-homogeneous case in (27) published in 1947. 1In
the former, the homogeneous linear difference-differential
equation occurs as a particular case, and in finding a
solution there Pitt makes the hypothesis )&‘”7x)l< Cec”?
which corresponds to that in Titchmarsh's first method.
The solution found is of the same form as that obtained

by Titchmarsh, but as will be seen later, Pitt's work

actually has closer connections with Wright's,



IX. WRIGHT.,

The most recent, and by far the most important
developments in the study of difference-differential
equations, are due to Wright. |His first paper (43)
on the non-linear equation was published in 1946‘and
this will be considered briefly at the end of this
section, but of chief interest here are the papers (44),
(45) and (47) on the linear equation, published in 1948
and 1949.

In order to indicate the way in which Wright uses
Laplace transforms to obtain a solution, it seems convenient
to outline the main steps first, leaving justification of
the formal processes until later. As an example the
homogeneous linear equation with constant coefficients

will be considered. This is of the form

"
2"} > Ay b‘m“"’l’;«) =0 (9:1)

/(-'—0 v=0

and it will be assumed that ama #¥ O . The equation is

multiplied by e—éx(d'7q), and integrated w.r.t. x from

0 to w. This gives

m oA
v

]
g [ €77y Py da =0, 9.3/
,u.-.o 0

o

-~
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and by putting x in place of x+é7‘ , it is seen that

the integral becomes
©0 &
- A -
e.ﬁ'ﬂé{ j‘ e 4}(7,(;{)”_’[ e 4’(y(‘vl(x)0{/x},
0 0

Further,

-] r. 4
f€-4x&(y,(1)0{/»l' - [:e —’«7? (v-ri()()-y + "Sfye -/.’»‘J/ﬂM (7-:)(7()C{/x'
0 0 P

Thus, by assuming that the order at infinity of y(x) is
such that

e-u[y m{x} >0 as x> o (9.3)
for 4=0,) -, it follows that

]e-wé{m D = - g () () & /sf e-uf ) ) ol
0

¢

By repetition of this argument it is seen that

)

f e-»sx%(w(x)oh . }(w',(o) -4y (Y-;}[O)
, .

_...—év"%/o)

+ /Syj;we 'uy{x)obx

U

(» »
Y Tlo) + s )’//5))

|
-



where Y/3) is the Laplace transform of #(xj .

Thus (9:2) becomes

m n 1 4 v-! “i=A ” ,
s qa e’ [- ?_/SFV 3,“’(0)4.,5”)’(/8} —f;%'/‘ é;‘”’(:t)daff
o .

pz0o =0 /MI
= O
) Yis) = H(4) (74)
where
M A -(J'/‘JS */t 57 (v )d/x N Z’JV-I-A# ())(O/j
f‘//!) = 2 Zarave {j;e y (% A=0 .
/A:a v=0

(7,57 .

and 7T(8) is the transcendental function associated with
equation (9.1).

In order to obtain formulae for the derivatives of

#{x} at the same time, the function Y,(5) is now

defined by the equation
. . ) -AY
Yul4) =f{a't”’{)r)—(;t”/0)}€ dor. (9.6
(V]

Then

Yols) = Yig) -5 g )

and so equation (9.4) may be written in the form

Y)Y (9 = His) =L F8)§0) (9-%)
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To deduce the corresponding relation for Y,[3), (9:6)
is integrated by parts « times. Since by (9:3) the
integrated terms vanish at the upper limit, it is found

that . » e .
Vo(s)= 2" Yo(3] - /\é_/,’:’ ¢,

and so (9.7) may be written in the form

~
~ v=2=" (A - (7.8)
V (5)= 2 Hi2) _ 5 .8 y el
Y(3) A =0

It is therefore seen that the solution of (9-1) depends
on the solution of (9.8), which is an equation in the
function Y/V{,s) instead of the original function #{x}.
In order to find ymf)f) from (9.8), the complex
inversion formula for V,V{A)is used, as given by

widder (40, p.66), for example. This states, under

certain conditions on 7/“””), that

Koo

§ 0 =T ie) = L Ve ds [x00)  (29)
4

R-in

for suitable 7@ . Thus, by (9.8)

R4 8
(v) (v) v Y a=A-] R
(x)- 4 (0)= L 87H18) . S g (N } x
r ' X ﬁ{‘ 73] ,éo O s
-l'w

(9 10)
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The importance of the assumption o By + 0 now
becomes evident, for it ensures that the zeros of Y4)
are bounded on the right, and it is therefore possible
to choose ‘R so large that all the zeros lie to the
left of the line of integration o—=%K .

The integral in (9-10) is evaluated by means of
Cauchy's Residue Theorem, the contour being a rectangle
with sides parallel to the real and imaginary .%-axes,
the right hand side lying along o=A. This side is
kept fixed, but the other three sides are allowed to move
off to infinity, so that finally, since all the zeros of
*(») are to the left of o~=AR , they will all 1lie
within the rectangle. It is necessary, of course, to
prove the existence of such an infinite sequence of
rectangles, having no zeros of T4) actually on their sides.

It is next shown that as the three sides of the
rectangles t‘end to infinity, the values of the
corresponding integrals tend to zero for certain values
of 2 . Thus, in the 1limit, the integral along the
fourth side, which is now the whole line s=K is equal to
the sum of the residues at the poles of the function

| % v - x4
Z 47%;) -2 4 ]€ ‘
)zo0



The residue at a simple zero ,8,, of 7’(,5) is easily

found to be
v
T A8)
and the residue at the origin is #”’/o} 9 S0 that if

7(4) hes no multiple zeros it follows from (9-10) that

(v) H/An)/s/\v € I X
x) = -
J’L (%) % T/145)

sumed over all the zeros 4, of 7/3). On the other
hand, if .5, is a double zero of 7/s), the corresponding
residue is found to contain a factor which is a linear
function of o , while, in general, if 4, is a zero of

multiplicity (£ 4/} , the solution of (9:1) is given by
\ A
‘ Ay X
yMix)= 2 Py, x)e™ (9.1)
A

where P/J), v, x) is a polynomial of degree y, in X.
This agrees, of course, with the results for multiple zeros
mentioned in Section II.

Thus a solution /,{x) has been found in the form of an
infinite series, convergent for certain values of X1 .

It is interesting to notice here how the method applies

to an equation of the form
M A

2 (a,, ¥+ 4, )47 xrg, ) =0,

/4,;0 vo



whexre the coefficients are linear functions of X . In
this case the equation corresponding to (9:4) becomes
YI3) Y'(3)+ @(2)Y(8) = H(B)
where ¢{8) is a function of the same form as 774). - This
is a linear differential equation which may be solved
for Y(/S) by using an integrating factor. However, the
subsequent problem of finding the solution #(Jl) from the
inversion formula becomes very much more complicated since
the zeros of 7T/») are now branch points instead of poles
of Y/4) . Similarly, the equation whose coefficients
are polynomials of degree 9, » 82Y, in 2 , depends for
its solution on a linear differential equation of order ¢
in Y/(»).

Before proceeding to discuss the method more precisely,
Wright's assumptions on the nature of a solution must be
considered, He assumes that his solution %(x) satisfies
certain boundary conditions,' namely that the values of

y.""’(o) be given for wv=0,/ .. (n-1) , and also

’
that éﬂ"’(;() be given and integrable in Lebesgue's
sense in the initial interval (0,4, /). The functions

#‘V’[Q(JI (vz0,/ .-+ a-1 ) @re then defined by the equation

’
#M(x) =y‘”’(o) + /a‘é,rwu (3) d5,



so that (9:1) may in fact be considered as a difference-
integral equation in }K“ij. It is evident that these
properties assumed by Wright on the nature of a solution
are much less restrictive than those assumed by the earlier
writers, Schmidt and Hoheisel, for example, In particular
he imposes no restriction on the order at infinity of a
solution, but shows in (44) that such a property
follows from certain conditions laid down in the initial
interval,

In this paper (44), he considers instead of (9-1),

the more general linear equation

Wi "
S S A, My iarb, )= wix) (q:12)
/A':O vEe

where the coefficients Ay, (x) are known functions of X-

By methods which are somewhat long, but of an elementary
nature, he proves that under certain simple conditions on
the coefficients Ay,(x) , on the function «(x), and

on #/)t) in the initial interval (0 #,./ » the solution
(%) itself must be of exponential order as I -24 .

First it is supposed that A4,,( %)=/, that A/,,,/x/

and (~(x) are integrable, and that ﬂ;A(%) , A”h//ﬂ)
are bounded, all in the closed interval (o0, X,). Wright

then shows that (9.12) may be written in the form



L

- 3
pI3) = uld)+ 5 Be(§)f tgit) de
=0 °

where #(J) is integrable, and [‘i,[j}/ ({=01 ", L)
is bounded and integrable in 0 & % ¢ a , for some
finite positive number a . It is proved that such an
integral equation always has a unigue integrable solution

@(3) for 0 ¢ §¢ a, and hence it is established that
(9:12) always has a solution in the interval (0,# +a) where

a £ 'bh "4&4' Repetition of this argument extends
the result to the interval (0, X;+mb,;l

Wright also considers the case when the functions

AM (x), w(Xx) are bounded, continuous, of bounded variation
or of integrable square in the interval (0,X,]. If (y“"(x)
also possesses any one of these properties in the initial
interval (0, {,) , it is shown that this must hold in the
whole interval (O, Xd4'ﬁyn),

Finally it is shown that information on the order at

infinity of a solution Wx) can be obtained by making the
conditions on ((x) a 1little more exacting. The following

three cases are considered: -
X cX
(1) f Ju(x) | doc ¢ Ce for all X 70,
o]

(i1) L" ()| do ¢Ce X Tor ell o0,

(111) juix)]¢Ce ™ forall x>0
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Provided yU%d) behaves suitably in the initial interval
Wright proves, under any one of these conditions, that the
solution, which has been shown to exist by the earlier
theorems, must be of order 6” as Y -> o0 . This
result holds also for the first (n-1) derivatives of Y(x) ,
while y‘m(&) satisfies the same condition as s(x) .
These order results are true in the case of the

equation with constant coefficients, for, provided that
Ama®0 s it is easily seen that the necessary
hypotheses are satisfied. With this information it is
now possible to justify the method of transforms used in
(47), and outlined at the beginning of this section. C7
is chosen so that the solution yrx) is of order e7*  as

X > ® . Then it is seen that both ¥/») and Y./4)

(vz0,1, "}'“) exist for o 7 C7 , and, further, that
condition (9-3) is satisfied. Also the inversion formula
(9.9) holds for ﬂ7c7 provided &”’m/ (v=0,1 +--, n) is
continuous and of bounded variation in the neighbourhood
of x . As was seen earlier this is tvae for v=0,4 - (n-1)
since g‘”(x) is sn integral for these values of v ,
and it is also true for w=n provided y/“&x) has these
properties in the initial interval (0, {,) .

The next step is to discuss the sequence of

rectangular contours required for the application of
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Cauchy's Residue Theorem, A typical rectangle of the
sequence is (M) which has sides [, (M), 1, (M) Iy (M), r,m)
along the lines o=, £=T, o~=-T,, t=-T, Trespectively,
M ‘being a positive integer, and Ty increasing with M .
It is required to show that no zeros of 1%0 lie on the
sides of /M) provided M is sufficiently large. The
simplest situation occurs if Th can be chosen as &
constant multiple of M , for example TQ =M{¢ , but this
is only possible if no zeros lie on the parts of the three
lines £=tMI, o= -M{  which form three sides of the
rectangle. It has been pointed out in Section II
however, that in strips of finite width sbout the lines
=+t ME , there can be only a finite number of zeros
of 7/s), and so in such strips lines [} /M], f,(m)  can
be chosen, parallel to the real axis, which do not pass
through any of these zeros. It was also seen that, for
any C:‘ and suiteble Cé , no zeros lie in an angular

region of the form
}wy(-uw%"cf, 81 > ¢,

and further that ‘the zeros actuelly lie asymptotically

about curves of exponential type. Thus if /M is taken

sufficiently large it is clear that no zeros lie on /"3(/"1).
In particular cases the choice of these rectangles

may be quite simple. For example, for the equation (4.1)



discussed by Schurer it is easily shown that Tn= TM
is a suitsble choice.
Finally it is proved that the integrals of VYy(d)e ™

slong [, (M) f’s (M) and /L{M) tend to zero as M D

for x greater than a fixed number. This ensures the
convergence of the infinite series in the expression (9-:11)
found for &‘”’[x) . It may be seen that this is not
necessarily true for all X, by considering the particular

case when = 0 ., Then the zeros of 7(4) are

aoA

unbounded on the left and it is clear that the series

(9.11) cannot possibly converge for negative x ., In

fact, if M is the least /“' for which ay, # 0 , it is

now shown that the series converges only for x 7(/»; = A, say.
!

For convenience the function H/8) , given in (9:5),

is written in the form

-6. 4 v-'/s'v-l-) (A}
#L8) = 418+ 2 Z z ()

=0 v el >

where

m S" (';,,/S 67‘ » -8 c(/x
(x) € .
pis) 2 2 2 Ca f ¢
/L-[ veEo 4
It therefore follows from (9.8) that, for w~=z01 - -, 1,

Ma) Yu(8) -8V H,(3) = ,s”[#(&}—ﬁ,{a}} ~ T(J)/’Z ,g""""% (41 o)
-0

= 2 {i £_35 3% }“MC Y 4#-*'#“,(0)



From this it is found that

0(—8”-') (v=hn)
TI8) Y, (8) -8 Hils) =
0(s™ ") (veo,1, -, A1)
as 4 -» » , 50 that
A
cis™t 4 fhlb)[ (4.15)
Yal8)] ¢ e { Yis)
and
v —
cla)*? S| (v A1) (9.14)
[Yyi8) | € ] + / /%)

The next step is to find an inequslity for the
function #(») and this is done by putting x = l-/‘-,tl' in

the definition of 4 (4) , giving
-~
(~
hio)» 2 2 Ap | # et A
/4:, vZo o

Thus, if ¢ <¢C , it follows that

(h,18) | < C (4-15)
and, further, by the Riemann-ILebesgue Theorem, that
H (8) - O (9.76)
wniformly in o as [ - w. 7
It is now supposed that {+§ € % £ C | and the
integral along /;(M} is considered first. Since no

zeros of 7T(3) lie on this line it follows from Section II



that (Y(s) ) > C f(3) . Further, it is clear

in this case that /3().5) , the term of maximum modulus,

is uniformly bounded from zero for /s| sufficiently large,

and so I7*(A)| >»( for I4/»C . Therefore, by (9.13),
(9:14) and (9.15), it follows that

[y, (8 | ¢ Clal™

e | Yo | ¢ cM®
on FE[M) . Thus

a =-CM$
Iff’;m) yv(,sjg""o&lé e | o

—> O
uniformly for x ind+$¢x¢<Cas M -2 X.

on the other hand, on [j(M) it is seen that

[res) | > py) > ¢ M”eul,

and so, by (9.13) and (9.14),

Y, YT
,yd [J) e(f/sl < l A QT/J}M[A) l + C/ihﬁ:?s« ‘

< ¢ fmwl+ A

1Al
—> 0
uniformly in 6~ as M 5> ® by (9.16). Thus

1 we™ds | ¢ o (S ™0 4o
Pyim) T
“'m
¢ Cefoll)

—_> 0
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uniformly for X in 6% x£C as M-> 00 . Similarly,
the integral along / /M) tends uniformly to zero.

It remains to collect the results which have been
found. Wright hes finslly proved that if q, #0 and
if 4 is the least -6}* for which d,, #0 , then the
solution of (9.1) and its first (s -/) derivatives are
given by (9-11) for =0/, - (n-1) , provided 1y

If, further, /‘"{

X) is continuous and of bounded variation
in the initisl interval, this result holds also for ~v=41,
The last point which is discussed in this paper is
the question of the uniform convergence of the series in
(9+11). For ~v=0,1, - ;(n-d this series converges
uniformly in any finite interval ¢+6¢ X<(C , as is seen
quite simply by the following considerations. From its

definition }ﬁ(&+/t} is seen to be the Fourier transform

of a function, f,/x) say, which vanishes for <0® and
x > é)" Hence

[: /ﬂ,ml‘ da

converges, and therefore by Parseval's Theorem it follows

that

&

f ]H,Hu-t‘t)['z dt
-



must converge. Thus, by (9.14),

. C H, (ks8]
2 (k'Ht){ < C_"—:E"' re [ R T
for vVoe O, I, .. > (“_') and
T ' d T A
W lR+ (Tt r 2 )
{f-, | b {cu'} § J._TIH,H«HUI oa—L o
< C,

Hence [_:'Y»v{k*'"t)loa_ converges, and so the integral
for 01‘”’()() given by (9.9), is seen to be uniformly
convergent in the required interval. Since the integrals
along [jm) , /}{M) and [[ (M) have been shown to tend
uniformly to zero, the result follows.

Similar results clearly hold for the case when q,,
is assumed to be non-zero. In fact, if +4' is the
greatest %h such that @M'# O , then the solution of (9-1)
and its first (41-/) derivatives are again given by (9-11),
the series converging uniformly in any finite interval

—C¢ x<b-§ . Further, if both 4,,#0 and d, # O
the two results may be put together and it is found that
the solution of (9.1) is of the form (9-11) for sll x ,
the convergence being uniform j.n any finite interval.
This completes the information given by Wright on the
gsolution of the homogeneous equation with constant

coefficients.
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It is interesting to notice the distinction between
Wright's results and those obtained previously for such
an equation. The simple exponential solutions CJLK
discussed by the earlier writers may be thought of as a
fundamental set of solutions, which gives a general
solution of the form 3 LY |, the «£, being arbitrary
constants, On the oth;; hand, Wright obtains a general
solution in which the coefficients are evaluated in terms
of the functions FP/», v, x) , and these are seen to be
determined by the boundary conditions set down initially.

Turning next to the equation

55 a, g aet,) =4 (917

/4 =0 wveo

it ié clear, in view of the above discussion on the
homogeneous equation, that the general solution of this
non-homogeneous equation will be known provided that a
particular solution can be found. For a simple equation
such a solution cen sometimes be found by inspection,
but, in general, the problem is best dealt with by
transforms. Formally it is seen, by substituting in
(9.17), that the functién

Arin

L W")J ¢ ™ di
’ (S
JTa Aerw

3”’”;

represents a solution for positive X, %&) being the

laplace transform of fo).



Wright considers the problem in detail in his
paper (45) on the equation with asymptoticelly constant
coefficients, end it is this section of that paper which
is of greatest interest in the present context. In
contrast to his other papers, this one is based entirely
on the L theory of Fourier transforms, by means of which
he obtains a particular solution of (9.17) valid for
almost 2ll x . There are, of course, considerable
changes in his assumptions on the nature of a2 solution.
He now takes é;"’(x) to be of integrable square in the
initiel intervel, so that it is of integrable sqguare over
every finite interval, but assumes only that the equation
is satisfied for almost all X . Cleerly for such a
solution to exist the function ¢'x) must also be of
integrable square.

The theory of Fourier transforms as developed in
Titchmarsh's book (36) is now used, together with the
notation 1.i.m. to denote limit in mean square. It is
supposed that V/#J is the Fourier transform of ¢/x/ so
that

X e k4
ViE) = (,,’,m,f (x)e da (4.18)
Yo ‘% '
Then this function is known to belong to L* . From the

information in Section II, it is clear thet there exists



96.

a certain strip ¢,¢ 6 <6, , parallel to the imaginary
axis, within which 7/3) has no zeros. Wright proves
that there is no loss of generslity if the imaginary
axis is actually taken to lie within this strip, and in
this case it follows that 4/{) is never zero for real T .
Then the function z"‘V{i’)/‘r(it) velongs to L° and so it is
possible to define éLM){JC) by the equation
T A
) . L (t Xt
o 'S
AT g Y F]

It then follows by Plancherel's Theorem that, for almost

T >0

all X ,
> 2k

Wiy oood [ ey el g
f AT dz J.o Ut S

- LA 7yt ) T
aT  Jdx - % T(E)

Further, from the fact that

1, ’ '
fm(x,) - L g’w’(})d;} (vzoi

v

()

4 (x)

|

it is seen that, if yfvyﬂ;) is defined by

YIit) !

0 e 1Y i1, €
(v) } (_Lt') \/(_t)A e T dE
é{ (J(o} ~ ;_;,JA



then

) .
() 4 )Y Ve vx e
# (x) = 7 f = t')' ' j 2 AF
4 -0 T(iF)
for v=20,) - Ch'd » both integrals being

absolutely and uniformly convergent. Thus

&‘[7)/1’)- L v 1',m,f’ (i'zf')"l//f_} et‘:(bpd_
AT T 5o J-1 T )

for v= 014 .. -, N so that differentiation ofc;/xj
W times under the integral sign is Jjustified,. It
follows that
T _
Myl = f.x'.m.f vie) e 7
T -T
and therefore
Myl = Ar(x)

for almost all 2 , using the usual inversion formula

for (-(fJ . Thus the function

-
A
&N}:—ﬁ ﬁlﬂmp/ .Xﬁi e‘X dﬁ- MJ{)
M 15 Jp T

represents & solution of (9.17) for almost all X , and
the information on the solution of this eguation is
complete.

There is a clear analogy between this particular

solution and that obtained by Schmidt, for (9.19) can be



written formally as

® x -
yle)= o f ME e T Y
-

Tt
0 zxf‘ - ihu
= L o [.(/'/Me du
arJ_, ?hf7 J
-2

J(x,ult‘
At

fﬂ’f "WC&*/ T E) /

and this is closely comparable with Schmidt's solution

1

(3.10). Also the solution (7-4) obtained by Bochner is
of thie same form.

A brief comment may be made here on the connection
between Wright's constant coefficient equation and the
integral equations discussed in papers (26) and (27) by
Pitt. In the first of these papers Pitt is concerned

with the equation
W 00 '
z | ¢ dhG) -0, 449
vzo Ve

end in the second with the equation

of 7 x - 2)d R, (3) = ulx),

As he points out, if each &Vc%)is a step function with a

finite number of steps, equation (9:20) reduces to an
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equation of the form (9-1). Thus the linear difference-
differential equation with constant coefficients is a
particular case of Pitt's integral equation. Under
certain stated conditions Pitt proves that a solution of
(9.20) must be of exponential order at infinity, and he
then uses a two-sided laplace transform in order to find
an expression for such a solution. In particular he
obtains the same result as Wright for the solution of (S-1)
provided that both Q,#0 and a,,#0 , but his method does
not cover the case when one of these coefficients is zero.

The main problem with which Wright is concerned in
his paper (45) on the equation with asymptotically constant
coefficients will now be mentioned briefly. The eguation
discussed is of the form (9.12) with the additional
condition that '

Fo® =2 4,

as XA -2%® , the behaviour at infinity of its solution being
considered, and also the relation of these solutions to
those of (9.17). The theory follows the same lines as
that for similar problems in the case of pure difference»
and pure differential equations as discussed by Bochner (8)
and Poincard (28), for example, but the methods used are
necessarily rather more elaborate. The behaviour at

infinity of the solution is measured by the function w(y)
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which is such that ye'” is LY(x, ) for all o~y aly)
but for no U_(Ld%} . This function ;u?} corresponds
exactly to the Ycharacteristic number" used by Poincaré
in the parallel theory for differential equations,. By a
method of successive approximations, Wright shows that the
behaviour at infinity of the solution f{ﬂ of the difference-
differential equation corresponds to that of sfx) .
This information is of some importance in the
discussion of certain non-linear equations, to which a
brief reference will now be made. As an examnple, the
equation
y’(x.u) :-4/2//1)[ /'f—y/)lf’/] [7“7’)
is considered., This is mentioned by Wright in (42), and
it originslly arose in connection with Lord Cherwell's
investigetion (12) into the distribution of prime numbers.
If the condition y(X) >0 as X -7 & is imposed on
the solutions, it is seen that the equation may be written
in the form
yl'latr) = Alx)yglx)
where Al1)5-x as X-P# ., Thus, by the properties just
mentioned, it follows that the solution of (9.21) may be
related asymptétically to the solution of the equation
¢ Uoa+) = — o(y/)f)

first discussed by Schurer,



101.

As Wright points out in his paper (43), there are
three stages in the discussion of this problem of small
solutions, namely, the existence of such solutions, the
proof that eny such solution must be exponentially small,
and the determination of an asymptotic expansion for such
a solution, In this peper, Wright considers the third
problem, assuming the other results for the moment. He
takes an equation of the form

Mig) + Mly) = o¥)

where

" /

hip) e ¢ 03 F & Ay ¢ (xeby)
/l

=1 Ve=o

and

(4,.,) (fs, 1) L
Wz 2 ek ) s

In /\‘ there is a finite number of terms each containing at
least two é{_ functions, the coefficients AA are constants,

and the numbers ﬂ)/l are less than or equal to Y .,

e-(&-i)x

Assuming the solution to be of order , Wright

proves that it takes the form of a finite sum of

exponential terms related to the zeros of 7/3) in the
~(C-e)x

-

strip ~( ¢ g<-¢» together with an error term of order €



X, APPLICATIONS.

Linear difference-differential equations have
occurred in a variety of practical problems, the most
important of which will be discussed in this section.
The main question of interest in such cases is the
stebility of the solutions, as Wright points out in an
article (46) published in "Nature" in 1948, Since an
exponential function e‘xis small, periodic or large
as x >« , according as ¢ is negative, zero or positive,

it follows that Wright's solution

$i(x) = =l H(A:;) e,s,.:c
2 T'(2n)
of equation (9:1) depends for its behaviour as
on the signs of the o,.
Many of the equations found in practice can be
reduced by simple transformations to the equation
Flixr )+ aglx)= 0, (a70) (10-1)

which is of the form originally discussed by Schurer.

In this case it is easily found thet if a<@ﬁ all the
zeros 4, of 7/y) have ;<0 , so that g/x)90 as x> w.
On the other hand, if « > 72 at least two zeros have

6; 50 » and so0 at(x) oscillates with increasing

emplitude except under certain very special boundary



conditions. Finslly, if = 4 , there are two
imaginary roots giving a periodic solution

yln) = Aan [%-X*.B)
whilst for a1l the other roots 6,<0 . In this case
the general solution approaches the periodic solution
as X ->o.

Since the problem of stability depends on the
zeros of T/s) it is a discussion of these zeros which
constitutes the chief topic in the applications which
will now be considered.

In 1933, in a lecture to the Econometric Society of
Ieyden, it was shown by Kalecki that certain problems
in economic dynamics depend for their solution on a
difference-differential equafion. He produces an
equation of the form |

g'(t) = ay(t’} - < plt- g)
where < represents the time, and a, «, @ are positive
constants, and this equation is discussed mathematically
by Frisch and Holme in a paper (15) published in 1935.
Their treatment is subsequently extended to the case
by James and Belz, (21), who point out that in some
economic problems this case may arise. In both cases
the discussion is confined entirely to the simple

exponential solutions and the roots of the transcendental

(10-a)



equation.
AL
It is immediately seen that <« is a solution of

(10.2) provided 5 is a root of

a . A - ¢ ) ' (16-3)

Thus real exponential solutions are given by real roots
of (10.3), which may be found from the intersections

of the straight line
4 = 2 - A
<

v
with the exponential curve
~50
¢ ¢

Clearly there will be O, ! or & such roots depending
on the relative sizes of g,« and @ . If a greater
degree of accuracy is required, the roots obtained may
be improved by some method of successive approximations.

In discussing complex roots of (10-3) it is
convenient to make the substitution

A0 = U+ LM

where ( &and 4 are real, Then equating real and

imaginary parts of (103) gives
-
o= a0 - 2 0qo8y - € (i0-4)

and

/ = ~C@ é—fj—‘w& e , (;0.57
A



]
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It is clesar that if, for a given # , a certain «
satisfies these equations, then -« also satisfies
them, so that the roots of (10:3) occur in conjugate
pairs, Also, from (10:5), it is seen by taking
logarithms that

o:&//x.@/— u-f-lo/ /%—f‘//

so that, on substituting for « , (10-4) reduces to
flu) = K

where .
AU
G wlun + /0/ / e

g i)

(L1}

and

1A}

K

This equation, in the real variable .« , may now be

a@-/oi j<9] .

solved graphically. Since the roots of (10-3) occur
in conjugate pairs, it is sufficient to draw the

graph )L’VW‘) for 4 v o , and since ,i'/a) is independent
of the constants a,«, ¢ , this graph may be used for
all equations of the form (10.2).

Values of « which are roots of (10.4) and (10.5)
are now given by certain intersections of this graph with
the line #:/( , but care must be takén in choosing the
correct intersections. Correct values of 4« clearly
Adepend on the sign of .snu/u , and ;this/ﬁ’s determined by
the sign of wJ , as is seen from (10.5). In fact if
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e

«d?0 , then Ama/u must be positive and so « must lie
in [,73 T, (;;,+,)7T_7 y, While if «4¢0, 4 must lie in
L (Ans 1) T, (a’):+:)77_],’7 being a positive integer.
Having found the correct values of 4 , the corresponding
values of ¢~ are then obtained from (10:5). If these
values are not sufficiently accurate, a method of
approximation may again be used to improve them. Thus
it is seen that solutions of the form

Fl) . he N (b xr )
where F},B are constants, may be calculated to the
degree of accuracy required.

Another interesting application of di.fference-
differential equations is found in the field of X-ray
irradiation. In 1941, in a paper (34), Sievert
developed a mathematical theory to explain the results
obtained experimentally by Forssberg (14) iﬁ his work
on a certain mould called Phycomyces Blakesleeanus.
Thie mould was subjected to X-ray irradiation and the
experimental graph of its subsequent rate of growth was
found by Forssberg to have a wave-like formation.
Sievert attempted to find a mathematical explanation of
this result by making certain assumptions on the‘_nature
of the mould and the actions taking place in it,

IIt is known that, in a living cell, the quantity

of each substance X is in a constant ratio to the total
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quantity of substances constituting the cell. If X is
partly destroyed by irradiation, the natural reaction

of the cell is to restore the substance X in its original
proportion. After such a destructive action, however,

a certain time T elapses before the restoration process
begins. This time is known as the initial period. In
Forssberg's experiment the mould is subjected tb the
action of X-rays for a certain period of time 7T . It
is assumed that the rate of destruction of the substance
is proportional to the quantity of rays absorbed, and
thus to the quantity of X itself, and also that the rate
of restoration of X is proportional to (X,_, '-X,)

where )Q represents the quantity of X in existence at
time Xt . These facts may be expressed by the following

difference-differential equations: -

O_:Zt{t s ~Ix, + R =X, ) (06tcT)

and

e(%r - R -K,), (7T
where I;R’ are constants, known as the destruction and
restoration coefficients respectively, and Xt-? is
assumed to be equal to X; for T<¢7T .

In order to compare the solutions of these equations

with the experimental results, Sievert uses a method of

[10:8)

(10-7)
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"graphical integration", finding the solutions in
graphical form for a very large number of particular
cases, For the initial period the equation reduces
to the ordinary differential equation

dXe . _ I«

ot
which has the exponential solution X, = e—l- and thus
the graph of X, may be drawn for the interval (o, 7).
At a time T+§5 a line-element of curve may then be
drawn by using equation (10:6), for the quantity (X, -xg)
can be calculated from the graph already drawn. By
proceeding in this way step by step, a rough sketch of
the solution may be obtained, equation (10.7) being used
instead of (10+6) after time T . 1In many of the
particular cases calculated by Sievert a wave-like form
of graph is found to occur, and for these cases the
theory fits with the experiments.

It is interesting to notice that, by means of simple
transformations, equation (10.7) may be reduced to the
form (10.1) with x:.&@. Thus the solutions of (10-7)
are stable, periodic or unstabdble according as &% is
less than, equal to or greater than EZQ .

A more general attack was made on the problem in

1944 by van der Werff (38). Instead of (10.6) and



(10:7) he considers the equations

%f -'-'--F(I./X)‘. +Q(R)X)t._7 , (O‘té-r)

and

A,
At

where the functions F;Q represent general biological

COR, X)pon (-7 T)

reactions. In the particular cases then discussed
curves of a wave-like form are again obtained in a
similar way.

The last application to be considered in this
section concerns the theory of control mechanisms.
This was first discussed mathematically in a paper (11)
by Callender, Hartree and Porter, published in 1936,
In many physical operations some form of controlling
gear is required in order to keep a given physical
quantity as nearly constant as possible, and it is shown
in this paper that the effect of such a mechanism is
represented mathematically by a difference-differential
equation,

The function @(t) represents the departure fron
its standard value of the physical quantity at time xt ,
C(t) represents the effect of the controlling gear, and
ID(t7 the effect of random disturbances. It is supposed

that the rate of increase of f(f) depends not only on



Cft) and J(f) bdut also on (¢ itself, so that the

equation

iﬁ’é{{i = D(t) + C(t)—mOLT), (10-8)

where M is a constant, is obtained. It is also known
that there is a time-lag, 7 say, between the controlling
gear being called into play and its consequent effect on
the physical gquantity, and so a law of control is taken

of the form

ﬂ(f'f'—f) = =2, @/‘A’-)_nl i@_(f) 'ﬂJ ‘_{j__@it/ (/0'7)
pye dt

where 41,,./1‘,,./1_3 are constants, Further, it may be assumed,
without loss of generality, that T =/ for this equation
may easily be transformed into a similar equation in

which / is replaced by / . In this case, eliminating C
between equations (10.8) and (10.9), it is found that §(¢)
satisfies the linear difference-differential equation
droe)  dAotsy) L, d00Er)
dre T dE &

= 4 :D(t—""/) .
ar

ah, @(t’) + I‘l %) }+/13
(:0»/0)

Clearly, for the mechanism to be of any practical

value, it is necessary for this equation to have stable
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solutions. Thus the next step is to discuss the
possibility of simple exponential solutions of the
form e”t for which & <0 .

If there is no outside disturbance XNXt) is zero,
and the transcendental equation associated with (10.10)
becomes

W8 g s+ + (mea)ae’ = 0.
It is seen that the roots of this equation occur in
conjugate pairs, and, in a number of particular
examples, their approximate values are found by
graphical methods of the usual type. The corresponding
exponential solutions of (10.10) are called the normal
modes, and the problem is to discover the values of the
constants M, M, A3, M which produce stable modes,
These indicate suitable values of the constants in the
more general case when J(t) is not zero.

In 1937 a further paper (16) on the subject was
published by Hartree, Porter, Callender and Stevenson.
In this case they were concerned with a more general law
of control which gave more effective results. Here the
transcendental equation corresponding to (10.11) is

found to be of the form

4
4,44 /

//o"“}
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where 0,41 are also constants. Again, particular
values of the constants are considered with a view to
finding those which will give stable solutions. The
paper ends with an account of the way in which a
differential analyser may be used to facilitate the

calculations.



XI. CONCLUSION,

The main developments in the study of difference-
differential equations having been considered, a few
brief references may now be made to some other papers on
the subject.

There is a short paper (24) by Neufeld, published in
1934, in which a linear equation of form (9.17) is solved
by means of the Laplace transform. The results, however,
are leéa general than those of Wright, since instead of
proving the order conditions which are necessary for
Justification of the method, Neufeld merely assumes them.

In a paper (18), published in 1935, Herzog obtains
results for a finite set of difference-differential
equations, using an intricate notation in order to state
these results neatly. He is chiefly interested in sets
of non-linear equations, however, discussing the possible
exponential solutions.

Another writer to consider non-linear equations is
Bellmaﬁ, who discusses the existence of bounded solutions
of pure difference and pure differential equations in
(2), extending his results to difference-differential

equations in (3), published last year. In the latter



he is ultimately concerned with the equation
Wtr) = 4, alt)Fag wlty ) + JLait), attr)] ) |

but he deals with this equation by considering first
the linear equation

U' (Fr1) = a4, UE) + a5 4lES1), (n2)
As Youndary conditions for the latter equation he

supposes that the function «/(*) is known in the initial

interval (o,)) and that 4'/i) 1is given, and then by a
formal application of the Laplace transform method he
obtains a solution. The method is not Jjustified
directly by consideration of the order at infinity of a
solution. Instead, Bellman proceeds to show that the
function obtained does in fact satisfy the equation and
therefore provides a true solution. Further, to ensure
that this solution is stable, he points out that it must
be assumed that all the roots of the associated
transcendental equation lie to the left of some line

= = « A solution of the non-homogeneous eguation
is found in a similar way, and finally the results are
extended to equation (11-1).

Another recent paper (4) on the subject, by

de Bruijn, concerns a linear equation whose coefficients

are functions of x. In particular the writer



considers the equation
x—dJVx)+ ¢i(x) - ¢(x~g) = O,

examining the behaviour at infinity of its solution
for certain values of « . His methods, however, are
not of general application and will not therefore be
considered herse.

Bateman published a paper (1) in 1943 on equations
of the form

Mdlun & 4K Qa4 Sy = (naxaxb)(ln, - 4n)
At i

~(na+ c)(Uy - 4,., )

Clearly such equations conform to the definition of

difference-differential equations given in (1.1) only in

the particular case when A= T, It is interesting to

notice that Bateman mentions the definite integral and

the Laplace transform as means of solving his equations;

he is chiefly concerned, however, with particular

equations which have occurred in practical problems.

Finally, it has been pointed out to me by

Professor McCrea that Whittaker's solution of differential

equations by definite integrals may also be applied to

difference-differential equations. The basic theorenm

of this method is stated in Whittaker's paper (39) and

proved by Kermack and McCrea in (22).
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Using their notation, the particular case of the
Laplace transform is obtained by taking
We-g @
as generating function. Then the corresponding contact

transformation is given by the equations

,P.—.w r-'a,—u-/-
2Q v 24

which reduce here to
TD= -9, Q= ».
The auxiliary function X is given by the partial

differential equations

Y. % _
5, “ P 5 ¢ X,

so that q/L‘

The theorem then states that the solution of

2. -
F[‘%/ ,M/)"f/-—O
is of the form

wily) = [ K, t) pee) dE

z f el @ (t) di—

where ¢(t)is a solution of

Fl-%c %) 9 =0

(-
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As an example the theorem may be applied formally

to the 'equation
’\/'/Q/-;-l) ~a Y(q). (1 ¢)
Writing the equation in terms of operators it is seen

to be of the form

;:/q/’%y)y.—.o

where é‘
- 2 ) = 4 ¢ _
r (q// ’aq/ ) - dq/ ¢ .

Hence
2 t} = t" 2 -
= [— 2t / ) - e ’
so that the solution of (11:4) is of the form (11-3)
where ¢(t) is a solution of
It follows that @¢/#) may be arbitrary, provided Z, is
a root of the transcendental equation associated with
(11+4), so that (11.3) becomes .
4
"{/(q/) = s e d(t—n),
A
This is the same form of solution as was found earlier
for this equation.
If the method is applied to equation (6-4) it is
found that the function @£} is given by the same
equation

Afge)y= 0

as was obtained by Hoheisel in Section VI.
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me——

The dissertation will now be concluded with a
brief survey of the chief points of interest in the
study of the linear difference-differential equation.
The gradual development of the use of transforms has
been seen to be closely connected with the order at
infinity of a solution and it has also beeﬁ remarked
that the situation is considerably simpler for an
equation with only one term containing an wth
derivative of &Jx). Schmidt, Hoheisel and Titchmarsh
confined themselves to equations of this type, while
Bochner indicated the advantage of doing so, although
he considered the general equation as well.

The order conditions laid down for a solution by
the early writers were of a very restrictive nature,
Schmidt and Hoheisel, for example, confined themselves
to solutions of order }xl‘ae |2l —> « , s0 that only the
purely imaginary zeros of <9/8) could be used for the
gsimple exponential solutions. The same restriction was
made in effect by Bochner,. Schmidt, however, briefly
mentioned the possibility of solutions of order ¢ <'¥/
as |X/~->p, a condition which was also taken at first
by Titchmarsh, although he omitted it in his later work.
As was seen in Section III, the purpose of such order

conditions was to limit the complementary function to
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being a finite instead of an infinite series. Hilb

and Sch&rer, however, did not restrict themselves to
solutions of any particular order and they obtained, in
consequence, solutions in the form of infinite series
whose convergence had to be discussed. Finally, in
Wright's work, an order condition was no longer assumed
but instead it was actually proved that a solution must
be of exponential order provided certain conditions were
laid down in the initial interval.,

With regard to the use of transforms, it was pointed
out earlier that Schmidt used a function closely connected
with a transform in order to obtain a particular solution
of his equation, As was seen later, the solution he
found was comparable with those obtained by Bochner,
Titchmarsh and Wright, all of whom made explicit use of
transforms, Hilb, on the other hand, did not use
transforms at all, but based his results on the expansion
of an arbitrary function as an infinite series. He
considered the homogeneous equation, recognising that the
solution depended on the behaviour of gﬂv in the initial
interval, and obtaining a solution in the same form as
that found by Wright 1atef on, He also mentioned the
importdnce of the non-vanishing of one of thg coefficieﬁts

a or a,, - Schiirer's approach to his own simple
na



equation was of a similar nature.

The real use of transforms began with Hoheisel, who
solved his equation by assuming a solution in the form of
a Laplace Integral. He was followed by Bochner and
Titchmarsh, both of whom used Fourier transforms, Bochner,
however, was restricted by his definition of a Fourier
transform which confined him to a consideration of the
purely imaginary zeros of 14} only. His conditions
on the integrability of a solution also led to the
exclusion of the complementary function, althouzh he later
remedied this by extending his class of integrable
functions. Titchmarsh, by using generalized Fourier
transforms, was able to consider complek zeros of 77
and thus he obtained mors general results.

Finally, Wright was able, by using his result on the
order of a solution, to justify the use of the Laplace
transform in obtaining a solution, Further, provided
that one of the coefficients Omp * Qon WaB non-zero,
he proved results on the convergence of this series
solution which he obtained. Thus it was with the
publication of his papers on the subject that the real
power of transforms ih this connection was finally

appreciated.
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