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ABSTRACT

There have been many contributions of work in different fields
of convexity giving various metrical properties of convex sets. In
this thesis we shall consider some further ideas which seem
interesting to study. A standard way qf tackling certain types of
problems is to prove the existence of an 'extremal' convex set with
tcspect to the property in consideration and by a series of
arguments determine its comstruction. Generally speaking the
extremal set turns out to be regular in some sense with a
correspondingly easy geometry.

In Chapt;rs 1 and 2 we shall concern ourselves entirely with
polytopes and we shall give some results on the metric properties
of their faces. Following these results, we shall in Chapter 3
consider some continuity properties of the more general class of
cell~complexes. In Chapters 4, 5 and 6, we shall confine ourselves
to the plane. In Chapter 4, we shall consider sets which in
certain senses correspond to the sets of constant width. This
leads us in Chapter 5 to give some results concerning the minimal
widths of triangles circumscribing convex sets. Finally, in
Chapter 6 we consider the areas of certain subsets of a convex set
which are determined by partitions of that set by three concurrent
lines.

Papers which are relevant to the field of study in a particular

chapter are mentioned briefly in an introduction to that chapter.
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DEFINITIONS AND NOTATION

Let E" denote n~dimensional Euclidean space. If xeE"
vrite x = (§;, . . En) where Ei is real for 1 % 1, « « n.
If y = (Y1 o yn) eEn define

n

x.y -1 i 151 Yy

an§’

|x=y| = ( (xy) . (xy) %

n 2 i
- ( I (Ei-‘ri) )
i=1

ve shall writg Xy 'tﬁ denote both the iine.through x and y and
the line segment joiningli to y. We shall call the point
o = (0, . « 0) the originlin E.

A set X will be said to be convex if whenever two points -
x and y belong to X all the points of the form Ax + uy

where A 20,4 > 0,A + u = 1 also belong‘to X. Define

comv X = { A5x4 x | = A =1, x eX and
0 ('11 €lforis=l, .-.1m } |

and

aff X = {Nx+ed x | I A = 1endx

=1

¢cX fori=1, . .m}



we shall say that conv X is the convex hull of X and that

aff X is the affine hull of X or the affine subspace spanned
by X.

If { Xis oo X } is a finite set of m points, it is convenient
to write,

conv { x., « « xm}-' = conv (x

1 . s xm? and

1.
aff { Xip oo xm} = aff (xl, o o xm?.

We shall say that a set of points { X0 o .'xm } is affinely

independant if a relation of the form

llxl + Amxm =0

11 + . Am =0

ﬁhere Xi 'is r§a1  fpii -‘1, ; . ﬁ iipiie# ﬁhakixi';ao fﬁri -‘1 . oM.

The dimension of a convex set X is defingd to be the dimepsion
qf the subspace aff X or equivalently to be one lggnvghgn the
maximum nymbet of affinely independant points'gontaipgd in X.

If X is an n—dimensional convex ég; in En,>1et int_x and f:'x
deqote the interibt agd froncigr of X 'tespecﬁively. If X has
dimension lenq than n, let rel int X and tei ;;'x denoge thg in;erior
and frontier of X respectively}relatiée tq'gff x,

An affine subspace R of n-1 dimensions in " vill bg called a
hyperp}ane and can bg written ip_thevform

R = {x eE" ]x.a » A where a is a fixed vector

and A is real }



If X is an arbitrary set and a 1is a fixed vector, define
the space spanned by X and a to be the set of points J given
by

J = {x+ Aa | =xeX and A isreal}
If a 1s perpendicular to a hyperplane R, then Jf\ﬁ is called
the orthogonal projection of X on to R.

If X is a convex set and b 1is a point not contained in

X, define the cone spanned by X and b to be the set of points

C given by
C = {xx+(1-)5b [chandAZO}

The set of points lying on, or to one side of a hyperplane
will be called a closed half-space; the set of points strictly to
one side of a hyperplane will be called an open half-space.

| A support hyperplane R to a convex set xX is a hypefplane
which intersects the closure of X and is such that X 1lies in one
of iha two half—spaces bounded by R. We sﬁall say that a support
hyperplaﬁe R io X supports X regularly or is a regular supporc
hyperplane, if RNX consists of a single ﬁoiﬁi.

A polytope P 1is the convex hull of a finite number of‘points'
or equivaleﬂtly a boﬁﬁded interaection'of half?spaces. If R is a
supporting hyperpiane'to P then F = R/\P will be ;alléd a face

of P. It is also convenient to call the empty set and P itself



faces of P. If the dimension of F is 'r, we shall call F

an r~ face of P. We shall call the O, 1 and n-1dimensional faces
of an n-dimensional polytope P, vertices, edges and facets of P
respectively. We note also that a polytope,which is two
dimensional,will be called a polygon and a polytope, which is three
dimensional, will be called a polyhedron.

If{xl,oox

e 1 } is a set of affinely independant points

and T = conv (xl. . . xm) we shall say T 1is a simplex. If every
edge of T has the same length then T will be called the regular
simplex.

If P 1is any polytope define the path v in the graph of P from
vertices x to y in P, to be the sub-graph of P having as
vertices, a sequence of vegtices X = X, X ., 0 o x =7 of P

0" 1

and having as edges, the edges x x of P. Two

0"1* *1¥2* * * "a-1"n
paths “1 and ﬂz in P will be called disjoiht if they have only
possibly end-points in common. It is well knowntléd that the graph
of an n-dimensional polytope is n~connected. In other words, for
every pair of vertices x and y in P, there exist n pairwise
disjoint paths in P having these vertices as end-points. Two paths
7y and 7, will be called edgewise disjoint if they have no edges in
common. By the expression 'a path in P' we really mean 'a path in

the graph of P',

Define a cell-complex K to be the union of a finite family of



polytopes { P, } " called cells such that
iw=1

(a) Each face of any P, is contained in the family

i
m

i=1

(e}

(b) The intersection of any two members of the family

} is a face of both.
i=1

{Pi

Let fo (K) denote the number of vertices of K and we shall write
O's (K) to denote the union of the s—dimensional faces of K.
Let D" { 04 A ] denote the n-dimensional ball or solid sphere,

centre o and radiuskin. E".
D" [o, 2] = { xeE" | |x] ¢

If n=2 wve shall call D [o, A] a disc.
Let §° [0, A] denote the frontier of p" [o, A] 1.e; the sphere,

centra o and radius A.
,‘Sn [o, A]- {ern [xl = A} .

If R is a hyperplane which meets D" [o, ).] and H is the
open half-space bounded by R which does not contgin 0 then the
closure of H>/\ ° [‘;, ‘X] is called a c#p of Du [0, AT |

We shall say that a polytope P :.s mscnbed in S [o, A]if
each vertex of P lies on s" [0, A] If a polytope P contains

a convex set x and each facet of P supports x, then we shall say



that P circumscridbes X.
1f { U } are arbitrary points in En, define the
centroid of these points to be ;1; (x1 + .. xm).

For each bounded set X define

p(X, x) = {inf Ix—y] ,
yeX

p(X, Y) = inf |x~y| and
x, X

y Y

the diameter of X, D(X) to be

'D(X) - sup |x-y|
i. y X

For each ¢>0 let
[%,e] = (x]pXx, %) s}
we call this set the closed g¢-meighbourhood of X.

If X nm‘lvt are compact let
A(X. Y) - 61 +* 62

where §, and §, are the smallest numbers for which

[z, &]D0Y and [¥, §,] DX,

Ais called the Hausdorff inet_ric £unc:£on defined on the class

i
i
\ v

of compact sets. We may say that a function £ is continuous on

this class if £ is contfnuous with respect to this metric.
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We say that a sequence of compact sets { X

if there i{s a compact set Y such that

A(Xi, ) > 0 as -+ =
and we write

xi -+ Y ag i+ o

If Z is a compact set such that fareach e> O,
[xi, e]Dz
whenever i z.io (e), then we write

lim inf Xij Z.

i

}“ - 18 convergent
i=1

If k is a given vector define the width of a convex set X

in the direction k, H(X; k) to be the perpendicular distance apart

of two distinct parallel hyperplanea}each of which supports X and

is perpendicular to k.

The minimal width of X, H(X) is defined to be

H(X) = inf H (X; k)
k

where the inf imum is taken over all vectors k. If H(X; k) is

constant for all vectors k then X is a set of constant width.

An open 'rectangle' C is defined as follows

c-{'x-(gl, . .‘an) Y, <E <8 fori=1,2..n}.

n
write T(C) = =« . (Gi - yi).
i=]
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The n-dimensional Lebesgue measure of a set X in En which we

shall denote by A n(x) is given by
[}

/\n(x) = inf I Y (C

)
ie] i

The m—dimensional Hausdorff measure of a set X in En withmgn

which we- shall denote by M_ m(X) is given by

M_ (0 = sup int i I 1 CIEW) »“ -

§>0 D(Si)s é

U spox
{e1

where for each 6>0, the inf imum is taken over all coverings of X

by sets {S,} with D(S,)¢ & fori = 1, 2, - °
iy i

For arbitrary sets X and Y let
CX|Y = { x|xeX, x¢ Y }

Aset X in E° is said to be /\n- measurable if, for all

sets Y and Z in E" with

YCX,zZCE [X
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we have

ALy GV =N (D) +N (D).

Aset X in E° is said to be/H~mfmeasurab1e (m < n) if,

for all sets Y and Z in En with
YCX,zZCE" |X
we have
Mg U =AM + A @

We shall call;*\l (X) the linear measure of X or the 'léngch'
of X.
The volume of an n-dimensional convex set X demoted by

on(x) is defined to be its n-dimensional Lebesgue measure. Thus
0, @ =A@

The surface area of an n-dimensional convex set X denoted by

Qn_l(x) is, see for exemple [7]‘ page 88),§'given by

on_l(x) = 1lim °n ([x, D - ¢n (x)
v 8§+ 0+ 3

Thus if P is a polytope then Qn_l(P) is the sum of the
(n-1)-dimensional Lebesgue measures of the facets of P. Also by

convention P 1is a face of itself and so Qn(P) is the n-dimensional
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Lebesgue measure of its n-dimensional face. Thus if P is a

polytope we extend the definition of ¢ and write @r(P) to

denote the sum of the r~dimensional Lebesgue measures of the
rL-dimensional faces of P for r=1, 2 . . nif P has dimension

Ne

We shall call @1(P) the total edge-length of P, Also if n = 2

and X 1is a 2-dimensional convex set, we shall sometimes write

P (X) and A (X) to denote the perimeter and area of X respectively

and so, in the above notation
P (X) = 01 (X)
and A(X) = ¢2(X)

We shall say that a convex set X 1is central if there exists a
point p such that X coincides with its reflexion in p. The
point p is called the centre of X.

An affine transformation is a transformation & : E- + E° of

the form
O (x) = Ax + Db

where b is a fixed vector end A is a non-singular n x n matrix.
If a planar compact convex set X can be rotated continuously
through 27 radians inside a regular polygon P so that each side

of P is always supporting X, then X will be called a rotor for P.



For the remeining definitions we shall asn'um that X 1is a
arbitxary set in the plane.

Let x, y and z be three non-collinear points. We shall let
x'; s dewote the angle subtended at y by the line-segmsnts x y
and z y.

Let C(x, y, 2) denote the connected set of minimal length
(linear measure) which contains x, y and z. Suppose C(x, y, £) has
length I(x, y, z).

- If each angle of triangle x y 2 {8 less than 2x let W be

3
the unique poiant in triangle x y 2 for which «x

A A N 2
xwy-yw:-xw:-‘-a-“',

Y
A z
and 1if the angle y x s say of triangle x y z is greater
2 X zwW
than or equal to Tl let W= x,
3 y <15 2

The point W will be called the centre of connection of trisngle
XYy s,
We defina a point t as follows. If each angle of triangle

Xy % is less than or equal to -;-T\’ let t = W .

X

A 2
t=W (t-xityxz~3t)

Yy - z

A 2
If the angle y x s say of triangle x y z is greater than ;Tr

let t be the unique point which lies on tha same side of the line

‘ : A A T
yz as x and such that ytx = st X =7

Yy Z




The point t will be called the centre of revolution of triangle
Xy 2. We shall let D (x, y, z) denote the set union of the segments
tx, ty and tz in all cases,

If each angle of triangle x y z is less than or equal to -% 7 let

K (x, 5, 2) = |t=x| + |t=y| + |t-z]|,

A 2
If the angle y x z is greater than 3T let

K (x, ¥y, 2) = -lt-xl + lt‘Yl + It—z' .
It will in fact turn out that if each angle of triangle xy z is
2
less than or equal to T w then

3

C(x,¥,2) = D (3, ¥ 2)

and
I(x,¥,2) = K (x,75, 2)
If x, y and z are collinear choose sequences { xi }. of{ yi }“
‘ i=1 iw=il
and { z1 }"° which are convergent to x, y and z respectively such

i=1

that X, ¥y and z, are the vertices of a triangle for i =1, 2 . .

i

Then define

I (xl YO 2) - lim I (xi’ yi’ zi)
ivse
and K (X, ¥, 2) = 1lim K (xi, yi; zi)
i+w
For each point x, write
I (X; x) = sup I (x, vy, 2)

y, 2 ¢X
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and

K (X; x) = suf K (x,y, z) .

y, 2€X
we shall call I (X; x) and K (X; x) the I-stretch of x with

respect to X and the K-stretch of x with respect to X

respectively.
Define
I (X) = gup I (%, y, z)
X, ¥, 2€X
and
K (X - sufP K (x, y, 2),
X, ¥, 2€X

we shall call I(X) and K(X) the. I-stretch and K-stretch of
X respectively.

Finally we say that X is completely I-stretched if x¢x implies
I XU{x})>1I (X
and that X 1is completely K-stretched if x¢X implies

K@Eu{x})>K X). -

P
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CHAPTER 1

INTRODUCTION

Problems concerning the length of a net to hold a sphere, the
total edge-length of a crate (a frame formed by the edges of a
convex polyhedron) to hold a sphere, and the total edge-length of
a convex polyhedron to contain a sphere have been considered in
[1], [2], [3] anc [4].

In this chapter we shall prove some further results concerning
the metric properties of polytopes which do not seem to have been
included in the literature. In theorem 1 we shall give a lower
bound for the total edge-length of a simplex which is inscribed in

a sphere, and which contains the centre of the phere.

Theorem 1

Let T be an n-dimensional simplex inscribed in the sphere
n \ n . _
S [o, A] in E and containing the centre o.

Then 01 (T)>> ZnA‘ for each n > 2,

Lemma 1
Let P be a polygon inscribed in the unit circle S2 [o, 1] in

E2 and containing the centre o. Then ¢1 (P) > 4x .
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Proof

Let P have N edges El’ . o EN. Let Bi be the angle

subtended by E, at theentre o for i =1, . . N, Then for

i

each 1 with 1 <1i<g<N, 0« Gi £ 7 and for at least one j with
l<j<N,O0Cc¢« q; <7 gince P has a non-empty interior. Now for

0<£6c«g %3 sin © a,%'e with equality if and only if 6 = O or

ﬂ *
6= E; and sin 6 1is a concave function of © in this range. Hence
0 8 e, o,

for all i with 1 € 1i ¢ N, sin —%->,«-;l- and sin -;L?—'l for

at least one j with 1 £ j € N. Thus

N 6,
o, (® = I 2sin o
{i=1
N o,
> A I —= = 4.

f=1"

The lemma is proved.

Lemma 2
. . 2 2
Let ot be a fixed radius of the circle S [55 A] in E  and
x y a chord of fixed length which meets the line ot between o and
t., Let R be the tangent to s2 [65 A] at t and suppose that x
is nearer to R than y 1is to R. Then, if v {s the mid-point

of xy and W the foot of the perpendicular from v on to R

v -wl< v -l »
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Proof

As the chord xy rotates in 32 [b) A]. the locus of v is a
circle centre o. Thus |v -~<w| is maximsl when x « t and the

result follows. The leuma is proved.

Lering 3
Let P be a polytope and let o be any point in,AP. Then,
either o belongs to some facet of P or there exists a facet

F of P such that the line through o perpendicular to aff F

meets F,
Proof R
M
Let the facats of P be P, . . F.. Let G= | P,. Then
1 o et 8T N

G is compact and thus there exists a point yeG such that

lo =yl = inf fo-x|

xeG
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Then yeFj for some j. If o =y the lemma is proved. If
o ty, suppose that oy is not perpendicular to aff Fj.

Then there is a point z ¢ aff F, such that

j

lo = y| > |o = 2] .

But this implies there is a pointwye G between o and 2z, and so

lo - y| > |o - 2| > |o = %] vhich is impossible.
Thus oy is perpendicular to aff Fj and writing F = Fj the lemma

is proved.

Proof of Theorem 1

The proof of the result is by induction on the dimension n.
By lemma 1 the result {s true for n = 2, We assume inductively
the result is true in each dimension k, 2 < k < n~1.

Let the n-simplex T have vertices x., + « « X

1 n+1° Ig is

wall known that T = conv (xl, P )¢ In view of lemma 3

n+l
we may assume that either og conv (xl, P xn) or the line through

o perpendicular to aff (xl, .. xn) meets tha (n-1) simplex

oL , .0
conv (xl, .« xn). Let xn o produced meet S [?. A]

+ 1

~again in S and suppose R 1is the tahgeﬁt hyperplane to the

1

sphere Sn» [p,X] at yn + Let Y . be the foot of the

1.
perpendicular from x, on to R fori=1, . « n. We shall consider

two cases. -



Case 1
Suppose o0& conv (xl, . o xn) (1)
Now let (51, o« s e En) be a co-ordinate system whose origin

(0, . . 0) is the point Vo o1 and whose En axis is perpendicular

to the hyperplane R. Then R corresponds to the hyperplane
En w 0 and thus the €n co-ordinate of X, is equal to

Ixi - yil for i b 1. e« o Qe

we shall assume without loss in generality that

lx, -y, lelx, - y,ls. o € lx -y |. (2)

Now o, the centre of Sn Ebj A] has co-ordinates (0, . . 0, 1)
relative to the above system and so by (1) it follows by convexity

that there exist numbers A, > O such that

i/

m
A = A X, -y L 3)
i_li_li 1|’ ‘
and 1 = I a. | | (%)

=yt

Then (2), (3) and (4) imply

Let the line x 0 meet Sn [b, A] again in the poiﬁtﬁ v

1 1

Now x is a vertex of the (n = 1) simplex conv (xl, .. xn) and

so it follows by (1) that the line xlb meets coﬁvb(xz, . . xn)

in some point v i.e. v2 ¢ conv (xz, . o xn). (6)

2;
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Let 7, be the foot of the perpendicular from vj  onto R,

i

for {1 = 1 and 2. By (6) and by convexity it follows that there

exist numbers W 2 0 such that

n
v, =w,| = ¢ u, |x, -7v.|, N
2 2 {m2 i i i
n
and 1 = I ou oo | 8
1 =2
Then (2), (7) and (8) imply
|v2 -w2| > |x2 - y2| . ) v ” - (9)

Now clearly v, lies on the line x,0 between o0 and v, and thus

by (5) and (9),

vy =5l 2 vy =] 3 [x, = 7, - (109

Since the diameter of S [e» A] is 21, it follows that

[, =y, + vy =9 =2 ,i (11)
and
max { |x2 - yzl , ]xs - y3| ’ b s lxn - ynl}s 22.(12)
Nowﬁy(lo)
‘n , R T ‘ n .
R AREL R A RN\ AR BN A
{my @ & i 1 1 1 1 iw3 i 7

€ 20 + 22 (a = 2) by (11) and (12)

- 22 (@-1). (14)



By (1) and by the induction bypothesis it follows that
01 (conv (xl,..”. xn) ) >2x (an~ 1), (15)

and thus by (14)

n
Ol (conv (xl, i xn) )y > I ]xi - yil . ~ (16)
i=1
n
Then tbl (M = ifllxi-xn+1| +¢1 (conv (xl, o« o xn))
n n
> . z ]xi-xn+1|+ z Ixi'-yil by (16)
i=1 i=1
Y
SRR IR R A
i=1 .
> 2n

since for each i, . Ixn +1” xil + Ixi - yil 222,

Thus case I is proved and we consider

Case II o

The line through o perpendigglar to aff (xl"', . xn) meet:althe
(a-1) siﬁp’léx V;.- conv (1?1,’. . x;) in a point u Asa:ty’."

Now aff (xl, ¢+ X ) meats s" [o,A] in an: (a = 1) dimensional
sphere Sn - 1[\1._ u]._centre u aqd radius y for some p , O € y <.Ae
Let t bewtﬁe foot of the perp@ndiculai; ;fr‘om u onto R and

Qa t;c;;&ix;xc;nsional plane containing o.v. tra‘tn'd‘ u.

e e



Applying lemma 2 (in the plane Q) it follows that

[t = u] < pe (17)

Supposing the co-ordinate system (El, . o En) is defined as in
case I, we now translate V away from R in a direction parallel

to the 3 axis by an amount ¥ = [t = u|. write

1 ,

U = u+(,0,..0,u-Jt-ul) = (©,0,..0,w,
1 ' |

x; = xi+(0,0,..0,u-It-ul)fori-l.z..n.

Consider the sphere st~ lfhl. ﬁ].
The (n = 1) simplex conv (xi, . xi) is inscribed in st l[bl. u]

A .1
and contains u'. Moreover the hyperplane R is tangent to S[u’, u]

Thus by applying case I to the sphere Sn -1 [;1. ﬁ] we have by (16),

1 1 RN |
8 (conv (x5 o o X)) >i f 1lxi ~ yi| . (18)

But clearly

01 (conv (xi, . o x:) ) = @1 ‘conv (xl, . . xu) )

and
n 1 n o
Eodxg eyl >y -yl

{w1 ERE!
and thus by (18),
n

01 (conv (x1 . xn) ) » . f . !xi - Yil .
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The remainder of the proof follows exactly as in Case I from

equation 16 and is omitted. The theorem is proved.

We show next in theorem 2 that the lower bound given‘in
theorem 1 is the greatest lower bound, and that there are simplices
inscribed in a sphere containing the centre for which the sums of
the r-dimensional measures of the r-faces are arbitrarily small,

forr =2, . . n.

Theorem 2
There is a sequence of n-dimensional simplices {Tm }°° in
m=l

En inscribed in the sphere _Sn [b, ;], containing the centre o

with the following properties

(i) ¢1 (Tug + 20l as m+ o,

(ii) ér (TmR +0 as m-=+ forr=2, 3. .n.

Proof

Let xy be a diameter of Sn [b. A] s+ Let ym be the point

i

on oy distant A(1l - '2; )? from o and suppose Hm is the
m S

hyperplane through T perpendicular to oy. Let Vm be any (n - 1)

_ . \
-simplex inscribed in the (n - 1).sphere H () s" [0, A] of radius o
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Let V  have vertices x e v X and write T = conv (x . o
m 1’ n m (=, %1 xn)

-conv{VmU{x} }.

n
Then ¢ (I) = & (V) + I Ix-'xi
i=1
1 n A2 2 A 2424
-0(;)+ I ((=) + A+ A=(=)H)H))
j m
i=1
+ 2nA as m > o
o (T) < ¢ (Vv L By v
r 'm T r ( m) r -1 ( nR
1 . r-1
- 0(=)
» 0 a8 m+ forr=2, ., m,

The theorem is proved.

Next in theorem 3 we shall prove that among the simplices
contained in a given sphere, the regular simplex which is inscribed
in that sphere has maximal total edge-length. The proof is a direct

extension of the method given for the tetrahedron which appears in [S].

Fheotem 3
Let T be an n-dimensional simplex contained in the sphere

s" [o» A] in E° with o > 2.

}

Then ¢ (1) ¢ Q° @+ 1T,

with equality if and only if T 1is the tégular simplex inscribed in

s [es 1]
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Proof

Let T have vertices Xi0 ¢ o X and centroid g.

n+l

Now n+1 2 n+l n+l
I ]x - x [ -an . I Ix. - gl -2 I (x,-g)(x
1<1i<k i k fe1 lgi<k * k
(1)
n+l n+1 n+l 2
and 0 = ( I (x,-g) (I (x-0)= £ |x,-8g|+
i=1 iml i=1
n+l
2 z (x, - y) * (x, ~8) . (2)
1si<k = & i
Thus, adding (1) and (2) we have
n+l 2 n+l 2 -
z 'lxi - xkl =n+]1 .- I ) lxi - 8[ . (3)
lg<ic<k i=1
By a theorem of Steiner, see for example [5] page 56,
n+1l ' n+l 2 o 2
2 gy -ol’ = f Iy -elft@enfo-gl
i=1 ‘ im]l ° o , -
(4
By (3) and (4),
B, n+1l
2 1 N S 2
(@+ D)X 207 : i klxi-xkl #(@+1) o~ g
: i< /041 \ )
Iolxg -l

1 (n+1)n lgi<k
n+1l 2 * (n¢ Hn

2
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with equality only if g = o )lxi -~ o]l =2 and 01 (T) = lxi - xi

n (n+1)
2

for all i and k, 1€i<k<g¢n + 1.

3
Thus @ (1) < (-27-‘)i m+1)° A

with equality only if T 'is the regular simplex inscribed in
s" [o, l] .

The theorem is proved. -

In view of theorem 1 we make the following conjecture.

Conj ecture

- Let P be an n-dimensional polytope inscribed in the sphere
n n e Lo e
S [o, 1} in E° and containing the ceantre o.

Then 01 (P) > 20\ for each =n > 2.

We shall now establish this conjecture for the case n = 3 and
prove th:at a polyhédroﬁ, which is inscribed in a sphere cohtaining ‘
its centre, has total edge-length at least six times the radius of

the sphere.
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Theorem 4
If P is a polyhedron inscribed in the sphere g3 [0, 1]

in E3 and containing the centre o, then @1 (P) > 6.

Proof

The idea of this proof is to choose four vertices X)» Xy

X, and x, in P which are the vertices of a tetrahedron

containing o and to prove the existence of paths o in P

ij

which join x, to x, for i<j, (i,]j) e {1, 2, 3, 4} and

3

which are edgewise disjoint in pairs. The theorem is then a

consequence of theorem 1. We proceed as follows with a lemma,

Lemma &
‘ : 3

Let x, x,, X, and x, be four points on the sphere S [0, 2]

3 *
in E° with og conv (xl, X, x3, x4).

4 v
write q>(x1, X,s Xy x4) = I [xi - le )
lsic]

Then 0(x1, xz, x3, xa) > 6\ with equality only if conv (xl, X5 Xy xa)

is a diameter of S3 E),A].

Proof

If Xs Xpp Xgo X are the vertices of a tetrahedron the lemma

4

is true by theorem 1. We may thus suppose that Xys Xy Xgp X, lie

2 2 _
on the circle 8" [o, x] in E°. Now if conv (xl, Xy Xq» xa) is a

2
diameter of § (:o, A] then w(xl, Xys Xg xl‘) = 61 or 8.
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Otherwise we may assume that x_, « « X

1 4 lie in cyclic order around

S2 [6, A] and by lemma 1,

|x1 - x2| + |x3 - le + |x4 - x3| + ]xl - x4| > 4x. (1)

Let x be the point of intersection x x, and x.x

13 2%y Ve may

assume that oe¢ conv (x, X xz) without loss in generality since
4

\,) conv (x, x:, X, .) = conv (xl, x » x4) (we reduce indices

{ =1 17 Tisl 2,»x3
mod &).
Thus
2y = |o - x | + lo - le
s |x- x1| + |x - le | (2)
< |x3~x1 | + |x4- x2|

Adding equations (1) and (2) we obtain

&(xl’ ng X_.» x4)> 6‘. X V (3)

3

The lemma is proved.

Now let v be any fixed vertex of P and let the line vo
produced meet P again in u. Then u is contained in some facet
F say with vertices vl, vz, “« o vh. Then, given any vertex Vﬁ
of F, there exist vertices vq, vq;jf;suhh that u 1is contained
in the triangle v _v_v .. The tetrahedron v, v , Vv , Vv then

g P q q+l P’ ¢ qel

contains o - and so by theorem 1 has total edge-length greater than

6A. Now it is clear that the total edge~length of ¥ is greater
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than or equal to that of the triangle vb vq v Therefore, in

q+l’
order to prove the result, it is sufficient to prove that there
exigststhree paths in P joining vtov,vtov and vtov

P q q+l
respectively which are pairwise edgewise disjoint and each of which
has no edge in common with F.

We prove next that we may suppose that every facet of P which
meets F, actually meets F in a segment. Let H be a plane
parallel to aff F and on the same side of aff F as P, They, if
H 1is sufficiently close to aff F, then H meets precisely those
facets of P which meet F and no others. Let Fl = HNP.
Congider the polyhedron P]' contained in P which is obtained by
taking F; in place of F. vThen .PA' has the property that every
facet of Pg'which meets Fgf actually meets F17 in a segment.

'ﬁext for the remainder of this proof we may assume that u is
not a vertex of P for if this is the case then uv is a diameter-
and |u=~v] = 2\, Then since the graph of P is 3-comnected, see
for exanple [16] page 213, it is vell knownthat there exist three
pairwise disjoint paths iﬁv P from vtou gﬁd thus the total
edge-length of P 1is greater than 6A.

' 1
Let the line vo meet F in ul} Then it follows by continuity

and by lemma 4, thaflall.tetrahedra whose vertices consist of three

11 1 1 2 1
vertices say: vb~, \a‘, Va;l of F, and v, and which contain u-,

have total edge~length greater than (6 + u)A for some positive



number p for all positions of H sufficiently close to aff F,
since u 18 not a vertex of P. Hence, if paths in Pl from

v to v;, v to v; and v to v:+1can be found of the type described

for P it will follow that the total adge-length of Pl is greater
than (6 + pu)A. Then letting H approach aff F, we have that the
total edge-length of P is greater than or equal to (6 + u)A and
thus greater than 6A.
For the remainder of the proof then we shall assume that each facet
of P which meets F, meets F in a segment.

Let !1, Fz, . e Fn be a labelling in order of the facets of
P which meet F excluding F 1itself. We may assume that each facet

Fi has exactly one edge e in common with F -1’ exactly one edge

i

fi in common with ri+1, ei:# fi' and that there is an edge 8;

joining e and f1 which 1lies in Fr\Fi. Moreover the vertices

corresponding to the edge 81 are the only vertices that F and Fi

have in common.
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We shall consider the graph of P which is 3-connected. Thus, if

w is any vertex in F, then there exist three pairwise disjoint paths
in P from v to w which consequently have only the end-points v and
w in common.

Denote these paths by #_, 7 and ¥_. Suppose the vertices of #_  are

1’ 2 3 1

Ve wl, wz, . . w& = w. Let a 21 be the least integer for which wa
belongs to some facet of P which meets F. Let v, - Ve Similarly

define Y, and Y, for paths w_ and 53. By definition Y0 Y, and Y,

2

are distinct or Y=Y, y3 = v and we may suppose the facets in

which they lie which meet F are Kl, K2 and K3 respectively.

We essentially then have three cases to éonsider.

Case I K1 - K2 -‘Ka',
Case II Kl - Kz, Kl +K3.
Case III K 1'1(2, K, 1’1(3, K + Kye

We shall suppose without loss in generality that Kl - Fl.

Let Ups Uyy o o U be a labelling of the vertices of ;Fl in order

around Fl. We may suppose that ?i,‘and F have the vertices \]

and ‘ - LIRS i
Viel in common, that u =, and u, = v, where we dgfxne

Vn*l = Vl °



Before we consider the above cases we shall prove a lemma,

Lemma 5
In cases I and II, there exists another facet K f'RI. K meeting

F, and paths 1., v, and v, in P with v joining vtou, t

1" 2 3 1 3" 2

joining v to u and T, joining v to some vertex u?* of K

such that 1, and 1, are edgewise disjoint for 1 L j and, t

i i

rz and 13 have edges in common only with Kl = Fl of all the facets

of P which meet F.

1’

Proof
Consider first case II. We may'suﬁpoée that 73 # Kl.

and yz -u where 3 <i, <1i < e.

Let y, 6 =u A3

1 11 2 | 1 | 2 |
Then let Y be the sub-path of L joining v to Y, together with
the edgel u, Uy -1 Y Y- 2. .o ubus. Tz be the lub'plth of 12

1 1 1 1

joining v to v, together with the edgen u iilt uifl. “iizt ° -

u .u, and t

o-1% the lub-path of w joining v to y3 Define

3
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11

Yy u and K = K3. The paths t., 1, and 1, have the required

1’ 2 3
properties of the lemma.
We now consider case I,

Let yl - uil. yz - uiz and y3 - ui3 where we can assume

i« < . i
3 1 13 12 e. Then 7, must leave Yq for w s8ince L

7.

L and 1:3 are pairwise disjoint. Let X, be the first vertex which

ua meets after 1r3 has left ry3 for w and which belongs to some

Fi. Suppose xleFj

13 be the sub-path of =

for some j } 1. Let K = Fj’ uu -x and

3 joining v to X

Suppose tha sub-path of L) joining v to v, is “’1» for i = 1 and 2.

Extend *1 and v“'z to give paths from v to uy and v to u,

respectively in the same manner as was used in case II, and d&note

the resulting paths by v, and 1, respectively. The paths t,, T

1 2 1’ 2
and 13 have the required property of the lemma.
n
On the other hand if xleFl and %X, ¢ .k_"jz Fi’ then x, must

i
be one of theui'with 3 <i<e.i-l=i.1.i=|=i2‘and i-LiB.
Let x, = ujl. Firstly if 11 < j1 < 12 then as above T, must

leave x1 for w. Let xz be the fi:st vertex which w3 meets after

%, has left x for w and which belongs to some F

3 1
11

for some j 41, let K= Fj, U o=x, and repeat the argument in

i.. If xz € Fj

the previous paragraph with x_ in place of x Again the result

2 1*

n
follows,Otherwise x,¢F, and x, § U/ F,s Then as before
' 21 2 1= 2 i
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‘z-ui, where 3 <1i <e, i.-]-il, i:{:iz, i+ 13 and i+j1.

Suppose x_ = “j . Again if il < j2 < i, define x, in the same

2 2 3

vay as x, and x, and continue the arguments above.

2

Now since there exist only a finite number of inte gers i satisfying

il <i« iz there is a least integer t > 1 such that the first
n

vertex z ¢ U Fiy which «
i=1

w 18 not equal to u

3 meets after having left x, for

for any 1 satisfying 11 s1igci.

i 2

If zl € Fj for some j 4-1 the lemma is proved as in case II.
n
Otherwise z ¢F, and =z, ¢ U ¥,
i=2
Thus z =u  say where '3 < k1< il or 12 < k1 < e.

1
Note that if il = 3 and 12 = @ then this case could not occur and

tie lemma would have been proved at the previous stage. We shall

suppose then without any real loss in generality that 3 g kl 1

< i

Now kl.l.3 for if k

1 = 3 then 2z, = u, ¢ F,. Wae suppose then that

1 3 2

3 <k <i <1

1 S S

But now we must have that L leaves Y.ty for w since
. . 1 -

T v, and w, are pairwise disjoint. We now apply the whole

1’ 2 3

argument again with #  in place of =#_ and either the lemma is

1 3

proved or we can define B, = U, in a similar vay as we defined
} k :

z where k2 satisfies 3 < kz < kl < i1 or 127< kz < e. By

continuing in this fashion we must have a strictly monctonic sub-sequence
of the integer sequence {ki} ‘tending either down to 3 or up to e

if the lemma were false. But since ’u3 € F2 and “e € Fn there must
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be a path "e, for some e, with 1l ¢e

3 3 < 3 which joins v to

3

some vertex uu say where ung Fj for some j $ 1.

Let Ty be the sub-path of L which joins v to uu.
3
Suppose at this stage g.l and ,‘2 with {el. e, 03} Cql, 2, 3
and ) + e for i 4§ join v to uki say, and v to uki
m n
respectively where 3 ¢ ki < ki e g ki < 11 and iz € v g kl P ki < &
m m~1 -1l n

Let wl he the sub-path of '°1 joining v to uki and ¥v2
™

the sub-path joining v to u, . Extend ¥1 and v, a8 in case II
i

n
to obtain Ty and T, Then Tyr Ty and Ty have the mquired

properties and the proof of the lemma is complete.

We shall now prove case I and II gimultaneously by means of the
lemma 5, We shall suppose that K = F' for some s with 2 ¢s¢ n

where we again define Ve " vy ' For the remainder of this theorenm

a path which has no edges in common with F will be called an

o -path in P. We suppose then that TN and Ty are defined

as in lemma 5. Suppose that u, the point of intersection of vo
produced with F, lies in the polygon conv (vl. Var oo v.). The case
ue conv(v', ""1' .o vn, vl) is similar and is omitted. We may suppose
then that wue conv(vl, vq, vqﬂ) where 2 gq< q+lg 8. |

Let §_ denote the edge U,y in F

2 1 Then there exicg a—paths 8y and 84

in P withé_  from u, to v and with § from u11 to'v g whichraro edgewise

1 3 q 3 q+l
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disjoint with " gé, 'cl, ’L'z and 73, With§consistimpf pairwise

edgewisa disjoint %arcs of Fz, ]?‘3 L. Fq " _ % - and with T,

LN ] F ’
1 q+1 ¢

Define ©, = T, US for i=1, 2 and 3. The € are
i i i : — i

consistingof pairwise edgewise disjoint ®arcs of Fs’ F,,

three pairwise edgewise disjoint %paths in P from v to vl,

v to Ve and v to vq 1respective1y and each is edgrwise disjoint with
. 4

F. The theorem thus follows in cases I and II. We illustrate the

situation

It remains to prove case III.

~

We shall suppose yle Fl' Y, GFS and y'3 EFt where 1<3<t<n.

Let ti denote the sub=-path of 'i joining v to v, for i=1,



2 and 3. Then the <, are pairwise edgewise disjoint a-paths in

i

P which have no edges in common with any 'Fj for j =1, 2 .. n.
W L,V .o
a suppose first that ue conv (VI, vi, 41’ vt) and 80 u

lies in some triangle with vertices V Vq. Vq* where

1 1

8 £q<q+tl € t. Then let 61 be the a—-arc from Y, to v, in

F Then there exist a-paths &_ and &, in P with 4, from

1° 2 3 2

Y, to vq and with 6, from Yq to v which are edgewise

3 q+l

disjoint with 61. e T, consisting of pairvise

- ) )
T, and ?3' with 2

edgevise disjoint a—arcs of F‘. F.* ) oo Fq and with &, consisting

1 3

of pairwise edgewise disjoint a-arcs of F:, Ft-l' . . Fq. Define

el - ?1LJ Gi for i » 1, 2 and 3. The 6, are three pairwise

i

edgewise disjoint a-paths in P from v to Ve v to vq and v to

Vq+1 respectively and each is edgewise disjoint with F. The theorem

is thus proved if wue conv (vl, vi,'v » o vt). However, if this

s+l

is not the case then uc conv (va, Ver Veor® o vn, vl) or

t+l

ue conv (vt, Vis Vg oo v‘) and tha proof is exactly similar to the

2

sbove. Thus the theorem is completely proved. We illustrate the

ase u conv (v v v e V
c € ( 1’ Vs 9 oo t).

s+l



We now introduce a new function y defined on a simplex which
we show in theorem 5 takes & minimum on the regular simplex among

the class of simplices of given volume.

Theorem 5

Let T be an n~dimensional simplek in E® with n>2 with

Verticel X.9 X,y ¢¢ X .
1" 2 n+l n+l
Define y (T) = inf )X [x - xil.
i=1

ern



Then a n n-1
IY §T2| 2
. °n ™ 2 n an.{(a+1l)

with equality if and only if T is a regular simplex.

Proof
We first state two lemmas.
Lemma 6
Let El, . . En and M ¢ My be 2n non—negative
nunbers.
Then
n n '
2 2 2 2
I (ei+i’ 2 (2 epfe ot
i=1 ' i{i=1 i=1

with equality if and only if 51 -, .sn and My " Ny

Proof
This is the well known Minkowski inequality and the proof
is omitted.

If T is an n-dimensional simplex we shall now write T = ™ in

order to emphasise the dimension of T.

Lemma 7
A n a .
In E, n>22, let § be the regular simplex with

centroid g, and with vertices Xyp o o X g0
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Suppose |g - xi[ = 8 for i=1,..0+1

n n+l
Then Y($) = r g~ xil = (n+1) 6.
i=1 "

1
If g 1is not the centroid of s® then

n+l 1 n
I g - x| > vs).

. i

i=]

Proof
The proof is by induction on n.
When n = 2, the lemma is true by lemma 15.

Suppose the theorem true in each dimension k with 2 € k € n-1.
n+l ,

By the continuity of I |x - xil as a function of x it
i=1

follows that there exists a point gl for which
n+1l

n
Yy() = I |g
i=]

1

- xil . T (1)

1 ¢ . : . ’ 1
Suppose that £ is not the ceatroid g of Sn. Clearly g &:Sn.

Then we can assume the notation is chosen so that

1 1
le" - x| > g - x|

-1 '
Consider the regular (n = l)-simplex Sn = conv (xl, ' . xn).

1
Let h and hl denote the orthogonal projections of g and g

respectively on to aff (xl. . . xn).

Then h 1is the centroid of Sn-l.

Also hl-{-h for, if h' =h then Igl-xll = |g° -x

which by (2) is false.
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Thus by the induction hypothesis

q 1 n
"I |n - xil >z |n- xil
i=1 i-l
3)
mwn§
n n~-1
where Bn-l = |h- xil for i=1,2 . . n.
Now hxn+1 is perpendicular to aff (xl, . s xn) and so if we choose
. 11
a point g on hxn+1 such that
1 1 11
n" -g"[ = |n=-g"| (4)
then 1 . 11
' ‘ - xn+1l > le xn+1| . (5)
n+1 1
Then Y™ = X lg" - xil
i=l
n
1 1
- I lg" - =, | + lg" - xn+1|
i=1
a 1 2 1 1424 11 '
>if1<lh -x % -t D g - Loy

(5)
o1 2 11,2, 4 11 |
= z (|- xil + =g "5+ |g" - X
i=1 - |
T 1 _
n((i_llh xil)z+|h_311|2§
n

11
| -

A4

+ xn+1| by lemma 6



I \ -
> fi= 1|h ” xi) + I, lllz)l l 11 - I
n & n+l
11,24 11
=n(s ¢+ Ih =g |+ |e xn*llby 3)
vwhere ¢ _ = |h - xil for i=1,2..n
n+l
11
- I g - xil
. i=1
> y(sh by definition. (6)

But (6) 1is impossible and so the assumption that g1 was not the
centroid was false.

Thus lemma 7 is proved.

Proof of theorem 5

For each n write

= inf T
o} n 2 ‘ )
T ¢ (T
¢ §

By the Blaschke selection theorem we may sssume there exists a sequence
n,
i}
iwl]l
n + 1 vertices of dimension less than or equal to n such that

of simplices {T convergent to a polytope s" of at most

frap)®

n
¢ (T,

+Tn aa»i-»w. (8)



Since the ratio in consideration is invarient under similarity

transformations we may suppose

YD =1 foriel, 2.. . 9)
< ] o ©
Now O‘n ®and s0 a (Ti) 40 as i+
Thus °n (Sn) >0 and so 5" is a simplex.

Then clearly
n

]vgs“z]\ «Cpq (10)

s ("
n(S )
and so the inf imum in (7) is attained.

We show next that if T" is a simplex for which

!Yg'r“)!n o |
u Op (11)

n
(-
L@
then Tn can only be the regular simplex.
The proof is by induction on the dimension n.

wvhen n = 2
2

Suppose (YSTZZI - o, where Tz is the (12)

9, )
triangle x y x.
Then by lemma 15 {t is easy to see that Y(Tz) is the length
of the connected set of minimal length containing x, y and 3.
Supposg now that Tz is npt the equilateral triangle and a8y
Iyl > lx=el . 13
we consider tvo cases.

Case 1

L

Wi

Each engle of triangle x y z 1is less than



-47-

On yz erect the equilateral triangle u y z with u on the side

of yz opposite to x. By lemma 15

Yy (1% = lu - x]. (14)

3 * 1 i ]
Then there exists a point X on the circle, centre u, radius

lu = x| on the same size of yz as x such that

p (yz, x) < p(yz, xl)- (15)

Let T12 be triangle xlyz.

We may assume by taking x1 sufficiently close to x that each

angleof T 2 is less than 'Zw.

1 3
2 2
Then Yy (T) = ¥ (T1 ) (16)
2 2
but @2(1 ) < @2(1*1 ) . (17)

Thus (16) and (17) couwbined contradict (12) and Case I is impossible.

We consider

Case 1I
A 2, , 2
The angle y x z, say of T 1is greater than or equal to 31.

Then again by lemma 15
) ‘
Y(I) = |x-y| + |[x=-z]. (18)

. 1 . ,
we now choose a point y on the circle, centre x, radius |x - y|

such that
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p(xz, y) < p(xz, yl)- (19)

but Tz2 be the triangle xylz.

Then vy (T2) = |x - yll + |x -z
2
> v (T,) (20)

and o, (TZ) < ¢2(T22) ) (21)

Thus (20) and (21) combined contradict (12) and so case II is also
impossible.
Thus TZ must be equilateral and the statement is true for n = 2.

< n-l.

~

Suppose now the result is true in each dimension k with 2 ¢k
Suppose the result false in En and that there exists a simplex

Tn which is not regular such that

n
T,
o, = [r@) (22)

n
¢n(T )

n
Let T  Thave vertices x_, . « X

and suppose
1 n+l PP

]xl - x2[ > [xl - x3|. ” (23)‘

n~-1
Let T = conv (xlf . e xn).

Let S(Tn-l) = conv (yl, . . yn) say be a regular simplex such that

v n-1 n-1 ,
o Sa@ ) =e (T ), ‘ (24)

n-1
_1 .
Let L be a line through the centroid g of S(’L‘n ) which is

~1
perpendicular to aff S('rn ).



-49-

Choose a point ¥y on. L such that
n+l

) = el x ). (25)

n-1
P
BT s Yo+ n+l

1

n N .
Then if S(T) = conv (yl, . o yn+1) it is clear that
) ™y = @ p®
(@) = 8 ah. (26)

we may assune as in lemma 6 that
n+1l

Yah = I |x-xl , 27)
i=1

for some x {’rn.
. ) .. - ) |
Then if x is the projectionofx on to aff T it follows by

the induction hypothesis and lemma 7 that

n el
-l vd™h cvsa™™)

i=1

- n]g - y;l' for i =1, .. n.
(28)

This implies using a similar argument to that given in lemma 6 that

Y > v ). - (29)
But (26) aﬁd (29),conttadict (22)‘and 80 Té- must be the regﬁlar

simplex.

Theorem 5 now follows by calculation :and the theorem is proved.

i

Next using theorem 5, we prove in theorems 6 and 7 respectively,
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that among the class of simplices of given volume the regular
simplex has minimal total edge-length and surface area. It follows
then by a result in [1I] page 313 that among the simplices
containing & given sphere, the regular simplex which circumscribes

that sphere has minimal total edge~length and surface area.

Theorem 6

Let T be an n~dimensional simplex in E® with n > 2.
a | 2n-1
Then [@1 (T)} > nen. (p+l) 2
¢ (T) 3
" 2

with equality if and only if T is the regular simplex.

Proof
If T is any n-dimensional simplex it is gain convenient to
write T = T,

Using the same arguments as in theorem 5 weAmay assume that there

exists a simplex s® for which

218 o \®
o, ) o)
————— = Ol = infn — (1)
e (s T" o ()
n n
we show first that if 'l'n is asmplex for which
n
(’1 (rn)] | |
= A (2)

n
¢, (T)



then Tn can only be the regular simplex.

The proof is by induction on n.

when n = 2

It is well known and easy to prove that of all triangles of given

area only the equilateral triangle has minimal periumeter.

The statemeatthen is true for n = 2,

Suppose now the statement 18 true in each dimension k with 2 £k < n-1.

Suprese ™ isa simplex for which

f (3
a (77)

and that T  is not regular,

In order to avoid repetition we shall assume the same convention and

notation as that introduced in theorem 5 from eéuation (22) onwards.,
n+l n+l

on to agf_Tn_l and aff S(Tn‘l) respectively. Then yi+1

is the centroid of S(Tnnl).

Let x 1 and y;+1 be the orthogonal ptojaétions of x and

yn*l

By theorem 5,

.
1 n-1

g -l v@™
i=1 =1
> y(5(T 7))

maly, =yl fri=1,..n (8
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This implies again using the arguments of theorem 5 that

n n
2 o(x-x |>s |y, -y | ‘ (5)
{=1 i n+l {=1 I i n+l .
By induction hypothesis
& ah >y sa™hy (®)
Thus by (5) and (6)
Py n N ) § . : : I
p @) =@ ) 1?1] X T Rel
R . n—l n
> Qi (S(T ) )+ s- 'yi-" Tnel l
{=1
- & (T ). - ¢))
But since as before
¢ % = 0 n | | )
‘n(T ) n (S(T) )y o | 7(?)

(7) and (8) contradict (3) and it follows that’ Tn must be the

regular simplex. Theorem 6 now follows by calculation.

Theorem 7

Let T be an n-dimensional simplex in E" with n > 2,

o o+l 30-2

Then (’n_l(T)] > (a+1l) 2 n 2
' b n~-1 | PN
[ n(T)J (n-1).

with equality if and only if T is the regular simplex.
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Proof

If T is n-dimensional we again write T = Using the same
arguments as in theorem 5 we may assume that there exists a simplex

Sn for which

b )" o)’
n-l() - B = if ._....n;].'..(.i.z_ 1
a n-1 n :‘ n n~1 (1)
(o, &) o a®)
we shall show that if T 4s a simplex for which
n
n
b -

(’ ( n))n-l n
T
n
then ™ can only be the regular simplex.
The proof is again by induction on n,
when n = 2 the statement follows by putting n = 2 in theorem 6.

Suppose now the statement is true in each dimensiomn k, 2 € k £ n-1.

Let Tn be a simplex for which

, o \2
B, = (On_l(T ))

ol

and suppose T is not regular,

&)

Throughout the remainder of the proof of this theorem we shall assume
the same convention and notation at that introduced in theorem 6

from equation(3) onwards.
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n-1
Let T have (n-2) dimensional facets Fl, . Fn and write

1

P(Fi, xn+1) - pi for i = 1, 2 ..n1n. (4)

Suppose S (anl) has n-2 dimensional facets Gl’ . . Gn and vwrite

1

p(Gi, yn+1) = p. for i --1, 2. .n. (5)
Also let
lxn+1 - xn+1| = lyn+1 - yn+1l = B (®)
Then
n n-1 n {
L (T) = ¢ LT )+ _ 1 2 2
n-1 1 Ty (i‘i. 1°n-z(Fi) [n® + 2] ).
(7
we note that by the induction hypothesis
n~-1 n-1
0 (T ) > (ST D)) » (8
and we also have
n-1 n-1 7
T ) =S ). ~ 9)

Thus by (7) and lemma 6,

n
‘n—l (T )'Q'n_

1

(Tn-l

n 2

L : 2,4
))}"-171' (( L °‘-2(Fi)'pi] + ;‘l ¢ -2(Fi}h} ’
Pl e ® S

3} ;%I ({(n;1)¢n_1(Tn‘1))2 . hZ(tn.2<Tn~1))2)i

by (8) and (9)



2o 2, (2 2}
- L ((i : 0 e+ {iz, 0 con)?
J 2, 2
=== (D e @) (b 4P
i=1
= GaH -0 @) . (10)
Thus (9) and (10) imply
¢ @) e (sa)). (11)
But since we have also
¢ (1) = ¢ (s()) (12)

it is clear that (11) and (12) contradict (3)
and so it follows that Tn is the regular simplex.

The theorem is completed by calculation .

Corollary to theorems 5, 6 and 7

Let T be an n-dimensional simplex containing the sphere s" [p,x].
Then

i) () 2 n( + 1),
n3(n + 1)3]‘

W oem» [0,
n n+l
2 2,
inye () » 22
: @-nl

Equality holds in (i), (ii) of (1ii) if and only if T 1is regular

and T circumscribes S° [0,1].
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Proof

It i3 known, see for example [11] -page 313 that if T is

a simplex containing the sphere s" [b,X] then

o+l n
2 2

® (M2 (m+1) " o 2

(1)

n{
with equality if and only if T 1is regular and circumscribes
Sn [b. X].
In view of (1) then the corollary is a trivial consequence of

theorems 5, 6 and 7.

Finally we end this chapter by giving an elementary result
concerning two polygons which circumscribe a circle. The result

although very easy to prove does not seem to have appeared anywhere.

In Bﬂ J.V.Uspensky proved that if two polygons were inscribed

in a circle and the length of the largest edge of one polygon was

less than the length of the smallest edge of the other then the

perimeter and surface area of the former polygon was greater than the

perimeter and surface area of the latter.

We shall prove in theorem 8 that if two polygons circumscribe

a circle and the length of the largest side of one polygon is less than

half the length of the smallest side of the other then the perimeter

and surface area of the former polygon is less than the perimeter and

surface area of the latter.
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Theorem 8
1 2
(i) If P and P are two polygons circumscribing § [@, A]
and the length of the largest edge of P is less than half the
length of the smallest edge of P1

then Qi (P) < oi (Pl) for 1 =1 and 2.

(ii) There exist polygons Q and Q1 circumscribing
2
S [b, A] such that all except two edges of Q have length less
than half the length of the smallest edge of Q1 and

06, @ >¢ @b for i =1 and 2.

Proof

We shall assume throughout that A = 1 without loss in generality.

1 L
Then ‘E 01 (P) = 02 (P) (1)

and a similar equation holds for Pl.

Thus we need only prove the result for i = 1,

(i) We first -‘prove thevfollowing. ‘iet p be a fixed point on

S2 [0» A]. Suppose that a segment E of fixed length e and
end-points x and y is moved from a position where the mid-point of
E coincides with p to a position where x coincides with p and
E is always taﬁgent to 82 [0, 1] at p. It is clear that the angle

0= y o p increases from tan-ljg to tan 1 e.
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A
Let yox = ¢

Then tan 6 + tan (¢~0 ) = e

and thus
d
sec2 0+ (E% -1) cecz (o= 6) = 0.
d )
Hence a8 = 1 - €08
d0 2
cos 0

< 0 1if tan_l 2<e<t:amla;.

2
Thus ( i') is an increasing function of 6 in the range
-le -1
tan E'< 6 < tan €.

Now let P haye edges El’ . . Em of lengths el, « e

respectively. Suppose that Ei ~subtends an aﬁgle ¢i at o for

i=1, . . m. Let Pl. have edges El. - E;l of lengths e}. o o ei1

1

and suppose Ei subtends and angle ¢; at o. The above paragraph

implies
e el
A od
4 0l @
i

whenever 1 <i<m and 1 <j sm,



1
Thus n m 1
Ie ) ei
i=sl <iw=} (3)
2w 2
1
m . m - .
i :
since £ 01 = 27 and I ¢; = 2% .
i=1 {i =]
Thus

1
‘1 ® < 01 )
and part (1) is proved.

(i1) Let Q1 be en equilateral triangle circumscribing s2 [_6. 1] .
Let Qu be an isosceles triangle x y z circumscribing a’.2 [o, 1]
which is not equilateral.

It is well known and easy to prove that
1 11
’I(Q)<°1(Q ).
1 1 1

Now choose points x , y and 2 on ox, oy and oz respectively
wvhich are close to x, y and =x.
Let Q be the polygon which is bounded by the -tmgent's to sz [o, 1]
from x1. yl and ll. It Hllows that if xl. }1 and zl are sufficiently
close to x, y and 2 respectively then

o @) <e @

1 1
and all except two edges of Q have length less than half the length

of an edge of Ql. The theorem is proved.




CHAPTER 2

INTRODUCTION

In this chapter we shall investigate some metric properties of
polytopes, which are inscribed in a sphere, which contain its ceantre,
and whose r-dimensional faces have small r-measure for different values
of r.

We ghow first in theorem 9 that an n~dimensional polytope, inscribed
in an n-sphere containing its centre and with its r-faces of small
r-veser, fcx" re 1, . . n~1 '£fills' most of the sphere in a senccT
described below. This of course implies that the volume and surface
area of such a polytope differs by only a small amount from the volume
and surface area of the solid-sphere or ball, a fact which is stated

and proved in a corollary.

Theorea 9

Let ) and 8§ be given positive numbers with § < A,
Let P(c) be an n~dimensional polytope inscribed in the sphere
s® [b, A] fn E® with n > 2 and containing the centre o, with the
property that the r-dimensional taées of P(c) have Lebesque f\; measure
less than ¢ for v =1, 2., .n~1, Let ? (e) denote the class of all

such polytopes P(¢) and write

Ale) = sup A (P(c), D" [o, 2] )
P(e)e P (e)

Then A (¢) € § whenever €< co (n, A 9.
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Proof

We prove the result by induction on the dimension n. When
n = 2 suppose A and § are given with & < A and let 30(2, A, 8
- 2 (26 - sHl,
Then for all P(e) eip(e) with ¢ < eo (2, A, 8),

2 4
A (®(e), D2 [0, A]) € a-(2-% )
4

i
« A= 0% - 225+ 8D

and so
A (e) ¢ 6.
The theorem then is proved'for the case n = 2.
we assume inductively that the result is true in each dimension k
with 2 ¢k € o~1,
We suppose then that § and A are given with § < A .
Let P(c) be an n-dimensional polytope inscribed in §" [0, 1]

with the property that

A (e(e), 0" [0, A 2 A (e -5 W

Let the (n = 1) dimensional faces or facets of P(e) be
Fi(e) for i=1, 2. .m(e). Let o, (¢) and ui(e) denote the centre
and radius respectively of the (n - 1)-sphere S;n-1 Eoi(e), ui(e)]

which is the intersection of aff Fi (¢) and s® Eo, A].
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N . 2 2 2
ow since . (e) + lo = oi(e)l = )A° it follows by lemma 3 that

if uj(c) » max ui(e) then o
1<igm(e)

j(e) is contained in Fj(e).

Thus we may assume that for each ¢ > O there is a polytope P (e)

satisfying (1) having a facet F(e) which is inscribed in an (n - 1)
n-1

-gphere S [b(e), u(e)] and containing o(e) with the property

that each other facet of P(c) is inscribed in an (n~1)~-sphere of

radius less than or equal to #(e).

‘Syppose that there is an infinite sequence {ei} ® tending to zero
, i=l
as i tends to infinity such that
. 2 4
u (ci) 27 where 7 = (AM§-38) . (2)
o "

Let G (si) be a polytope similar to F(ei) but reduced in the ratio
mn: u(ei) about o(éi) as centre of similitude.
Then by an abpropriate translation we may assume that G(ei) is
n-1 : '
inscribed in the (n - 1)=-sphere $ [b. n] for i =1,2,. .

Moreover the r-dimensional faces of G(ei) have Ar—measure

——————

r .
less than ( ) ) ¢ . and thus less than or equal to € for
ue,)/ 1

r-lpoon_z and 1—1,2.-

Thus by the induction hypothesis,

A ¢ G(ei), Dn‘-1 [oam]) +0 as 1+ = (3)
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Hence for all i >,£0,

—1 .
o<io @ [,mhee _(clese _ FeNce (4

But (4) is contradictory since € +0 as i + « and thus u(e) <7
whenever ¢ £ eo (n, S, 7).

Thus if € < Eb(n, 8, A) it follows that aff Fi(e) is distant at least
(12 - 772)l from o for i =1, 2. . m(c). It follows that the
solid sphere D" [os _(12 -'r)z)l] c P(e) € D" [o, A].

Hance 4 (B(c), D" [0,1] ) € A" [o, (A -n2>§]. o [o, A])

i
R SR

2 2 }
=A-(A“ =25+ by (2
8 4
o2
and thus by (1)
Ale, A) <6,

The theorem is proved.

Corol lag:

In E" and in the same notation as theorea 9 define

o (¢) = inf 01(2(25) for i = n-l. azd i =,
P(e)e P (e) |



n [ ] Zwinhn-l
Then Hm ¢, (e) = ¢, (S [o,A]) = —— {f { = n-l
c+0+ i i T (i) ’
,.4nn
- ZX_ A if §{ =nq.
nT(in)
Proof

Let § > 0 be given. For each ¢ > 0 choosa n~dimensional
polytopes Pn(c)r and Pn_l(t) in Sb (¢) such that
in‘('c)' + §2¢, (Pi(:)) for i = n-1 and { =n. 1)

By continuity of volume and surface area, and also by theorem 9 it

follows that
] (Sn-[o l])-o(l’(c)) <8 for {=pn~1 egnd i =n
i ' Rt | , = } _ , .
(2)

whenever g < cé (n, 8, X).
Thus (1) and (2) 1mp_1y
¢ (sn to, A - 26? Qi(»c)" v-for i= n-li_ snd {=a (3)
whenever ¢ < ‘0 (n, &, A).
Thus (3) implies
Um 4 (e) 2 ¢, (8 [0, A]) for i =n-1 and i =na. (4)

e+ 0+

Since trivially

¢ () ei;sf‘ [0 A1) 88 P(e) C s o, 2] . .

it follows that
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it follows that
lim o () <o, (5" [o A for i = n~-l and i =n (5)
8"0""1 ~ i 14 .

Hence (4) and (5) imply

. ‘ n .
c %f8+- oi(e) - ¢i(s [o, A]) for i=n-1 and i=n

and the theorem is proved.

We now prove a theorem which shall require in the proof of theorem 11.

Theorem 10

Let X be & bounded set in En, Vn > 2 with positive Lebesgue
Ah-measure. Then, if N 1is a given positive infeger there exists
c(N)> -O such that if {xl, X)p o s xm} is any set with the property

that sup (min then all arc-wise connected sets

xeX \lgigm

|x - xi]) < e(N),

E containing {xl, Xpp o o xm} have linear measure /ﬂl(E) > N.

Proof
Let C be a closed hypercube containing X. Let C have
edge-length e. For eacﬁ integer k divide C 1into (Sk)n open
disjoint equal hypercubes qf cidq. -gi— + Suppose exactly m(k) of these
open hypercubes contain at least one point of X. Then X is contained

in the union of these m (k) disjoint open hypercubes together with

a closed set Y of Ai-measure zero.
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Since each open hypercube in An-measurable and Y is An-'meanuublc

it follows that

e n
() (5-) A (0. | m

Consider the partition of C as an array of (3&:)n open hypercubes

C(il' . o in) vhers 1 & 11 €3k, . 1% in £ 3k.

let T (PI' e o Pn) - U C(3t1 + pl’ . -,3!‘n + Pn)
Osrlsk-l
0¢ r. <k~1
n
< s e 0 $ < .
wvhere l\p1 3 1 pn\3

Each T (pl, .. pn) is a union of open hypercubes and each is

distant -:zi- from any other.

Moreover,

T(Pluy' . Pn?

Suppose m(pl,' . e pn) hypcrcubi: of T(pl, o e pn) contain at least
one poiht of X. |
3 L S 2 B
Then I ¢+ Inm (Pl’ .o pn) « m(k) > (‘;’) An(x) 2
12y p"1

by (1).



Thus by (2) there exist integers Pye o ¢ P with 1 < P, € 3, ..

1 < pn € 3 such that

n
B (pyy v o p) 2 fn— & A
n .
- O Am. &

For these particular values of pl. c o P let
- T(py e e p) = T(P) and m (Py» + = 7)) = mlp).

we shall consider k 8o large that

An(x) kn--l
6 .

QO >N | @)

We then choose ¢ > O such that 0 < ¢ <?§? .

The m(p) open hypercubes of T(p) which contain a point of X

will be denoted by Cl, . . Cm(p).

Let C1 and C»11 be the hypercubes obtained from Ci by

i i

magnifications of ci in the ratio 2 : 1 and 3 : 1 respectively

about the centre of Ci as centre of similitude.

Now each Ci is distant at least %E from any cj for jF1i
and since C: and Cilw are both open it follows that
C:(\ C} = ¢ and Cil'f\ C;I »w¢ for i+,

Algo each Ci contains a point of X and by the choice of ¢ it

follows that any set {xl. .. xm} satisfying the condition of the



theorem must have points in common with C; for each i with

1<{< u@p).

1 1 : 1
We suppose then x € C., x €C., o« » X e C .
k
1 1 kz 2 km(p) m(p)

Then since E is arc~wise connected it follows that there is an
arc of E joining X, . to the boundary of Czl which must therefore
1

have length at least = for i =1, . . n(p).

6k
Thus /\l(E) 2 m(p) . _621-;_
A (X) n~-1
n k
> =) by ()
> N. by (4)

The theorem is proved.

We are now gble to prove that an n-dimensional polytope, inscribed
in an n-sphere containing its centre and with its r-faces of small

r-measure for r = 1, . . n~1, has 'large' total edge~length.

Theorem 11

In En. n 23 and in the same notation as theorem 9 define

"1 () = inf o (2(%)).
P(e)eP (e)

Then 1im ’1 () = =,

€+ 0+
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Proof
Let N be a given positive integer.

For each € > 0 let P(€) be a polytope in?P (e) such that

N

o, (e) + 7 29 (). _ (1)
Let P(e) have vertices x;. xg. - x:(g).

. n .
Since S Eo, Xl i3 compact we may assume that there exists

x (e) € 8" [o, A] for which

min  |x(e) - le = sup (min  |x = le ). (2
1<isn(e) x;sn[b’x] 1<ism(e)

Suppose if possible that there exists small & > 0 and a sequence

{e }n tending to zero as j tends to infinity for which
3
j=1
cj ,
cwmin |x(e,) - x | 2 8>0 for §=1,2.. . (3
1<ism(e,) o '
J
Then for each j, x(ej) does not belong to a»facet of P(ej) and
8o there is a fécet F(ej) of P(ej) for which
plx (c,), F(eg)) = “o(x(ej);.‘ P(éj)) . (4)
Suppose without loss in genéralitj that F (ej) has vertices '
‘i % R
.. L] s . < 6- d th t
X% xp(ej) where n p(eJ) k q(gJ).quTv a
- ej E ej
]x(ej) - x ] = min Ix(ej) - x P - (5)

leigp(e,)

i
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Suppose the hyperplane R(ej) which is perpendicular to ox(cj)
ec
and passes through le meets ox(ej) in y(sj). Then it follows

by (5) that

P (x(e), F(e) ) > lx(ej) -'y(sj)l

: €, 2
1
- e - xl (®
> 0 by (3).
It follows by (3), (4) and (6) th#t
JEICHE P(ej) ) 2n>0 for j=1,2. . (7
| [x
yhere n = T
But by theorem 9, if ‘j > jo, then
A (P(ej)’ Dn [oo A]) < .721 ’ (8)

L]

P

and thus p(x(ej), P(ej) ) <

Thus (7) and (8) are éontradictory and so (3) is impossible.
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Thus for each € > 0 we may assume

min  Jx(e) - le < 6(¢) 9)
lgigin(e)

where d&(e) tends to zero as € tends to zero.

. n . .
We project E by orthogonal projection on to a hyperplame R.
(d 1 [ 3
For any point x let x denote the orthogonal projection of x
on R. Then §" Eo, A] projects on to an (n-l)-dimensional solid

- 1 . :
sphere Dn [h, A] of radius )\ and centre u and thus by (9)

el
sup (min ly - (xi) D < &)  (10)
yeDn"‘l [u’ A] 1€i¢ m(e)

Moreover the union of the l-dimensional faces of P(g) projects on to
' ; el d 1
an arc-wise connected set E(e) which contains {éxl),(xg), . .(x;teﬂ}.
But then by theorem 10, if € < ¢(N) then
/”tl(z(e) ) >N, - (11)
Thus since the distance between two vertices is decreased by orthogonal
projection it follows that
Ql(P(e) ) >N

and so by (1)

o=

@l(e) >
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Hence lim ¢ (e) >
1
€+0 +

(XN}

But N was arbitrary and so

1im . (e) = o
1
€+>0 +

and the theorem is proved.

For the remainder of th@s chapter we shall work in three
dimensional Euclidean space E3. We consider next polyhedra
inscribed in a sphere containing its cenire and which have small
edge-lengths but which do not neceasarily have facets of small
area. In theorem 12 we look at the suffacé area and volume of
such polyhedra and then in theorem 13 conéidet»the total

edge~-lengths.

Theorem 12 \
Let Q(e) be a 3~dimensional polyhedron inscribed in the 3\

sphere S3 [0, A] in E3 and containing the centre o with the

property that each edge of Q(e) is of length less than e.

Let Z(e) denote the class of all such pblyhedra Q(c) and define

¥, (¢) = inf oi(Q(e) Y for i =2 and 3.

i Qe)e2de)
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Then (1) 1lim Tz(e) - 21%2,

€+0 +

(ii) 1lim ¥.(e) = O
3
e+0 +

Lemma 8

For any integer N, the surface area o of the set obtained by
removing N disjoint caps from the solid sphere p3 [o, u] is greater

than or equal to Znuz.

Proof
Let the caps be Cl’ C2 PR CN anﬁ suppose each cap Ci is
distant A, from o for i =1, 2. . N.
) N R PR
G = 472" - ¢ 2m(xa- A+ I (=12 (1)
) 1
i=1 1=l
N o 2 .
1f T (A - Ai) > 29\ then certainly
i=1 ‘ '
o >,21r>‘2
N
2 .
1f I (AZ - Ai) < 2nk2, , ‘ (2)
iwl
2 N 2
then O = 4a\ =~ Lw (A=121,)
i
i=1
N
s tm? - rx@alea f)
: { =1 !
2 |
> 2nA by (2). i

The lemma is proved.

L PN
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Proof of Theorem 12

. [ L4 2
We prove first by an appropriate example that 1lim Yz(e) £ 2mA .
e>0 +

Let Py» Pyo + o P be the n vertices of a regular polygon which is

. . A
inscribed in the sphere S3 [o, A] and distant 2 from o.
n

Let 9y denote the reflection of Py in the plane through o which
is parallel to aff (pl. o » pn).
Let Q(m) = conv (pl. IR SN PERT q)-

Then Q(n) has two faces which are regular polygons of side

. 3 ,
2A(1 - --lz) sin% and n faces which are rectangles each of which
n .
has one side of length 2A(1 - "]-Z‘) sin % and the other side of
n

A
length 22 .

2

n

5? [os 7]

Thus for all n 2 N (g) K Q(n) €Z(e)

and so

Y, () € 1lim oz (Q(n) )

n+w
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2 i
* A 1
= lim (2n-—" (1 - =) sin ar + n.gA(ZA(l - -1—) sin _1_r_)
2 4 n 2 4
n %o n n n n
2 i
= lim  (2m°Q - -12) V82 L2 0 - YT sia®)
n 4 n
n-+o n e ———— n
2r
n
- 21[12.

Thus lim Tz(e) K3 ZnAZ.
e~+04+

It remains to show in order to prove (i) that

lin  ¥,(c) 2 2,

€e*+0 +

Choose & such that A>6>0 and then consider any ¢ > 0 with |
0« _e_z_ 3 26}\-62. - (3)
4 ‘ :

Let Q(e) be any polyhedron in 2, (e).

Now suppose there is a facet F of Q(e) such that aff F meets
3 . . 2
D [o,l - 6] in a disec D [u, n} .centre u and radius n > O.

Then if aff F meets D [o, A] in the disc p? [, v] ,u>n
it follows that each edge of F of length ¢ is distant (u2 - %—)

from u.



D[]

A
Also n= ((A-&)z-(lz"uz))

- (V¥ -28 ¢ az)i

2 §

s -5 o
2y

< (uz-%')

since each edge of Q(e¢) and in particular F has length less than

€

Thue each facet F of Q(e) satisfies one of the following;

(a) F does not mneet D3 [o, A - 6]
(b) F meets D3 [o, A =~ §] in at most a point or

(¢) F meets 1)3 [o, A~ 6] in a disc.

Thuf the set Q (e) N D3 [o, A - 6] cen be obtained by removing N(e,$)
disjoint éapa from the solid sphere D3 [o, A - 6] and thus by lemma 8

has surface area

G (e,8) 2 2n (A - 6)2.
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Thus @2 (QCe) ) 2 27w (A - 6)2

and so Wz (¢) = inf o, (Q(e) ) =2 2w (A - 6)2
Q(€) e(e)

whenever 0 < Ei € 286A - 62.

4

Thus lim Wz(e) 2 2r (A - 6)2
€*>0 +

add since the choice of & was arbitrary it follows that

lim ?2 (e) > ZIAZ

€+0+
and part (i) of the theorem is proved.

It is obvious that

0« W3 () £ 1lim ¢3 Q@) ) = O

n+e

and so

lim WS (e) = O
e~»> 0+

and so the theorem is proved.

Theorem 13

In E3 and in the same notation as theorem 12 define

?1 () = inf ¢ (QCe) ) .
Q(e)e2(e)

Then lim ?1 (e) = 4mA,
. E* 0+ :
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Lemma 9

Let {Ci} be a collection of caps of D3 [ﬁ, A] such that
i=1

Cincj has no interior points. Let ¢, denote the surface area of

i

the portion of the frontier of c. which is common to §° [o, A]

for 1-1,200 .

Then, if z Gi = 4n12, the total sum Jf of the lengths of the
i=1 '
circumferences of the discs which form the bases of the caps Ci is

greater than 4wl,
N . .
Note we allow finite collection {Ci} by defining C, = ¢ for i>N.
o i=1

Proof
Given E o ;" 4%12. Thus if each cap Ci is distant A

i=1
from o for i=1, 2, , then

Eoma-a - 4mr 1)
iél -
and o
w {
L = = 2n(x2-xf)
i=l
W oA et
= I & (A-r) G
i-; ; i
> I ma-xi)
i=]
= 4uA bY(l)o

The lemma is proved.




Lemma 10
3 ‘s
Let X be a subset of S [?, A] of posxtlve/ﬂz-measure. Let
R be any fixed plane and let X1 denote the orthogonal projection

of X on to R. Then Xl has poaitive/ﬁz-meésure.

Proof

For any set Y 1in E3 let Yl denote the orthogomal projection
of Y on R.
Let Rlv and Rz be two planes R1 +=R2 each of which is the same
distance n from o and parallel to R.

Let G denote the closed subset of g [0, A] which lies between

Rl and RZ. We shall suppose that n is so small that

0 <M, (@) < FM® )

Now G is/%2~measurable and so
/*12(X) - /ﬂz(Gf‘X) + /32 (x]6). (3)
Hence by (2) and (3)
M,&le) > fM,m >0, (4)
Wa shall adppose /Wz(xl) = 0 and obtain a contadiction. If
M, @') = 0 then cereainly M,( Zl@H =0. T (9

Let 82 [o, A] be a great circle of s3 [0, A] which 1ies in a
plane perpendicular to R and let the tangents to 52 [os A] make

an acute angle ¢ with R1 and Rz at the points of intersection
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2 .
of S [o, X] with R, and R, respectively.

1 2
S*[o
(o, ] L
N
¢ Rl
o
VAR
vl
ki
. ; " R
et € be a number with 1
0<e < !/12(1{). (6)

Now equation (5) implies that for each & > O there is a sequence

of sets {Hi}°° such that
i=1

HiC. R,

C; H D (x]c)l,

i=1
D (Hi) < 8§ cos ¢,
o )2 e 2
and s (D(H‘)) < £ cos b )
X 2
i=1 ,
Let Ji be the space spanned by Hi and £he normal to R and

define K, and L, to be the intersections of 3 vith §° [0, 2]
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Then 16 € ® oL

)
i=1 i

and also
max (D(Ki), D(Li) ) € sec ¢ D(Hi) < 6. (8)

Hence {of (D(Si))2 < I (D(Ki))2 + T (D(Li))z
i=1

3 i=1
SiCE

D(Eg)s 8

U S D xle
i=1

c2secty T (D(Hi))z
fe1

<g by (7). (9

But this implies
M, &lo) s e < {M (%) </, (x|6) by (4) and (9) which is
impossible.

Thul/%z (Xl) > 0 and the lemma is proved.

Proof of Theorem 13

We prove first that 1lim ’1(‘) € 4TA, For each integer n,
E—0 +
congsider the polyhedron Q(n) defined in theorem 12, Then for all

n » N(g), Q(n)e2(e) and 8o
Y <
O nd, Q@ )

. " { A

n 2
R+ a
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)

Y T
= lim  (4m (1-—12) (" a )
n - n _11
n
= 47,

Thus lim Wl(e) £ 4T,
€E+0 +

It remains to show

lim ?l(e) > 47,
€+0+

Let & > 0 be given. For each € > 0 choose a polyhedron Q(e) in

the class 2 (g) such that

ﬁl Q) ) ¢ ?1 (e) + 6. (10)
Let {ei}°° be a sequence tending to zero as i tends to infinity.
i=1
Since él(Q(ei) ) L4m2 + § (11)
and the sequence of polyhedra {Q(ei)}m is uniformly bounded we
: B i=1

may assume by the Blaschke selection theorem that there is a sﬁbsequence

{ei } of {ei}°° for which ¢1 (Q(ei ) ) tends to some number ¢

. 1
j j=1 i=1

and Q(ei ) tends to a convex set Q contained in p3 fo, A] as j

tends to infinity. Thus by omitting appropriate terms we may assume

to simplify the notation that.

9 (Q(ein ) és i+ o  a»
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and

;) > Q@ as i B ¢ E)

Now let n > O be given with n< A. Then it was shown in theorem 12

that either

@ »° [os 2= n]. C Q) or

(b) D3 Bh A= n] meets the frontier fr Q(e of Q(ei) in closed

g

discs, whenever i is so large that eiz £ 2nA - nz.

ntna—

4

Hence taking the limit as i tends to infinity it follows that either
3

(a) D [o,k-n] C Qor

(b) D3 [@, A - n] meets the frontier f£r Q of4 Q in closed discs.

We consider two cases.

Case 1
D3 [o,x-n] CQ for all n with 0 <n <A

and

Case II1
There exists n >0 for which D3 [o, A - ncg meets the fr Q
in at le#st one closed disc of positive radius.

We show first that case I is impossible for, if were true then
Q would be the solid sphere D> [0, X]. But this implies using the

same aiguments as in the proof of theorem 1l that
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1lim (Q(ei) ) = o0 which contradicts (11).

{ +

Thus case II must apply. We prove next ﬁhe following lemma.

Lemma 11
For each n > 0, 03 [o, A- n—_] meets fr Q in a finite number

of discs of positive radius.

Proof

Let fi be given w%th 0 <n<A
€
If 1> 10(11), then -i'—s 2nk—n2 and it follows as in the proof

of theorem 12 that fr Q(ei) meets 1)3 [o,)\-n] in mi discs

where possibly m, = 0.

Now each facet of Q(eil which meets D3 [o, A- n] is inscribed in

a circle, centre u, and radius O‘i, where

i
o ) |
'51 >(AA=-(Q=-n)
{

» 2
= (2nA = n)
Moreover each such facet contains u.
4
Thus given f with 0 < ¢ < (2nA = nz) it follows by theorem 9,
that all facets_of Q(ei) which meet D3 [o, A= n] contgin a disc

of radius (2n\ - 'nz)-t; whenever i >,,:lo(c. n) io(n)- .

Since Q(e) C D [0, A] for a11 1 it follows that

!

2 2 z
4u2° > m, w( (2nA=-n") =)

for all 1 aio(c. n).

The lemma is proved.
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;o
Now let {n} be a monotonic sequence with n, 2 n, _ and
i {a1 i i+l

ni tending to zero as i tends to infinity. By lemma 11 we may

3
agsume that D [o, A—ni] meets fr Q in e, discs for i=1, 2 ., .

i

We shall ignore discs of zero radius or points and any disc mentioned

will necessarily have positive radius.

Suppose D3 [9, A—nl] meets fr Q in the discs Di . e Dl
1 1 1 1 1
which have radii Al, o« o A el and centres ol, ¢+ 0 respectively.
. 1 i
1
Let C (o, Dk) denote the cone subtended by Di at o the centre

of D [o, A] for k=1, .. e -

Then the frontier fr C (o, D‘It) of C(o, Dll‘) meets §° [o, A] in a

>,Xl for k-lgnoeo

1
gay where X 1

circle of radius ul "

k
3
We next consider D~ [0, A = “2] .

Now D [o, A - n2] D D> [o, A~ nl] 8o cerfainly p’ [o, A~ nz]

meets fr Q in discs Di, . o D: of radii Ai, e 1: and centres

1
1 1 1 2 .1
O,y ¢ « O respectively where A, 2 A for k=1, . . e,. Let the
1 e k™ k- 1
remainder of the discs (if any) formed by 1)3 to. A - nz] N fr Q be

D2 U D2 with radii A: LILE 12 and centres oz .1
¢’ ) ) S SR -8 2

respectively.

s ¢« O
’ e

<

. 9
go summarising we have that _])3 [o. l-nz] ~meets fr Q ‘in discs Dl’

.o D2 with radii 1:, o o K: and centres oi. . . oze respectively
2, 2 12 2 o 2
vhere o = o and bk Slk for k=1,2, . . e

1’ .

2 : 2
Then as before the frontier f£r C (o, Dk) of C (o, Dk)’ the cone



-86..

subtended by D: at o, meets 33 [0, A] in a eircle of radius

2 2
¥ say where u

1
k k’)ll for k-l,ooe-

k 1

By continuing this process inductively we must have that the sequence

[ _J
{.i} is monotonically increasing and for each 1, D3 [0, A-ni]
i=l
mneets fr Q in . discs of radius ki, . . x: » Centres
i
°1' . o1 and the frontier f£r C (o, Di) of C(o, Di), the cone
.i k k
subtended by D: at o, meets 33 [6, X] in & eircle for radius
i
uk for k = 1. Q¢ o .io
Lemma 12
If e = lin e and uk = 1lim ui for each k with 1 sk <e
{1+ {+w»
then
e
2% I y <9,
kel k 1
Proof

We now consider fixed ng €0, 8o that D’ [0, A-ni] meets
fr Q in at least one disc.
Thus for all §j sufficlently large D° [0, A-ni] will meet

fr Q(c,) in at least one disc.

b
Let Qj, . s Qj be the p, polygons in fr Q(e,) which meet
| Pj j j

D’ [0, A;ni]v. in discs.

These polikéni are facets of Q(ej).

Let (j) denote the sum of lengths of the edges of these polygons,

i ki
Q E] * L ] Q .
i pj



Let B(j, k) be the length of the perimeter of ij for k=1, .. pj
and vrite
B(§) = I B(, X). (14)
k=1
Now Qil and Qiz have at most one side in common for ?1 +-k2 and
thus
P

Let T (J) be the sum of the circumferences of the discs formed by
the intersection of 03 [0, A-ﬁi]‘ and fr Q(ej). Let Y denote

the corresponding sum for 03 [0, A-ni] N fr Q.

Since Q(ej) tends to Q as j tends to infinity it follows that

p’ [o» x-ni']ﬂQ(cj) tends to D [°s n,JNQ as j tends to

infinity.
Thus

Y = 1lim 'r'j. (16)

J+e

Now if j 1s sufficiently large then

TG <86 o an
and so by (15)

P
Y <o) ¢+ (pj )Ej. (18)

Now by lemma 11, the numbers pj are bounded for all § and thus
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letting j tend to infinity we have

T < lim 01(Q(ej) ) = % by (16) and (18) since obviously

j>oe

1

a(j) < OI(Q(ej) ) for j=1,2.. .

Since we were considering fixed i, Y is really a function of i
80 we now write ¥ = Yi'

Thus we have proved

i i
Y, = 2¢ 3§ 2 <90
i k-lk 1
ei -
and so 2¢ A pi ( "i) < ’1 for i=1,2.. .,
k=1 A

It follows that in the limit as i tends to infinity that
e

21 L w €9 (19)
k

and the lemma is proved.

Now for each ng >0, D3 [9, A- "i] meets fr Q in e; disjoint
discs of radii xi, .o x:i and so fr (D3\ [0, x-ni—_lﬂQ) consists
of these discs together with an open subset.W(‘ni) of vsa [o..'x-‘ni].
Project W(ni) on to 83 [o, A ] from | o and let the set obtained

be denoted by V(ni).

Hence for each integer 1,
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S.2 L i 124
41" = =M (VM) ) + 27 I A (- (1)) ). (20) +
4 2 i Km 1l k

Now for eachi)V(ni) il‘fiimeasurable and

V(n,) > V(n, )
and so
M, (N V) ) = LaM,((n) ). (21)
i=l { +

Thus taking the limit as i tends to infinity in (20) and applying
(21) it follows that
c e 4
il e M (A V) ) +2r T a0 02 - WD)
4 2 {=1 i k=1 k

we suppose first that.f(z( ;3 V(ni) ) > 0.

i=1
Let Q(ej) have vertices vi, . e vi . We show next that
3
sup (min [w*vi[) tends to zero as j tends to infinity.
ol }SkSn
ve N V(ni b]
f=1

For if this is not the case then there exists z >0 and wse f% V(ni)
' i=1
such that

+ See note at the end of the theorem.
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min ij - vil > ¢ for j=1,2..., (22)
lsksnj

and wve may assume that wj tends to a point w as j tends to
infinity. Thus, a similar argument to that used in theorem 11

implies that p(w,, Q(ej) ) 18 bounded away from O as' j tends

to infinity and thus

p(w, Q) > 0, (23)

This implies that p(w, V(ni) ) >0 for all i sufficiently large

and thus since V(ni)‘j v(“i+1). it follows that p(w, i‘:>1 v("i) )> 0.

Thus for all j sufficiently large

pleys /1 V) ) >0

which is impossible by definition of ﬁ}.

Thus sup (min  |w - vil) tends to zero as i tends to
g ks
ve /) Vin)) <y
i=1
infinity.

We now project E3 by orthogonal projection on to a plane R. By
lemma 10, the set {%‘V(ni) projects down into a set of positive
/ﬂz-meaaure and thuaflpositive 'Azfmeasure.

Thus using again the argument of theorem 11 it followg. thag GI(Q(ei) )

tends to infinity as 1 tends to infinity. But again by (11) this is

impossible.
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Thus we must have

MoC ) V() ) = o

1 =1
e §
Hence 411).2 = 27 I A(x- (12 - uz) )
k=1

and 8o by lemma 9 it follows that

e
4bud < 27 I .
k-luk

Thus by lemma 12

el £ 9, = 1lim

1 ¢, Q(e;) ) by (12).

i +e

and so by (10)

4wl £ 1im

?(ei) + 8
{1+
where § was arbitrary.
Hence 4ul < " 1lim Y(ci)
ire

and the theorem is proved.

Note

. The reader will see that we have used the fact that the area
of the curved surface of a cap is equal to 7::- times its Hausdorff

2-dimensional measure. This follows from a result in [8] page 54.



We note that for small ¢ the lower bounds of the total
edge~lengths, surface areas and volumes of polyhedra teken over
the class 2&:) defined in theorem 12 are cousiderably lower than
the corresponding quantities taken over the classﬁp (e) defined
in theorem 9.

Further theorems 12 and 13 show that the lower bounds for the
total edge~lengths and surface areas of polyhedra taken over the
wvhole class of polyhedra inscribed in a sphere and containing the
centre given in theorem 2 are not best possible {if we restrict
ourselves to polyhedra in the class 2»(:)' for small ¢ where of
course we are insisting that the edge-lengths are small, We note
however that the lower bounds of the volumes of polyhedra taken ovef
these two classes are both equal to zero.

We finally complete the three dimensional case and consider
polyhedra which are inscribed in a sphere containing the centre

which have facets of small area but which have no restrictions placed

on their edge-lengths.

Theorem 11
Let R(e) be a 3-dimensional polyhedron inscribed in the sphere

s [o, 2] in B>

and containing the centre o with the property that
each facet of R(c) 1s of area less than ¢. Let #(¢) denote the

class of all such polyhedra R(cg) and define
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R(e) e, ()
Then (1) 1lim 7<1(e) = 6)
e »0 +
(i1) 1lim qi(;) = 0 i =2 and 3.
g 0 +

Proof

By theorem 2 it follows that

lim 'xx(‘) £ 6 (1)
c+0+ '
and
1im 'Xi(e) = 0 . for {1 = 2 and 3.(2)
€+ 0+

It follows by theorem 4 that

0, (R(e) ) > 62 &)

for all polyhedra R(¢) ¢Q.(¢)»
and so

lim xi(C) > 6).
c+0 +

The theorem is proved.

'We now sea that for small e the lower bounds of the total

edge-lengths and surface areas of polyhedrp taken over the class
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#(e) are in fact lower than the corresponding quantities taken over
the class 72(c) aud thus still lower than the corresponding quantities
taken over the class ?P (e). Ve note however that the lower bounds of
the volumes of polyhedra taken over the classes A(e) and 8 (e) are
both equal to zero for any positive number e.

Also theorem 14 shows us that the lower bounds for the total
edge~lengths, surface areas and volumes of polyhedra taken over the
whole class of polyhedra inscribed in a sphere,containing the centre,
cannot be improved by restricting ourselves to the class &, (e) for
any positive nunber e,

It is clear that we have now fully iinfestigated the three
dimensional case. Howuver, there are of_cou;Se many open problems

in higher dimensions associated with this chapter.
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CHAFPTER 3

INTRODUCTION

In this chapter we shall give three theorems concerning the
behaviour of the 'higher' dimensional polytopes or cells of arbitrary
convergent sequences of cell-complexes. The ideas comes from a study
of a paper by Eggleston, Grlnbaum &and Klee [§] « In theorem 3.1
in [9] they essentially give a condition on a cell-complex K to
ensure that if a sequence {Ki}“ , . .convergent to K (in the usual

i=l
Hausdorff metric), is such that the number of vertices of Ki is
uniformly bounded as i tends to infinity, then for each integer
8 and each € > O, the cells of K of dimension s are contained
in the e-neighbourhoods of the cells of Ki of dimension s,
vhenever i 1is sufficiently large.

In theorem 15 we shall prove a corresponding result for arbitrary
cell-complex.es, concerning the cells of dimension greater than or
equal to 8. We shall also show that our theorém is false if the

number of vertices of K, 1is not uniformly bounded as 1 tends to

i
infini ty.

Theorem 15

In E° let <[K1}~ be a sequence of cell~-complexes tending to
the cell-complex K as i tends to infinity with fo(Ki)< ®,
n n I :
Then 1lim inf () c}(Ki) > U Gi(K) for each 8 with O < s < n.
te=3 t=s
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A<
Moreover if s +=0 the condition fo(Ki) < » {8 necessary.

Lemma 13
If Ki is a sequence of compact sets and Ki tends to sets
L and M in the Hausdorff metric then L = M provided L and

M are both compact.

Proof

The proof is well-known and is omitted.

Proof of Theorem 15

Suppose that the result is false. Then there is a subsequence

{L

i}w of {Ki}°° such that for some ¢ > 0, and for some s

i=] i=1
with 0<s8<n

n n
U o, ®{¢ [u 5 L), e]-
t =

t=s 8
n
ve shall assume | ) ct(K) + ¢ for otherwise the result {is
t =8

triVialc
Since fo(Ki)< » we may assume, extr#cting suitable subsequence

of '{Li}“ if necessary, that the following conditions are satisfied.
i=1 ‘

-
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i) There are non-negative integers mo, e em such that

ft(L - m for each 1 with 1 ¢ i < » &and for each t

)

with 0 ¢t ¢ n.

il) For each t with O ¢ t ¢ n and for each i wich

t,l t,2

t,m
"Pi ™t

lsi(n)l- i

has exactly mt t-faces P s » o P

i i

where Pit'h, for each h with 1 ¢ h ¢ m s is convergent as i tends

h
to infinity to a compact convex set PO of dimension less then or
equal to ¢t.

n
Since () o}(K) is a finite union of cells we may further

t=3s n
assume that Qt ¢ [ U ok(Li)’ %] for some t-dimensional cell Qt of
teg :

K with 8 ¢t ¢ n and thus that there is a sequence {yi}' C.Qt,
i=1
convergent to a point y in Qt- such that
n _ '
¥y ¢ [ U o (@), e]- | | (1)
t =g
Now suppose if possible that
n B
t,h
Ye U U P (2)
S tws hel )
This implies that if { » io(g) then
( ) < = | (3
p " yi l‘.
; e o n
and o (¥, xi) <% for some x; € W o’t(Li). )

t=3s :
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Then (3) and (4) iwply

£ .
D(Yi. xi) < 5 whenever i xo(s).
This is impossible by (1) and so

n oy

oy U U B o, (5)
t =8 h=1

Thus there is a t-dimensional ball Bt 4 Qt with 8 ¢ t ¢ n such

that
n me h
n‘m(u U r")- 6 6
tm=g h=1
n e .h
By lemma 13, | U P’ =K and so (6) implies that
t=0 h=1
¢ s -1 n t.h
B C U U P’  which is a finite union of convex sets

t=0 h=1l
each of which has dimension less than or equal to s-l. This is

impossible since 8 ¢ t ¢ n and so there is a contradiction and the
theorem is proved.

We show finally that if s 4 0 then the condition fo(Ki) < ®
is necessary.

Let P be an s-dimensional cell of K with s $0. Let Q be

a cell of maximal dimension that contains P.

n .
Then Q C (J o}(K). Also no cell of K can meet rel int Q for
t=g :
suppose that R 18 one such cell. Then RNQ 1is a face of Q and

80 RNQ = Q. Thus Q CR and this implies that R has dimension
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greater than that of Q. This is contrary to the definition of @
and so Q has the stated property.

Now for each integer i divide Q into Py disjoint sub-cells

Qi, . e Q1 each of which has dimension that of Q and digmeter less
1 ' i i
than s Take a point X, € rel int Qt- for each r with
lsrg pi. Let Si denote the set union of {x:}pi for i =1, 2, . .
r=1
Let Ki be the set union of Si and 21l the cells of K apart from
Q. Then Ki is a cell-complex for i =1, 2 .
n n
Moreover Ki* K as i+ e put lim inf U cf(Ki)‘ﬁ U OE(K)'
twsg t=gs

The proof of the theorem is complete.

We next give a condition on a cell-complex K to ensure that

if {K1}~ is any sequence of cell~complexes convergent to K,

i=]1
then for given integer 8 the union of the cells of Ki of dimension
greater than or equal to 8 tends to the union of the cells of K

of dimension greater than or equal to s as 1 tends to infinity.

Theorem 16
In En, let s be a given integer with 0 € 8 € n. Let A(K)
denote the class of sequences of cell-complexes (Ki}. which

i=1
satisfy the following properties;
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(a) Ki+K ag 1 » » and

(b) fo(Ki) < » for each {Ki}:.]_ cﬂ(K).

Then Lnj O-t(l(i) -+ GGC(K) as i +» = for each {!(1}‘ e A (X)
t =3 t=3s iml

if and only if every t-dimensional cell of K with O <t ¢ 8 is

contained in a cell of dimension s.

Proof

Suppose first that every t-dimensional cell of K with

Ogtgcs is contained in a cell of dimension s. 1In view of
n n
theorem 15 we have 1im inf U c,&)D> U o () for all
- t=3s t=3s
sequences {K,} ¢ A(K). Thus, if the result is false, then for
i=1
some sequence {Ki}w € #(K) there exists ¢ > O sand a subsequence
i=1
i}. of {Ki}" for which
i=1 i=1

v

n n ' '
U ot(Li.) q‘_ [Uo‘t(x). s] for iw]1,2, ., (1)
t=g3 t=3g8

We may assume that {Li} satisfies conditions (1) and (11)

i=1
of theorem 15 and thus in the same notation as theorem 15 there

exists t with s <t<n and h with 1 ¢h g m for which

n

P;’h qf_ [ U o‘t(K).c].

t =8
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n
Thus there is a point A Pit’h v c}(K), e ] (3)

t=3s

for i =1, 2,

and since, by extracting a suitable subsequence, we may assume

that vy tends to a point y as i tends to infinity it follows

that then
t,h n [ 3
yer " | [ Ue.m,7]. )
t=g
n
Hence y ¢ U o :(K)' (3)
t=g

But ycPt’h C K and so since every t-dimensianal cell with
O<t< s-1 is contained in a cell of dimension s it follows that

n
y € U crt(K). (6)
t=3

But (5) and (6) are contradictory and so that theorem is proved in the

¥

one direction.

Suppose next that a t-dimensional cell P of K with 0£ t <s
is not contained in 2 cell of dimension 8. Then certainly P is
not contained in a cell of dimension greatef than s.
1f P has dimensfon O, then for each i Qith 1 £4{ < » there is
an s-dimensional cube Ci of diameter %- which contains P and

which does not meet any other cell of K for all i sufficiently large.

Let - Ki be the set union of C1 and each other cell of K apart from P;
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Then for all 1 sufficiently large K, 1is a cell-complex. Also

n n i
{Ki}. 854(1(), but U Ki"/'? U Ki as 1 —yoo.
=1 t=3s t=3s

We may assume that P 1is a maximal in that P is not contained
in a cell of dimension greater than t. Then as in the proof of
theorem 15 it follows that no other cells of K meet rel int P.

Choose x € rel int P, We assume now P has dimension greater than O,

let e , e

1 » oo @ be a set of pairwise mutually orthogonal

2

lines which meet at x with er - o€, in the affine hull of P.

For each integer i with 1 € i < » and each j with t+l € j < s,

choose a point yi on e, which is distant 1 from x. Then the

3 i

* + » [3 .
polytope Pi = conv- (P, yit 1, yit 2, . o y:) 18 s—dimensional and

Pi +P as 1+ o, Also for all { sufficiently large no cell of K

meets Pi in its relative interior. Let 'Ki denote the set union of

Pi and the cells of K for i = 1, 2, Then for all i sufficiently
i“ n
large Ki is a cell-complex. Also {Ki) e A(K), but LJJGE(Ki)
n i=] t=g
+ U GE(K) as i + e, Thus the theorem is proved.
t =g :

We next state a lemma which will be used in the following theorem.

Lemma 14
If an s-dimensional compact convex set S is the limit of a
sequence of polytopes {1’i }>  then {0;(Pi)}“ is also convergent

i=1 i=]
to S.
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The lemma is stated and proved in the paper 'Some semicontinuity
theorems for convex polytopes and cell complexes' [i] under the
assumption that S is a convex polytope. This is however not

required in the proof and so the lemma is proved.

Finally we f£inish this chapter by giving a theorem which tells
us that if each cell of a cell-complex K has .dimension less than
or equal to m for some integer m, and {K.}w ~ is a sequence of
cell-complexes convergent to K, then the ::;on of the cells of Ki'

of dimension less than or equal to m also tends to K as 1 tends

to infinity. This enables us to sharpen theorems 15 and 16.

Theorem 17
n [_J
In E 1let {Ki) be a sequence of cell-complexes tending
i=1
to a cell-complex K as 1 tends to infinity. Suppose that each
cell of K has dimension less than or equal to m for some integer
m
m with m<n. Then ) GE(Ki) +K as {+ e,
t=0

Proof

Now since Ki + K as i1 +e it follows that for each e > O
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there exists io(e) > 0 such that

11}
:L-j- Oct(Ki) C g C [k,¢] whenever i aio(e).

Thus if the result is false then there exists & >0 and a
subsequence L.} of {K,} for which
i, i
i=] i=]1
m
K ¢_ [ U s, (L), e]. ‘ , (1
t=0
For each integer i with 1 € i < » choose a point yi with
m
e k| [Ue @) d ()
t=0
By extracting suitable subsequences if necessary we may essume that

there is a point y and compact sets H and L such that

m
U A (I‘i) + H, , (4)
t=0
n v
and 9] o-t(Li) + L a8 1 + =, (5)
t=m+1

Now by lemma 13 it follows that K= HUL and by (2)

y K [H;’g‘]c



Thus y ¢L and P(H, y) > ';- > 0, (6)

Let {ei}w be a sequence tending to zero as i tends to
i=1
infinity such that

[Li’ ei] S5 K for 1 =1, 2, . (7)
Since € <€ for all 1 » 10(5) it follows by (2) that
n
t=0
Thus by (7)
n
v, € [ U Ut(Li)’ gi] for 1 > io(e). Hence, by
t=m+1
extracting a suitable subsequence if necessary, we may assume that
n v
there is a cell Pi. of U o-t(Li) which is of fixed dimension r
t=m+]l

with m+¢l ¢ r < n, and which is such that

yi. QEP]-_’ ei] for 1 > io(t)’ (9)

we may assume further that the sequence {Pi}“ is convergent to
i=1
a compact convex set P in K which thus has dimension at most m.

But then by lemma 14 it follows that

O‘m(Pi)v +P as i+e,

Also (9) implies that y ¢ P and so if i 1is sufficiently large then
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m
€ €
yeloe@n, 7dc [tkf gt(Li). o

Thus in the limit as i tends to infinity we have
€
y € [H, Z]'

This is contrary to (6) and so there is a contradiction. The theorem

is proved.

Corollary

If, in the notation of theorems 15 and 16, each cell of K of

dimension less than or equal to m where O € m £ n, then we may

n m
replace k“)GE(Ki) by \v}of(xi) in the statement of each theorem.
t=3 t=gs

Proof
In order to prove theorem 15 we assume the result is false and

then simply replace

n m
U o}(Ki) by U oi(Ki) throughout the proof.
t =38 t=g
m
Using the fact that ) c}(Ki) +K as i+ = ye obtain a
t=0

contradiction by similar arguments as before.
In order to prove theorem 16 we note that by lemma 16, if ¢ > O,

then there exists io(e) > 0 such that for all 1 > io(e)
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m n m
[ Uo,@,e]5 Us &) D U, &,
t=3s t=3 t =3

the second inclusion being obvious since m g n.

The corollary then is proved.
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CHAPTER 4

INTRODUCTION

The main purpose of this chapter is to give some characterisations
of those sets which are completely I-stretched or completely K-stretched.
We shall see in theorem 18, corollary 2 and theorem 21, corcllary 2
that any such sets are necessarily compact and convex. By the nature
of their definition we might expect them to possess properties
analogous to the properties of the sets of constant width and indeed
this turns out to be the case.

In [12] Fujiwara and Kakeya give an analytic characterisation
of the rotors for am equilateral triangle. Later on in this chapter
we shall be able to give a geometric characterisation of such sets.

We shall of course be working throughout in the plaﬁe. We séart

with a lemma which is fundamental.

Lemma 15
Let xy z be a triangle. On y z erect the triangle u ez

which is equilateral and such that u_, lies on the side of y z

1

opposite to x. Similarly define u, and u, for the sides x z

and x y respectively.

(a) If each angle of triangle x y z is less than %’n. let w

be the unique point such that xwy = ywz = xwz = %jw

Then (i) each connected aetvcontaining x, y and £ has length
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creater than or equal to |x—w| + |y-w| + |z~w|;

(ii) the lines u, % uzy and u,z contain wx, wy and

wz respectively. Moreover

x| ¢ [y=w| + [z=w| = Ju-x| = |u-y| = [u;-z].

~
(b) If one angle of triangle xy z, say y x z is greater than

2 2
or equal to Sw, let t=x 1if y - Ew, and let t be the

unique point which lies on the same side of the line yz as x

A A " A 2
and such that ytx = ztx -3 if yxz > 3"

Then (i) each connected set containing x, y and z has length

greater than or equal to |y-x| + [z-xl;

(ii) the lines wu_ x, uzy and u_z contain tx, ty and ¢tz

1 3

respectively. Moreover

“leeel + byel + lae] = Juxl = fugyl = fugel

Proof (&), (i), (ii)
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(a) parts (i) and (ii) are proved in a lemma by H.G.Eggleston
in the paper 'on the projection of a plane set of finite
linear measure' [}0] on page 63.

we consider

() d),
It is clear using the same argument as that given for the
proof of (a), (i) that any connected set containing x, y and z
has length greater than or equal to the minimum of the function
S 2
|x=8| + |y~s| + |z-8| taken over all points s ¢ E”.
we may assume that this minimum is attained at some point s = 85
Moreover it was shown in the proof of (a), (i) that either
A 2w

Fad N
8 is a vertex of triangle xy z or 8 X ™ z8 X ™ 25y = —,
0 B y y 0 0 OY 3

. 2
Now since ¥y % z 1is greater than or equal to ?f- the latter
case is impossible.
Hence [x-8 | + |y=8 | + |z-8 is equal to
s |+ [=s | + lo=s |

win ([x-y| + |x=z|, |y-z] + |y=x|, [z-x| + [z-y])
= |xy| + [xz2].

Thus (b), (i) is proved. -we now consider (b), (ii) and show

first that the line ulx contains tx and

ley=x| = = [x-t] + |y-¢t] + [z-t].
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In order to prove that the line u, X contains tx it is sufficient,

A

by the definition of t, to prove that yeu = ztu, .

1 1
~ A
Since zty + yuz = T, yulzt is a cyclic quadrilateral whence
A A 1 d
ytu, yzu, ; @
tu. = zyy = =
ztu, zyu, 3

P A
Thus ytu1 - ztu1 and the line u, x contains tx.

But now from case (a) applied to triangle tyz we have {mﬂkﬁvt=\u)
Iul-tl = |y-t| + |z-t]
and so

la=x| = = Jae] o [yt] + |-t

In order to complete the proof of the lemma we show finally that

the line u,y containg ty and
oyl = = [xtl + [y=t] & [otl.

(The argument with 'y' replaced by 'z' is similar and is omitted.).



- 112 -

In order to prove the line u,y contains ty it is sufficient to

h t L
rove at u. .tz - =,
P t 2 3

A A v . »
Since xtz = xu_ 2z = =, xt uz is a cyclic quadrilateral

2 3 2
whence
A A L4
uth = uzxz - '5 .

Thus uy contains ty.

But now we apply case (a) to triangle t;xuz and 8o (-SM;\co ¢ :W)

|t + |u,~t| = Jz=t].
Thus
lujyl = = fxet] + [ye] + [ot]

and the lemma is proved.

Note

In the notation of lemma 15 we now see that if each angle of

triangle xy z 18 1less than -:2;-1, then C %, ¥, z) is the union
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of the segments wx, wy and wz where w is the centre of connection

of triangle xy z and so

I (x5, 2) = |xw|+ [y + [z-v]

- ol

lu,-yl

lu 2] .
Also if the angle y%z say of triangle x y z 1is greater than
2
or equal to 37 then C(x, ¥y, 2) is the union of the segments xy and

xz and
I(x, VY, 2) = IY‘xI + Iz—x|’

where x = w is the centre of connection of triangle =x y z.
We note further that if each angle of triangle xy z 1is less
than or equal to '% 7 , the sets C(x, y, z) and D(x, ¥, 2) coincide,

the centre of connection of triangle x y z is equal to the centre of

revolution of triangle xy z and

I(x, y, 2) - K(x, y, %)

Ju x|

~uyy]

= |u3-2l9

Also in the notation of lemma 15 we see that for any trianmgle

Xy sz,
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K(x, y, 2) = Iul-xl
= o,y
- |u3—z[.

We next state two corollarys to lemma 15.

Corollary 1

Let X be a compact set. Suppose I(X) = I(x, y, z) for
three points x, y and z in X. Then x, y and z are collinear

if and only if int (conv X) = ¢.

If int (conv X) = ¢ then X is a subset of a line and then
trivially x, y and z are collinear.
On the other hand if I(X) = I(x, y, z) where x, y and z are
collinear then

I(X) = max (|x-y|, |x-z|, |y~z]) = |y-z]| say.
Now if int (conv X) L ¢ then y4z and there exists a point
xlex which does not lie on the line yz. But then it is a direct

consequence of lemma 15 that
‘ 1
I(X) = I(x, y, 2) = Iy_zl < I(x ,y,z) € I(X)

which is impossible.

The corollary is proved.
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Corollarxy 2

The set functions I and K are continuous on the class of

compact sets in the plane.

Proof
[}
Let {Xi} be a sequence of compact sets convergent to a
i=l
compact set Y.
By compactness arguments we may assume there exist sequences
. o0 [ ]
of points {xi} , {yi} and {z,} which are convergent to

[}
i=1 ial Yiel
X, y and z in Y respectively such that

3 y l = ) .
Itxz I(xi, Vg zi) for i=1, 2. (1)
Then clearly by definition of I (x, y, 2)

insi? I(Xi) = lim I(xi, Yi» zi)

1 o
= I(x, Yy, z)
S 1y . (2)

Conversely we choose points x, y and z in Y for which
I(Y) = I(x, v, 2) |, , (3)
Then there exist points X ¥y and z contained in Xi such that
X~ X, yi—»y, and z,~+z as {1y,
Hence ll:.n:‘ I(Xi) 7,i1+in:. I(xi, yi,' zi)

= I(x,y, 2)
= I (Y). ] (4)
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Equations (2) and (4) imply

lim I(Xi) = I(Y)

i+

and the corollary is proved since we apply the same arguments to prove

lim K(Xi) = K(Y).

i+w

We now prove a lemma which will be useful in the sequel.

Lemma 16
(i) Of all equilateral triangles circumscribing a segment
yz there is a maximal one of height ]y-z] which is
unique up to reflection in the perpendicular bisector
of yz.
A A

Let xy z be a triangle with o = y§z > YyZX > XyzZ.

Then

(ii) Of all equilateral triangles S which have the property
that x, y and z each belong to an edge of S there is
one triangle T of maximal height. Then T ’is unique,
has height K(x, y, z) and does not contain any sidé of
triangle x.y z.

n
(iii) K(x, y, z) 2 |y-z| if a < %;' with equality only if

5w
_6- ’
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. 5
and K(x, y, z) < |y—z| if o> 7} .

Proof

The proof of (i) is obvious and is omitted. We prove (ii).

We consider the set D(x, y, z) which has centre of revolution
and length K(x, y, z). On yz erect the equilateral triangle
uy ez with u on the side of yz opposite to x. It is a
consequence of lemma 15 that u%y and uﬁz are both positive.
Then by lemma 15 any equilateral triangle S with the required
property has height |u~x| sin ® where 6 is the angle that
the edge of S which contains x makes with ux.

It is then clear that T has height Iu-x[ = K(x, ¥, z) and
the edge of T which contains x is perpendicular to ux. We

illustrate the two cases,

(a) o <27 and (b) o 2 271
3 3
u

A

Thus (ii) is proved.

t

that
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(iii)

On yz erect the equilateral triangle uyz with u on the
side of yz opposite to x. Draw the arc Y of the circle centre
u, radus |y-z| which lies on the same side of the line yz as x.

Let s be the point on Y such that |y-s| = |z-s].

u
y Z
S
x
A L
Now 8uz = 6 °
A A n
Thus usz = usy = §(w - Z)

A 5%
and 80 ysz = -g- .

Thus the chord yz of Y subtends an angle 26[ on Y. Now

K(x, v, 2) = [u—xl = |y—z| if and only if a = %1 .

Thus the lemma is proved.
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Corollary 1

Let X be a compact set and suppose K(X) = K(x, y, z) for

some points x, y and z in X. Then

(i) Each angle of triangle x y z 1is less than or equal to

21 or
6

(ii) The points, x, y, and z are not all distinct.

Proot

If x, y and z are distinct and collinear with x between
y and z, them K(x, y, 2) = |u-x| where u is the third vertex
of the equilateral triangle uyz and so K(x, y, z) < [|y-z]|.

If x, y and z are the vertices of a triangle and a > %}
then by lemma 16 part (iii) K(x,y,z) < |y-z]|.

Thus in all cases we have

K(X) = K(x, ¥, z) < |y~z] = K(y,7,2) € K(X)

which is impossible. The corollary is proved.

Our first theorem shows that if three points attain the I-stretch
of a compact convex set X then these points possess similar kinds of

properties as two points which attain the diameter of X.
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Theorem 18

Let X be a compact convex set with int X 4 ¢, and suppose
I(X) = I (x, y, z) for some x, y and z in X. Let C(x, y, z) have
centre of counnection w, and v be any vertex of triangle x y z.
Then if w =¥ v the line through v perpendicular to wv supports
X regularly and if w=1v (e.g. if C(x, y, z) has two segments)
then the external bisector of the obtuse angle between the two lines

of the triangle incident at w supports X regularly.

Proof
We consider two cases.we note that by the corollary 1 to lemma 15

X, vy and z are the vertices of a triangle.

Case 1

C(x, Y, z) has three segments.

Suppose without ldss in generality that v = x. Let u be the
third vertex of the equilateral triangle u y z which lies on the side
of yz opposite to x and suppose that the line L through x
Perpendicular to wx does not support X regularly. Then there is .

1 1 1 \
a point x 4,x, X ¢ XNL, such that each angle of triangle x yz \

is less than %‘u and 80 by lemma 15,

I(X) > I(xl, Y 2) = |x1—u| > |x—u| = I(x, ¥, z) = L(X).

(1)
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But (1) is impossible and so L supports X regularly.

Cage II
If C(x, y, z) has two segments.
We suppose throughout the remainder of this theorem that x = w,
Let M be the line through y perpeadicular to wy and suppose that
A 2 .
M does not support X regularly. Then if yxz >—7 there is a point

3

1 1 . 1~ 2 ) . . .
y+Y, y €t UNX, with y xz >3" such that lz=y"|> |x~y| which implies

1(X) ?I(x,yl.Z) = lx-yll + |x-z|
> Jx-y| + |x-z]

= I(X). (2)

. ’ 2 .
This is impossible, so y§z = 'gﬂ and we may assume that there is

. 1 .
a point y +=y, yle MNX such that either each angle of triangle

xylz is less than %-w or that y1§z > %‘n- The case y1£z > %w
is impossible as in the above paragraph and so we may assume that each

angle of triangle xylz is less than %‘W.‘ But then by lemma 15,

1 1
(X >I(x, v, 2) = |y-ul > |y-u]
= |x-y | + [|x-z]
= I(X) 2
where u 18 the vertex of the equilateral triangle uxz which lies

on the side of the line xz opposite to y. Thus (3) is impossibie

and so M 1is a regular support line to X at y. Similarly the liﬁé
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through 2z perpendicular to xz supports X regularly.

Now let K be the external bisector of ygz. We show first
that of all positions of the point s on K, |s~y| + |6-z| takes
a minimum when 8 = x,

yl

Suppose the lines ys and 28 make acute angles 91 and 62

respectively with K. Let 71 be the reflection of y in K.
It is then clear that |s-y| + |s-z| = |s-y1] + |8-z| takes a minimum

when el = ez, i.e. when s=x.

Then if K does not support X regularly then there is a

point xl +=x, with xlrexn K. Then if y?:z > %‘n we can assume

yglz > %'n and in view of the statement in the previous paragraph

we have
1 1 1
IX) 2I(x, y, z) = Ix -YI + Ix -zl
> x=y | 4+ |x-2 |

= I(X). (4)
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2
But (4) is impossible and so y%z = = q.

3

1 2 1 .
We may assume yﬁz > ‘5" or each angle of triangle x yz 1is less

2
th Pl
an 31[
The former case again by (4) is impossible. In the latter case,
erect the equilateral triangle uyz on yz with u on the side of

yz opposite to x. Then ux 1is perpendicular to K and so by

lemma 15,

I® >, 3, 2 = [fux]

> |u=x |
= I(X). ;) .
Thus finally (5) is impossible and the theorem is proved. \

Corollary 1

If L is a line segment in the frontier of a compact convex

set X and int X ¢ ¢ then

I(X;x) < I(X) for each x g rel int L.

Proof

If x ¢ rel int L and I(X;x) = I(X) then by theorem 18
there would exist a regular support line to X at =x. But this

is not so and thus I(X;x) < I(X).



- 124 -

Corollary 2

If X is compact then I(X) = I(conv X).

Proof

If int (conv X) = ¢ then this is trivial and we suppose
int (conv X) += $. If the result is false then I(conv X) > I(X).
Thus there exist points x, y and z in conv X such that I(x, y, z)
= I(conv X) since, as X 1is compact it follows that conv X is compact.
Then at least one of x, y or z does not belong to X. Suppose
xe (conv )()IX. Now by theorem 18 there exists a regular support line
M to conv X, Thus Mnconv X = {x} and so MNX = ¢, But X is
compact 8o p(X,x)> O and this implies MNconv X = ¢ which is false.
Thus the assumption I(conv X) > I(X) was false and since trivially

I(X) <€ I(conv X) the corellary is proved.

Note
We are now able to see that if a set X is completely I-stretched
then X is necessarily compact and convex. For if X is unbounded
then I(X) = I(XU {x}) = » for any point x. Thus X is bounded.
Also if X 1is not closed, we choose any point x in the closure of
X which is not in X and then it is easy to see by lemma 15 that
I(X) = I(XU {x}). Thus X is compact and by corollary 2 above it

follows that X 1is convex.
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Corollagz 3

Let X be a compact convex set with int X +’¢. In the same
notation as theorem 18 there exists a triangle containing X of
minimal width I(X) whose three edges support X at x, y and z
respectively, which is equilateral if each angle of triangle x y z
» 2 L3 »
is less than or equal to 3" and which is isosceles with its

] i 2
shortest edge supporting X at x if yxz >3

Proof
By drawing the lines, described in theorem 18, through x, y and z

it is clear that the proof is immediate.

Corollary 4

For any points x, y or g,

I(x, y, z) = I(conv (x, ¥, 2) ).

Proof
If all the points are not distinct or collinear then the result
is obvious. Suppose then conv (x, y, z) is a triangle. By

Corollary (2) of theorem 18,

I(conv(x, y, z) ) = I({x}u{y}u{z}). (6)

The result then clearly follows from the corollary 1 to lemma 15

since (6) implies
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I(conv(x, y, z) ) = max(|x-y|,|x-z|,|y-z|, I(x,y,2) )
= IO‘»Y:Z)'

The corollary is proved.

Our next theorem shows that a compact convex set X with a non-empty
interior is completely I-stretched if and only if the I-stretch of

x with respect to X 1is constant for each x 1in the frontier of X.
This is a direct analogue of the fact (see for example [7] page 122)
that a compact convex set X has constant width if and only if X

is complete.

Theorem 19
Let X be a compact convex set with int X ¥ ¢. Then
I (X;x) = X for each xe¢ fr X if and only if X is completely

I-stretched with I(X) = A.

Proof

Suppose first that I(X; x) = A for each x¢ fr X. By the
compactness of X, I(X) = I(x, y, z) for three points X, y and =z
in X and it is obvious by theorem 18 that x, y and z each belong

to fr X.
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Bence I(X) = I(X; x) = A.

Now let Xy ¢ X. Let x_ be that point of X which is nearest

2

X.. Let y_and z

1 2 2 be points in fr X for which I(X; xz) = )

I(xz,yz,zz) = A, By the corollary 1 to lemma 15, x_, y2 and z

2 2

are the vertices of a triangle. Let L1 and L2 be lines through x2

perpendicular to vy, _x_ and z_x_ 2 respectively. Then, since x

22 22 2

is the point of X nearest to X it follows that X lies on the

side of L1 opposite to v, and also on the side of L2 opposite to

22. Let H1 and HZ denote respectively the close half-space bounded

by L1 which does not contain v, and the closed half-space bounded by

L2 which does not contain Z,e Then x, € Hl(\ H, and X, +=x2. Also

if w 1is the centre of connection of C(xz, Yys zz) let M be the

perpendicular to wx,

line through x 2

2 if w +=x2, and the external

bisector of y2 22 z, if w=x_. Then M does not meet int (le\HZ)

2

since WX, lies in triangle X, ¥, 2, and, by theorem 18 supports X

regularly. Since x, +=x2 and x, lies on the side of M opposite

1

to X, we may assume one of the lines meets M in a point

X172 X152
x, %,
This implies using similar arguments as in the proof of theorem 18

that as M 1is a regular support line to X then
I(xgs ¥y z)) > L(x,, ¥,, 2)) = I(X). (1)

But since the triangle x Yy 2, is contained in the triangle

3

X it follows that

172 %
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I(conV(xB, Y.» zz) ) € I(conV(xl. Yy zz) ). (2)

2

By the corollary 4 to theorem 18

I(conv(x3, Yy zz) ) = I(x3, Y, ZZ)
and l(conv(xl, yz. zz) ) = I(xl, yz, zz).
Thus by (1) and (2)

I(xlv yz’ 22) > I(X)
whence

I(XU{xi}) > I(X).
Thus the first part of the theorem is proved.

Suppose now that x*X implies I(XU{x}) > A,

If the result is false then there exists xoe fr X suéh that
I1(X; x,o) <IX). (3)

Again by compactness there exist Y and z, both in fr X such that

I(X;Xb) = I(xov yO’ 20). : (4)

We show next that if g > O "is sufficiently small,then
I(x, v, 2) < I(X) for all x, y and z with x in the closed disc
2 2 .
D [?0’ q] and y and z in D [xo,a]lJ X. If this is false, then there
exists a sequence {51}w which tends to zero as i tends to infinity

v i=1
* 2 .
and points X € D [fo’ 61], together with points Y4 and z, in
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2
D [xo, si] U X, such that

I(xi, Yy zi) >I(X) fori=1, 2, . . (5

Then X, + X, as i + » and by extracting suitable subsequences it

follows that there exist points yo and zO in X such that

> and z, + 2 a3 1 =+ o
Yl Yo i 0

Hence I(X;xo)

A\

I (KO’ yon ZO)

= lim I(xi, yi, zi)

i+
> I(X) by (5)
> I(X; XO) by (3) . (6)

But (6) is contradictory and there exists ¢ > 0 with

I(x, ¥y, 2) < I(X) for all x, y and z with x ¢ Dz[xo, 5] and y and
2

z in D [?O, 5] U X.

. . . 1 2
Since x € fr X there exists a point x € D [xo, 6] X and so

I(X L}{xl} ) € I(X) by the previous line. But this is a contradiction

since X 1is completely I-stretched. Thus the theorem is proved.

We shall now show that a compact set X of I-stretch equal to A

is contained in a compact convex set Y which is completely
I-stretched with I-stretch equal to A. This is a direct analogue
of the well known fact that a set of diameter A is contained in a

compact convex set of constant width A.
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Theoxrem 20
Let X be a compact set with I(X) = A. Then X 1is contained
in a compact convex set Y which is completely I-stretched with

I(Y) = A

Proof

For any compact set Z define the following sets,

V@) - {z|1(z Ulz}) = 12},

p(2) = sup p(Z, z),
zeV(Z)

W(Z) = {z|2eV(Z) and p(Z, z) = p(Z)}.

Since Z 1is compact, V(Z) is compact and so p(Z) is attained.
Thus W(Z) + ¢ since clearly V(Z) 4 ¢.
Now let X be a given compact set with I(X) = .

Write Xl = X, Select a point x_¢ W(Xl) and define X = conv(xl, xl).

1 2

Inductively define X = conv (Xi’ xi) with X, selected from

i+l
W(Xi) fori=1, 2 . . .

Now for each integer i,
Ix, L {x;H = I(X,) (L
and so by corollary 2 to theorem 18

I(X, ) = I(conv(xi, xi) )

i+l
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= I(Xi v {xi »n

- I(Xi) in view of (1). (2)
Thus for all integers i and j,
I(hi)= I(Xj) . (3)

Also Xl CX2 « o C Xi Cxi+l'

These sets converge in the Hausdorff metric to a compact convex

©0
set Y D | xi.

i=1
Suppose I(Y) = I(x, y, 2) (4)
. , 1 1 1
Since xi +Y as i + o there exist points LI A and z in

1 1 1 . ,

Xi such that xi + x, yi-»y and zi-rz as 1 + o, Thus for fixed
j, it follows by (3) and (4) that

. . 1 1 1
I(Xj) = l1im I(Xi) > lim I(xi, yi, zi)

i+ i + o
= I(x, ¥y, 2)
= I(Y). (5)

Trivially for each integer j,
I(Xj) < I(Y) (6)
and thus by (5) and (6)

I(X) = I(Xj) = I(Y). (7

Suppose finally that Y is not completely I~-stretched and

choose a point y ¢ Y such that
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IYU{y}) = I(V). (8)
Let p(Y, y) = & > 0.
Now for any pair xi, xj (G > 1),

xi C Xi+1 C_Xj and so

x, =~ x,| >p(X., x,) = p(X.) by definition of x, since
I1 jl p(J. J) p(J)Y

j

x:i eW(Xj). (9)

Also |y - x| > 6§ for each xexj for j =1, 2 .. (10)

since Y o Xj'

A

But I(Xj) I(Xj v {yh

‘A

I(x U {yH

I(Y) by (8)

I(XJ.) by (7)
and so we have

I(Xju {y}) - I(Xj) forj - 1, 2. . .

Thus y eV(X,) for j=1, 2 .. ,

j

and hence
p(Xj) 2 (Xj, y) 26 by (10). (11)

But (11) and (9) then imply

|x, = x,] 2 6. | (12)
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(-]

But the sequence {xi} C Y which is bounded. Thus (12) is
i=]1 '

impossible and so Y 1is completely I-stretched.

The theorem is proved.

Theorems 18, 19 and 20 show the resemblance between the
completely I-stretched sets and the sets of constant width. This
is hardly surprising for if we consider the length of the connected
set of minimal length containing just two points x and y (i.e. the
length of the segment xy), in place of the length of the connected
set of minimal length containing three points x, y and z then our
corresponding sets are precisely the sets of constant width.

In our next theorem we look at three points which attain the

K-stretch of a compact convex set X.

Theorem 21
Let X be a compact convex set and suppose K(X) = K(x, y, z)

for some x, y and z in X.

(i) If x, y and z are the vertices of a triangle, let D(x, y, z)
have centre of revolution t, and let v be any vertex of
triangle x y z. Then if t:% v the line through v perpendicular
to tv supports X regularly and if t = v then the external

bisector of the obtuse angle between the two lines of the



- 134 -

triangle incident at v supports X regularly.

(ii) If x, y and z are not all distinct we may assume x = yJlz.

Then all lines through y or z which make an acute angle

L
of o with yz support X regularly.

Proof

(i)

Let x, y and z be the vertices of a triangle for which

KX) = K(x, ¥, 2).

Let L be the line through x perpendicular to tx if

t + x, and the external bisector of yxz if t = x.

Suppose L does not support X regularly.

Then there is a point x1 +=x with xleXnt, which lies on the
same side of the line yz as x.

On yz erect the equilateral triangle uyz such that u lies
on the side of yz opposite to x. By lemma 15, ux contains

tx and ux 1is perpendicular to L. But then

which is impossible and so there is a contradiction. Thus L
is a regular support line to X at x and part (i) of the

theorem is proved.
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We now consider part (ii) with x =y # z. It is sufficient
to only consider the point y. Let L be a lime through y making
Ll
an acute angle of g‘ with yz and suppose that L does not support

. . 1 1
X regularly. Then there is a point y in XNU and y =%y. If

1a . o
yyz = %’ﬂ, then this implies by lemma 16 part (iii) that
1 1
RK(X) 2K(x, y»2) = |y =z
> ly-z|
= K(x, y, z)
= K(X)
which is impossible.
1A ] . . 1 .
If y yz = — , erect the equilateral triangle wuyy with u

6

on the side of L opposite z. This implies

K(X) > K(x, g0y 2) = |u-z]

v

ly~z]

K(x, ¥, z)

K(X)
which is impossible and so there is a contradiction. Thus L 1is

a regular support line to X at x and the theorem is proved.

Corollary 1
If L is a line segment in the frontier of a compact convex

set X and int X { ¢ then

K(X; x) < K(X) for each x € rel int L.
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Corollary 2

If X 1is compact then K(X) = K(conv X).

Proofs
The proofs of corollary 1 and corollary 2 are the same as the

proofs of corocllary 1 and corollary 2 of theorem 18 and are owuitted.

Note

We are now able to see that if a set X 1is completely K-stretched
then X 18 necessarily compact and convex. The proof is exactly the
same as the corresponding proof for 'I' given in the note in corollary 2

of theorem 18.

Corollarz 3

Let X be a cowpact convex set. In the same notation as theorem 21
there exists an equilateral tuxangle containing X of minimal width

K(X) whose three edges support X at x,y and z respectively.

Proof
By drawing the lines described in theorem 21, through x, y and z

it is clear that the proof is immediate.

Corollary 4

For any three points x, y and 2z
K(x, y, 2) = K(conv(x, y, z) ) if and only if x,y and z are not all

distinct or x, y, z form the vertices of triangle, each of whose angles
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. EL .
is less than or equal to 7; « Otherwise

).

K(couv(x, y, 2) ) = max ([x—y], Ix—zl, Iy-z

Proof

By corollary 2 of theorem 21

K(conv (x, ¥y, z) ) = K({x}U {y}u {z}).

Thus

K(conv(x, y, 2) ) = max (|x-y|, |x-z|, |y-z|, K(x, v, 2) ).

The result is now a direct consequence of lemma 16 part (iii).

We show in our next theorem, that if the K-stretch of x with
respect to a compact convex set X with a non-empty interior is
constant and equal to A for each x in the frontier of X, then

X 1is a rotor for an equilateral triangle of height A.

Theorem 22
Let X be a compact convex set with int X+ ¢ .
Then K(X; x) = A for each x €fr X if and only if X 1is a

rotor for an equilateral triangle of height ).

Proof

Suppose that X is a rotor for an equilaterzlitriangle T
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of height A. Then suppose there exists xo efr X such that
R(X; xo) < A, (1)

It is known [12] that the normals to the edges of T at the
points of intersection of X with the edges of T are concurrent
in a point t. Then tﬁe sum af the distances of t from the three
edges of T 1is equal to A, with the convention that if an edge
separates t from X, then the distance from t to that side is
negative. So if y° and zo are points of X such that Xy yo

and zo lie one on each edge of T then

K(X; xo) aK(xo, Yor zo) = A (2)
This contradicts (1) and so
K(X; x) =X for each xefr X.

We now suppose K(X; x) = A for each xe¢fr X. Again by
the compactness of X, K(X) = K(x, y, z) for three points x, y
and z and it is obviqus by theorem 21 that x, y and z each belong
to fr X.

‘Thus K(X) = 3 and 80 by theorem 21, corollary 3, it follows
that X is circumsgribed by at least one equilateral triangle T
of height A. Now there does not exis; an quilateral triangle T1

of height u > A which circumscribes X for suppose this is the
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1 1
case. Let x , y and z1 be three points of X, one or each edge of
TI.

Then by lemma 16 parts (i) and (ii),
K(X) 2Ky y5, 20) 0> 4 = K(X). 3

But (3) is impossible and so we can assume that T can be moved
continuously round X so as always to contain X. Moreover T
circumscribes X 1in at least one orientation.

Let T have vertices p, q and r and suppose that qr makes
an angle 6 with O £ 6 < 2w, with some fixed line. We shall suppose
P>, 9 and r are labelled in anti-clockwise order round T with respect
to an interior point of X and that 6 increases as T is moved
in a clockwise sense. We shall call 6, the orientation of T.
Now suppose that X is not a rotor of T.

Then there exist orientations eo, 6. of T such that T

1

circumscribes X when 0 = eo and 0 = 61 but does not

circumscribe X for any 6 in the interval 61 >0 > Go. Let pq,

pr and qr support X at points X5 X, and x, respectively when

3
6 = 60. It is clearly impossible that x, =x, = x3 and 8o we
can assume without any real loss in generality that x, +=x2.

By corollary 1 to theorem 21’ fr X does not contain a segment.

Thus there exists a point 2z ¢ fr X strictly on the same side of the

line xx, as p, with z +=x1. z +=x2, and such that no support
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line to X through =z can contain either X, OF X,.

Let 02 > 60 be the least value of 6 for which pq is a

support line to X at z, if T were moved with pq always

supporting X.

).

2r .
Then 0'<|93 - eol < 3 Since 60 +=01 and zx, and zx, are

Let 6_ = min (92, ]

3 1

not support lines to X.

We suppose that pq, pr and qr support X at points yl, yz and

y3 respectively when 6 = 91 and consider two cases.
Case 1
93 = 610
2n
Thus O < lel— 8| < 3

Now it is not possible that v, =% for each i = 1, 2 and 3 for
if this were the case we should have, by considering the length

K(xl, X,» x3) of D(xl, xz, x3), that K(xl, Xys x3) = K(X) = A
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and, by lemma 16 parts (i) and (ii) this implies that

N

IBO - 61| 2 — n. This is not so.

w

We may assume ¥y 4=x for the proof of the other cases is similar.

1
1 . 1 1

We choose x ¢ fr X with x +=x1 and x *’Yl.

But then if 6 1is the angle of orientation of T when the edge

pq supports X at x1 (assuming that T 1is moved with pq always

supporting X), then 6 satisfies
<9 <6,
60 o 61

. 1
Thus, since K(X; x') = A = K(X), it follows by theorem 21 corollary 3
that there is an orientation 91 with
1

0 <6 <6_.

0 1
for which T circumscribes X. But this is a contradiction with the
definition of #9_.

1

Thus we consider,

Case II

63 = 92. We now choose a point x1 e fr X with xl + X, and xl + z.

But again using the same arguments as in case I, we have there is an
i3 [ 1 ]
orientation 6 with

6 < 91 <06,¢56
0]

2 1

for which T circumscribes X. This is a contradiction as before and
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8o the theorem is proved.

We now prove in theorem 23 that a compact convex set X is
completely K-stretched with K-stretch equal to A if and only if
X 1is a rotor for an equilateral triangle of height A. Following
theorem 23, we show finally in this chapter that if a compact set
X has K-stretch equal to A, then X is contained in a rotor for

an equilateral triangle of height ).

Theorem 23
Let X be a compact convex set.
Then X is completely K-stretched with K(X) = A if and only if X

is a rotor for an equilateral triangle of height A.

Proof
(a) Suppose X 1is a rotor for an eduilateral triangle T of
height ).

Let x ¢ X and consider the point x, € X which is nearest to x;.

Then there is an orientation of T such that one edge passes thuough

x2 and that‘edge is perpendicular to xlxz. Suppose the other edges

of T support X in the points v, and z, in this orientation. By

theorem 22, K(X) = ) and so
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K(X) = K(xz. Yy zz)
= Rxps yye 2) =[xy - x)]
< K(xl' y2’ 32)

/A

K({xl} U x).
Thus X 1is completely K-stretched.

(b) It is evident from lemma 16 part (iii) that if X is completely
K-stretched then int X # 4.

The proof that X completely K-stretched with K(X) = A implies

that K(X; x) = A for each x ¢ fr X 1is exactly the same as the
proof that X completely I-stretched with I(X) = A implies that
I(X; x) = A for each x ¢ fr X, which is given in theorem 19.
Hence X completely K-stretched with K(X) = A implies that X

is a rotor for an equilateral triangle of height x’ by theorem 22,

and 8o the theorem is proved.

Theorem 24
Let X be a compact set with K(X) = 2.
Then X is contained in a compact convex set Y which is a rotor

for an equilateral triangle of height 2A.

Proof

The proof that X is contained in a compact convex set Y which
is completely K~stretched is obtained from the proof of theorem 20 by

replacing 'I' by 'K' and references to theorem 18 by references to
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theorem 21 in the argument. Theorem 24 then follows from theorem 23.

In view of theorems 22, 23 and 24 it is easy to see that we now
have theorems 19 and 20 with the function I replaced by the function
K.

It is evident by a consideration of the results obtained in this
chapter, that the completely K-stretched sets not only possess properties
analogous to the 'completeness' properties of the sets of constant
width, but also are rotors for amn equilateral triangle. Since the
class of sets of constant width A coincides with the class of rotors
of the square of side )\, we might say that of the class of completely
K-stretched sets and the class of completely I-stretched sets, the former
is more analogous to the class of sets of constant width. This is
possibly rather surprising whan we look at the nature of the
corresponding constructions of the‘épmpletely I-stretched sets and
the completely K-stretched sets.

Finally we note that theorems 20 and 24 are also true for
arbitrary bounded sets X since clearly the I-stretch (K~stretch)
of a bounded set X is equal to the I-stretch (K~stretch)'of the

closure of X. We then work with the closure of X in place of X.
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CHAPTER 5

INTRODUCTION

Our main purpose in this chapter will be to give some bounds
over various classes of sets for the I-stretch and K-stretch of such
sets in terms of other well known set functions. We shall also
reveal the precise geometric meaning of the I-stretch and K-stretch
of a compact convex set.

However in our first theorem in this chapter we give a property
of the 'maximal' equilateral triangle which circumscribes a compact
set X. Of course the existance of such a triangle is guaranteed by

the Blaschke selection theorem and the compactness of X.

Theorem 25

Let T(X,0) be the smallest equilateral triangle which contains
a compact set X and which is such that one of its edges makes an
angle 6 wiﬁh a given fixed direction. Let T(X) denote the largest
such triangle T(X,0).

Then there exists a compact convex set Y which contains X

and vhich is a rotor for T(X).

Proof
Since for each 6 it is clear that T(X, 6) = T(conv X, 0)

we may assume X 18 convex. ‘By definition of T(X, 6) it follows
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that T(X, 6) ecircumscribes X for all 6.
Let W(X, 6) and W(X) denote the widths of T(X, 6) and T(X)

respectively. Ve next prove a lemma.

Lemma 17

1f for some 00. W(X, 8)) < W(X) then there exists z¢X such

that
W(conv(X, z), eo) > W(X, OO) but
W(conv(X, £) ) = W(X).

Proof

Suppose that the edges of T(X, © 0) meet X in the points

X Y, and & respectively. We may assume xo+ y, and xo+ z,-

By continuity and by lemma 16 we may assume that if 0 {s measured \\
\

1:t:ft'x. \

in an appropriate sense, then there exists a point x
> eo,'luch that one edge L(X, 01) of \

x, x, and su angle @,

T(X, 01) supports X at xl and does not coatain xo and also

W(X, 8) < W(X) for all 8 with 0, c8s 6 (1)

(Note 1f X is a segment we can assume X has end-points xo and \
. \

y. and then uk_. xl - yo). \ .

0

Again by continuity we may assume that there exists a point x, efr X,

2

and an angle O

2 < 60 such that .onc edge L(X, 6 2) of T(X, 02)
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supports X at xz and

w(X, 0)< w(X) for all 6 with 02 £ 0 < 00. (2)

Let L(X, Oo) be the edge of T(X, eo) wvhich supports X at xo.
Let L(X, 6,) meet L(X, 6)) in x, +xo, let L(X, 8,) meet

L(X, 00) in x, and let L(X, 61) weet L(X, 02) fa x

4 3

ve may assume that 0

2
- oz 4 ;1 by lemma 16.

1

Then if 2 1is chosen in triangle X, X, X exterior to X

but sufficiently close to xo it follows by continuity and by (1)

and (2) that

w(conv(X, ), 0) < w(X), for all 6 with 6_ < 0 < 0_.

2 1
It is also clear that 7

v(conv(X, =), eo) > w(X, 00).

These results imply the lemma as stated.
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Proof of Theorem 25

Let {8.}  be a sequence dense in [0, %1]. For each comp
j=1
set Z and each integer j > 1 define the following sets,

V(z) = {z | W(conv(Z, 2z)) = W(Z)} ,

g(z) = gup W(conv(Z, é),@ )
zeV(Z)

uj(z) = {zeV(2z) | W(conv(Z, z), ej) - pj(Z)} .

Since Z 1is compact, V(Z) is compact and so p,(Z) is attained.

i

Thus U,(Z) ¢ for each j with 1 g j <=,

i

We shall define a sequence {Y.}“ of compact convex sets
j=0

inductively in the following fashion.

let Y, = X, When Y

1 T j 21 has been defined take y1

i

has been define

er(Yj)

and let Y; = conv(Yj, y;). In general when Y

select y;+le U

Cde pde Lude poiy

j(‘I;’) and define Y;+1 = conv(Y
L3 i L4
j the sequence 1.} is a uniformly bounded monotonic increas
im] { o
sequence of compact convex sets, and so {Yj}
i=1
Hausdorff metric to a compact convex set, which we define to be Y

converges in the

By comstruction

) i+l i 1 ' |
Yjﬂ ») Yj S Yj S Yj : (3)
and by continuity
: i+1 i 1
worjﬂ) - W(Y.i ) W(Yj) - W(Yj) G

for all integers i and j.

act

d

’ yi*l). For fixed

ing

i+l
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Thus (3) and (4) imply that for each j with 1 € j < =

Y . x 5
and

W(E,) = wXx) | (6)

i

Moreover for each j with 1 g j < =

W(Yj-bl' Oj) = W(Y

i

for suppose this is not the case and

W(Yj+1' ej) < W(Yj+1) for some Jf 7
Then by lemma 17 there exists § > 0 and =z ¢Yj+1 such that
8y > 0 §
W(conV(Yj'.'l. z)’ j) W(Yj+1’ j) + (8)
and
W(conv(Yj+1, zg) ) = W(Yj+1). (9)
i i+ :
f Ll
Now conv(Yj, yj ) C Yj+1 or each integer i 8o
i i+l
W(Y, ., 9.) 2 W(conv(Y, 0, S ¢ (¢
(e O > Wleonv(ry, v, 09 (0)
. i .
Since Yj > Yj+1 as i > %, for all i > 10(5)
we have
o)y - i 8 y< £
W(conv(Yj+1, z), j) W(conv(Yj. z), J.) ) (11)
Then by (8) and (11) we have
W( v(vzi 8,) > w(Y 8.) + S (12)
con j’ Z), j) (j'.'l’ j) 2

and so by (10)
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i i i+l $
W(conv(Yj, z), Gj) > W(conv(Yj, yj ), ej) +3 (13)

for all i 2 10(6).

i) for each i with 1 €1 < =, for

j

We show next that =z eV(Y

W(Y}) £3 W(conv(Y;

£ W(conv(Yj+1, z))

» 2))

- W) by (9)

- WY by (4)
i

< W(Yj)

for all 1 with 1 €1 < =,

Thus W(Y;) = W(conv(Y;, z)) and 80 z eVKY;).

i+l

But yj

i

€ U,.(Y,) and so
I |

i+

i
W(conv(Y,
( 3 YJ

1 - i
f ) 6- s IS ] [ ] eo
) J) > W(conv(YJ z) J) (14)

for each 1 with 1 €1 < =,

But (13) and (14) are contradictory and so

w(Y, ., ej) = W(Y +1) for each j with 1 € j < o,

i j

(15)
Again the sequence {Yj}w is a uniformly bounded monotonic

j=1
increasing sequence of compact convex sets and so converges in the

Hausdorff metric to a compact convex set Y, which by (5) contains X.

Also for each k with 1 gk < =,

w(y, Gk) >’W(Yk+l’ ak)

= W(Yk'i'l) by (13),
= W(Y) by continuity,

> W(Y, ek)-
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2
Since the sequence {Bk}a was chosen to be dense in [o, sm])
k=1
it follows that Y 1is a rotor of T(X). The theorem is proved.

In our next theorem the geometric meanings of the I-stretch
and K-stretch of a compact convex set X are brought to light.
We shall see that the I-stretch of X, I(X) is the maximum of the
minimum widths taken over all triangles which circumscribe X, and
that the K~stretch of X, K(X) is the maximum of the widths of all

equlateral triangles which circumscribe X.

Theorem 26

Let X be a compact convex set.

(i) Of all equilateral triangles which circumscribe X there is
at least one T(X) whose minimal width W(X) is maximal. Then

K(X) = W(X).

(ii) of all triangles which circumscribe X there is at least one
S(X) whose minimal width V(X) is maximal., Then S(X) is

isosceles with its two longer sides equal and I(X) = V(X).

(iii) I(X) » K(X) with equality if and only if there exists an

equilateral triangle of minimal width V(X) which circumseribes X.
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Proof
(1) By compactness there exist points x, y and z in X for which

K(X) = K(x, ¥, z). Then by theorem 21 corollary 3 we have
W(X) 2 K@) ., (1)

Suppose the three edges of T(X) support X 1in the points x, y and

z respectively. Then by lemma 16,
R(X) 2 W(X) . (2)

Thus (1) and (2) imply K(X) = W(X) and part (i) is proved.

(ii) By compactness there exist points x, y and z in X for which
I(X) = I(x, ¥, 2).
Now if int X = ¢ then we can suppose that X 1is the segment xy

and it is easy to see that

I(X) = |x=-y| = V(X) whence part (ii) is proved.
Thus we may suppose int X-% é.

Then by theorem 18 corollary 3 it follows that
v(x) 2 I(X), 3)

and part (ii) is proved in the one direction.
Next suppose that S(X) has a pair of parallel sides which support

X in the points x and y respectively. Then clearly

I%) > |x-y| > V®). ' (&)
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Thus by (3) and (4) part (ii) is proved if S(X) has a pair of
parallel sides. We suppose then that S(X) has vertices pqr.

Now I(X) = D(X) if and only if X 1is a segment and we are assuming
this is not the case.

Thus by (3)

v(X) > D(X), (5)
and 80 no vertex of S(X) belongs to X. We show next that we may
assume S(X) is isosceles with its two equal sides at least as long
as its third side. For if this were not the case we could choose

notation so that

fo=qa] > |q-r| 2 |p-r]. (6)

q

Let rl be a point on qr on the side of pr opposite to q.
1 11 .,
Let p be the point on pq such that p r is the support line

to X which is different from qr.
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Now since there is a point of X om pq it follows by (5) that

r ¢ X. Thus there is a point of X on pr which is not r,

It follows then from (6) that if t1 is taken sufficiently close
to r then the minimal width of triangle plqu is greater than
the minimal width of triangle pqr or S(X). This is contrary to
the definition of S(X). Hence we can assume that S(X) is isosceles
with 1ts two equal sides pq and pr meeting X in y and z
respectively and with its third side qr which is no longer than
Pq and pr meeting X in x. Let e, m and n be the feet of the
perpendiculars from p on to qr, from q on to pr and from r
on to pq respectively. Suppose S(X) has area H. We consider

different cases.

(a) Suppose C(x, y, z) has three segments and centre of connection w.
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Then
2u = |p=q| |o-r| s [pq| |w-y| + |p-x||w-2| + [q-r]|w-x]|
s [p=alClw-y| + Ju-z| + |w=x|).
But V(X) = |n-r| and I(X) > |w-x| + |w-y| + |w-2z| and so

V(X) £ I(X). (7

(b) Suppose C(x, y, z) has two segments and centre of connection

w = x, Then

2u = |p=q||o-r| ¢ |p-q||x-y| + |p-r||x-z]
and again

V(X) € I(X) since I(X)2 ]x—yl + lx-zL (8)

(¢c) Suppose that C(x, y, z) has two segments and centre of
connection w = yorw =z,

We suppose w = y without loss in generality and then

2u = |p=q||n~r| ¢ |a=r||x-y| + |p-r||y-z|

s |p=r| (|x=y| + [y-z]).
Thus V(X) < I(X) since in this case (9)
I(X) > |x~y| + |y-2]|.
Thus all cases have been considered and so by (3)

V(X) = I(X) and part (ii) is proved.
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(iii) This is an immediate consequence of parts (i) and (ii). The

theorem is then proved.

Thus in view of thebrem 26 it is easy to see that theorems 24
and 25 are equivalent.

In our next theorem we give an inequality concerning the minimal
width H(X) and diameter D(X) of a compact convex set X which is
completely I-stretched with I-stretch A. This enables us to give

a characterisation of the rotors of a regular hexagon.

Theorem 27

Let X be a compact convex Set.

(i) If X 1is completely I-stretched with I(X) = A then

0<H® s A€ DD s X .
. 2
(ii) X 1is a rotor for a regular hexagon of side 33 if and only

if X 1is completely I-stretched with I(X) = A and either
2 2
H(X) = 3A or D(X) = 3 A.
Proof
Suppose that I(X) = I(X; x) = A for each x e fr X.
(If X is a segment then (i) is trivially true and so we shall .

suppose int X += d.)
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We shall suppose first that for some x in fr X,

I(X; x) = I(x, y, z) say, where C(x, y, z) has two segments, and
A 2

agsume that yxza-'; T,

Then A = lx—yl + Ix-zl and (1)

(D(X))2 z-|y~z|2 = lx-ylz #lx‘zlz - 2|x~y||x~2]| cos yxz

2 2
> oy slxmz)? = Jxey] [x-e]

- 3 Uyl + fezh? + L (lxy] = s
Thus by (1)
D(X) > —‘/-;-—x >-§- A. (2)

Now (2) implies that X contains a segment uv of length '1%- A.

Let Yl be the small are of a circle which contains u and v and

is such that uv subtends an angle %1 on 'Yl. Let Yz be the

reflection of Y, in wuv., Let L and M be support lines to Y

1 1

and Y2 respectively which are parallel to uv and are on either side
of wuv.

It is then clear by lemma 13 that X lies in the strip bounded by

L and M which contains uv,

Now p(L, M) = and thus

A
2

H(X) < <§-A.“ ' (3)

N>

Thus part (i) of the theorem is proved if there exists xg¢fr X for

which I(X; x) = I(x, y, £) say, where C(x, y, z) has two segments.
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We suppose now that this is not the case, and for each x ¢ fr X
there exist y and z in fr X such that I(X; x) = I(x, y, 2),
where C(x, y, z) has three segments.

It then follows by theorem 26 part (iii) that

K(X; x) = I(X; x) = A for each x e fr X,

and so by theorem 22 X is a rotor for an equilateral triangle of

height A.
Thus by [12] the perimeter of X is equal to -% #A  and so
‘ 2n
Zn = 1 H(X, ) do ()
3 2z ’
to ‘

where H(X, 8) is the width of X in the direction 6.

Hence,

7D (X) r sup H(X, 6)

[\

A\ 4
=3
[
=}
h
<]
P
Lal
-
D
~

- “H(X) . (5)
Hence (2).'(3) and (5) imply

H(X) € %A < D(X).
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0

Let {ei} be a sequence of angles convergent to w as i + =,
i=1

Let Ti be the isosceles triangle whose two equal sides are of

A
length 2 and contain the angle 6i fori=1, 2 ... .

We assume ei )'%ﬂ for each 1.

Then Ti' by theorem 20, is contained in a completely I-stretched
set Xi with I(Xi) - A,

It follows by theorem 18 that

H(Xi) + 0

and D(xi) + A as 1 + o,

Thus part (i) is proved and the last paragraph shows that there exist
sets completely I-stretched with non—empty interiors with arbitary
small area and minimal width. We now prove (ii).
Suppose X is completely I-stretched with I(X = A, and

2 2 ,
H(X) =3 or D(X) =73 X Then certainly int X $ ¢. Also for
each x g fr X there exist y and z in fr X such that I(X; x) = I(x, y, z),
where C(x, y, z) has three segments, for otherwise by (2) and (3)

V3 D\
D(X) a'?;i and H(X) < 2 This is not so.

Hence as before X 1is a rotor for an equilateral triangle of height A,

Thus equality holds in (5) and so

H(X) = %x = D(X),

whence X has constant width %-A. | 1 : : ‘\

2
3/3 N

Thus X 18 a rotor for a regular hexagon of side
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We suppose finally that X 1is a rotor for a regular hexagon

2 . 2
of side 575. Then X has constant width 7;; We show next that

it is not possible for I(X; x) to equal I(x, y, z) say, where
C(x, y, z) has two segments. For suppose this is the case. Then

. . . . 2 .
it i8 clear, since X has diameter '5 A, that I(X; x) is smaller

than or equal to the sum of the two equal sides of an isosceles

triangle with base %’A and base engles of 'g .

. 4
i.e. I(X; %) 55\73 . (6)
But by Dﬂ page 125, the radius of the incircle of X {s at

1 22
1 - — £
least (1 73 * 3

Then if o 1is the centre of this circle choose points y1 and z1
. 1A A 1A 2
in fr X such that y ox =z ox =y ox = 3"
Then
1 1
I(X; x) 2I(x, 75 2)

> 31~y 2

v3© 3
L
3/3
210 x) by (6) . @

But (7) is contradictory and the statement is proved.

Thus I(X; x) = K(X; x) = A for each x¢ frX by theorem 19 since it

follows, as X 1is a rotor for a regular hexagon of side 3%% , that in

particular X 1is a rotor for an equilateral triangle of height 2.

The theorem is proved. | \,
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Since a compact convex set which is completely K-stretched is

a rotor for an equilateral triangle, it is clear that we may replace

'I' for 'K' in theorem 27 part (ii) and the theorem remains true. The

proof is then however rather trivial and is omitted.

In our next theorem we give an upper bound for the perimeter P(X)

of a completely I-stretched set X. Again, since the completely
K-stretched sets are rotors for an equilateral triangle, it follows
(see for example [ii] page 106) that all such sets have the same
perimeter. However, this is not so for the completely I-stretched

sets as we shall now see.

Theorem 28
Let X be a compact convex set which is completely I-stretched
with I(X) = A. Then

1) PRI < %rrl with equality if %AS‘D(X),S "-lf- A

(i1) Given any number u with %?ﬂ <uc< A, there exists a compact

convex set Y, of diameter D(Y) = u and perimeter

P(Y) < %wk , which is completely I-stretched with I(Y) = A.

Proof
(i) By theorem 26, the equilateral triangle T of maximal minimal
width which circumscribes X has minimal wid;h K(X) less than or

equal to A . Then by theorem 24 or theorem 25, X is contained in a

\

Y
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rotor Y of T, which consequently has perimeter P(Y) less than or

equal to -;—nk. Thus P(X) < % LW

2
Suppose now 3‘ A £ D(X) < "'/'2'3- A. Then certainly int X ’1’ $. Now

there does not exist xc¢fr X for which I(X) = I(X; x) = I(x, y, 2)
say, where C(x, y, z) has two segments and where one of the angles
of triangle xyz, say y:'Ez > % n. For if this were the case, then
this implies by equation (1) of theorem 27 that

2 3.2 2
©@®)" > 2%+ (x| =[xz
/3
and so D(X) > -i* A which is not the case.

Hence for each x ¢ frX, there exists y and z in fr X such that either
C(x, y, z) has three segments or C(x, y, z) has two segments where one
of the angles of triangle x y z 18 equal to -g- .
This implies by theorem 26 that

K(X; x) = I(X; x) = A for each xefr X,

and so by theorem 22 X is a rotor for an equilateral triangle of

height A and thus has perimeter

2
P(X) = 3 mA.

ve next prove (ii).
/3
Let u be given with EY A<u<A Let xy be a segment of

length p. Let w, 2 be points, one on either side xy with

lew| = lyw| = [x=z| = [|y-z| =

N>
L )
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Let Y be the arc of the circle x y z.

by Y and the segments xw and yw.

]

2

Now sin §(x w y) = %

IN an
Hence xwy > f;u

Also |w-z| = 2, %’ cos } (xwy)

Now suppose I(X) = I(xl, yl, zl).

Let X be the set bounded

(1)

By theorem 18 corollary 1, none of the points xl. y1 or g

can lie in relative interior of xw or wy.

distinct cases.

Case 1

One of the points xl, yl or z1

Then by (1)

Thus we consider two

say z1 is equal to w.

1
I(X) = I(x, yl, zl) < lw-xll + Iw-yll

€ flwx |+ vy |

<. I(X).

2) .

For equality to hold in (2) we must necessarily have x = xl and

y =y Thus I(X) = A.
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Case II
. 1 1 )
Each of the points x , y and z 1lies on Y.

But then if zl lies between xl and y1 it is easy to see that

I(X) = I(xl. yl, zl) 3 |z1 - x| + |21"Yl
slz-x| + |z -y|
< I(X). (3)

For equality to hold in (3) we must necessarily have
1 1 1
X=x ,y=y and z = z ,
1 1 1
Thus I(x , ¥, z) = X in both cases so

I(X) = A.

Then by theorem 20 there exists a set Y, which is completely
I-stretched with I(Y) = A, and which contains X. \\\

Since I(x, y, z) = I(Y) it follows by theorem 18 that there
exist support lines L, M and N to Y with L passing through x \
perpendicular to xz, M passing through y perpendicular to yz .
and N passing through s parallel to xy. Since N is the unqu?
support line to X at z it follows that N is the unique suppor;\\
line to Y at z. |

1 1

Since also I(x, y, w) = I(Y) we can define corresponding lines \\\
L, M and N1 through y, x and w respectively, which are parallel

to L, M and N respectively.
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1 1 L]
Let N meet L° and M in u and v respectively and let
Nl meet L and M in s and t respectively.

Then Y is contained in the hexagon x s t y u v.

By considering the parallelogram x v y t it is clear that

|x-y]>lt - vl since yz produced meets xv ﬁroduced. Thus the

diameter of the hexagon x 8 t y uv is equal to ]x-yl = u,

Since Y is contained in this hexagon and Y conﬁains X it

follows that Y has diameter D(Y) = wu.. o , N
Now by theorem 26 the maximal equilateral triangle which : A

circumscribes Y has height K(Y) = n € A, and so by theorem 24 1

or theorem 25 Y is contained in a rotor 7 of an equilateral
‘\
\

triangle of height n. Hence Y has perimeter %'nl if and only '\\
if Y is a rotor for an equilateral triangle of height A. We

sldl show that this is not the case and then part (ii) of this

theorem follows from part (i).

Suppose tlt Y 1is a rotor for an equilateral triangle T of -

height A. Consider the orientation of T when one side of T “\
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coincides with the line M. Suppose that the lines M and N meet
B . A 2n N A L

in r. Since xzy >-3- it follows that yrz > 3 Let O be the
* w L3 [ ]

line which supports Y, which makes an angle S' with M, and which

meets M on the side of r opposite to y. Then (Q contains one

side of T when T has the above orientation. Also () does not

contain z 8ince N is the unique support line to Y at z.

Now since we are assuming that Y is a rotor of T, the normals
to the three edges of T at the points of contact of T with Y \
are coincident in a point t say.

Thus in the above orientation of T it follows that t 1lies on yz
produced and thus exterior to T. Let the three points of contact }\

1 . . ‘»'\
of the edges of T with Y be x,le in this orientation. Then \

AL . o
clearly xlzly > %f- and so ‘ \
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I(Y) >,|x1—z] + |y—z1|
s x| o+ vt | - |2t
s )
= I(Y).

But this is impossible and so Y is not a rotor for T.

The theorem is proved.

We shall now give a characterisatiog of discs among the rotors
for an equilateral triangle.

The proof given here is due to my supervisor and is considerably
shorter than my original proof.

If X 1is a compact convex set which is completely I-stretched, \\

and we consider 'w the centre of connection of C(x, y, z)' in place ‘\

\
of 't the centre of revolution of D(x, y, z)', together with 'I' in \:
place of 'K' in the statement of this theorem, it will be clear from
the argument that the theorem still remains true.

\'\
\A
Theorem 29 . : ' \
\\
Let X be a compact convex set which is rotor for an equilateral \\

triangle T of height A. If there is a fixed point t that is the
centre of revolution of D(x, y, z) for each x € fr X, where

¥, 2 € fr X such that
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K(X; x) = K(x, ¥, z) =2

-

then X is a disc, centre t and radius %.

Proof

Let x and y be any two distinct points in fr X such that

N L
Xty=g¢g where O < 8 <‘E .

Now for each integer n choose points xo, xl. o xn in order

on the arc xy of fr X which lies on the side of the line x y

opposite €0 t such that x = x , y = x and x:fx = @ where
0 n P O P

3'2'09 for P"l,z..n.
P n

By theorem 21, the line Lp through xp perpendicular to txp
supports X and a similar statement is true for:»‘xp.'.1 for p=0, . .

n-1.

Thus the line Mp through x

which is parallel to L_ cuts the
P+l P

line xpt between t and xp for p=0, . . n-1.
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Then clearly, if rp - [t-xpl for p=0, . . n, then
r cos(6 -8 ) «£r (L
P ptl p P

for P= 0, . « n~-1.

9
Thus rp+1 cos £ rp and (2)
. 8 -
Similarly rp cos o 3 rp+1 for p =0, . . n-1. (3)
6 2 0
But 1-(’;) < cos;‘sl (4)
2
and so by (2) and (3)
0 2
RGN
r n
1l—- — <
p+1 ( > )\rp (5)
d r 1-(2yY ¢r  forp=o -1 6
an p n <L p+1 P s o o D=1l
2
Then (5) and (6) imply
6 2
- 9 - -
Tp+1 (;;)2 <p 1 p (_“.__) @
2 2
_ for p = 0, . . n~1.
Thus by (7)
0 .2
|rp rp+1|s ( m )“e § . max (rp, rp+1)
9 .2 - :
< —
A () 8

where A=} sup |t-x| <o for p=0, .. n"1l,
xe fr X : :
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Hence

'
"
1
"

le=x| - Je-y]

/A
™
n

/A

by (8).
But this is true for all n and thus
[e-x| = [e-y].

Since the choice of x and y in f£r X was arbitrary subject to

i%y = § where O < 8 < %' it is clear that the theorem follows.

Note

We can use the above argument to show that if X is an
arbitrary convex set which is not a disc, and t 1is a given point,
then there exists a point x +'t. in fr X for thch the line through
x perpendicular to tx does not supﬁort X.

In tuitively one might expect the triangle of maximal ﬁinimal
width which circumscribes a compact ;onvex set X to be equilateral.
However as we have alrea&y seen in theorem 26 this is not always the
case.

In our next theorem we shall give an upper bound for the ratio

of the minimal width of the triangle of maximal minimal width which
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circumscribes X to the width of the maximal equilateral triangle
which circumscribes X. We shall also consider the ratio of these
quantities to the perimeter of X. At the end of this theorem we
shall give some results concerning other set functions.

Finally in theorem 31 we shall show that the upper bounds
obtained in theorem 30 can be reduced if we consider either the class
of sets of constant width or the class of rotors for an equilateral

triangle. The lower bounds however remain the same.

Theorem 30

Let X be a compact convex set. Then

i) 1 <€I(X) ¢ 2
k) (2+J3)

3 KX . KX .1
2w rw ¢ rw

! )

3 P(X) only if X is a rotor for an equilateral triangle.

1% = 2n

K(X) = é%' P(X) if and only if X is a rotor for an equilateral
) triangle.

K(X) = j%' P(X) if and only if X is an equilateral triangle.

Proof

Since all the set functions mentioned in the above inequalities

are continuous on the class of compact convex sets, we may assume,
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by the Blaschke selection theorem that in each case considered, there
is a corresponding compact convex extremal set Y for which the upper
or lower bound in question is attained.

We first prove (i).

By theorem 26 part (iii) I(X) > 1.
K(X)

Now let Y be a compact convex set for which

I(Y) = sup I(X)
K(Y) X KX -

We choose points x, y and z in Y such that

I(Y) = I(x, vy, 2).

Since conv (x, y, z) CY we must have

K(conv(x, y, 2)) € K(Y).

Thus we may assume that Y = conv (x, y, 2).
Let Yl be an isosceles triangles which is such that the two equal

sides of Yl contain the angle -5_61 .

5n
6

Suppose Yl has vertices xl, y1 and z:l where y1§131 -

By theorem 18 corollary 4

1 1 1 1 1 1
I(conv(x , ¥, 2)) =I(x,y, 2)
and so

1@l) =[xyt o+ x5l 1)
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By theorem 21 corollary 4

R(eonv(x', v, 2D) = x@) = [y} - 2} (2)
Then Igglz = gec i%' = ———Z-—I by (1) and (2).
K(YY) (2+/3)

Hence I(Y) 5 2

> . (3)
R(Y) (2+J3)i

Thus we may.assume that Y is a triangle xy z for, if Y was

a segment, then .this would imply that

M .

K(Y)
5w A 5%
Now no angle of Y can be greater than —— for if, say yxz> ——

6 6
then'by theorem 21 corollary 4 and lemma 16 part (iii) it follows that

R(Y) = |y-z| > max (|x=z|, |y=x], R(x, 3, 2)).  (4)

we now choose a point X, near x on the side of the line xy

1
opposite to ® and on the side of the line =xz opposite to y such

that ?: z>§‘?"
1 6 °

Then again, if Yll = conv (xl, Y, 2)
1 v | o
R(C) = |y-z| > max (|x;=z|, |x,-y], R(x}, 7, #)) (5)
but by theorem 18 corollary 4, it follows that
11
I(Y ) = le-yl + |x1-z|J
> |xy | + |xz | (6)

- I(Y)o
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But (5) and (6) imply

I(Yu) > I(Y)
K(,111) K(Y)

wvhich is contrary to the definition of Y.
Thus each angle of Y 1is less than or equal to ég— .

Also each angle of Y is not less than or equal to '§- n for

if this were the case then by lemma 15
I(x, ¥y, 2) = K(x, y, 2). (7
But then also in view of lemma 16 part (iii)

K(x, y, 2z) = K(Y)
and we know

I(x, y, 2) = I(Y).

Thus by (7) we have K(Y) = 1 which is impossible.
I(Y)

Hence we may assume that Y is such that ygz“ =q

where 31<u<-5—1!'
3 T 6 *

If a= -il then we must have |[x~y| = |x~z| for otherwise we

could choose the point x  such that |x1-y| - |x1-z| and

1

A

yx,z = ég"' + This implies K(conv(xl, Y, z)) = K(Y) and
I(conv(xl, ¥, 2)) = lxl-yl + le-zl
> ey 4 [xe]

= I(0).
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As before this contradicts the extremal property of Y and so

if a= -531 then the result is proved.

Suppose now -:2;1 <a< 261 + We shll finally show that this is

impossible. On yz erect the equilateral triangle uyz with u
on the side of yz opposite to x.

Let X, be the point on ux produced such that y;;lz - -§- .

Then using the same arguments s in the proof of lemma 15 it follows

that

% - < -
yxlx X, X |

(WRE

Let L be the line through x perpendicular to xu which makes

acute angles 8 and Yy with yx and g2x respectively.

u

Now |x-y| = ]x—leIx-xII _]x-xi]

i y 2
sin x,yx sin x, zx

@B-Y-
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We shall suppose Ix-yl ‘f‘ lx—zl and obtain a contradiction.

We suppose then without loss in generality that B8 > y.
be a point on L near X on the same side of ux, as
1
Let |x—y| - g, Ix-zl = b, lu-xl = ¢, lxz-yl =3,
1
- - 6.
]u—le ¢ and Ix—le
X X .
2 8 ( 7 L.
b
&
1 z
a
a
y ¢ <
u
Then (cl)z - c2 + 62.
ceodd . c(l + _6_%)‘
2
[

(31)2. = az + 62 = 2a8 cos B

.
-]
]

a(l-ﬁ 62-236 cos B)&
‘2

‘a=-8 cos B + 0(62).

Let xz

y.

|x2-z| = b

(8)

9)

(10)

1

»
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Similarly

b1 = b+ Scosy + 0(62). 11

e « From (8), (10) and (11),

1 .1 2
a *lb - %- (a+b + 8(cos y=-cos B)) (1 0-€;0 | + 0(52)-
¢ ¢
. 1 .1
«e a+b = a+b + & 2
1 " . (cos vy - cos 8) + 0(8) .
c
This | fmplies that if xz is sufficiently close to x, then
8 is sufficiently small and
1 .1
a+h a+h
1 > Pt (12)

(]

But also if z, is sufficiently close to x then

2 <yhip< &
3" Y% E < T

and so by (12), theorem 18 corollary 4 and theorem 21 corollary 4
it follows that

Ioonv(x,, v, 8) = |x-3| + |x,-2] > 1(D) .

X(T) (13)

x(conv(xz, Y» 2)) |u-x2|

But (13) is impossible and so
[x=y| = |x-z|.
We finally show a <'%? is impossible.

Suppose tha; ;D(x. b ) z) has centre of revolution t.
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The equilateral triangle whose three edges L, M and N pass through
x, y and = and which are perpendicular to tx, ty and tz respectively
has height K(Y).
1 1
let y and 2 be points on M and N respectively such that
1~ 1

5w 1A 1
yxz = 1; and such that the edge L externally bisetts y x z'.

Then clearly

1 1 1 1
I(coqv(x, Yoz)) = |xy |+ |xs2 l.

v

Jx~y | + |xs] (14)

T ,
but

K(conv(x, 71, zl)) = R(x, y, %)

X(Y). | (15)
‘The equations (14) and (15) again imply a contradiction and so

part (1) of the theorem is proved.

(11) By theorems 24 or 25 it is easy to see that

K(X) >_§_ with equality {f and only if X 1is a rotor for
P(X) ~2

an equilateral eriangle ..



- 179 -

Thus I(X) > 3 and there is equality only if X is a rotor for an
P(X) 2m
equilateral triangle.

Note

The converse is false for let xy be a chord of an arc Y such

that xy subtends an angle %} on Y. Let Yl denote the reflectioﬁ\
A\

of Y in xy. Suppose x1 is the set bounded by y and ¥ 1. It \

is known [12] that x1 is a rotor for an equilateral triangle of \
height |x-y|. Thus Kgxlz - 3
‘{; . (16)

rexh)

Let z be the point on ¥y such that [x~z]| = |y-z|.

Then I(Xl) 2x-z| + |y-z] > 2 I (17)
K (X1) |x=y| (2+43)
and so by part (i) of this theorem there is equality ia (17).
Thus by (16) I(X) = 3 . _ 2 L3
P(Xl) 2n (2+J3)i 2n ;
N
We prove finally that I(X) 575; P(X) with equality if and \

only if X 1s an equilateral triangle. This is sufficient in order
to complete the proof (of (ii) for if this is known then

K(x) ‘T/l? P(X), and equality could only pbaiibly occur if X was an
equilateral triangle. But if X is the equilateral triangle then the

iriangle which circumscribes X and which has sides ﬁarallel to those

of X but is oriented in the opposite sense has height K(X) and
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1
K(X) = ) P(X).

Hence the bound is attained.

Now let Y be a compact convex set for which

I(Y) = sup I(X)
P(Y) X P(X)

.

Suppose I(Y) = I(x, y, z) for some x, y and z in Y.
Then clearly we must have Y = conv(x, y, 2).

Now 1if Yl is the equilateral triangle then

Igvlg .1

prhy J3 \
Thus I(Y) > 1

P(Y) J3 ' (18)

Now x, y and 2z cannot be collinear for this would imply

1
I(Y) = §< — ,

which is impossible.

(We define the perimeter of a segment to be twice its length so
that P 1is continuous on the class of compact convex sets in the
plane). |

We show next that each angle of triangle xy z is less than\\

A\
\(
2n . For suppose this is not the case and yxz -<:>,-2-1l o« Let x \

3 3 1
and x, be two points such that yﬁlz = a, y§2: - %} s
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lxl‘Y| - lxl—zl and Ixz-yl = [xz-zl. Then clearly

I(Y) = I(x, v, 2) = |x-y| + |x-z]

) F® -yl + |x-z| + ly-z|
s lxpyl 4 Ixp-el
lx -yl + lx=z] + ly-s]
€ Ixyl + x,me]
lx=y| + lx,=z| + |y=e]
= 2 < _!__
2+ 3 J3

which by (18) is impossible.

Thus we may assume each angle of Y is less than %1.

Now on yz erect the equilateral triangle uyz with u on

the side of yz opposite to x.

2
1 be the point on ux such that yg z2=_-n,

Let x 173
is guaranteed by lemma 15). Let L be the

(The existance of xl

line through x perpendicular to ux.
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By lemma 15, lu—xl = I(x, y, 2).
Now if lx—yl-%h-zl we could, by the same sort of arguments as those
given in part (i) of this theorem, choose a point x, on L such

2
that each angle of triangle xzyz is less than ;1 and

I(Y) = Ju-x|
P(Y)

|x=y| + |x=2] + |y

< Jux,|

Ix,=y| + [x,-z] + [y-z]

= I(conv x2, Y, 2) (20)

P(conv(xz, ¥, 2)

But this would contrary to the definition of Y and so [x~y| = [x-z|.
Similarly
|-yl = |y-2].

Thus Y must be equilateral so

Iv) = 1
T R R ;—%S% .

Moreover it is easy to see, by using similar sorts of arguments as
those in the proof above that equality can hold only if X is an

equilateral triangle. The theorem then is proved.
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Corollary
1) 1 <K(X) < I(X) < V3.
D(X) D(X)
i) 2 <r@m <10 ¢ -,
H(X) H(X)
%%%% %‘ if and only if X {s & rotor for a regular hexagon.
2 2
(iif) 9 < K(X) £ I(X) ¢ = .
T A(X) A(X)
I!XZZ
A(X) = if and only if X is a disc.
Proof

(i) Let xy be a diameter of X. Then

D(X) = |x-y| = K(x, x, y) € K(X).
Thus D(X) < I(X) and equality {s sttained when X 1is a segment.

Let Y be a compact convex set for which

I(Y) . sup igx)
D(Y) X D(X)

Suppose tI(Y) - I(x, ¥y, 2) for x, y and z in Y.
Then clearly we may luppOld Y = conv (x, ¥, £).

Thus  D(Y) >,-;- P(Y). | | (21)

By theotemISO
. R 23 KD | - (22)
and so D(Y) »J% I(Y) by (21) and (22).

Thus = K(X) < I(X) < /3.
) D(X) D(X) '
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Obviously equality occurs when X 1is an equilateral triangle and
so the bound is best possible.

(ii) Clearly K(X) - I(X) = » when X is a segment.
H(X) H(X)

Now P(X) 2TH(X) with equality if and only if X has constant
width.

But by theorem 30 part (1i), K(X) > '2%; P(X) with equality if and
only if X 1is a rotor for an equilateral triangle.

Thus K(X) > %H(X) with equality if and only if X is both a rdpr
for an equilateral triangle and X has constant width.

In‘ other words X 1is a rotor for a regular hexagon.

Hence I(X) 2 -;- H(X) with equali.ty only possibj.y when X 1is a rotor
for a regular hexagon. |

On the othef hand if :x is a rotor for a regular hexagon then by
theorem 27, I(X) = g— H(X). Thus the bound is attained. Finally we

prove,

(iii) Clearly K(X)2 - I(x)2 = o when X 1is a segment. \
A() AR \

Now let Y be a compact convex set for which 3 \\

Kgg)z = inf Kgxgz
A(Y) X AR

Then by theorems 24 or 25 Y is contained in a rotor for an

equilateral triangle T of height K(Y) ‘and by the extremal property
of Y it follows that Y must be a rotor for T. It follows then)
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by the iso-perimetric inequality that Y must be a disc.

Hence it is easy to see that

=
>4
N

A
. <

>

x)

with equality if and only if X 1is a disc.

Thus 2'_515X!2 and it can be seen that equality is only attained
T OA®)
when X 1is a disc.

The corollary then is proved.

Theorem 31

(1) Let X be a compact set of constant width. Then

(a) K(X) = I(X) ¢ V3 and (b) K(X)z - I(X)zs 6
H(X) H(X) A(X) A(X) V3

with equality if and only if X is the Reuleaux triangle.

(ii) Let X be & rotor for an equilateral triangle. Then

i.
(a) K(X) ¢ 2+¢/3 and I(X) ¢ 2(2 +3) ,
H(X) H(X)
2 2
(b) K(X) ¢ 6 and ISX) < 24
A(X) 2r=-3V3 A(X) (2 + V3)(2¢-3V3)

Equality holds in any expression if and only if X 1is the set
bounded by the closed convex curve consisting of two circular
arcs whose radii are equal to the height of the equilateral

triangle, and for which the distance between the two angular points
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is equal to the height of the equilateral triangle. We shall denote

this set by X.

(i) Now if X has constant width it was shown in theorem 27 that

I(X; x) = I(x, y, 2), 8ay, where C(x, y, z) has three segments for
each x ¢ fr X. Hence 1(X) = K(X) as before by theorem 26 part (iii).
Also it is well known, see for example [7] page 128, that

H(X)2 £ 2 with equality if and only if X 1is the Reuleaux
AR wo 3

triangle. Hence (i) (b) is a consequence of (i) (a) and we only prove
1) (a).

We show next, that if T 1s an equilateral triangle pqr of
height A, and x, y and z are pointg on pq, pr and qr respectively,

then
£(x, ¥, 2) = |x-y| + |y-z| + |x~z|> y32 B ¢Y

with equality if and only if x,y and z are the mid-points of
P4, pr and qr respectively.
By theorem 30 part (ii), if S = conv (x, vy, 2z),

then : - : 1

A $__K(S) €1 » N
£(x, y’ z) £f(x, y, 2) v3 \\\ |
and, it is easy to see that if x,y and z are the midpoints of pq, . Q\
) . . . ) - \‘.‘ \

pr and qr respectively, then £(x, y, z) = /31 . ﬂ ‘ \
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Thus (1) follows and implies

A
g(x, vy, z) = max(|x-y|, |y-z|, |x-z|) >33 (2)

with equality if and only if x, y and 2z are the mid-points of
P49, Pr and qr respectively.

¥t is easily seen that if x, y and £ are the mid-points of pq,
pr and qr respectively then the Reuleaux triangle of diameter
A

7; containing x, y and z is inscribed in T.

Thus if X is a Reuleaux triangle then

K(X)
g(X)

2 V3.

Now suppose X 18 any set of constant width which is circumscribed
by an equilateral triangle T(X) of height K(X). Suppose the three
sides of T(X) meet X in the points x, y and z respectively.

Then

R() €R® <V3by (@) )
H(X) max (|x~y|, |x~=|, |y-z]|)

and by the above paragraph equality can be attained.
Also if there is qquality in (3) then by (2) x, y and z are the
mid-points of the sides of T(X). But this implies that X 1is the

Reuleaux triangle, for if not, then by lemma 1 in [15], the Reuleaux
. . \ { '

triangle Y of diameter K(X) which contains x, y and z 1is strictly |
V3 |

\
contained in X and so H(Y) < H(X). Also K(X) = K(Y) and so this \
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implies

V3 = K(X) <K(Y) which is impossible by (3).
H(X) H()

Thus part (i) is proved.
We now prove part (ii). Suppose X 18 a rotor for an equilateral
triangle.

Now it is known,see for example [12J page 106, that

K(X)z < 6 with equality if and only if X = XT.
A(X) 2m-373

Thus in order to prove (ii), it is sufficient to show

K(X) €2 + J3 and I(X) < 2 with equality if and only if
H(X) K(X) (2 + J3)?

X = XT.

Let * and X, be points in X for which H(X) = ]xl-le.

Then the lines Ll and Lz through x1 and x2 respectively

perpendicular to x x

1%2 support X.

Let D1 and D2 be discs of radius EK(X), with centres on xlxz

produced and xle produced respectively, and whose frontiers pass

through x, and x, respectively.

/ Xl L].
Y
\ X,

La

We shall show that the set Y = le\Dz contains X. For suppose
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. L3 1 * [
this is not the case and say x1 e X 1is exterior to Dl. Since X

is a rotor for an equilateral triangle of height K(X), there are

points Yy and 2, in X such that

KX) = K(x19 yl’ zl) (4)

and such that the line u,x, contains X, %,» where Uy is the

vertex of the equilateral triangle u on the side of ylzl

1”14

opposite to x

1

But then (4) implies

RK(X) = K(xl, Yy zl) = lul-x1
1
< !ul-x1|
= K(x1 z.)
1’ Y1t A
. € K(X)

which is impossible. Thus Y contains X and so

P(Y) > P(X) with equality if and only if Y = X, (5)

Now, if K(X) > 2 + V3 it is easy to prove that

H(X)
P(Y) <27
X® 3 ° (6)

and (5) and (6) imply that X 1is not a rotor for an equilateral

triangle. Thus

K(X) 2+ /3
H(X)
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If there is equality then

2
P(X) SP(Y) = 3'" N
K(X) K(X)

and so equality can hold in (7) if and only if X = ¥, Thus if X
K(X)

is a rotor for an equilateral triangle and ﬁ?i;. = 2+/3 then

X=X.
T

We show finally that

I(X) ¢ ___ 2 ]
1 i - i
Kx) (et " th equality if and only if X %,

We first note that no three points x, y and z in the frontier
of a rotor X of an equilateral triangle T of height A can lie
on a circle of radius greater than A. For suppose this is the case
and y, x and z lie in order on an arc, which we may suppose subtends
an angle less than % at the centre of the circle. Suppose that
1 1 1
A= K(X) = K(x, Yy, 2 ) say, and let u be the vertex of the

equilateral triangle ulylzl on the side ylzl opposite to x. Then

it is easy to prove that max (Iul-y], lul*zl) > |u-x]|.
In other words either ™
1 1 1 1
K(y, y» 2) >K(X) or K(z, y, 27) > K(X).

But this is impossible and so the statement is proved. The statement
implies that if x and y are points in fr X, and y 1is a circle of &
radius A containing x and y, then the small arc of y 1lies in X \

\

and the larger arc, apart from the points x and y 1lies exterior to X.
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We have already shown in theorem 30 that

IX) < 2
K(X) (2 +J3)?

for all sets X, and so we investigate the case of equality when
X is a rotor.

Suppose I(X) = I(x, y, z) for x, y and z in X.

Then
I(X) € I(conv(x, y, 2)) € 2 .
K(X) K(conv(x, y, 2)) (2 +y3)" ° )
Now it was shown in the proof of theorem 30 that
I(conv(x, ¥y, z)) = 2 . if and only if conv(x, y, 2z)

K(conv(x, y, 2)) (2 +‘J3)§

is an isosceles triangle with its two equal sides containing an angle

5n
£f —.
°* s

Thus if equality holds throughout (8), then X must contain an
isosceles triangle with its two equal sides containing an angle of

%} » and which has diameter K(X), for otherwise K(conv(x, y, 2)) <K(X).
Since every arc of radius K(X) containing two points of X 1is contained

in X, it follows that X:>xT where K(XT) = K(X), Thus X = XT and

the theorem 1is proved.
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CHAPTER 6

INTRODUCTION

The ideas in this chapter come from a study of [14] in which
Grunbaum gives a measure of asymmetry of plane convex sets, a notion
introduced by Besicovitch in [13].

In [14], Grunbaum defines a set functional which is a ratio of
the areas of certain 'portions' of a compact convex set X with a
non—-empty interior, which are determined by a partition of X by
three non-concurrent lines.

In this chapter we shall look at some corresponding ratios of
areas of different 'portions' of X which are determined by three
concurrent lines.

We shall assume that all sets considered lie in a plane.

Theorem 32
Let X be a plane compact convex set X with int X +=¢.

Let oeint X and suppose Ll’ L2 and L3 are three distinct lines

through o. Let L1 meet fr X in X and Y, L2 meet fr X in x,

and Y4 and L, meet fr X in x, and Yy where the points lie in order

3

, L, and L_ divide X

11. YI. 12' Yz, x3. y3 round fr X, Suppose L 2 3

1

Y. as shown below in the diagram.

into six regions xl, xz, X 2 g
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Lz
Figure 1.
Define £(X; Ll, L2, L) = m?x A(Xl) + A(XZ) + A(X3)
1€1<3 ¢
A(Y.)
i

Then £(X; Ll, L2, L3) a'g- with equality if and only if the lines
Ml’ M2 and M3 through xlyl, x2y2 and x3y3 respectively are parallel
to L2, L3 and L1 respectively, the resulting triangle T(X) bounded
by Ml, M2 and M3 has centroid o, and T(X) = X.
Lemma 18

In the notation of theorem 32, let T(X) be the convex set

bounded by the lines Ml, M2 and Mj through X Y10 %9, and x3y3

respectively which contains o. Then

£(X; Lllt L2’ L3) 2 £(T(X); Ll’ LZ’ L3)’
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and if T(X) 1is unbounded there is a triangle TI(X) such that

1
£(T(X); Ll’ L,» L3) > £(T (X); Li» Ly L3)-

Proof

Suppose that LI’ L. and L_ divide T(X) into six regions

2 3
1 .1 .1 1 1 1 1 1
X, .
Xl’ Xz, X3, Yl, Yz and Y3 where Xi C i and Y1 :)Y1

for i = 1, 2 and 3.

Figure 2.
It is obvious that
Now if T(X) 1is not a triangle then one of the regions Y: is

unbounded, say for example Y:.
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we may suppose without loss in generality that M_  1is parallel

1

to L. or M, meets L_ on the same side of L_ as y

2 1 2 2 .« Ve

3

now consider varying M_ in such a way that the area of the region

2

Y; tends to increase, but the area of the triangular region

bounded by L_, L2 and M2 remains fixed and equal to A(X;).

1

We vary Mz in this manner until the region bounded by L,, M_, M

1’ 72 3

. 1
and L3 has finite area greater than min A(Yi) and the lines

1<ig3
Ml’ M2 and M3 bound a triangle T* (X). Suppose Ml and M3 meet

in p. We may assume p +-x1.* We can then vary M_ a little,

1

keeping the area of the triangular region bounded by L_, L_ and

1" 3

M1 fixed and equal to A(Xi) in such a direction as to increase

1 . . . .
A(Yz). If the variation of M. 1is sufficiently small then we obtain

1 .
. 1
a triangle and T (X) and

£ L), Ly, L) < £TM®; L, L, L),

2
*(Note. If p = X then p %=y3, and we would then vary M3 in
place of Ml)'

The lemma is then proved.

Lemma 19
In the notation of theorem 32 define for each compact convex

set X,

f(X) = inf £(X; L, L

L)
: 1 T2° 73
Lyslgsly

where the inf imum is taken over all points o ¢ int X and lines
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L, L and L3 through o.

1’ 72
Then, given any triangle T, there exists a point o*e int T and

lines Ll*, Lz* and L3* distinct and meeting in the point o*,

* *
for which the regions X , X_ and X3* corresponding to L

1 2 )

*
L2 and L3* are triangular and

* *x
£; LY, LY, LY = inf £(X) ,
1’72 "3 .

where the inf imum is taken over all compact convex sets X with

int X +¢u

Proof
We first note that for any compact convex set X there is a

point o in X and lines Ll' L2 and L3 through o for which

£(X) = £(X; Ll’ LZ' L3).

We may assume that o € int X and the lines Ll' L2 and L3 are

all distinct, for if this were not the case then f£(X) would be
infinite.

Thus we can choose a sequence of compact convex sets

«® [} (-] (-]
{x} , sequences of lines {L} , {1 } and {L_.} ,
i 11, 2i , 1,
i=1 i=1 i=1 i=1
(-
and a sequence of points {oi}i'l such that o;: €int X;, L, L,

and L ti .
5 meet in o,

f(xi;llf in, L3i) - f(Xi) fori=1,2 .., (1)

and
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f(Xi) + inf f(X) as i+ | (2)
X

By lemma 18 we may assume that there is a triangle Si for which

the regions X X , and X in S8, corresponding to Lli' L

1i* T2i 3i i 2i

and L3i are triangular and

X,; L., L
£ L,

117 Logr Lag) Z B Ligs Loes Lay) (3)

fori=1, 2., . .
Now if T is a given triangle then there exists an affine

! [ 2 L
transformation G‘i : Ez + E for which

o*i(si) = T for i=1, 2 .. . (4)
Then

and the regions ‘yi(xli)’ (Ji(xzi) and Gi(X3i) in T gorresponding
o i .
to i(yﬁ), c}(in) and Gi(L3i) are triangular

By extracting a suitable subsequence we may assume

* *
O'i(Lji) +> Lj for j = 1, 2 and 3 and oi-h o as i =+ o,
(6)
Thus in the limit as i -+ « it follows from (1), (2), (3), (4) and
(5) that

: * * *
1;f £(X) > £(T; L1 ’ L2 ’ L3 )

whence there is equality.
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* *
By the first paragraph in this lemma o*¢ int T and L_ , L_ and

1 2
* *
L3 are distinct. It also follows from (5) that the regions Xl ’
* * . ® ® *
Xz and X3 corresponding to L1 ’ L2 and L3 are triangular. Hence

the lemma is proved.

Proof of theorem 32

Let T be the triangle x y z. By lemma 19 we may choose a

point oeint T, distinct lines L_, L_ and L, containing o such

1" 72 3

that xy meets L3 and L2 in x3 and y3 respectively, xz meets

L_ and L1 in x

2 and Y, respectively, yz meets L.  and L_ in

2 1 3

xl and y1 respectively and in the notation of theorem 32, Figure 1,

such that

inf £(X) = £(T; Ll’ Lz, L3) = max A(X

)+A(X2) +A(X3)
X 1<ig3

AQY))

1

)

Again let M, be the lines containing e A for i =1, 2 and 3.

i
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In order to prove theorem 32, it is sufficient, in view of lemmas 18

and 19, to prove that L_, L_ and L3 are parallel to xy, yz and xz

1" 2

respectively and o 1is the centroid of T.
We may assume by taking an appropriate affine transformation of the
plane that the lines Ll’ L2 and L3 make acute angles of %- with
each other.

We show first that

AQT)) = A(Y,) = A(Y3)-

For suppose this is not the case and say A(Yl) > A(YS)' We rotate
M2 through an angle &, keeping the area of the triangular region

bounded by L., L. and M, fixed and equal to A(Xz) in such a

1’ "2 2
direction as to increase A(Y3). We then rotate M3 through an angle
n keeping the area of the triangular region bounded by L2, L3 and

M3 fixed and equal to A(XB) in such a direction as to increase
A(Yz).
If 8 and n are chosen appropriately and sufficiently small, the

resulting new triangle T1 bounded by Ml’ M2 and M3 _is such that

1
£(T ; Ll, L2, L3) < £(T; Ll, LZ’ L3).

But by (7) this is impossible. Hence

A(Yl) —A(Yz) - A(Y3). (8)

We shall suppose that x,y and z are labelled in anti-clockwise

order with respect to o.
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Let b‘x3 I = a, L‘Yz l = b, k'le = C |°'yll = d,

Suppose the lines Ll’ L2 and L3 are given rotations in a clockwise

. 1
direction through small angles 6, n and v respectively. Let L_,

1
1 1 .
L2 and L3 denote the new positions of Ll’ L2 and L3 respectively
1 .1 .1 .1 1 1 ' .
and let Xl, X2, X3, Yl’ Yz and Y3 be the mew' regions corresponding

to Xl, X2, X3, Yl’ Y, and Y_.

2 3
Suppose bdf 2 ace. (9)
, 2 2 2
Then 1> & & £ . (10)
b2 d2 e2

we choose €2 0 so that

az cz f2
1 = 5 +E) ("‘2' +¢e) ('; +E) | (11)

b d
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We shall suppose & 1is given and then define

2
n= & EE +€), (12)
f
c2 e2
U= 6(-—5 + €) (—E' + ). (13)
d £
Then by (11) and (13) ,
2
§.5-2-+e (14)
b
by (12) and (13),
c2 '
- = — +¢ (15)
n d2
and by (12)
e2 '
-D--——'#e. (16)
§ 2
£
Then by (13) and (14),
2 2
2 2 2
b s-a"u= b e + 9 +e) 8 (17)
2 2
d £
by (16),
2 2 N
20 - 25 = £l c s (18)
and by (12) and (15)
2
2 2 2
d“v - ¢“n -de(2'2‘+e)6. (19)
b3

Now in view of (12) and (13),
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A(Yi) - A(Yl) - i(bzﬁ - azu) + 0(52), (20)
A - A = 4(E 0= e76) + 0D, (21)
A(Y;) - ATy = (a2 v cZn) + 0s?). (22)

Thus in view of (17), (18) and (19), if 6 is sufficiently small
then

AGE) > ACL)  for i =1, 2 and 3 (23)
and so

1 1 1
A(Xl) + A(Xz) + A(x3) < A(Xl) + A(Xz) + A(x3). (24)

But (23) and (24) imply

£(T; 11, L1

1
1 Lo L3) < £(T; L

1* bpr by
which by (7) is impossible.
Thus the assumption that b d f > a c e was false and so
bdf cace. | (25)
By taking similar small notations in an anti-clockwise direction
the roles of a and b, ¢ and d, e and £ are each reversed and
8o we have

acex>bdf . (26)
Thus by (25) and (26)

ace = bdf . 27

Suppose now that a +b .
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We suppose without loss in generality that a > b. (28)

Then suppose the lines L1 and L3 are translated by a small

amount & 1in a direction parallel to L_ so as to increase A(Yl).

2

Let L; and L; denote the 'new' positions of L1 and L3 and

1
suppose Ll’ L2 and L; intersect in ol. Then suppose the line

L, is given a rotation about o1 through a small angle iy 1in a

direction so as to decrease A(XB)' Let L; denote the ‘new’'

position of L_ and as before suppose the regions xi. X;, X;.

2

1 .1 1
Yl' Yz and Y3 correspond to the regions Xl. xz. x3, YI’ Yz and Y3.
Suppose if possible that
d£2 > ecz . (29)
we choose ¢ > 0 8o that
2
e/3 c
1 (fz + €) (JBd + g) . (30)

By (29) this is possible.
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We shall again suppose & 1is given and define

n= 62 4 o . (31)
2
£
Then by (31)
n . &4
s 2 + € (32)

$ c2
‘;-.\73':14-:. (33)
Then by (32)
fzn - eJ/3§ = ef26 (34)

and by (33) and (31)

¥3ds - c2n = /3ed (e—fi +e)s . (35)
£
Now in view of (31),
1 _ U3, 2
AQT)) - ACY)) > (ab)6 +0(s) (36)
A(Y;) - AQT) - 1(E2n - Vies) + 0(6D) (37)
A(Y;) - A(Ys) - }(J3d - czn) + 0(52) . (38)

Thus if § is sufficiently small then by (28), (34) and (35)

we have
A(Yi)‘> A(Yi) for i = 1, 2 and 3. (39)
Again this implies
A(Xl) + A(xl) + A(xl) < A(X.) + A(X) + A(X) (40)
1 2 3 1 2 3 )

and (39) and (40) imply
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1

£(T; L1

1
’ LZ’ L3) < £(T; Ll’ LZ' L3)

which by (7) is impossible.
Thus the assumption (29) that dfz > ec2 was false and so

aE? cac? . (41)

Now suppose
cgsf. (42)

Then g_z_ N

2

<
p f

and so by (41)

df < ec . S (43)

Then (27) and (43) imply
a<shb .
This by (28) is impossible.

Thus (42) is false and

c> f . ' (44)
Algo if e > d, , (45)
then _9_2_ 2 e

d2 d

and so by (41)
d2f2 < e2c2

and d4df < ec

vhich as before is »impossible‘.
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Thus e <d . (46)
Thus we have so far by (28), (44) and (46) that

a>b, ¢c>f and d > e.
We shall show this is impossible.

Reflect the triangle ¥,Y %, in L, and rotate the triangle so

3

obtained in a clockwise direction through an angle of g

Suppose the resulting triangle has vertices xi, y; and z1 vhere

x; lies on L1 and on the same side of o as x, and y: lies

on L1 and on the same side of o as yz.

Ly

Suppose y; zl meets Lz in x; and xiz1 meets L3 in yi.

Then
1
Io-yZl- a > b = Io—yzl ’

]o—xil- d>e = ]o—xll .
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lo-y;l = e<d = oy
and

lo-le = fc<c = lo-x2| .

1
Hence conv(o, x

2° zl, yi) is strictly containéd in conv (o, Xy 2 yl).

This implies that

A(Yz) = A(conv(o, x;

) 31’ Yi))
< A(conv(o, X, Zs Yl))

= A(Y3) . (47)

But (47) is impossible by (8).

Thus the assumption a > b was false and so a = b. Also clearly

we can apply similar arguments to prove ¢ =d and e = £,

Now there exists a function 3(51, 52, 53) of the three real variables
51, Ezand 53,1151 for fixed 52 and 53.

i) 52 for fixed 51 and 53. u,£3 for fixed 51 and 52 and for which

A(Yl) = g(a, e, ¢c),
A(YZ) - g(c, a, e) ,
A(Ya) = g(e, c, a) .

Now (8) implies
g(a, e, ¢) = g(c, a, e) = g(e, c, a)e - (48)
If we suppose without loss in generality that a < ¢ € e and

in fact a < a& then this implies
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g(e, ¢, a) > g(a, e, ¢) which by (48) is impossible.

Thus a=c=¢e and so

ambwemwdmegswsf,

The theorem is then completed by calculation.

Cotollarz 1

In the same notation as theorem 32 define

’ L3) = max A(X,)

g(X; L., L
12 1¢ig3 AN
1¢j<3 i

Then g(X; Ll’ LZ' L3) > with equality if and only if

lw o=

Proof
The proof is trivial since

3g(X; Ly, L2 Ly > £(X; Lis Ly La).‘

Corollarz 2

In the same notation as iheorem 32 define

) = max fk(x1)+ A(Xz) A(X2)+ A(XB)

A(X1)+ A(X3)

h(X;L10L20L3 1<ig3
Ne \
A(‘Ii) A(Yi)
Then h(X; Ll’ Lz, L3) > 1 with equality if and only if
3 : ,

£ (X; Ll' LZ' L3) =7

* AY

) :
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Proof
The proof is immediate since

3h(X;L1.L2,L3) > max (A(X

149 1

YA (X,) )+ (A(X,)+A (X)) + (A (X, ) +A(X,)
AY))

-=2f (XL, L

) "3)‘

Corollary 3

In the same notation as theorem 32 define

k(X3 Ll' Lz. L3) = max A(X) .
113 A(Yi)

2° L3) a% with equality if and only 1if
3

£(X; L), L,y L) =5 .

Then k(X; Ll’ L

Proof

The proof is again immediate since

k(XL ,Ly,L,) = max  A(K,)4A(K,) +A(X,) +A(Y, ) +A(Y,) +A(T,)
1d g
A(Y))

\'4

max A(x1)+A(x2)+A(x3) +3
1€i€3—
A(Yi)

» LZ, L3> + 3,

v

£(X; Ll

We now consider a different functional which we see as in the
previous theoram takes its lower bound on a triangle. The lower
bound given in theorem 33 is not best possible. I would conjecture

that the correct ansver is %'although I have been unable to prove this.
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Theorem 33

In the same notation as theorem 32, Figure 1 define

e(X: L., L

1 Ly L3) = A(XI) + A(Xz) + A(X3)

A A@E) ARy

9
Then e(X; Ll’ LZ’ L3) > E‘.

Proof
Throughout this theorem we shall use the same notation as in
theorem 32, Figures 1 and 2. It is clear that if T(X) is defined

as in lemma 18 then

e(X; L, L,y LB) 2 e(T(X); L Lys L3)- (1)

1
Thus it is sufficient to prove the result for T(X) in place of X.

We suppose first that T(X) is unbounded. We assume then thatr

Xl, Xl, Xl, Yl, Yl and Y1

o 1 1]
1 X X T T 3 are define4 as in lemma 18 and Yl is

unbounded. Suppose Mz meets L3 in y4 ana M3, meets L1 in

X,

4

' 1
parallel to M3 and suppose M2
1

. 1
meets Ll in y, and L3 in Y,

Let Ml be the line through x

2 2
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write Io-le = u and lo-y3| = q.

Now clearly,

A(Xi) A(X;) A(X)) > A(conv(o, x

AN
A(T) AR, AQ

92 yz)) - A(conv(o, x3’ y3))

A(conv(o, X, y3)) +A(«:ouv«». X,» y4))

)

W oW

S |
> A(conv(o, Xy 72” A(conv(o, Xy y3))

+

Alconv(o, x,5 7))  Alconv(o, x,0 7))

[ ]
TolFw

+
=NFN

\4

oo N DN

>

. ' (2)
Thus if T(X) is unbounded then the theorem is true and so we now

suppose T(X) 1s bounded.

We may suppose taking an appropriate affine transformation of the
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plane that T(X) is equilateral with unit height. For simplicity

we shall now write T = T(X),

1 1
Xi - Xi and Yi = Yi for i = 1, 2 and 3,

Suppose that o is distant h; from Mi and that the segment

subtends an angle 6, at o for i = 1, 2 and 3. Then

X i

171

h1 +h, + h3 - 1, 3)

91 + 62 + 63 = T, (4)

Now we consider for the moment, just the ratio A(Xl)

A(Yl)

Let L be the line through o parallel to M1 vhich meets M2

in o, and M, in 0, Let x be the point of intersection of

A . LA
M2 vand M3. Let yleyl = o and x3y1#1 = g,

We now suppose that L1 and L3 are varied such that L1 and L3

make fixed angles & and B respectively with Ml and o the



- 213 -

point of intersection of L1 and L3 lies on 0102. Clearly

A(conv(o, ,yl)) remains invariant and equal to A(xl) and there

*1

is a position of o, say o = 01 where A(conv(x, x3, o, yz)) is
1

1 1 1 1
maximal. When o = o , write xl - xl. y1 = yl, x3 x3 and yz - yz.

Then
1 1 1
A(Xl) A(conv(o , X ;) (5)
2 .
] 1
A(Yl) A(conv(x, x;, o, y;))
1 1'Aall
Also clearly o ¢ rel int 0,0, and x, 0y, = 61.

We show next that x;y; is parallel to xiy;.

Suppose L1 and L3 are translated in the manner described from

any position o by a small amount §.

Then the change in A(conv(x, X450 05 yz)) is given by
+ ‘ 2
- 6(]o-x3| gin £ - Io-y2| sin a) + 0(8°). (6)

. 1
Thus if o0 = 0 we must have

|ol-x;[ sin g = ldl-y;I sin o, 7
But then
11 1.1
el = dat = ol ®)
foloy!| Jolxk
1 3
111 111 . 1
Thus the triangles o X7, and o X,7, a;e similar and .5,

is parallel to xiy:.,

Next let 04 be the midpoint of 0,0, Suppose the lines x;o3
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produced and y;o3 produced meet M1 in yz and xz respectively.
1~ 1

Let ?1 -x, o3 ya.

Then x; 33 y; - Yl and by considering the circumcircle of triangle

x301y2 it can be seen that
¥, 26, 9
1 1 1 1 1
Also A(conv(o , x3, yz)) - A(conv(o3, x3, yz)). (10)
11 1 11
Thus A(conv(oB. x, ya) = A(conv(o x1 yl)) (11)

and

, %, 7)) = Alconv(o, x;, x, ). (12)

1
A(conv(o3. x 3

3

Thus by (5), (11) and (12)

AGK) 2 Alconv(o,, x5 7))
A(Yl)

. (13)

' 1 1
A(conv(o3, X3 X Yz))
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1
X X, we have

By considering triangle o 3

3

1
I_ lx-x3l 1-h

lo_-xt
33

¥
sin *

-6" sin ‘l’l

2

Thus

ain(f:-+ R

and

A(conv(o3, x1 1))

4 74

1 1
A(conv(oB, X X y,))

1 1
- A(conV(o3. X0 Y,))

: 1 1 1 1
A(conv(oa, X, yz)) + A(conv(x, Xy yz))

2 2 .
- 1,
5 h1 sec 51 gin 2 51 ‘

(14)

(15)

(16)

P

- )2 1
. (1 h) sin 2 REE

2,z
4 sin”( s * &)

2 .2 .
(l-hl) sin 51.J3

2 sin tl cos t

2
sin (6 + gl) . 2

‘ 2
1 sec El

'(;};)2 sinz (16[ + 51)

l- »
1 . > 8in 51 cqs £1 +

N3 2
2 sin

&
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2 2 n
- 2/ 1° sin (= + &)
(i:ggf s &

(Ji cos El + \‘/53' sin El) cos El

h
1.2 n 1
- 2(1_h1) gin( P + 61) .

cos El

hl 2
a (=) (L+/3 tan E) . a7
l-h1 1

Now write ¢1- _Oi

2

Then since by (9) ‘!'1 > el, we have

b

2 h 2
—) (1 + J3 tan El) 2 (

) 1_;1) (1+3ten ¢) (18)

1-h

since O < ¢1 K3 El <

™

Thus by (13), (17) aand (18)

A by |
A(Yl) /(l_hl, (1 + /3 tan ¢1). (19)

we have similar inequalities for A(XZ) and A(x3) and so

A(L) AT
3 3
A(X,) h | .
z i’ >z i 2 .
i=1 A(T) i=1 (1-111) (1 +3 tan ¢,) (20)
3 3

where I h,=1, I ¢ ==, Osh <1,and 0< ¢, €~
im]l i i=1 i 2 i 2

for i =1, 2 and 3.
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The remainder of the proof is concerned with obtaining a lower bound
3 hi 2
2° h3) 61’ 620 63) - ifl ('i:?;) (1+V3 tan ¢i)

’ ¢2 and ¢3 subject to the

to the function f(hl, h

of the six variables h_, h_, h3. ¢

3 1 32 1
conditions I h, =1, I ¢ ==, Os<h <1 and O < ¢, & =
i i 2 i i~ 2
i=1 i=1
for i =1, 2 and 3.
First consider the function
3 h
g=gCt,,h,h) = T T subject to
1" 2" '3 f=1 1 hi
3
L hi = ] and OShi$1.
i=]
3 hi
g = I Ty + A (1 - hi - h2 - h3) (21)
i=1 i
for some multiplier A.
%%—-—-——1-—2--1 for i=1,2and 3 (22)
i (1-h,)"
i
.'. At stationary points,
28 = 28 '
Sh Sh i +3) ] (23)
i i
. . " 111
and this implies there is an unique stationary point (S', 3 '3-).
2 2 :
Also 927g >0 end _37g = 0 for i 4§, (24)
302 ENYY '
i
Thus gCh., h_, h ) takes a minimum at (-1— 1 '1')
Bly» Bpr B3 3°3° 3
1 11 3
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We now suppose ¢1, ¢2. ¢3 are fixed and define

h
‘ i
ai = 1 + J3 tan Qi and ki - l'hi (26)
for i =1, 2 and 3.
3
Then by (25), if 0\<h£\< 1 fori =1, 2 and 3 and I hi = 1 then
i=]
3 s 3
- >/-".
151F1 2 (27
Now consider the function
3 2 3
h=h(k,, k_ , k) = I ak, subjectto Ik, =3§,
1" 2" '3 {1 ii » {1 i
a 3 2 . . .
s I ai ki + n(é- kl - kz - k3) (28)
i=]1
for some multiplier u.
ah
Sk - 2ai k1 He . (29)
i
Thus there is an unique stationary point (kl. kz. k3) where
k1 a1 - k2 12 - k3 33 (30)
and k1 * kz + k3 - &, : (31)

Thus (30) and (31) imply

a a
kl( 1+ ;l.¢ :l) - §,
2 3
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Thus
- 8
k1 a2a3 (32)
]
aa, +aa +aa,
kz - 31.36 (33)
’
aa +aa,+aa,
k3 - a1a26 (34)
a,a, +aa, +aa,
2 2 .
Now ¥h = 2a, > O and dh =0 for {i4j. ' (35)
bki bkfkj

Thus the stationary point is a minimum.

Thus
2 2 2 2
h(kl, kz, k3) 286 (al(azas) + a2(31a3) + a3(alaz)
(a,a, + a.a 1+ a )2
1%2 7 %1% 7 %%
- za a
§ *1%2%3

81l2 + a1a3 + 8233

9 by (27). (36)

2
TEERES
1 2 3

L)
2

Thus for any given ¢1, ¢2 and ¢3 with 0 ¢i

for i =1, 2 and 3, we have
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. q
f(hl. th h3’ ¢1. ¢2. ¢3) > 5
4 I = 1
i=1 "1 + V3 tan 1
we finally consider the function
3
k=k(?, 02, 03) - s 1 subject to
i=1 1+v3 tan *i
% . % < ¢ < "
i - ;' and O ¥ 1 \'5 for i » 1, 2 and 3.
i=1
3 .
ke I 1 +n(5-¢1-¢2_¢)
i=1 1 ¢ V3 tan ¢i 3
for some multiplier ",
0k -V3 aec2 ¢
b%. = 2 - n
(1 + V3 tan 4’1)2
L §
- -J3 cosec2 (-g + ¢i) - n,

4
At stationary points,
2 ' ¢ 2,Y ¢
cosec (6 + i) cosec (6 +

P

Thus ¢, = ¢  and there is an unique stationary point

i i
T T %
(g’ 6’ 6)'
2k - J3 2
- — — - n
Now 3;; 4 cosec (6 + °i) .
2 "
O 2k V3 cosec2 (—+ %) cot ¢
3'2 —_— 6 i i
¢1 2

ol =

0 vwhen ‘i - for i = 1, 2 and 3.

(37)

(38)

(39)

(40)

(41)
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2
Also 2 k = 0 for 1i%+ij.
)¢i)¢j
Thus the function k(¢_, 9., ¢ k ini & 5D
us the function 1* ¥ 3) takes a minimum at 66’ 6"

Now k(¢1, ¢2, ¢3) is a continuous function defined on the closed
and bounded convex domain D given by the intersection of the cube

n w
< £ - i -—
{¢1’ ¢2. ¢3 I 0 g ¢i < 2} with the plane ¢1 + ¢2 + ¢3 2

Thus k(¢1. ¢2, ¢3) attains a bounded maximum over D, which from the
above must be attained on the frontier of D.

Thus we may assume

4. =0 or ¢ =-—
|

1
If 01 = 0, then

k( ¢1s ¢2) ¢3) € max k(o, ¢2! ¢3>' (43)

-
)03 2

Now since we may apﬁly the arguments above to a function of two
variables it follows that k(o, Qz, ¢3) takes a maximum subject to

L I w
¢2 + ¢3 -3 when either ¢2 = 0 or ¢2 =

Thus k($)s 4,0 ;) S k(0, 0, = 2. (44)
If ¢1 - %; then we have immediately that
- ‘ _
k(¢l’ ¢2’ ¢3) < k(2’ 0, 0) = 2. (45)

Thus in all cases k(&l, ¢2, ¢3) < 2.

Thus by (20), (37) and(46) we have
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9
i=1  A(Y,)

i

The theorem then i8 proved.

In our final theorem we look at a function with particular

reference to central sets.

Theorem 34

In the same notation as theorem 32, Figure 1, define

m(X; Ll’ L_, L3), = max A(X

)
1¢i 3 1

i)

2

A(Y

(1) If X 1is central with centre ¢ then m(X; Li, L., L3) >1

2

with equality if o = c, If m(X; L ; L

1 Lo L3) = 1 and

(-] -Ft, then fr X contains a pair a parallel line segments

which are parallel to oc.,

* &
L and

(i) 1£f X is not central then there exist lines Ll’ 2

* *
L3 wvhich are coincident in a point o eX for which

T T
m(X; L

*
1, Lz. L3) <1l.

Proof
(1) In the proof of this theorem we shall use the notation of

theorem 32, Figure 1. Let Ml' Mz and M3 denote respectively the



- 223 -

the lines xlyl, xzy2 and x3y3.

Suppose that X 1is central with centre ¢ and that there

exist lines L_, L and L

1 Ly 3 coincident in a point o contained

in int X for which

m(X; L., Lz, L3) <1, (1)

1

Then certainly o $-c.

We show first that C does not lie in any region xi for any i
with 1 <1 < 3.
For suppose this is the case and say ¢ exl.

)

Let the lines x_c produced and Y,< produced meet fr X in xl

3

3

and y; respectively.

is contained in the set Yl

Clearly Y 1

1 bouanded by c,x3. c,yz

and fr X, and X, contains the set Xl bounded by ’cx;, 'c‘y; and

1 1
fr X.
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But this implies

1

1
AY)) ¢ AT)) = ACX

) ¢ A, ()

But (2) is impossible by (1), and so ¢ does not lie in any region Xi'

We may suppose then without loss in generality that c ¢ Yl.

Let L; denote the reflection of L2 in ¢. We show next that not

both X, and Y, lie in the strip bounded by L2 and L;. For aippose

this is the case.

1
L,
L,
Then M2 and MB meet on the side of L2 opposite to L;. Let M2

meet L3 in Y, and M3 neet L1 in X, But then using the same

arguments as those given in the beginning of the proof of theorem 33

we have \
\
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A(X,) AX,)) A(conv(o, x,, ¥,)) A(conv(o, x,, ¥.))
2 3, 22 Y27 ’ » 73
A(Y,) A(Y3) A(conv (o, X, y3)) A(conv(o, Xy» y,’))
2 2, - (3)
A(X.) A(X)
2, 3
Thus w(‘A(Yz) A(Y3)) > 1. (4)

But by (1), (4) is impossible.

Thus we may assume x_, lies exterior to the strip, bounded by

3

L2 and L;. Now let xg and y; denote the reflections in ¢

of the points X, and v, respectively.

Let xl and yi denote the reflections in € of the points x

1 1

d .
and y,
We next construct a parallelogram Y for which m(Y; LI’LZ’L3)< 1.
Let H denote the closed strip bounded by L2 and L;; We consider

two cases.

Case 1

xaéﬂ ané yzeH.
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and y xl

We first note that the lines x y1 253

372 are parallel. Thus the

line M3 through N and Y, is either parallel to yzx; or meets

the line yzx; on the side of L_ opposite to L;.' Now the lines

2

M, and M, mnust meet on the same side of L_ as L1 for otherwise

3 2 2 2’

we would'have as before that

A(xz) + A(x3) > 2. (3)
AT,) A(Y3)

which is impossible.

Thus there exists a line M; through v, which is parallel to M
and which separates x, and x;. |

1 11
Let Ml be the line x,- \
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Let Y be the parallelogram bounded by Mi, MS' M1 and M:. We

shall show Y has the required properties.

Let x: = conv(o, X
1
Ml' M3, x

Since A(Xl) < A(YI) it follows that

’ yl) and let Y1 be the set bounded by

1 1

1
30. oy2 and Mz.

1 1
A(X)) < A(Y)). 6)
1 1
1 1
Let “2 weet L2 in xé.
Let X1 = conv (o xl) Then xl (D
2 » Voo Xy 2 © %20
1

N

Let Y_ be the set bounded by oy3, M3, M1 and xlo.

Then Y1 >Y.

2 2
Thus A(x;) < A(xz) < A(Yz) < A(Y;)_ (7)
11 ’ 1
Now the subset x3 of x3 which lies on the side of x,7, opposite

to o has the same area as the subset Y311 of XZLJ Y3 which lies on

the side of the line yzx; opposite to o.

) and let Yl be the set bounded by ox1

1
Write X_ = conv(o, xs, ’3 3 4

3
Ml M, and ]
2? 1’. 71 .
We have
1 11
A(Xa) < A(Xa) A(X3 )
11
< A(Ya) A(Y3 )

< AGTy. (8)
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Hence by (6), (7) and (8)

m(Y; Ll' Lz, L3) =  max A(x:) < 1. (9)
1<ig3 1

In order to mske the notation consisteant with Case II we shall

now write M = Ml and s0o Y is the parallelogram bounded by

3 3
1 1 1
Hl, M3, Hl and Mz.
Case 11

1 1 1 11 1
Let Ml' M3. Hl and Mz be the lines through xlyl, x3y2,
1
Y, and y223 respectively.
vtct b4 bebthe paralleloztam bounded by M:. M;. Ml and M;.

From the figure above it is easy to see

m(Y; Ll. LZ' L3) <1 1if wu(X; LI' L., L3) <1l. (10)

2



By taking an appropriate affine transformation of the plane we may

suppose, in cases I and II, that Y 1is a rectangle with sides bounded

by Ml, Ml, M_ and M1 where M: is parallel to M., and Ml is

1" 3 1 2 1 2

parallel to M;. In view of the construction of Y we may assume

Ml meets Ll and L3 in x, and Y, respectively,
1 1
M3 meets L3 and L2 in X, and yk respectively and
1 . 1
Mz meets L2 and L1 in x, and y2 respectively.
1
L, M,
N e
1
MB
——
%
Ll
X
Sy
Ll
b8 4 xl = conv (o0, X ) X1 = conv(o xl) xl = conv(o, X 1)
1 :1o71,2 | .y2’4f3 ;3:74

and Yl is the region in Y ‘'opposite' to X1 for i =1, 2 and 3,

i i
then we have proved
1
nax A(Xi) < 1. (11)
1<i<3 1
A(Yi)

we shall show that (11) is impossible.

Let the distance of o from M; be p and the distance of o

from M; be n.
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Let Y311 be the triangle bounded by L_, Ml and oyl produced.

2 2
1 1
Then A(Xa) 2’A‘-(XB)
1 11
A(YS) A(Y3 )
2
-B_ .
2
U
Similarly
1 2
A(Xz) zf—
1 2
A(Yz) n
1 1
Thus max A(Xz) A(X3)
( L ' 1 ) >1 (12)
A(Yz) A(YB)

which contradicts (11). Thus the original assumption (1) that there

exist lines Ll’ L, and L, for which m(X; L, L

2 3 1 Ly L3) <1 - was false.

Thus if X is central then m(X; Ll' L., L3) > 1 for all lines

2

Ll' L2 and L3 and the first part of (i) is proved.

Now suppose there exists a point o ¢ int X which is central with
centre c for which

m(X; L., L

1 2° L3), - 1 (13)

and o ¥ C.
Now as before < § X, for any i and s0 we may assume CeY,.
Thus

A(xl) < A(Yl) . (14)

Since w(X; L_, L

1 Ly L3) = 1 it follows that
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either A(Xz) = 1 or A(XB) - 1.

A(Yz) A(Y3)

We suppose that A(Xz) -1, (15)

A(Yz)

We show €irst that this implies A(X3) =1
)

AQY,

for suppose A(X3) <1. (16)

A(L,)

We choose a point 01 € X2 and lines Li, L; and L; through o1

parallel to Ll’ L2 and L3 respectively such that o1 is near o.

But by (14)and (16) it follows that if o1 is sufficiently close to

o then
mx; Lt cmm L, L, L) =1 an
’ 1’ 2' 3 » 1’ 2. 3 -
which is impossible.
Thus A(X3) - 1, (18)
A(Y3)

we show next in the notation of theorem 32, Figure 1 that
x| = lowy, |
and lo—x3| - Io-yll;

For Quppose this is not the case and [o-x3| +40—y1|.

suppose [o-x, | < |o-y, |. (1)
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through a small angle 6 to a new position L1

We may rotate L 3

3

in the direction so as to increase X_.

3
. 1 1 _1 1 1
Suppose the regions xl. X3, Y1 and Y3 for L3 correspond to the
regions xl, X3, Yl and Y3 for L3.
Then
1 1 2 2
AX) = AX,) + ilo-x3| 6+ 0(8") (20)
and
1 1 2 2
A(Y) =AYy + 5o yll 8+ 0(87) . (21)

If 6 is sufficiently small then (14), (18), (19), (20) and (21)
imply
Ay < agh | (22)
1 1
and

1 1 : _
A(X3) < A(Y3) . (23)

| 1
b Ly L) = AKK)
AQ,)

Thus 1 = m(X; L1

> max (HXi) A(X ))
' . (24)
)

W =W -

1
A(Y)  A(Y

But by repeating the arguments from equations (15) to (17) we see
that (24) is impossible. Thus (19) is impossible.

1f |o-x3|>|o-y1|, then we rotate L_ in the opposite direction

3

and again obtain a contradiction.
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Thus lo-x3| - [o—yll, (25)

and similarly

lO"Xl I - lo_yz I' (26)

Now let x; and yi be the reflection of x1 and v, in c.

Let H be the cleosed strip bounded by the lines x1x3 and ylyz.

11
Now (25) and (26) imply that the lines xlyl, x3y2, xlyl are

parallel and
11
==y, | = x5y, | = ==y (27)

Moreover the line xayz separates the lines xly1 and x;y:.

convexity implies that the line segment x1 1

1y1 is contained in H.

Also convexity again implies that X C H.

Then

Then if vm(X: Lj» Ls L) =1 we must have L, is parallel to XI;}\

§
and also oc 1is parallel to the line segments xlyi and yl i. ‘Thus

L
part (i) is proved. ' | i \( \



- 234 -

1
vy ¥1
L3 \ /
X, %
c
L,
o
Y.
Xy A
Ly

We finally prove part (ii).
It is well known that X is central if and only if all the lines

which bisect the area of X are concurrent. Thus if X is not
central then there exist lines K,» K, and K, which are not concurrent

and which bisect the area of X. Suppose these lines bound a triangig

A\
A
\m

T with vertices x, y and z, where K, contains xy, K, contains

1 2

xz and K_ contains vyz. Jy

3 5
Let Yl be the region bounded by Kl’ K3 and fr X, Yz be the region\\
1‘ \
bounded by Kl' Kz and fr X and E
Y3 be the region bounded by Kz, KB and fr X, “ \\\
)

Suppose Xi UT 1is the region 'opposite' Yi for i = 1, 2 and 3. ,f\ \ \
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Then

A(D) + AR) =A(Y)) fori=1, 2 and3. (28)

Ky
1 I 3
Let K3 be the line through x parallel to K3.
Suppose K_, K, and Kl divide X into the regions X]' Xl xl
upp 1’ T2 AR, ‘ & R A
1 1 _1
Yl' Yz, Y3 where

1 1 1 1 1 1
Xl C Xl, XZ T LIXZ, X3 C.Xa, Yl P Yl, Y2 - Y2 and Y3 D Y3.

1
We now write K1 - Ll’ K2 = L2 and K3 = L3.
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Clearly then 1 = m(X; L

1
» L., L)) = max A(X,)
1" 72" 73 1si€3
A(Yi)
1
=AK)  by (28)
1
A(Yz)
> max (A(X;) , A(xg)) ‘
‘ 1 1
A(Yz) A(Ys)

But now we again apply the argument from equations (15) to (17) and

* K *
obtain lines Ll’ L2 and L3 for which

k%
m(X; Ll' L2, L3) < 1.

The theorem then is proved.

\"\

\\

We finish this thesis with a conjecture that seems interesting. L\
Conjecture \
In the notation of theorem 34 define [ \"\
"
i ¥,
m(X) -Linlf‘ Idm(){; Ll’ LZ' L3) :

1°72°73

|
for each compact convex set X with a non-empty interior, where the !

inf imum is taken over all concurrent lines Ll’ L

1
2 and L3 which ‘\ “ \1;,{\“
meet in the interior of X. "'\\
L N
Then m(X) >,2‘2- with equality if and only if X i3 a triangle;
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Note

We have shown in theorem 34 that m(X) = 1 if and only if
X 1is central. It is not difficult to show that m(X) takes its
lower bound when X 1is a triangle and so the functional m is a
measure of symmetry. It seems to be surprisingly difficult however
to determine this bound even for a triangle. It follows of course
3

from theorem 33 that m(X) > Eu
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