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(i)

ABSTRACT

A new model for two-body high energy scattering is presented as part of an investigation into the phenomenologi
of the non planar structure of Reggeon-particle scattering. The model is a modification of the weak cut reggeiz
for Pion-Nucleon scattering and is developed in form of a correlation modified quasi eikonal where the Reggeon
number of Pomerons are allowed to change the projection of the nucleon spin, A correlation parameter - the
has its origin in Gribov's theory, provides an indication about the failure of the traditional weak cut reggeized a
and restores its most profound shortcoming - the prediction of an incorrect phase behaviour of the helicity isov.
amplitude in the reaction T~ [2—=>7°N - while retaining the model's attractive simplicity. The vert
Reggeon-calculus depend in general on the angle between the momenta of the exchanged reggepoles. By parame
dependence we take into account the effective contribution of inelastic intermedi ate states in the unitarity expan.
Regge-particle scattering amplitude. We obtain a reasonable phase energy description of the isovector ampli
demonstrate in detail the mechanism by which the correct phase behaviour is restored. The spin-structure of
is investigat ed and observables of W N scattering between 6 and 200 GeV/c within a range of momentum transfe

are being produced.
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I - INTRODUCTION

There is overwhelming evidence (1) that the simple power law energy behaviour p.redicted by the Regge formu
energies is a good approximation to the real world of two body scattering. A particularly striking example ¢
been provided by the recent data from Fermilab (2) on the Pion Nucleon charge exchange reaction T[_p-?'ﬂ
20 and 200 GeV/c. The effective J-plane singularity moves on an only slightly curved trajectory which appr
excellently. The data, however, show a small bump at the nonsense wrong signature zero (NWSZ) around /t
and the slight deviation from a straight line further out in /t/ are the mild reflections of correction terms to
pole exchange. These corrections arise as cuts in the complex angular momentum plane (3). They are trad
by means of a version of the absorption model (4). Within such an approach one 'understands that, in the ca:
the relative size of the helicity nonfligrcompared to the pole needs to be particularly large to account for the :
part of the helicity nonflip isovector amplitude, In addition, this zero has to occur before the zero of the re
amplitude with sufficient separation so as to accouné for the correct phase structure which is manifest in the

of the recoil nucleon in "n"'p_—r“'on (5). None of the traditional absorption models can account for

features of the data.

Cuts have, due to their smaller slope ( ocZut L 0<'/pole> the tendency to "take over" further out in /t/ and =
(Lack of shrinkage). The mild deviation of the effective trajectory from a straight line constitutes, therefore
On the other hand, T p->nn . is dominated by the helicity flip amplitude and cuts in this. amplitude a
relatively weak. The helicity flip amplitude has all the features of a NWSZ pole (5) up to /t/ ~. 6. .Beyond t
rise and fall of the symmetric part of the elastic polarization (6) in TI' N scattering seem s to imply a rather

key role in the determination of elastic as well as inelastic polarization of T N scattering is played by the
amplitude, i.e. the full elastic .amplitude. Unfortunately this phase is unknown away from forward directior
of the phase is the major source of uncertainty in an otherwise model-independent amplitude analysis. Thus

for is to obtain a self consistent description of the TN system by constructing simultaneously the isoscalar a

amplitude. =~ .,

4 cut :



The elastic amplitude enters the absorption model in form of strong dominantly elastic rescattering in the i
state. This is supposed to effectively take account of the many competing inelastic channels which open up
"head on collisions". The elastic amplitude replaces, in the high energy approximationo f the absorption r
and final state wave functions of 2 complex optical potential whose imaginary part is meant to simulate the .
peting channels. This high energy version of the distorted -wave Born approximation of low cnergy nuclea
introduced by Sopkovich (7) and has been applied successfully to correct the too exaggerated peak close to fi
and the too slow fall-off with momentum transfer predicted by the peripheral or one-particle exchange mod.
production of qgasi-two—body reactions. (8). Note that in the OPE model the couplings are constant and th:

factors for the couplings in the Born appreoximation exactly simulates, at fixed energies, the effects of absc

Traditionally the elastic amplitude has been taken from experiment, equal in initial and final states, diagon
imaginary with no /t/ dependent phase and has been parameterized by a Gaussian, This produces the des
appears as a grey absorbing disc reducing the lower partial waves and leaving the higher ones unaffected, v

sharpens the forward peak of the /t/ distribution.

Absorption and reggeization of the OPE model has led the Imperial College group to construct, in cornectio
strong exchange degeneracy and couplings which are determined by a higher symmetry scheme: a very ct
parameter-free reggeized weak cut absorption model for Meson~-Baryon scattering with considerable predic
et al (4). Although this model has failed to predict the correct phase behavicur of the isovector helicity

NWSZ input of the basic exchange seems to be strongly supported by the FNAL data.

The weak cut absorpfion originally proposed by Cohen-Tarnoudji et al.and Arnold et al.(4) has qualitatively
polarization in T P—Tn Its quantitative prediction, however, is drastically wrong. The reaso
strength and wrong phase of the cut amplitude. Absorption is essentially a convoluticn -in. momentum trans
NWSZ input pole changes sign in the region of integration there will be a cancellation in the integral and the
litude will tend to be small, Itis in fact too small to obtain the zero of the imaginary part of the isovecior
amplitude which is much further inwards in /t/ than predicted by the pure NWSZ 1.p'ole. If one were to int

strength factor to pull the zero further in, this would completely destroy the already displaced dip position.



a zero in the imaginary part implies, due to the wrong cut phase, a nearby zero of the real part. But to
polarization of T pP-=>1"n the zero of the imaginary part has to occur before the real one and both

sufficiently enough apart.

The lack of strength of the weak cut model in other reactions such as b’ P—"Tﬁn and i](\P»—> Pnis also
. theoretical side, the intuitive basis of the Sopkovich formula has lead to serious doubts. This concerns,
truncation of rescattering in the initial and final states to on-mass shell states. The weak absorption mo
the contribution of inelastic diffractive intermediate states. These intermediate states are, however, a c
s-channel unitarity. Furthermore, the very existence of cuts is due to the presence of the third order do
function. These functions cause fixed pole singularities at wrong signature points for the pértial wave ar
cannot be made to vanish by a superconvergence relation.” These fixed poles . would, due to unitarity, be
essential singularity violating the Froissart bound were it not for cuts specially invoked for these reasons
prevent this happening. In the presence of the third order double spectral function it is not unlikely that t
occurring fixed poles are strong and enter the Regge residues multiplicatively. They then would cancel t!

unstructured pole amplitude,

In combining both point‘s of view, namely the necessity to incorporate the inelastic diffractive intermediate
factor }\ and the absence of NWSZ in the input pole, the Michigan group Henyey et al (4) have constructe
absorption modsl and also‘successfuuy fitted a great amount of data. In particular the dip structure of the
is now being produced by pole-cut interference. The polarization, however, has been equally as wrongly |
cut model. The relatively large strength of the Michigan cut actually once produced the crossover positi

paid for with over absorption, which could be restored by eikonalization (9), while losing the crossover p

The failure of traditional absorption-irrespective whether weak or strong - to account for positive polariza
(both versions result in an approximately 90% negative peak) has stimulated a great number of successful
wi th and without NWSZ input poles (10). Despite their different appearance they all have one factor in cor
completely ad hoc 1?:1',d consists essentially in a broadening of the J-plane d_iscontinu.ity due to the addition o

J-plane singularity, a circumstance which led these models into strong conflict with duality. (11¢,) Duality

property of two body amplitudes, is definitely a property of 57 exchange. The zero of the imaginary )



amplitude 'already occurs in the lower energy resonances. All phase modified model amplitudes when FE
compare wrongly in their /t/ dependence with the phase shift FESR integral. Ironically the only alternati
~ scheme - Barger and Phillips' ? + gl pole model (12) - has predicted positive =} N inelastic polariza
symmetry of elastic 1] N polarization, though not the double zero. It is in excellent agreement (13) with the

and in addition is compatiblé with FESR and local-average duality, (11 a}

Polarization generatéd by two different trajectories, howeve'r changes rapidly with a fixed power of the e
in the case of a cut this power is proportional to the momentum transfer consequently resulting in a mild «
within the rangé of the diffraction cone. The f +5’/ model, in fact, changes the shape of the polarizs
that already at 18 GeV/c it shows the tendency to approach the unwanted shape'of the absorption model. (9
resonances have yet been identified along the g’ trajectory causes further doubt about the validity of su¢

although it seems to serve as a surprisingly good parameterization,

The circumstance that at an early stage of the development of the absorption model the introduction of str:
factors into the Born term of the OPE model could simulate exactly the effect of absorption shcws how sen
empirical factors in order to suit a first intuitive guess. On the theoretical side there is the nccessity to
absorption model contributions from inelastic diffractive intermediate states, on the phenomenological si
reggeized absorption model is too weak and has a wrong phase and energy behaviour. A source of streng
available by the Michigan approach through a vague enhancement coefficient in connection with an u.nfavour
celling the NWSZ in the Regge pole amplitude. All phase modified models have tavght us that the imagin.
helicity nonflip isovector exchange should be more absorbed than the real par;:. This, as we saw, howevc

with duality. The FNAL data on theother hand suggest that the energy dependence of cuts should be rather

The result of a closer examination into the origin of the phase problem may be summarized in the two maj

traditional absorption cut:

(1) the relative cut pole phase is too close to 180° at [t/ := 0

(2; although the absorptive cut rotates with increasing /t/ away from the pole, it does so too slow!

by comparison with the fast following pole. Thus. the pole catches up with the cut at the critic



phase difference of 180° already at very small /t/ and there it causes the polarization

to change its sign from positive to negative.

As the phenomenological investigation performed in this thesis has shown, it is possible to obtain a r¢
description of -n-—p —» “TT°n including the elastic polarization of T\'Ip scattering by simulatin

of the inelastic intermediate states in the following way:

(1) The size of the effective interaction region of the Reggeon involved in the cut has to shrink
considerably smaller value in comparison with the size of the Reggeon in the Born term.

same holds for the elastic amplitude.
(2) . In addition, the - . elastic amplitude has to have a /t/ dependent phase,

(3) At last there is an overall damping form factor which renormalizes the shape of the cut.
The combined effect of this prescription on the phase - while keeping the attractive NWSZ - is that:

(1) The cut is strengthened in forward direction

(2) The initial phase angle at /t/ = 0 has been rotated in anti-clockwise direction resulting

in a purely imaginary cut term.

(3) The cut's traditional slow rotation becomes accelerated.

The new cut is now able to reverse the sense of rotation of the helicity nonflip pole so strongly that the

part of the amplitude moves into the vicinity of the actual cross over position.

When extrapolating the amplitudes to FNAL energies one can stabilize the helicity nonflip phase angle v
considerably stable polarization over a wide range in energy. By doing this the logarithmic energy de
denominator vanishes. This promises agreement with duality. In fact, the phase modificatior has no
by broadening the T-plane singularity structure but by enhancing the ratio between the slope of the "Por

and the effective interaction size which results in a larger phase and greater strength of the cut. The t



problems further out in /t/ and for large energies remain, however, causing a slower fall off of the differential cros
and a spread between both effective trajectories at 6 and 200 GeV/c. Thanks to the NWSZ pole, however, the discr

is not so severe as it otherwise would be,

This procedure of modifying the cut sounds as ad hoc as many modification attempts of-the past. But a great deal of it
disappears if we see it in connection with Gribov's theory, from which it emerges quite naturally. Gribov's theory.
as the most general frame for the whole strong interaction physics. Its basic assumption is the absence of singular

forces. This convergence property in conjunction with analyticity led to Gribov's Reggeon diagram technique (14).

The fundamental postulate in connection with multiperipheral kinematics which governs the multiparticle production
bound up in the two-body amplitude through unitarity, generated a two dimensional field theory of high energy and sm

transfer reactions.

The following picture of two body scattering emerged: During the scattering process the two colliding hadrons act
sink to produce and absorb respectively the energy momentum of Reggeons-in form of quasi particles. The Reggeons
each other while they diffusé over one time and two space dimensions. The sum over all such interaction diagrams i
of the non-relativistic theory for asymptotic energies. Each diagram corresponds to a term in & Ra' leigh-Schradding
expansion of the amplitude in powers of (lns)’-1 . The rules for evaluating the diagrams are reminiscent cf Feynma
Compositeness enters the theory - emphasising its multiperipheral origin - via unitarity when the colliding hadrons f
constituents in a cascade of decays. The interaction of the corresponding constituents from both hadrons causes the

production of multiperiphe}al cshowers which correspond in turn to the exchanged reggeons. For clarification cf Gri
of the simultaneous contribution of muitiperipheral and diffractive intermediate states to the two body amplitude we 1

exhaustive exp osition by Baker and Ter-Martirosyan (15), a rich encyclopaedia of reggeon diagrams which await ~ st

phenomenological implications.

Gribov's Reggeon diagram technique (14) can indeed serve as a powerful tool in praciical calculations for vacuum and
number exchange at attainable energies. The vertices of the theory are, however, unknown aﬁd are expected not to
because of their non-planar nature. These vertices describe transitions between external particles and reggeons, <
and reggeons. The diagrams of the expansion of the scattering amplitude have been systematically computed by Te:

: -1
selecting the importance of their contributions which have been determined according to powers of (Ins) .



The phenomenology of two-body reactions investigated by means of unenhanced diagrams has been perform:
Ter~Martirosyan and collaborators. (18) A Gaussian model of the two particle -3 several reggeon transi
allowed for a closed eikonal expression of the scattering amplitude. A more general exponential paramete:

however, though considered by, Ter-Matirosyan has not yet been carried out.

The success with which Gribov's reggeon-diagram technique has been applied in the eikonal approximation t
system is very impressive. The region of applicability in /t/ of the model, however, is limited to the diffr

manifest in its failure to compare with the experimental data in the following three cases -

(1) Inelastic polarization of T~ \_-O —2 T
The eikonal or optical approximation which has no extra parameter than the one as already intrc
Regge pole (without NWSZ) generates at 11 GeV/c a negative 65% spike around /t/ = .6, whereas
compatible with vanishing polarization. This‘large negative spike is also characteristic for all
absorption models, irrespective of whether they are weak or strong. Glebov et aluisx)mlude in the
calculations however th_e 9 @ 'P/ cut and give the Pomeron pole a slope of 0(1/3 = .6, A
the pomeron obtained in this way helps to improve the polarization (see also (19)) suck ¢hat it dos
sign before /t/2 .4 and agrees with the data for /t/ ’E .4, The contribution of the 'S) ® ’P/
however decreases rapidly with increasing energy and the model predicts for 200 GeV/c a very

polarization up to /t/ &2 .2. The polarization changes sign and drops rapidly to its 90% spike a

is in contrast to wh at the data at low energy lead us to expect.

+ +
(2) Elastic polarization of TI'—P ] r

The model fails to produce the double zerc. The polarization changes sign instead and grows ir

(3) Elastic and inelastic differential cross section

Both cross sections are too small in magnitude for /t/%. 6 in particular the elastic one, which ¢

minimum at /t/ & 1.2 in contrast to the data, and the inelastic underestimates the dip at /t/ ¥ .
In addition, the growth of total cross section at Serphukov energies was not predicted by the optical model.

A correct description of total cross section for various two-body precesses at Serphukov energies was achic

al (20) with modified eikonal approximation by taking account of the formation of particle beams in the inter:



such shower corrections to the eikonal approxima tion, the so-called quasi-eikonal model* (21) could accour

in energy, while the "old problems" in /t/ of § N scattering still remain.

A close analysis by Eremyan (22) of the structure of the T N scattering amplitudes demonstrated the im
a correct description of both helicity amplitudes of the isovector exchange within the frame of the quasi -eil
modification of the quasi-eikonal model, ** Eremyan (23) has given a successful description of the WN sys
' 2
).

range up to /t/ = 2. 00 (GeV/c The modified quasi-eikonal model introduces in particular a slow /t/ dej

shower enhancement coefficients in connection with a more complex parameterization of the P,P' and g

The present thesis describes a further modification of the quasi-eikonal model by giving the Gribov vertice
exponential parameterization, as has been suggested by Ter-Matirosyan (16,18). This then corresponds
prescription for the modified absorption cut and takes into account the effective contribution of inelastic int
optical approximation treats multiple scattering as the independent re-scattering of the colliding hadrons o.
structure. We, however, show that this independence is responsible for thep oor description of the phase
isovector amplitude. Gribov's analysis of the Mandelstam cut implies that the diffractively dissociated ha
mutually correlated exchange of the reggeons. The vertices are non planar. They allow for the temporary

hadrons and depend on the angle between the momenta of the reggeons exchanged by the constituents.

A Gribov vertex in the second order unenhanced diagram corresponds to the t-channel partial wave amplitu
particle-particlesreggeon-reggeon and is the residue of the fixed pole at the first nonsense wrong signature
putting the reggeons on their mass shell. There exists a super-convergent sum rule through which-the ve:

as a contour-integral over the corresponding absorptive part of the off~-mass-shell particle-reggeon scatte:

appropriate sub energy plane.

The first approximation of the reggeon-particle scattering amplitude by its Born term establishes the link t
eikonalized absorption model. Indeed, the fits to the pion-nucleon system produced by the first generation

the reggeon-diagram technique to two-body phenomenology are very similar to those of the eikonal model.

* QEM
*¥* MQEM



As we see Eikonal/Absorption follows as a special case from Gribov's Reggeon diagram technique where Gril
hypothesis is realized, when one replaces the coupling constants by two body form factors which allow for the
up of the colliding particle. This produces a cut off preventing large momenta from travelling across the dia
limit eikonal and Reggeon calculus correspond to the same physical picture of colliding hadrons which scatter
each other's internal structure. This amounts formally to Glauber scattering of nuclei (24). This formal an
scattering suggests an extension of the eikonal model: here the nth order terms of a Glauber expansion of th
is taken between nuclei (composite hadrons) in powers of the nucleon-nucleon (quark-quark) scattering amplit
fattors are characterized by internal wave functions and correspond to a kernel introduced into the nth order
The nucleon-nucleon (quark-quark) scattering amplitude corresponds to the Reggeon propagators. Formally
physics one could regard such an extended eikonal as the mulliple scattering expansion of an optical potential
of a nuclear correlation function. (25} Whereas in first order the target remains.in its ground state directly
nuclear density next to the elementary nucleon-nucleon scatterirg amplitude, in higher order it experiences r
excitations. When in higher order the target has been lifted out of its ground state after the first encounter,

estabiishes the connection with the final scattering in that particular higher order and allows for the nucleus -

state. The closure as the sum over all excited nuclear states is related to the many body correlation functi

form factor.

The correspondence between Gribov and q-number Glauber scattering has been stressed by Lovelace (26) and
future phenomenology. ' We have listed the ingredients of Gribov's multiple scattering expansion and related

different approaches and corresponding terms from nuclei scattering.

Particles . Nuclei

(1) Hadron o~ Nucleus

(2) Constituent e. g. quark, parton oo Nucleon

(3) Gribov vertex i. e. impact factor (27), fixed pole residue, . Generalized form factor
Veneziano fixed pole residue (26), Fourier transform of inte
Dispersion (superconvergent) sum rule of absorptive part
of Regge-particle scattering (28), in connection with ’ Hadron viewed as non-re
Gribov-Migdal reggeon unitarity condition (29) A bound statc and cdue to co

sum over the infinite nun

. Feynman integral over Mandelstam cross (14)
states (30)

Evaluated harmonic oscillator matrix elements: @
partition functions of two dimensional Coulomb gases

(4) Reggeon propagator o Nucleon-nucleon scatteri:



Our phenomenological purposes are to take into account the effective contribution of the inelastic interme
the wrong phase of the cut predicted by the absorption model. We therefore include the mutual orientatio
momenta of the reggeons by relating the Gribov vertex to the hadronic quark-antiquark oscillator model ¢

Pagnamenta (30). We do this by expressing the Gribov vertex product as a correlation kernel parameter

representation. The correlation parameter - the "Gribov c¢" - corresponds, if interpreted in the q@ mod:«
or fluctuation length, which gives the average separation of the quarks. We have, however, found that
phase suitably and produce the polarization of TP —=T’" the Gribov c becomes persistently a negat

obscures the relation to the oscillator length. This implies that when Reggeon and Pomeron poles are b:
- cut their range is shrinking by comparison to the single exchanged poles. The shrinking of range is then
the phase of the helicity nonflip isovector amplitude: it reverses the sense of rotation around the origin
diagram. There are, on the other hand, two essentially different models which actually produce an exce
One of these models assumes a pole residue zero at the crossover position, The other chooses a large r
For both models the ¢ has, to a greater or lesser extent, only a cosmetic effect in the sense that it force
agreement but it is not responsible for the change of the phase. For those models c is positive, howeve:
by the oscillator length, For this reason we do not interpret c,.d‘ We merely state that it is the paramed
effective contribution from inelastic intermediate states. Any analogy to nuclear physics can only help
ization for the Gribov vertices. It will, therefore, come as no surprise that the totally different world

leads to parameter values which are in contradiction to their non-relativistic counterparts.

H butsee 1Xp2a02
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PART ONE_

THEORETICAL DISCUSSION



. I - THE REGGEON AND POMERON CONTRIBUTION TO THE S-CHANNEL HELICITY AMPLITUDE
' OF THE PROCESS A+ C --»B +D

When studying hadronic interactions at high energies with hadrons made up of constituents one chooses appro
momentum frame IMF ( 31). In such a frame of reference the hadron moves with nearly the speed of light :
effect freezes the internal motion of the constituents. We therefore decompose (28 ) the four momenta of th

the process A+ C --» B+ D into longitudinal and transverse components

N R

]

and }O/‘.\.

Co P fug,0)

}04' I e OZ W =
The longitudinal components are large and the transverse components are of the
the total ¢. m. energy squared \Y C'OC’. + P 4 ) 7 fM with Yh and - PS the four momenta of the

The four momentum transfer is {I C )
1 o - 2
Pe-py =1

In the IMF one has Cz'z': 'E‘= ._]Qz

with the Reggeon momenta k

P p
in the exchange diagram of fig.1 g

; .

/o g,

fig. 1



" is two dimensional and is given by the sum of the transverse components of the initial and final three momen
with ‘}:7/; = C PaL iy ) i=AD, ¢ D

This situation is demonstrated in fig. 2

fig. 2
a) Scattering of A+ C ---3 B + D in the infinite momentum frame
b) One can always put the azimuthal angle ¢ equal to zero such that the scattering takes place in tt

The relation between the relativistic invariant scattering amplitude and the centre of mass scattering amplitt

M- A= HCEe)

F



. with ‘}4/*"* and r}ih the three dimensional initial and final momentum, E the total energy and © the :

The differential cross section in the c. m. system reads then

?—'Q—i - ‘ ﬁllhcw)lz
! Cas, +1) C2g3) o

with "Q, the solid angle in the c. m. system, s, and s, are the spins of the colliding particles.

2

Replacing the c. m. scattering amplitude by the invariant amplitude we obtain the invariant differential cross :

R . S e’
QQ { ﬁu ﬁ‘- 0[0.& C'ZS"-H) C-?-&“) ‘

Our normalization factor N is consequently N = 1 whereupon the optical theorem

ot

N, = ClosV )’ Tm N Qg teo)

reads ) o

bys T Ml tes) Tb
C‘ILV/d

U}

0l



We have used the isospin decomposition for a1 N scattering
. 0 ‘
— 4 - H
Hews —st) - N3
— 1
hisp —w~) - 2 N
with the index 0 denoting isoscalar and 1 isovector exchange.

The formalism will enable us to construct for the T N system in principal the isoscalar amplitude by
o]
/ / U
M = P +P+PoP + PP + PP
+@oPpP + PloTEP.. S

L]

and the isovector amplitude by

| |
N p e poP gy poPap s $opoP ol

where /P ‘/\){l? denote Pomeron, P' and !) Regge poles respectively. @ symbolises the cut

theory Regge-Reggecuts should in case of "{;':,9:-’&""/; be cancelled due to Finkelstein's selection rules



We denote a general isospin s-channel helicity amplitude by

MCF)

0! M ¢s b))

A= Agh
with the helicities (X; of the external particles ,Z’ A\glclb . A_ is the total momentum transfer 4 he

where -o isg the jth Reggeon momentum such that for the Born term we have A = h

Further we have 42 = C;'Uf’q)l i ""6 = II{I

'L

B

and k‘l = = Hd\ '

m C‘}o) indicates the overall net helicity. It is a function of the net helicities from the contribution of the indix
“ . N . -
change e ith = C - wit 3\ -\ = apd
. . ex ges /Afa with W [ ) M ‘ ‘ with - ,\4 )‘ = and ,/2(" - >\ —A:D
: AR : < )
6 = O indicates thatthe jth Reggeon has net helicity nonflip

/(40 ={ net helicity flip

fn
= o‘< At
The sum overall net helicities (}’l J. defines the overall net helicity in M ChH)  guch that .
to the net helicity nonflip total amplitude is obtained when an even number of poles change the projection of th

an odd number produces a contribution to the net helicity nonflip total anp litude.

Thus m(p = even) = 0 and m(p= odd) =1



We obtain the meson-nucleon helicity amplitude for the single scattering of the g pole and an arbitrary num
by the Pomeron. There is growing confirmation (5) that the isoscalar amplitude is not diagonal in helicity s

not conserve helicity, It is for this reason that we allow the vacuum pole to change the projection of the nuc:

We decompose any amplitude in a helicity nonflip and helicity flip contributionindicatedby 0 and 1 respectively

. A A
_— (o} o S‘ . \ . [o] ° |
| where W = © —;
) ‘ d Qﬁ o

and the polarization vector is perpendicular to the scattering plane fig, 2b and points along the /3 axis.

'}Q;“ k\g 4
il el U

We write down the propagator of the f‘ regge pole and the Pomeron P (P'). They differ in so far as we ass
fixed pole in its residue sufficiently strong to cancel the present nonsense wrong signature zero (NWSZ) wher

such a fixed pole. We accomplish the reggeization of the Feynman propagator for the elementary particle ex

L
t- 7 )~

S

the replacement:

. 3
! Al N I+ @ 2
t —an’ ot Snm(L=7) 2

4

whereO{ = Jat the pole'é, = ﬂ“'z and T .is the signature _’Y“{-\

s is the total c.m. energy squared and CR

are the masses of the external particle and n

exchanged particle, the energy scale factor traditionally chosen
!
ON is the

since any other choice is equivalent to the introduction of an exponential factor into the residue.
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. . /
falling with /t/ and exchange degenerate O{ = O(‘DN'o( '{: or otherwise SLLCZ) mass formula constraint via
intercept of the trajectory such that 0( Co) = J—-— O(/M 2‘

The Reggeization is due to the expansion of &Ia‘ T C‘){—J)

in a Taylor series about “é = ot plus ins
—;T ¥ -
. lemp TR PR
signature factor and the energy factor S$4 ;’4 -3 & 74 )
2 | ( 5,
‘Thus Jins(k-7) & LT (R-T) | L finm Co(-J)‘l G*‘Mj}
. ot :
‘6'—'0‘% -{rﬂ'\f
A
— | i)
ol+
{=mm?,
-7 2
noting that the signature and J’ factor are unit at (”* /M (for high energy the masses of the four p:
2
irrelevant) we see that this relation is exact at the pole {=rm .
by making the replacement
—

: - ['Cx) Ci-at)
{insol

The Gell Mann ghost eliminating mechanis

1.
and dividing by [—1 CD( ) for natural parity exchange C"() - A']

where /‘7 is the intrinsic i

A W - HEEY:
For natural parity exchange —C— () \T?/] we make the replacement y /.Q{ - - rl (_ 0(,) l
and divide through ﬂ C [ 4ot ) Yy

In the case of . f exchange we obtain

! ST
= — —ol) ['(1-ot ) £
.é—ﬂh{? P 02




This agrees with the Reggelimit of the Veneziano formula if the couplings are constant.

The poles of the Gamma function are at 0 and negative integer values, hence there are only poles in the reson
not in the scattering region 3/ O{"-Il °Z,g »*~ This resembles the propagator of the one particle exchange mc
The first pole at (A = | . In the scattering region the Gamma function can be approximated by, let us sa

For simplicity, however, we use only one.

The signature factor gives a zero at integer values of O{ which correspond to wrong signature points (val
that C-—[ )0( = — 7). This means that in the resonance region poles occur on a trajectory in steps [\ J
whereC;— l )O(' = ¢ that is to say for the pole with f}:‘-._ ~l at 1,3 etc. The wrong signature zer:
since thenﬁ_—- I )°< = [ i. e, the wrong signature -~ T= -C"‘) . These zeros are, since they occur in

responsible for the dip structure of the differential cross section - a triumph for the NWSZ Regge pole.

We separate the t-dependence in the regge energy factor
0( C*’) =1 (o) - / Y
§ Ao = oy fn(§ )N
) f S R vl

gsince we are in the scattering region we have t = -/t/ always.

The Gamma function we parameterize for convenience just by one exponential (there are no poles nor zeros i
[CGeotChiy) o g o~ Ol
r

We split, for calculational reasons (performing the cu t) the negative signature factor g( H)) = | = 2

- 3/; [t

Thus we write the propagator as
T=-1

| '(J,f Cs 1¢l)

I

2
s 20! ; 1.0)¢

. - . s 1 :
3 where Lgl(.o.) = D(é AY‘ /.2 - }260) = — 3L

——



with the Regge interaction region of the nonrotating part -

l ,

3; Bp + OKX b €344
and the Regge interaction region of the rotating part

Ro; = 3rr +°<f C,EV\CJ/“)~__/-T)

When we just consider the pole alene then it is more convenient to use the half angle form of the signature and wri

then for the propagator -
A GX 0
” Jgu/ ‘CB[‘“'NJ/ (.,ﬂhf%a)_

Tt D)=t
G\{; ’ 0(3( Ar, dia i (_ (0, /ﬂjﬂ /(2/

Ch) = 4 °Zf’ CS%.)

We replace the coupling constant (Veneziano limit) with form factors and write for the exponentially parameterizec

Regge residue i. e. for Particle-Regge-Particle vertex where O\ indicates the Regge term
8
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The once fitted values of the residues are expected to be not too far away from the values of the coupling constant -

L
extrapolated to the resonance region t = /m

Conservation of angular moment um and parity requires the introduction of the factors H'/« H’\

ey [l )mw)ﬁ;@a—m

"N
/\
with mf" the nucleon mass introduced for dimensional reasons. is me asured against the >( axis
the phase angle of the Reggeon momentum k . It is measured in addition to the conventional Regge phase which i

)C axis. The phase had to be introduced since the scattering plane JOC’ 9 Lz is not fixed due to the integratio

convolution.

We express .the full tf Regge pole amphtude by . /]“ kz

MS;CS,’Q) C]‘”') 2 qb\L'B"cs);z
) vwith‘ ‘7&‘;‘ &) = /P; (o) C%D)P{f’(”" st 73;:(0)= [Nf"’ FJ C2i }fcw.:/%f’m‘
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For the Pomeron propagator on the other hand we write -

_;';04? Ck)

Cle) =1
G{Pcslh) - l i C.x/ra) 0<?

SIHWOQPC“)
_and since : ) ' T T
e o ot ) A (5 - k)
l T Q_/Q’ - ./‘: (Z_ 52
$iaT R (k) 0ol }ZC T S Che))

we obtain for the propagator T=n

- - 2
/‘z“ Cl-o{,Pcw) - o(% C&C%o) - ,f“‘z)k’

, - ¢

Zos {ECl-o((Pc»)) " —T‘-—:—‘gk‘ﬁ

and the full expression for the Pomeron pole amplitude reads now (with the slow varying cos (Cl‘c’,{r(o}j"é‘ T‘ ”k?.)

into the residue)

M;*Pcs,k) HES
pzm,, 2 73?&)}?,
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5 C l-o{?c:;/) —/7(; cs)

e '”?;p(“ = (Pi,ﬁ t Ry Chalst) — i) were R%- NG



IIT - GRIBOV'S REGGEON DIAGRAM TECHNIQUE

III.1_-Gribov's evaluation of the Mandelstam diagram - the basis of the Reggeon diagram tecimique ( 14 )

In Gribov's determination of the asymptotic form of Mandelstam's diagram the use of Sudakov variables has prcven
in order to separate between negligible and important invariants, e.g. in separatfng the effect for large energy and
from the transverse momentum space. This is mainly achieved by decomposing the internal momentum into a vec
plane of large vectors and into a vector perpendicular to this plane. Equally one can achieve the same by working :
momentum frame, this is because the hadrons are decaying while they are moving with high velocity and the Gribov
the probability amplitudes for decéy and recombination which are in the Glauber picture analogous to the wave func:

momentum frame,

In order to succeed in picking out the essential regions of integration, Gribov applied the Sudakov variables to the
left and right cross of the Mandelstam diagram. For large s, the two body amplitudes comparable with the Glaube:
scattering amplitude will be large but will fall off considerably fast when t is beyond the exchanged square mass.
Regge feature, therefore Gribov factorised the two body amplitude. These restrictions put heavy constraints on
integration, Further avoiding that the asymptotic contribution of the Mandelstam cut disappears, one has to restr!
0 and 1 so the Sudakov contours cannot be distorted to infinity because they are pinched between the singularities wk

either side of the contour. One can work this out by representing the propagator of the left or right hand cross by

In applying the Mellin transforms to the Green's funciion of the Regge poles, one obtains apartial wave decomposiiio
function™a la Semmerfeld-Watson, whereas the partial wave amplitude is expressed as the Mellin pole.Now one obt
for the asymptotic be haviour of the Mandelstam cut built up from two Gribov vertices and two Mellin poles. The G

incorporate our ignorance of decay and recombination of hadrons.

Let us now look closely at how the dominant region of integration is picked out. The main result will be that the fina
Mandelstam cut will be a two dimensional integral of the Regge poles over a plane perpendicular to the incident mo:
supported by our intuition, namely by imagining two interacting hadrons at high energy as two flat absorbing discs,
a two-dimensional transverse world, We consider the two Gribov vertices which represent the left and the right ]
themselves are complicated Feynman diagrams. We already mentioned the condition for the internal propagators t

* . .
infinitely away from their mass shell. So one obtains an integral over A and over the four dimensional mome

* see next page



1 stands for the left and 2 for the right hand cross i = 1 (left)
i = 2 (right)

This 4-dimensional momentum is decomposed into 0<1 and a(z and into the two -dimensional transverse momen
are the Sudakov variables when the momenta are expressed by

k. = o P +BP, + k
The propagator expressed in these variables gives the mass conditions namely the 4 masses depend only on

O(l/ B; 7 V)’.\L;ql.,gé’.l,oi
These are the same variables on which the integrant over o(,/f?, and k; depends, thus fnaking a further int
is left with a function which depends only on @ and k . Since the left and the right hand cross are symmetrical

of the incoming momenta F. and {?,, rhese conclusions also apply to the right hand cross, so that one is actual
dimensional integral over O{'z}ﬂ_ as already mentioned above. How can we ;mw understand that the exchange
analogous to the production and decay of a non-relativistic quasi particle moving in a two dimensional world of irnj
time dimension, namely rapidity, from a source provided by the annihilation of 2 incoming hadrons to the sink aga

outgoing hadrons?

One can find the single partial wave explicitly by applying the Mellin transformation to the absorptive part of the G
This absorptive part is just the imaginary part of this amplitude which is finally found by evaluating the amplitude
the cut which gives the discontinuity. By applying the Mellin transform to the absorptive part of the diagram
the energy plane to the complex angular momentum plane, therefore the power behaviour of the absorptive part en
behaviour of the complex angular momentum. Since the Regge poles are Mellin polesone can now éxpress the pole
amplitude by the two Regge trajectories. Thus the partial wave amplitude is obtained as an integral over the two di
momentum and the 'e‘ contour which is pinched between the two Mellin poles, hence the integral does not disapp«
one cannot distort the contour towards infinity. The form found for the partial wave amplitude can now be ex
functions conserving angular momentum and "energy" namely the angular momentum and energy of the procduced a
relativistic particles. So Gribov showed that the discontinuity across the Mandelstam cut looks very similar to
of two quasi particles with conserved momentum and "energy" in its intermediate states and on its mass shell. &£

Reggeon with a non-relativistic quasi particleone can talk about its "mass" which is inverse twice its slope and ai:

the velocity and further on the Green's function for it either in energy or transfer momentum or in its conjugate v

parameter and rapidity ("time"), This gives us almost a picture for Reggeons which diffuse along in space and tin



We have to notice that only pairs of hadrons serve as a source and as a sink of produced and absorbed quasi parti
say the two Gribov vertices give the production and absorption probability. The Reggeon propagators represent t
propagators, the integration is over the first angular momentum and the transverse momentum and energy and an
are conserved. We can further say that the Gribov vertices do not depend on energy if we are in the high energy
essential singularities appear in Sudakov variables which are of the order of inverse s so that the integral worke
vertex function is inversely proportional to s. Further the vertices are real because of the space like Reggeon
Alternatively to the Gribov perturbation approach to the Mandelstam’ diagram, B Whit(e3%1)erived the genuir
rigorous footing! “.he ' started from t-channel unitarity and projected out the partial wave of the 4 particle integr
to the complex j plane by a helicity contour integral. The contour got pinched in the helicity plane between the Re
"nonsense wrong signature inverse square root branch points" of the product of the scattering amplitudes which |
t-channel integral which in turn generates a cut at the moment it hits the end point of the integral. However, thi:
complicated because one has to treat the signature involved very carefully. The main concluson .’ . Whit

analysis was that this cut has a negative sign, which was always intuitively felt from the phenomenological point o

A brief outline of Gribov's method (14)

TP

17 m (py49) -

. C}OI"I) § C_rl -h'/Q'hl/Pl -laz) f’z ‘)
fig. 4 The Mandelstam diagram .
equal mass, Spinless',(—,; 0)2 - (: F‘_Pa )1 small and fixed

Gribov found asymptotic value for s--3> Qo by applying Sudakov variables to loop momenta:
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decompose inner momenta in plane of light like fourvector and space like two vector perpendicular to this plane:
7/
e
ki = i +fp 4y
/ 2
= I )
R RS
Vi 2
R R I

volume of integration:
' 2
¥k = Ll el etpolthy
2 2
treat left hand cut " OL. = leIS *bq - dig

ml 1 .
‘6/{,»,2 ,dq = C‘lzh"_)c.vzi" Z]S +k_l_'”‘24'f"6

% ie 2
%
'/‘P”\?g"%§§ Q{S ~ CJ.‘D{ ) Q T&\ _F)S + C‘?Il "k_l )‘M’lﬁé

0@4 .~ - Col\-e{)S - C/]?a, —1&)’;"1

o -
F ‘Q“ 9*h) ?'n-.;:::m"»f(
fig.5 : 1 (R-a) CRi-B)s +
put close to mass shell I C IQIJ. - lQJ. +4, )1 —ﬁzCI—Pl +F)

with similar expression for the right hand cut,

After integration over O(. the integrand still has singularities in 4 on both sides of Re ¢ due to the interse
from the third order (s-u) double spectral function i.e. (Q( r'p() and _(,(l_ol ) consequently the integration contou
(Pirich  singularity) Jm
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The assumptions made are -

"

(1) g’; " large when energy la-rge‘. /‘3 5; ~ OC‘)
§

Cla+ley)? a Lo ke,

& - Cp,ar;z <l -l ) o~ QCP'L\’JCV)L;[’*’L)

(2) Momentum transfer IQ 2 p Cj -k )2
v e h)z °c
$23 ? k - l.e f (. + .o N
and masses LJ' Iqu"/ C 1 ) ¢

If these variables become of order 8 ¢¥ amplitude decreases sharply and region is unimpurtant,

Regions of interest:;

¢ 2
LZ-L nl

S S "/

/@/_41?,. o |

A Lo, vH

|

From there it follows d | v )}7)‘ °<.2 S
8.{ o~ Cl—,}!.) Cli- O(J)S
Y
IQZ = O(/}Es “)'14.11 1 kJ-'
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Factorization of Regge amplitude s-> 42

gl N 9\ C_la|9 Cle-le, >2lhz)\c}% C["Zt?/ Cla“’»’t)zlkl)l CI Clqz/o?"«’.‘ez)

Sl =497 CCpma Y, C loi-la, -9 4 k)¢, €4- k) 9£ccf’z‘bz)7c]pl~bﬁj-k}2/ C5-12)2) Glts

Sommerfeld-Watson G's: (Green's function)

» ‘ 7
G- - g &iﬁ %;z Gy, Clet) Cot, s )™
G’ - & cf_z %o Ga, C c§-k) D CCrele) C-RDs )

where % are the signature factors.
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? ?
Insert the G's into the Feynman integral and use k2 = o(/IZS +14,12 ~ h_LQ l Cﬁ - la) A Cﬁl - L.Q )

The result of all integrations :

) , N ?l’L :
rcsﬁz) = LD \g)Oﬁ'Xl g oeﬁ? ?ﬂ %14 ‘ ct l.zﬂ' Calljﬁ) G/"Cla‘f) Gﬂ,IC‘C?'
2a T 24T Liw T x\dq)l *H
C, Ic‘g
’ -/'11"2,;
{
signature g' = - _I_ﬂ’g:——_— ! Q}ZCﬁ‘) - — Mellin pole
L Tk “ §i - %C5)

=3 '
A
- { i = ib t
N %= 5'1 5 = Nﬁ"zl ( (_h[/zJ ) — Reggeon production amplitude = Gribov vertex

X f Oﬁmuo% Aot gd x‘aki) /}‘1 LC"(BJZL{Cl‘"z‘r"q)CC)’.-14,)2"/’41)(Chrb)"rm")((ra
L) (22 )b B, |
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- Y P cor 2
JmFCsa?) = = S 2L 3 ot f offle 2 e,
i < d s 248 h\]’”i =) NM" Clys) Gy CL?1GL, C(§-k )Q.) $
with ([ gﬂ %" - (ot
(\ﬁ‘ . ' :
t-channel partial wave amplitude gj Ca;‘l) _ ;‘?’_ § Ce&" CS/) _d"l J_ F‘C 5/‘%'2)
. N .

partial wave amplitude = Mellin projection x Absorptive part of the scattering amplitude

N

I P etk G, Clky Gg CG-LY)) 2
gj CC\’I) - X__. f &z’l P L ,52

: Nﬂlﬁz
- W)t °
C o PF J ?2 ’ g+ -4 -
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The partial wave amplitude is well defined and analytic in the region to the right of its singularities

po b i
(e ly v integrations run to the right of the singularities of 6)@’ qu and ‘l is anal
the right of ﬂ] CCI) +,€z CCZ)—I _
L% g
. =
| r A [ - .el CC')*"’:“IJ'-GI
|1 ')
* \C‘;) G oL (Y ¢ , N l/v,
x A L‘V"Zl-‘ 1
f, Re ' {
—
\_/ .
{'{37(2 {"9 (4> {_ 7
S l3~ C
integration over ﬂ?_ and evaluatedrpole at /ZZ - d.-;-) - ﬁ
: [
@ﬂ. O > 'Ql Cﬂ; CO) 1‘[(_ G~ /‘3 domain of validity d'ﬂ - 2( Ce,) >£2 CC:Z)
fiveas : O wtewmly T fe §e1-£4,0C N e rignor G

similarly for Y
/
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J-H-[ CC)

fg. 8 ) B

J/'(\/el’ - lca) o, x L L,-
H o

L, %

C1 Tuns between the two poles of G, G!
1

now deformcl_ around the pole in £2

' Q‘ﬂl 0@2
, Cl “

the singularity from G is at /Q‘ = O<l CLQ{) 4 Ig( c(l )

O‘+ 1-£, = X, cm-uf)

the singularity from G' is at

N

| . g , \
/~ RN T A

d#z- Z, q-4

fig.4

Momentum conservation: q = k1 + kZ in the vertices

N
'/61‘ ;/JJ'I-Z )‘f‘

Energy: j+1
Energy conservation: j-1= 2., -1+ ,QJ.- 1
2
On the other hand evaluating the pole contribution of G, G!' /‘h &Cﬁi) ol <k
", -
&%)

AA(,[‘G(L I\)"<I
g+| - ollU



III, 11.THE REGGE PARTICLE SCATTERING AMPLITUDE

Gribov's theory indeed concentrates the unknown into one function - its Gribov vertice N,

amplitude N factorizes due to the factorization property of the Regge residues,

Thus, let us consider the nucleon vertex df D(P - y;"" of

.

r m

e
2
<

fig.lo =
Gribov two-Reggeon cut

. . Ad
- : : A PR
The three momenta r P and P/“ define the scattering in the ) | ()c plane in fig.lt

The Regge;particle



Figal demonstrates that the Regge particle amplitude in fig. 12 .
P N
/ olpdp
olg.h 02 by .
Fig.l2

is a function of the angle ° d’ between the two dimensional Reggeon momenta.



The Regge-particle scattering amplitude has the same analytic properties in the subenergy plane as the ordin
amplitude. ( 29 ) That is to say it has poles and cuts due to the presence of physical intermediate states.

the third order double spectral function is symbolized by the Mandelstam cross -

I

| P ,
N St \ -

/

Kok
| )
®

ANV NN

fig.l%

singularities in the sub-energy plane due to third order

double spectral function s - u
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2
1
the contributions from integrands over large semi-circles, hence -

The convergence for large internal masses sy = k.~ 1is rapid enough that one can rotate the contour and one «

FAVAVAV, VAV VAV AV VA PR, — AN AN

fig. W&

- A J
y olppl () o/, '
NQ"‘(D&P o :&m‘p _f PCC)'
- O P

Now let us consider the AFS cut

L@\ fig 15 -

The dashed line denotes that the discontinuity is taken through the pole (elastic intermediate state) of the prop

AF'S unitarity integral then leadsto a spurious cut with positive sign -

? <
q l'z = .Sl 2 M,  is the total sub energy squared flowing through the blob a\}m/

j%\



~ | S s
N falls off more rapidly than /{, when '

Neey = @Qc”faf) i *BC%W’

%12 - rvn?w'{

The Regge residues possess poles and branch points in the sub energy plane s The vertices depend on their s.

I
when 8 increases. The vertices are cut analytic, i. e. they only have a right hand cut. Thus, drawing the sit

sub-energy plane g‘ = °) % we see that at fixed t
t

®
tao -
— o /l\ :
pryegee Vs foscho
ot
fig.l6-
14, 0

AN= @‘tho - 1 et

—~ 00 qlz—mz-h'e

Which demonstrates that the cut singularity (if integrated up to + 5 ) exactly cancels the pole from the propagat:
see this even more clearly by wrapping the contour individually around pole and cut. This example emphasi
nature of Gribov's theory in comparison to 1. The AFS model is sufficiently convergent so as to rotat¢
in the sub energy plane. However, the integrand does not fall off rapidly enough, i.e. it is still sizeable for L})/-‘

or even J‘l > Thus valuesg};z

o~ /'“'Z do not give the dominant contribution. This in turn demonstrates why



produce a genuine cut, AFS performs all unitarity integrals represented by figis

by taking the discontinuity through the pole of the propagator. The discontinuity across the cut exactly cance

is in fact the discontinuity which cuts through the vertex function due to which this cancellation occurs.

“ fig.l7

Since a reggeon can be represented by a multiperipheral ladder, it needs a large number of rungs to cut throug

cancel the positive contribution obtained by AFS. Then, however, the threshold of the discontinuity is large,

where n’is the number of ladders. Such a large mass is possible for AFS but not for Gribov. In Gribov's the

assumption is the sufficiently rapid fall off in the virtual masses such as s This rapid fall off dampens the

of the cuts with a high number of rungs cut through.

An underlying field theory with convergence properties such as the ones assumed by Gribov - the damping of vi

and momentum transfers when they exceed a particle mass m - has not yet been found. But it is assumed th:

gauge theories could provide such a theory. (15)



II. 11l - GRIBOV RULES FOR THE "RALEIGH-SCHRODINGER" PERTURBATION THEORY

Gribov's analysis of the asymptotic behaviour of Feynman diagrams produced a two dimensional field theory. The
fluctuations described by this field take place in impact parameter space and a variable (rapidity) which formally «

to time and which is conjugate to a quantity which fomally corresponds to the energy.

The Laplace-Mellin transform plays in this a central role ( 15 ).

P s (i
Qg - { ey g RIER D)

[

r A1) g
— L?‘\ AL 'r -
Fhas - 4 4 o T g
C_/l‘ oA
Gribov's interpretation of fig. 18 the one Reggeon exchange graphs -

p,Ueh) £ F LR
(R

- ciht) — .
¢y |- Ackh - (1-5)
1

<
vanishes if %o > é

fig. 18
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A source C of energyl - j and nonrelativistic momentum k creates a quasi particle, a Reggeon of momentum k

2
energy 1 - (k). It will be annihilated at the sink A where it transfers its momentum.

Note l"‘O(Cl‘fz«)- Cl—j) = Oe""zC}?Z)

?0045 | ?:/Zns

minimum

Gribov rules for the one-reggeon exchange graph -

(1) The creation vertex ((D in our diagram) is given by ‘/}ZC_'DC' [4-2) 0 - %7 C J-‘c'{ 6@2)j
(2)  Annihilation vertex (AB) - ‘:B AR Ch?)

(3) Into the propagator enters the difference between the energy of the source C and the energy of the Regge

|
\

l-olCky) —0-3)

SN

Energy of Reggeon Energy of source

= ' for linear trajectory

d’-; AR ¢ Ci-dee))

E - ba? + C \ X Coj ) Non-relativistic
- _— quasi particle
Energy gap: |-olCo)



a) Space-time picture of a Reggeon ( 34)

- 40
velocity in Cﬂl 5 ) space

o
E is the conjugate variable to 7 = /“/goas i. e. rapidity in "time".

o o6

clx

- (4a’CE- /Mcoz))l/l

CCéx) =

The Green's function for the diffusion of a Reggeon, see Abarbanel ( 34 )

Clzr) L

- (1)
and is shown in fig. 19
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b) for Mandelstam cut
fig. 19

/
The mass is /,ZO(/.‘: m

and th



- TC/‘O(C.:)/ '
The damping factor Q in the Green's function implies that for (Z— —2 X only Reggeons w:

C t-cXcCoy )70 (™2 Pomeron survive in the case of diffractive scattering. At attainable energies, however

simple picture does not hold as there are many complicated interactions involved.

Gribov rules for the two-Reggeon exchange graphs

(e.g. The leading cut contribution to 7177-7‘50"" )

fig. 20

1) The vertex for the production of a pair of Reggeons with momenta k., EZ during the scattering of a pion is giver

¢ _d Cr
g &, L2 ST =)
L ©ON Clay k)

with the product of the signature -~ Im sign °1t sign



2)

3)

a)

5)

o

The annihilation vertex

A Reggeon decay amplitude

R

k,

- 42

—f de
(e, L

Annihilation ampfitude of two Reggeons into one

One Reggeon propagator

Two Reggeon propagator

£

l

§ - Ch?)

]

] =&

\

+l "°<2

—CI-J‘)

[ ——~—r b -
Energy 1pitial

Energy
of 1st

reggeon

of 2nd
reggeon

energy

10em)ﬂ

{1 - ol=2y

oZoaz)

% 64‘-04)

M%Ck%)

7) Momentum transfer integration
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Partial wave of the unenhanced Reggeon cut and absorptive part

9

e ' -
. . _%D C&"" =X, -y )
—_— g 1 \’qu ?fol.olz Nejclﬂl,’@l ) NA,ﬂZ:}g?) Q,
Jor—oh -o, |

A
o U~

Laplace-Mellin transform:

| Gy
Jm MCY 4 =-& DQ__. Joa fqb%/:‘)

oA<A

=(bc'éi

4 c’o(,;oez—\’)

- ol ls
| { < (e, N Clr e )Ny Gl ) £

where the N's are taken at j = 0(1 +"<L =1



Semi enhanced cut

N
/

e
~%. Q=) L]
; = lo 2 ey R A
| ﬁ Cveq:, (,pk C@;.}ﬂ o A lellf;) &‘d}dz Q/ }\)Chu. (14217
./ - C_j— X) Cj*' —Ri=2q )

Gribov rules indicate that -

1) the unenhanced graph vanishes unless 57‘;
(4
2) the semi-enhanced graph vanishes u.nlessj’.gi

3) the full enhanced graph vanishes unless ‘f 73?&



IV - A CORRELATION MODIFIED EIKONAL MODEL

With our basic ingredients explicitly defined#we enter the main part of the thesis. The derivation and justific.
modified eikonal model where one Reggeon and n-1 Pomerons can be exchanged and where non vacuum as we

are allowed to change the projection of the nucleon spin.

We symbolize such a model by the typical Gribov diagram

Nz

We understand the scattering amplitude H CS/Q) as expanded into a series consisting of nth order cut ter:

helicity contribution. Thus we put

&

o, H C 8¢ ﬂnfpl-/\.;.z...,c.m

e —

“""“‘1‘“

and write down the s~-channel helicity contribution to the nth order.term in Gribov's'multiple expansion' of the

A+C --3B+D .
‘ t~ m(p) Uity = ne Um - m,
M s ) ZV ! S "N e e TV G Cs) o0
! At
_. Yo, —o .

A pp W-24



The reggeon 4-momenta are q/:r C,Ol&,; ,0 ) since, for high energy small angle scattering the reggeon momen
approximated by the transverse component of the final three momentum of the colliding particle projected onto a
perpendicular to the scattering plane. The longitudinal momentum transfer of the projectile has been neglected.
scattering ( 24 ) the two dimensional integration approximates the integration over the sphere by an integration

which is tangent to the sphere at forward direction.

,QJ 4 . &
Thus we use i« ,',:r-—“t; and Q = — ‘E, for the total momentum transfer A ) > k .
=

The helicity sum splits into net helicity nonflip and net helicity flip indicates by n'1(p) which is a function of the i
helicities u; carried by the exchanged reggeons, counted by the index i from 1 up ton the order of exchange. TI
denote reggeon helicity nonflip and the u; = 1 reggeon helicity flip. p = u, defines the net helicity such that eve
in net helicity nonflip and odd p in net helicity flip. Gribov's two body amplitude has been written as correspond
multiple scattering expansion in powers of the basic nuCIeon-nucleon'(quark-quark) scattering amplitude - resem!
nuclei scattering - and in increasing orders of a many-?)ody transition form factor taking into account the contril

of inelastically excited intermediate states between theinternal structure of the colliding hadrons. In addition,

i
amplitude includes factors for shower formation whiclh are reminiscent of the Michigan 7\ .

The momentum conserving delta function enters the reggeon phase space as
|

' Oel-f).,c“) = glC 4 — ZE’,‘) \ﬁ..ozel’*,;
= o




‘We consider the nth order term of the correlation modified
eikonal and symbolize the dependence of the Gribov vertices on the
angle of the exchanged Reggeon and Pomerons by the nth order

extension of the Mandelstam diagram

The Gribov vertex factorizes in the case of TM  scattering into a nucleon (AB) and pion vertex (CD). Only :

nucleon vertex can helicity change take place. We give N the following functional expression -

~

%Cr) Mibaensbon * e “"“‘T" MMyt N | - Mo
A S N Ny ™ Chooiny Ng C e, ny TV H™ (e,
| I8

The H's and gt‘f are angular momentum factors and Regge residues respectively as defined in II (page 19). T



runs from 1 to n where i =1 indicates the Reggeon and i = 2,..n the Pomeron-exchange. The interesting te
any deviation from 1 reflects the effective contribution of inelastic intermediate states besides the elastic pc
The shower factor /\ measures the normalization of the contribution of such inelastic intermediate state:

their dependence on momentum transfer,

In a modification of the eikonal model, Ter-Martirosyan (21) has proposed the quasi-eikonal model by introd
reminiscent of the Michigan }\ . Kaldalov (35) has determined its value from pomeron induced production

represented by the following three diagrams -

N = N o/
— ) = l + 6—- (.5 E
_ P 4 P ' P =>> ¢ 20 €5
) O N NG 2.4 )\_N = l.( % 0.2
v
. fig, 23

The /\\ then takes account of the formation of particle beams in the intermediate states and is experiment:
a deviation from the eikonal model due to the ratio of the cross sections for diffractive dissociation to the cr
- elastic scattering. They can be s-dependent, see Kaidalov (36) and for applications sece Boreskov et al (20
The way to take into account shower formations m intermediate states in the frame of the quasi-eikonal mode
the factorized Gribov vertices as expanded in a series in the complete system of physical intermediate states

in the language of nuclear physics to the expansion in an increasing order of the nuclear correlation function |

// = . e O L N U —
f“'} | j’g ?é 24 ?; '
' Q) - fig, 24 b)

The crosses on the intermediate lines indjicate that the approximation of the Gribov diagram (second order)
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fig. 25

is not a Feynman diagram nor an AFS diagram since the intermediate particles are taken on mass shell

!

) 2 2 . '
> — 4l JC ‘] - ’MJ ) - #°'1? see Ter-Martirosyan (16
97—l {
. ”
¢ l
1. ‘
the M do not depend on the masses §, = A, ‘and ;= tuzr ()”,4}’)1 -9, ) This procedure leads to the

"optical" contribution which leads to the eikonal model. The optical contribution agrees with the Absorption
initial and final state interactions are the sam. The singularities are on the left and right hand side of the su

plane. In the absence of enhanced branch points, i. e. small masses 8; the absorptive part of the Regge-sca

amplitude falls off more rapidly than 1/ §;. One can then rotate both contours such that -
. @ © left =~ right @
— <
_ NNV O ANV AMAn—o
N*QNF*K@"-H{S;‘ - ‘ ) LA
fig. 26

and obtain a superconvergent relation for the Regge-particle scattering amplitude which leads in the case of t

dominance to the equ;ility of initial and final state rescattering, i.e. the absorption model see Kaidalov (28).



The contribution of each link in fig. 24 b) increases due to the shower formation in comparison with the elastic
states in fig. 24 a). The Reggeon -induced production of a cas cade of particles will be different from the one
by the Pomeron.  Also helicity flip'might contribute differently from non<lip. In practice we only fit one nu:

iy M2 m-2 - Cm) PR
AT AN )

per helicity.

v N

Note that a determination by Ravenhall and Wyld (38) led to the result that from four diffractively produced sta
. — . T T = 0%m
\.+N*(,lﬁoo) ‘ T,T+N*615=zo) LU + N¥ Ci(50) ; Ae N in U P G

only two, namely AI+AJ and T¥N*(C /gqo/ made a significant contribution leading to /)\ n l..Z

to be generally assumed that only pomeron-induced production is significantly large. In contrast, those induce

and helicity flips are small (21).

What remains, and promises to be of considerable effect by comparison with the absorption/eikonal, is the der
momentum transfer, :not only on the overall one. ° A but also on ‘E.—lz ° Eﬂ: which leads to a sim
dependence on A and lﬂ( and lel i.e. a renormalization of the shape of the cut and of the poles t
higher order excl—;anges. Thus the resulting eikonal wili be modified in its overall é\ dependence and in ad
phase undergoes a modification. This \gl . an )/z_h , é\ and possible s-.dependence is represented byfl:

~
in the case of second order exchange one could parameterize N algebraically by .

-

{Itl l |
- N — ¢, Clovkl — ¢, lo -k
2 g A
C\ +. Clel th )" R2 ) or exponentially N as sug
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These form factors reflect the composite structure of the colliding particles as they do in the quark model cal
of Benofy, Shrauner and Cho (39) and Harrington and Pagnamenta (30).

We choose the exponential representat
as to obtain simple Gaussian integrals.

~~
In the case of the nth order contribution we parameterize such that N
factorize. This is accomplished by the following parameterization:

N Q00 < =T S gl )t e G -

Pl 4 Cla, ~h)
4 'Chh‘_lak)’ ‘]

Wewrite an analogous expression for

o
N, Cleiensbe, ) - ’QT’(_ L RPN

4_Ch-l"133)1¢ eor Chy -

— e e L

+ C'Q/,_. "b/... )1_]



In a further simplication we set C.=C
. —“-

in this case

rm Cdo) N Ak,

N 2
NNCI’E""'E/«,L}) Nr(_l’i."..h,‘,él) cdi-mc

/M(r)

MAhtsaf,, |
~ K Clv) - p

due to conservation momentum transfer /:\ = O(’f»f we call K the correlation kernel and the correlation p
the "Gribov c¢c" . The n in the exponent is the order of exchange. The introduction of a correlation kernel in

cut integral has been strongly suggested by Hégaasen and Krzywicki (40). There the forms ~

‘ T - C (la~ley)?
k:,=£43@,@z~and k’/@ )

were put forward. Another form is the one by Lovelace (26). '.l/\ - o& 41?.' e"l



We .\»v11ite the nth order contribution to the s-channel helicity scattering amplitude as

o0

. | - |
MM TPl = VO Mk e M0 R KT ek 4) §UC - 2 ) ol e 2,
-y ax

with M:‘?ICQ’@'Z) - (g{i )M /Q”//Mld)‘ /“c';S) A i (V)@r Cs) o2
. - .,

an Yo 2y = sy VA - . ARIQs :
d M(P"Cf,kd) %ﬁ) q P (_l)/«\, Q/’l déﬂ /fg’;u ) 2

- ‘7;“; cs) b2

as defined in II pages 20 and 21, Further, we put the corrclation kernel as on page 52 of this chapter

L) Mq‘é 42 - ;,v;‘ré Yk;:
< Ck{""hﬁ/é) - /Q’ :,T

Before we discuss the normalization L}U" we remark on the crossing symmetry (up to 1/ ) of the Gribov cut. The sym
]

of the cut under crossing s--» -8 is the product of the symmetries of the Reggeons, (Pomerons) ll/]/ﬂ. ”]1‘1; Hﬂa ”/‘
. ‘..
The signature of the cut is the product of the signatures of the poles. ‘



In this respect it is interesting to remark that the absorption model as mentioned in the introduction (page 2)
traditionally calculated with the help’ of the Sopkovich prescription which lacks s-# crossing symmetry, i.e.
it is not line reversal. @We mentioned that the Gribov cut corresponds to the absorption model, see page 49,
if injtial and final rescatterings are equal. This is however, generally not necessarily the case. How one

can actually restore crossing symmetry in the absorption model has been nicely demonstrated by Quigg (41).-
It consists of adding the crossed graphs to the conventional graphs of the abéorption model, i, e, to add elasti

scattering of an initial state particle with a final state particle, as shown in fig. 27

\O/ Y N N N o
/ \\ N \ /é_g\ i—‘K 0;\; +/Q/ 4 .

fig. 27

Quigg's crossing symmetric
absorption model

Quigg demonstrated further how the crossed terms are already included in the Gribov cut. The Regge-partic

scattering amplitude contains all possibilities - thus also the production of crossed reggeons.



Quigg's argument

Averaging over narrow resonances in
two channels

fig. 28

The Gribov cut includes crossed and uncrossed graphs. The absorption model can be made crossing symm

by averaging the crossed graphs with the uncrossed graphs., The crossed graphs can be understood since th

Regge-particle scattering amplitude contains all possible orderings of the constituents namely a and b interc]

and ¢ and d interchanged give crossed graph as in fig. 29

fig. 29 Gribov cut including crossed graphs



We can now state more precisely the limit cases of the Gribov cut in the case of second order exchange
We write (2) ty 0L
M = N GI GJ .

which reduces in the case of N = const. to the absorption model with coupling constants - see Adjei et al (4
initial and final rescatterings are equal. The contour integral in the sub energy plane includes only the re
of the intermediate elastic pole. The residue is a constant. The N's can contain form factors instead of
coupling constants. Any deviation, however, of N from the product of the pole xzesidues involved in the ex:

2
is a way to pick up contributions of other singularities in the sub energy plane. By writing M( ) as

M . 5 M, M, ke Ral

one can say that any deviation of K from 1 takes effectively account of the contribution of inelastic intermed
states and K = const. corresponds to the crossing symmetric i. e. line reversal version of the absorption r
such as the one developed by Quigg. However K= const ¥ 1 only determines the normalization of the Grib
N, i.e. the contribution of the inelastic intermediate states to the cut in forward direction. K # const. o
hand measures the effect these intermediate states have at /t/ % 0. This has a ;:onsderiable effect on the p.
cut., Note, however that K has to be real so as not to destroy the crossing symmetry. In practice a smal

part might be feasible as long as it does not break the symmetry too drastically.



H(M) - 4
=V j H\'H'Z"" HM I"X’dzhxa--tﬂzbk

)
Now we are going to fix the normalization 1%

H(' ! is the nth order term in an eikonal expansion if K fact

First let us consider spinless scattering .

For this reason we have chosen it as on page 51,

Other forms, such as
mgp) Y b 2 .
<&y Cly - Ak;) o L L
AT ﬂ,‘ L C\' C r ~

N =ﬁ" a N h

N
k;

)T

~

Y

when *

T - T Tl 4T

leading to

do not factorize at once. However, the quadratic forms with crossed terms can be diagonalized by carrying

similarity transformations.



We now write down the s-channel partial wave series for an elastic scattering amplitude, With our normali

see I, page 12, and Appendix page 207 we find 50

HGsb) = L-@]H) HJC&) ? C et

We are going over to the impact parameter representation, see Appendix page 2l and make the replacemen:

i — 29 (hat et Peew oy T, )

Qo
e Mot - jig b MCs) T Clhig) 28

M CGI() is the sum over all nth order products of the phase shifts, i. e, the Regge pole amplitudeswhich
Fourier transformed from momentum transfer space into impact parameter space. If we call these phase |

then the s-channel partial wave reads

M_Cfn&) =

— |

}2(‘2/15(,@.1))’“ o 24 §C6.0)
/ = 2

. Ml
H m=,
(‘8(() is the partial wave amplitude for the angular momentum J= "4 b-% where q, is the mag
of the s-channel centre of mass three momentum /'PC /‘PD/ for the scattering A+ C --» B + D and b the i

arameter
par Umd‘qd/«cmmzfep

4
beam
/ fig. 32:

. _]_Gvalt
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H C&'/D )»\cFourier transform back into impact parameter space x H C,glg )

o

,Vf 0! & Mcss) L%
S NAY
0
The connection with M (£,4) = ji g A M) 3, C 1811) 26 ie found by making use of the
, Ay |

}kCoJ‘f

oLy
identity d\m Cx) - C./{M/o&- j] 2
(")
] (-

QOSMfr:éf{?
thus % }A,@ le N 4114 | 3
\\/Q, A - KK’Q% &ﬂ”]‘l"ﬂ"‘@ 94 _ oiv‘gﬂ‘% & Cl181)
-\ . 0 [>] °

then -

%
Hegp) - & f g H MCs8) K%

ozl;ﬁ -Jo

) 4'")
the partial wave amplitude M C’ﬂ S, E’ ) can be obtained by inverting HCS/Q) = LE { /6 HC{‘ £ J; C

A [»)
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by using the Fourier-Bessel integral

% P
5@‘) = f J. Coéx)oe{ § §C§’) JMCo{x’jx’ch’j kol
, b .

g
o MGty = 2 4 ) MCoa) T, Coner) 2 iny
VAT
fo) H C-",,@) N~ Fourier transform from momentum transfer space into impact parameter spac
r .

o . {}0
° —'l.]"‘_)’ o(’& Cm)
N T s - zg (54)
1% 2, -

o =

/)MC:,@)= Z (Lﬂﬂs}) 5 (£) —  Lidad)

=

and since

XCs8) = 2 {C.})

and we define the eikonal phase in terms of the phase shift:

. Cl) . A — 1 .fl ‘. \"/.
then we have A C"I'g) - OZ/' JCS/ G) b AQC g) , - J
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now we compare this withour nth order Gribov integral:
L
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in order to be able to work in the impact par'ameter representation we choose the Fourier integral representation
of the delta function:

A
2 =), ! FCA-T kg
fu- Ri) =  — = :
<) (Awy jf; %

then the Gribov integral becomes

>
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Thus we write for the nth order contribution to the s-channel helicity scattering amplitude for the exchange of

Reggeon (theg? An W ‘]O —> Y% ) and n-1 Pomerons which are allowed to change the projection of the nucleon spi

is not helicity conserving.

(=) «m=i Y r
"MoT (b ) - Dl & — — {M Cad) « == HCst) W Tty £C8 -
(=)L (777D

with Reggeon, Pomeron and the correlation kernel as defined on page 53 and in addition the Fourier integral re

of the delta function we obtain -

M Pesty =

C_Mqv AZ

CAZ. +mcr>)d>)§gl ]hﬂ//C/‘d, bk ) - quz %
- ‘ECM) Q‘
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(e} (Y™ G5 Ctmy 0

e al M) A X po
and (‘1?4= (v) + hC r owcl /\'I?‘J: ,f;’ﬁ-mC.. N

The conventional Regge phase has been defined along the?_c axis, see also part II, page 12, fig. 2. The plane of f

Reggeon momenta _151. _152 and the total momentum transfer A is then as shown in fig. 31

A |
b\cw. ¢
NV ol

fig. 31

the mutually orientated transverse components
of the Reggeon momenta.
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We then write

.
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and consequently the Regge eikonal reads
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We now carry out the integration over momentum -transfer 1_(_1 and l(-j' i.e. the Bessel integrals:

in order to evaluate the integrals we make use of the Fourier-Bessel transforms:

Yo
/ 1
o - X?’ . = |k
D Gy - B %
. (Lot )" p= Y

Thus we obtain
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Using the identi;y

we obtain -
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et
The nth order formula for the W(P helicity cut contribution to the s-channel helicity scattering amplitude
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In II page 16, we have decomposed an amplitude by

M - ]\/lo'go a9 CISMX{)) Ml with ¥, the unit matrix

Thus we obtain for the second order helicity cut -
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and for the third order cantributlonv
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Our correlation modified eikonal model then reads -

Pomeron exchange only C 1{] S 02/»)\{

b
MOC‘/QIC) - _L_ %C@, C’;Lz oZ()‘M(g )ﬂ, oY,
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* . The partial wave amplitude for the contribution of the Pomeron, which can change the projection of the nucleon spin
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and for the Reggeon:
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Helicity nonflip

And finally we state as the second order example, i.e. the correlation modified Gribov-Absorption cut
(it is this formula which we use in our phenomenological investigation)
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'V_~- THE “"DERIVATIVE RULE" APPLIED TO THE CORRELATION MODIFIED WEAK ABSORPTION MODEL WITH
(A) TRADITIONAL POMERON INPUT AND (B) HARTLEY-KANE POMERON INPUT

(A) At a preliminary stage of our investigation we applied the "derivative rule" in order to obtain the helicity flip ampl
We change our notation such that - .

1 oo _ A <
’b*'S" A PYERL) = 27% Co, R2 . Gy = Jok N _ pe

P T2 8 B e 2 . P A 7

2 BL‘;

2 FA Qo) p R
and write for the Regge pole: H‘Cfllg.) M 3}_’_4,. 3 /a/ and for the Pomeron, HIqugz‘): }-{/{7

' — AN CD)
where  AiA | Ae -Ag B,~3 By Bi- v’

Inserting the pole, the pomeron and the correlation kernel into the Gribov expression we obtain -

Helicity nonflip cut amplitude
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We now apply thé derivative rule @A.- CJ/ M) = Co — d“ CJ/ “l)
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where <, is an arbi
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Helicity flip cut amplitude of correlation modified weak absorption by means of the "derivative rule® with traditio

Pomeron input

we obtain -

Tote o - , ‘
MCs,ut) = o C«xt;.)}js“ 'Tase A% e ]

o —
“CS/[-\)+~ = Co C‘?-_’/N() S— —l— Qor %z ﬂ‘ J »

(B) We now state our correlation modified version of a HARTLEY-KANE POMERON INPUT (10) although the phen

investigation has not yet been carried out.
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Correlation modified weak absorption with Pomeron input % la Hartley-Kane
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We now use the "derivative rule"
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\
And find the following result: Correlation modified weak absorption with Pomeron input a la Hartl

helicity flip cut amplitude by means of the "derivative rule" -
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Aol 4+ =5+ o
e (L A

Q—VE A (t:>+8-_+4(_)
. M_} g
% = Cbice) s . (bs2e) 543+ 4c) ~(ba ) |
Cbe & 44) /Q T G L >

. " R/, ) (fos — %) . (5o +c ) ?
: I )
¥ Z /Q- lo.f‘_&; the ) by + Qi 4¢,

/}:|‘Q 50 + 8; + !‘_ . %

—

»

( Lo + 31"’ 4(,)

- }uo%)_ Che+ <c) 3@; 1. g_ (Biv <) T{o./T-%

<~31+«>?C) Ro _ 4T
' L+3.¢;m J, § B <8:.+QC) Ry bng -



- 77 -

PART TWO

PHENOMENOLOGICAL INVEST IGATION*
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A discussion of the'mechanism by which the correlation modified absorption model rectifies ‘the inc

JPpehaviour predicted by traditi onal reggeized absorption.

The pion-nucleon system is completely determined by 4 complex amplitudes, namely both isoscalar
amplitudes in their helicity nz;n-flip and helicity flip states, These amplitudes can, in turn, be ext
experiment if there exists a complete set of measurements of the observables, i. e, the differéntial
the polarizaticn and the spin-rotation parameters R and A. Such a complete set of data exists only

laboratory momentum of the incident pion at 6 GeV/c and emall momentum transfer. DBeyond /t/ =
the lack of spin-rotation data prevents us from having & non-ambiguous view of the amplitudes' stru
case such an amplitude analysis (S ) is model-independent only up to an overall phase unless the me
analyticity (5 ) is used. The overall phase is associated with the dominating amplitude, namely the
isoscalar amplitude. The pﬂase away frorn forward direction of this amplitude, as found by Pietar
to considerably axceed the vaiue as predicted by Barger and Phillips (12 ). This is consistent «ith
Aminbais ¢t al. (5 ) By assuming that the helicity flip isovector amplitude is strongly regge-domina
conclude fromn the constant phase dif'ference which they have found to exist between the helicity flip

halicity non-flip isoscalar amplitude, that the effective trajectories of the two amplitudes have equa
/t] = .4 GeVZ. Pietarinen (5 ) found a ratio of real to imaginary part of the isoscalar helicity nc
up to -50% ag 6 GeV/c for [t/ =.3 GeVe. We have incorporated this piece of information into the al

our effective pomeron.

- f’ie_tc,\(.\‘r\e'n
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.

We now discuss how the gradual alteré.tion of the effective Pomeron phase in connection with the introdu«
correlation between the simultaneously -exchanged pomeron and reggeon in an absorption model can prod
structure of the helicity amplitudes as found by the amplitude analysis at least at small momentum trans
fixed laboratory momentum of 6 GeV/c.

We represent the amplitudes in the complex plane such that they are characterized by the following quan

L Their strength g in forwarci direction

2, The slope f\k of the agsumed exponential fall-off with /t/ of this strength
3, Their initial phase }

4, The rotation velocity @ of this phase in dependence on /t/

Thus we write any amplitude as

T ety P LM A0 2]

"2 ~‘P,C,‘th“1rvr\
Its part.icular type is specified by its indices. These indices indicate =

1, The upper left indices 0,1 correspond to the t-channel isospin state

2. The right indices denote individual s-channel helicity states The net helicity state m is the
individual helicity states n; where nj = o is helicity nonflip and n; = 1 helicity flip if n{ + np =
helicity nonflip if n} + np = lA n =1 helicity flip.

3. P,C,th, stand for the pole, the cut, their sum which makes up our thecretical total helicity
exp denotes the amplitude as extracted by amplitude analysis from experiment,.

4, The lower left indices 1,2 refer to the non-rotating and rotating parts respectively into whic

"the theoretical amplitudes due to their regge signature.
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V1.1 - The Crossirg Symmetric Weak Cut Reggeized Absorption Model as a_special case of the Gribov cut.

By setting in the Gribov cut integral the correlatioh kernel tqual to ) we recover the absorption model in’its cr
form., We use the weak-cut version of this model as a starting point for the disctission about the possible modi
traditional absorption. Gradually we then introduce the correlation in several model variants and observe in ¢
deviation of these model variants with respect to the reference model, We mean, by weak-cut, that the fixed p
present at wrong signature points will not contribute multiplicatively to the regge residues. Thus they are not
nonsense wrong signature zeros (NWSZ). Since the pomeron stays positive throughout /t/ and the pole changes
will occur in the convolution integral and the resulting cut turns out to be small, This is not the case in the str
model which was the alternative version originally adopted by the Michigan group. In this view, the third orde:
function is assumed to have strong influence on the regge-residue in the form of strong fixed poles which cance
the help of an enhancement factor 1} A>3 pole and cut become comparable and generatz the dip by interfere:
cross-section. The weak-cut version, in contrast, just fills in the zeros already predicted by the pole.( Unfor
the dip to smaller values in /t/.} The weak-cut model does not add any parameter beyond thorse already presen
ie. =, There is still a considerable amount of flexibility within the frame of t'x'qe traditional weak-cut reg
<, g. the reggeization allows a choice of ghost-eliminating mechanisms, exponential factors in the residues and
the trajectories. We adopt the exponential factors in the residue and choose an enez"gy scale fuctor s = 1 (GeV
choice is equivalent to the introduction of an exponential factor in the residue. Thus we abseorh any deviation fr
Our trajectory chooses nonsense., Thus both helicity poles vanish at /t/ = . 647 for our particular choice of int

rho-trajectory. We employ the Gell-Mann ghost-killing mechanism and the Gamma fuactizn left over by this h:

exponential parameterization of the residue function.

The parameters in Table [ provide a reasonable choice for treating pion-nucleon charge exchange at 6 GeV/c w
our reference model. We state explicitly the dependence of the cut characterizing quantities on all parameters
down initial cut strength, shrinking velocity of this strength, initial phase angle and rotation velocity of it. Thi
on the level of amplitudes, what is needed to improve absorption and trace the effect the correclation has on the

We use six Regge-parameters which are -

A

1. the two helicity dependent residucs B;'l A at /t/ =0

2. the two helicity-dependent residue slopes )\?l of their exponential fall-off with increasing /t/,

3. the two helicily-independent parameters which determine the linear regge-trajectory i.e. the intercep
the slope C/\é’ . "We relate intercept and slope via the following expression 0(5(0) =1 -O(\é m?j’ wh

- 2
mass of the rho meson with mf =,773 GeV/c .
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There are four parameters for the effective pomeron. The traditional absorption model is characterized by its use
helicity conserving purely imag'ma;\y and stationary pomeron as the absorptive factor, In this way we have effectis
only for the pomeron, the residue B?-P at /t/ = D and the slope )\GP of the exponential fall-off with increasing /t,
parameters by fitting the helicity nonflip isoscalar amplitude as taken frorm the amplitude analysis by Ambats et al.
the opacity is fixed at Cop = .79. Then the model will involve altogether five free parameters in order to describe
cross -section and predict the non-vanishing polarization of the recoil nucleon. The parameter values in Table I d¢
"best fit" to the differential cross-section, They rather provide a good set of initial values liable to systematic img
clearly demonstrate success and failure of the traditional weak-cut reggeized absorption model. For this reason w
and Ilb the characteristic complex vectors of the helicity nonflip and helicity flip amplitudes respectively, These ai
cut, the theoretical total amplitude obtained as sum of pole and cut, and the total amplitude as found in the amplitud
et al: One comment to the amplitude analysis is in order. Because of the arbitrary nature of the overall'phase. At
all the phases relative to the helicity nonflip isoscalar amplitude, They denote a parallel component pointing in the
reference amplitude and a perpendicular one orthogonal to this direction. At /t/ = 0 their reference amplitude de
purely imaginary and corresponds to 101°, Moreover by assuming a regge-behaved helicity flip isovector amplitud
phase difference observed between the isovector helicity flip and the isoscalar heliéity nonflip amplitude of about 60
drawn that both amplitudes rotate counterclockwise with increasing /t/ and with the same velocity. This phase beh:
respected by transferring from "parallel-perpendicular' plane to the complex plane. However, beyond /t/ = .4, tt
difference diminishes increasingly fast, We present in Table Ila and [Ib the numerical values of the amplitudes at ,
by Ambats et al in their analysis. These values are: /t/=.00, .05, .15, .25, .35, .45, .55, Forther
we can only compare with Ambats {otal amplitude at /t/ values up to /t/ =.35. For the values /t/ = .45 and .55 w
the magnitude but not with the phase, since this phare dcpends on a model for the isoscalar reference amplitude. (

In Table IIc we arrange real and imaginary total theoretical amplitudes as calculated by the traditional absorption r

the polarization according to the formula -

Polarization = '-ZIm'I“oT]*/differential cross section
The observables as given in Table IIc are given by Ambats for the additional /t/ values of /t/ = .65 and .8, These
exhibit clearly the structure of the observables., Ve see in fig. ] the differential cross section measured in mb/ (C
contributions to the momentum transfer distributions from the pole, the cut, and the pole + cut, Compare Table II¢

results, the theoretical differential cross section in column 3 and the experimental values in coluran 4. Immediate
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theoretical curve deviates from an excellent description of the experimental differential cross section up to /t/ = .-
this value, Although the dip up to /t/ =.025 is at the correct position, it is vastly underestimated. Furthermore,
at /t/ = .8 cannot be reached at the heights it should be. Nevertheless, beyond /t/ = .4 the theoretical curve still

qualitative feature of the data,

In Fig. 2 we see that the predicted polarization is disastrously wrong. . This is particular to the traditional absorptic
strong or weak nature, and demonstrates its most serious failure. Since the rate of change of the differential cross
to the scattering angle is proportional to the polarization, we observe that the 90% minimum of the polarization is r
position as the dip in the differential cross section, This dip in turn originates in NWSZ of both helicity poles at /t/
fills in the zero insufficiently, yet moves it to the désired position. A different choice of the parameters for the tr
exert a strong influence on the pdsition of the dip, and the minimum of the polarization. They could both be moved i
for O(f (/t/)=.5-1,00 /t/ for example. We see in fig. 1 that the single rho pole fits the diiferential cross sectior
the zero which has to be filled. in. In particular the pole alone exhibits the forward turn over around./t-:"/ = .05, givi;
the dominating presence of the helicity flip amplitude \x;hich was only suppressed by the angular momentum factor at
to Table Ila),

Of greater importance to our discussion, however, is the specific way in which the traditional absorption h.appens to
polarization., The three parts of Table Il contain all the information on amplitude level necessary to understand the

The helicity regge poles do not differ in their ;;hase. They start (in our particular case) at 43, 20° and rotate anticl
72. 36° per units in /t/ around the origin of the Argand diagram. With a confidence up to /t/=, 35 the amplitude anal
behaviour only for the helicity flip amplitude, The helicity nonflip amplitude, on the contrary, rotates in a clockwis:
polarization is generated by the relative phase difference between the helicity flip and the helicity nonflip amplitude,

should be positive., Traditional absorption treats the helicity nonflip pole as relatively strong by comparison with the
strong atsorption in the helicity nonflip case is accompanied by a phase of the cut relative to the one of the pole whic
let us say, typically 5°. Such a cut makes the pole lose about one degree at /t/ = 0. By comparison, although the !
out of phase with the pole, its strength is so weak that it affects the pole less in phase. For this reason traditional a
with positive polarization ; due to the small positive phase difference.” We have chosen the slope of the helicity flip r
helicity nonflip residue. (See Table I). This increases both the relative p‘h.ase of flip cut to flip pole and the flip cut

roughly in comparison to equal residue slopes. Due to this the positive start of the polarization is lost, This differe;



with respect to the major alterations which traditional absorption has to undergo. The reason that traditional absor;
polarization only in a very small /t/ region 04 /t/ L . 075, is due to the different strengths by which the helicity pole
helicity flip pole loses slightly on strength after it has been absorbed, the effect on its phase, especially for small /t/
‘behaviour is sharply in contrast to that of the helicity nonflip pole. See Tables IIb and IIa. Away from /t/ = 0 the p¢
by the relative rotation velocity per /t/ of helicity nonflip cut and pole. In the traditional absorption the rotation velo¢
with the pole is almost negligible about 4-5 degree per /t/ compared with the 72° of the pole. Thus, although the cut
the pole is already at very small ./t/ out of phase with the cut by 180°. From then onward, the absorbed pole starts t
rotation away from the weakly absorbed helicity flip pole whose phase remains virtually unaffected.” Thus, in princip
between helicity nonflip cut ana pole passes through‘lsoo the phase difference between the two helicity amplitudes is ¢

positive to negative.

We have, in fig. 3-9 displayed the structure ¢f the helicity amplitudes for the isovector exchange as obtained with the t
reggeized absorption model, Fig 3 shows the moduli of the helicity nonflip amplitude. Its structure reflects the two f
absorption - the NWSZ has beern shifted from /t/ = .65 to a smaller value in /t/. At the same time the zeros of the r
part become separated. This separation converts the zero of the regge-gole in the differential cross section into a dig
the differential cross section., Thus the separation is actually needed, but wh at the différential cross section cannot te¢
separation has unfortunately been arranged the wrong way round by traditional absorption, AThis could only be reveale:
data now available for larger values in /t/. The Argand diagram in fig. 8a clearly demonstrates the zero structure of
amplitude where we have given the pole and show that the cut places the zero of the real part at /t/ = .25 and the zero
pa;rt at )t/ =, 325 (GeV/c)2 . For comparison we have drawn, in the same figure.vthe amplitude as obtained in the am;
Ambats et al, which places the zero of the real part at about /t] = .25 (GeV/c)2 and the zero of the imaginary part at
Note, however, that those values are found in the parallel perpendicular plane in reference to the isoscalar helicity no
has been taken as the parallel component. There these values are detemined by Ambats et al. with a precision which «
minations. The value of the crossover is known in this plane with an accuracy up to . 025 and placed at /t/ =. 1 5 {GeV,
into the complex plane requires a model for the phase of the reference amplitude. One assumption about this phase iz
et al have taken it, that the phase of the isoscalar nonflip amplitude behaves in avery similar fashion to the kelicity fli

It rotates anticlockwise with the velocity of a regge pole starting by being out of phase of about 60° which amounts to :



This initial value and its sense of rotation agrees with dispersion relations. This assumption is only relia’
value of about /t/ =.35(GeV/c). For larger values in /t/ however, a rotation in the opposite direction se¢
such that the amplitude crosses the p(;sitive imaginary axis at about ,84/t/L1, 00 into the first quadrant ag:
involving elastic scattering as an absorptive factor, which takes in form of an appropriate parameterizatio
of the isoscalar amplitude into account can satisfy within the frame of strong absorption a positive polariza
Our final aim, however, is to construct both isospin amplitudes out of poles w th the correct absorption pr:
absorption, if applied to a complicated effective Pomeron, seems to lead occasionally to correct results in
generally involves a great number of parameters whose origin remains unknown (Ig()f'*On the other hand, o
residues of the pomeron quasi eikonalise and complicate the regge residues of the rho-pole and quasi eikon
introduction of /t/ dependent shower factors and in this way obtain a satisfying description for the pion-nuc
range in /t/ up to /t/ = 2. 00 (GeV/c)2 and for different energies as accomplished within the frame of Gribo
Sh.H. Eremyan (23). This is the best description ever achieved. The number of parameters is still great
search for an alternative, which hopefully would result in less parameters or, if not, then at least those p:
which is less obscure, We are going to gradually build up such a model. At this stage we have discussed

weak cut absorption by assuming a simple form of the elastic scattering amplitude ~ namely the Pore ron -
purely imaginary and fixed pole and the effective amplitude namely the total isoscalar amplitude itself. Th

isovector amplitude through the process of absorption.

The incorrect relative phase between the two helicity amplitudes as seen in fig. 5 causes the polarization to
wrong, Note the proportionality between fig. 2 and fig. 5. Fig. 3 also shows the modulus of the helicity fli
distinct minimum due to the NWSZ though it is shifted down to . 55, the actual position of the dip. Note tha
the helicity nonflip amplitude which is the cause of the wrong polarization. The phase of the helicity flip :
to /t/ = .35 or .4, in accordance with the amplitude analysis. Fig.6 and fig. 7 visualise the amplitudes at '
and demonstrate suggestively the rotation and shrinking properties of the pole before and after absorption 1}
the acceleration of the pole due to absorption in anticlockwise direction and observe the little effect absorp
flip pole at small /t/. We have in fig. 8b enlarged the Argand diagram of fig. 8a for larger values of /t/n
This will be particularly relevant in the case of the helicity flip amplitude displayed in the Argand diagram
amplitude is governed by the elastic polarization unambiguously known up to /t/ = 2. 00. Elastic polarizat

the rise and fall of models in strong interactions.

* Ross *% Anderson et al # ek Hartley and Kane



Traditional réggeized Absorption model at fixed enetgy. (fixed energy is indicated through hats on the rel

The Pomeron is s-channel helicity conserving, purecly imaginary and stationary.
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Traditional reggeized Absorption model at fixed energy

(fixed enetgy is indicated through hats on the relevant parameters, sce Table I for parameter values).

The Pomeron is s-channel helicity conserving, purely imaginary and stationary
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TABLE I

Model Oa

_87,.

The parame.ters of the traditional reggeized absorption model used s a set of r
We introduce in several model variants a correlation between the exchanged Rey
Pomeron and measure this correlation with respect to this fixed set of paramet:
traditional absorption model. The given valucs of the parameter are not deter:
a minimization procedure. They nevertheless provide a reascnable choice to se
discussion about the mechanism of the correlation as set against tise independent

typical for the traditional absorption. {The indices JO for Rho Regge peole and

Pararneter type Value Unit Parameter type | val
A
- A Y -
Inc. lab momentum Hab .00 G‘ZV/C Residue slope AR N
S : Go Vi)' (°
Tot. c. m. energy | <163 (GaVfe) Initial Pomeron phase ¢ w
i S\ o
Enecrgy scale S I. 00 LC‘JGJV/C> Correlation real part /\J\Q C 0.
’ ~ Correlaticn - o
Intercept of trajectory O{g(b) . \5-2 imaginary part, J""’\ C 0.
/ b (Ceve) S l
Slope of trajectory O(J; . 804 ( “LV/L I Cut enhancement /\GJ, . .
Ao Trmb | A o .
Residuc const, ng LR35 Gevic Helicity flip p? 1 ~
A

Residue slepe

- -1 :
}\3 § .00 {6&V/c> Helicity flip /\Is 4 )

C i e e g B : AL
Intercept of trajectory OK?“’) ‘l .00 Helicity flip '20 C ; 0

Slope of trajectory

)

' _2 —
o(:p 0.00 (GZV/C) Helicity flip dom !

Residue const,

A mh \ N
“B%) 6-‘1 G G\’JV/C Helicity flip /\ Gd (I
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Traditional Absorption model (parameters from Table I)
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1
TABLE Ila Traditional Absorption model (helicity norflip amplitudes given in (mb)2/GeV/c)
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TABLE IIb
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Traditional Absorptidn model {helicity flip amplitudes given in (mb)%/GeV/c)
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TABLE Ilc Polarization Chart (traditional reggeized Absorption modal with parameters M,
from Table 1). Real and imaginary part of the helicity amplitudes are
arranged according to -
Polarization = -2ImTO°T 1*/differential cross section
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TABLE IId

Polarization chart analogous to Table IIc with one difference -

A cut = 2, 00

The boost factor improves the differential cross section - but not the pelarization
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TABLE Ile

—qu_._

In order to show that the failure of traditional absorption is xﬁainiy due to the

amplitude as far as the polarization is concerned (this applies in particular fi
we combine the theoretical helicity flip values with the helicity nonflip value i

et al (Model for isoscalar had to be used however)
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Traditional absorption model (purely imaginary and stationary Pomeron

and A\ cut=1l 00)

See Table Ila for numerical values

2 Helicity nonflip pole

=}~ == —— =D Absorbed amplitude

Numbers indicate /t/ values

Scale - 1 :
lcm =, 019(mb)4/GeV/c

£ig &

Argand diagram for the helicity §
nonflip amplitude
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Traditional absorption model (purely imaginary and stationary Pomeron
and A cut =100)

See Table IIb for numerical values,

s i e o v . - - . -

¥ Helicity flip pole

— —e = e == —» Absorbed amplitude”

Numbers indicate /t/ values

Scale = 1 .
1cm =.038(mb)*/GeV/c

. Argand diagram for t
isovector amplitude

fig 7



e BN

o

- o -

Argand diagram for the helicity nonflip isovector amplitude obtained with the help o

traditional absorption model (purcly imaginary and stationary Pomeron and Acut=

&t
al Yo/ o)

T

24

LOF

0f I

-0éf

-".bf

fiy 81



Previous diagram for the helicity nonflip isovector amplitude enlarged for large /t/ region
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VI 1 - The Gribov Cut represented as vector in the Argand Diagram

v

The parameterization of the cut ailows for & moving helicity conserving Pemeren with real part in forward directicn,
correlztion purameter ¢ can be helicity dependent and has 2 slow energy dependence in order to stabilize a possible ¢

cdependances of the phase. The actval valucs of the parameters give rise to a set of models, out of which we chogse th

[

~tiafica the cptimum belween theeretical constraints ard phenomenclogical nezessity.
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We have split the cut int> "non rotating" and "rotating" vectors in the complex plane indicated by 1 and 2 respect ively.

Their explicit dependence on all parameters involved is as follows =

Strength of the "non rotating part” of the h‘elicity non 'fli;a cut in forward direction . N
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Strength of the "rctating part" of the helicity nonflip cut in forward directicn
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Slope of the exponennal fau off with /t/ of the streﬂgth of the non cotating part of the hehcxt\ non fhg cut
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"Slope of the exponential fall-off with /t/ of the strength of the rotating part of the helicity non flip cut
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Initial angle of the "non rotating part" of the helicity non flip cut
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Rotation vel'ocity per [t/ of the "non rotating part" of the helicity non flip cut
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Rotation velocity per /t/ of the "rotating parrt" of the helicity non flip cut
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Strength of the "non rotating part" of the helicity flip cut in forward directicn
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Slope of the exponential fall-off with /t/) of the strength of the "rotating part" of the helicity flip cut
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" Initizl angle of the "non rotating part" of the helicity flio cut
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Rotation velocity per /t/ of the "non rotating part" of the helicity flip cut
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Rotation velocity per [t/ of the "rotating part" of the helicity flip cut
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Correlation modified Absorption model - Gribov cut

The explicit dependence 6f the helicity nonfllp cut characterizing quantities at /t/ = 0 and fixed ener

Initial cut strenpth and initial phase angle of non-rotating and rotating part
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Correlation modified Absorption model ~ Gribov cut

The explicit dependence of the heliclty nonflip cut characterizing quantities at /t/ # 0 and fixed energ

Shrirking velocity with /t/ of cutstrength of non-rotating and rotating part
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Correlation modified Absorption model - Gribov cut

The explicit dependence of the helicity hohflip ctt characterizing quantities at /t/ # 0 and fixed energy on :

Phase angle rotation velocity with /t/ of non-rotating and rotating part
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Correlation modified absorption model - Gribov cut (iswvector amplitude)

The explicit dependence of the helicity flip cut characterizing quantities at /t/ = 0 and fixed energy on all paramet

Initial cut strength and initial phase angle of non-rotating and rotating part
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Correlation modified absorption model - Gribov cut (isovector amplitude)

The explicit dependence of the helicity flip cut characterizing quantities at /t/ # 0 and fixed energy on all parameters inv

Shrinking velocify with /t/ of cut strength of non-rotating and rotating part
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VI.11l - Several Model Variants towards the solution of the phase problem of the helicity nonflip

isovector amplitude

VL 11l.1 - Model Variant Ia ~ Purely Real Correlation Model

- the s - channel helicity conserving effective pomeron is purely imaginary and stationary.

Jt/ =0

Purely real correlation parameter ¢ given in units of (GeV/c)'2

It is known that by comparison to the helicity flip amplitude the hellcity non-flip amplitude needs to be str:
Without having to invoke an enhancement factor of the Michigan type, one can, with the help of the correlz
strengthen or weaken the cut in forward direction at will, depending on whether one chooses a negative or
However, the ratio of non-rotat ing to rotating strength will quickly deviate from 1 towards larger values.
because, if the model has any chance to rectify the situation, ox:e would expect a cut which is stronger in |
its real part, Traditionally, both parts are approximately equally strongly absorbed. The increase of th
matters even worse. In fact, although the initial'phase of the rotating cut is strongly rotated in anticlock:
the cut strength, there is no way to rotate the non-rotating part of the cut, since we have used a stationar
ratio prevents any substantial net gain in phase for the total cut from being more than a few degrces at a t
to a Michigan enhancement factor of about A= 2, Any further attempt to increase the strength with the h
results in a severe loss in phase. For example, using the parameters specified in table I, we obtain a tr
angle of 228, 51° with a strength of about 1/10 of the pole in the complex plane, which leaves a relative ar
185, 31 degrees. This is much too close to the critical value of 180° where the polarization changes its sig
The correlation parameter corresponding to A = 2 has the value ¢ = -], B keeping everything else fixed.
has reached the optimal net gain in phase namely 3.18°. With ¢ = -2.2 corresponding to a A = 2.52, th
than the traditional absorption would give, namely 227, 77°. T%'me reason for this behaviour is that for a st
non-rotating part of the cut possesses a singularity due to the introduction of c. For the particular paran

this singularity cccurs at ¢ = -2, 925. The rotating part of the cut, by contrast, cannot possess such a s

of the Regge slope in the denominator.
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Model Variant Ia

0< /17K, 35 (Gev/c)?

Purely real correlation parameter ¢

Although the introduction of a purely real ¢ namely Re c= -1, 8 (GeV/c)-2 resulted only in a negligible net g
a few degrees, there is still hope that the situation might improve once " [t/ starts to increase,
The nature of the failure of the traditional absorption model is the unfortunate effect of the combination of it
features -
(1) The relative cut pole phase is too close to 180° at /t/ = 0 (GeV/c)?
(2) Although the cut rotates with increasing /t/ away from the pole, it does so too slowly by
comparison with the fast following pole, thus the pole already catches up with the cut at
the critical phase difference of 180° at very small /t/ values and there causes the polarization

to change its sign from positive to negative.

By switching on the negative and purely real correlation one not only increases the cut strength at forward
weakens the exponential fall-off of the cut strength with increasing /t/ e.g. for Rec = -1. 8 (GeV/c).Z the s
by a quarter of its former value. Also, nonrotating and rctating slope fall-off in the case of the traditional
are slightly different (the rotating part a bit faster than the non rotating part). At Rec = -1.8 (GeV/c:)-2 he
is exactly equal. A further increase in Rec lowers both slopes corsiderably quickly, but does so for the nc

increasingly faster than for the rotating part. Again this is a consequence of the singularity at Rec = -2.92

non-rotating part.

The hope that the disappointing situation met in forward direction might improve away from [t/ = 0 (GeV/c,
model variant is unsubstantiated because we observe that Rec not only cannot initiate a rotation of the non-:
but also slows down the already existing rotation velocity of the rotating part of the traditional absorption ¢

causes a complete standstill,
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VI 111.2 - Model Variant Ib - complex correlation model as a crossing symmetry violating solution to the
phase problem of the helicity nonflip isovector amplitude

Jt/ = 0 (GeV/c)?

Complex correlation parameter ¢

Due to the unwanted increase in strength of the non-rotating part of the cut relative to the rotating‘part, the
real correlation parameter has so far been disappointing. By allowing for an imaginary part of the correla
the increase and keep the rctio at 1if one accompanies the Rec = -1, 8 (GeV/c)-z with an Imc.z +.63 (GeV
the presence of the imaginary part of the correlation causes the non-rotating part, which is traditionally p
acquire an imaginary part. Unfortunately the ratio stabilizing positive Imc rotates both non-rotating part a
clockwise such that thet ret effect for the total cut phase at /t/ =0 (Ge\//c)2 is much worse than it would be
traditional absorption.

A negative imaginary part of ¢ can, however, account in forward direction exactly for the strong absorptior
part of the pole partially or even totally at the expense of the real part. Absorption modifying models (o
such a behaviour of their cut in an ad hoc fashion and have produced several basic features of the observabl
correctly. By introducing a complex correlation we produce this behaviouz.' naturally. If we choose for ex:

and Imc = -1, 35 (C}e\//c)"2 we obtain a purely imaginary cut at forward direction whose strength correspon
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Model variant Ib

0 < jt/ £ .35 (Gev/e)

Complex correlation parameter ¢

.

We have remarked that the reason for the persistent failure of the traditional absorption cut is due to its too earl
diagram at /t/ =0 (GeV/c)2 together with its too slow rotation with increasing /t/. This causes the total amplit
clockwise which speeds up when'the 180° relative cut-pole phase border has been crossed. This is in complete ct
actual behaviour of the-amplitude, as has been revealed by model independent éeterminations of the amplitude. T
feature of the amgplitude in the /t/ region under consideration is its zero structure. Especially where the "cross:
to the zero of the parallel part is concerned (parallel with respect to the dominating helicity non flip isoscalar r
analysis by Ambats et al has a definite advantage over others. The more precise determinationo{ this zero at /
due to their particle-anti-particle relative normalization uncertainty of +1.5% .which leads to an uncertainty
of only +, 025 (GeV/c)2 whereas a normalization uncertainty of + 5% as in previous determinations led to an uncer
Although the zero in the imaginary part is close to the zero in the parallel part of the amplitude, its precise pos
of the reference amplitude which is model ‘independent unless it is determined by the method of fixed-t analyticit:
Whereas the zero of the parallel part seems to be a fairly reliable constraint for model building, the knowledge ¢
the perpendicular part suffers from an uncertainty due to the inconsistency present in the polarization data meas:
The ARGONNE data are persistently 20% lower than the CERN data which affects mostly the perpendicular part of
the ARGONNE data are taken, the perpendicular part has a zero at /t/ = .25 (GeV/c)2 whereas in the case of the

part of the amplitude remains positive throughout,

: . . v ey2 -

Our model variant Ib with Rec = -1, 8 (GeV/c) and Imé(--' -1. 35 (GeV/c) 2 leads to the correct clockwise rotatic
total amplitude and in particular to a zero of the Imaginary part at /t/ = .2 (C‘u.eV/c)2 not too far away from the ac
"crossover", The real part on the other hand étay's positive throughout the /t/ region under consideration as im

. ® (10
by the CERN d‘ata. As in the case of the RRRT -Phase angle,( )our model absorbs the imaginary part at the ex[
the real part. RRRT provide the non-rotating part of the cut with a positive ad hoc phase angle of 90° which amo

essentially to mgltiplying the imaginary part of the cut by a /t/ independent enhancement factor N=2 and a nullif

£ g;,\ﬁ(wb b al.
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of the real part of the cut, This model is the most extreme of its kind. Intermediate versions arefor example |
by J. Anderson et al (1o ) which correct only the rotating part of the pole, and the model by Sadoulet (1e) whi
non-rotating and rotating parts of the cut differently and employs a non flat pomeron. The newest determination
crossover zero position by Ambats et al puts a severe constraint on model building, Although all three models :
above reproduce the observables and several features of the amplitude, the difficulties which these models encou
they try to move the imaginary zero in the vicinity of the actual position of the crossover at /t/ = .15 demonstrat
of cut strength in the imaginary'part. (That this is so is clearly seen in the fact that RRRT can move its zero m
at /t/ = .2 to the crossover position, and this is so only because its additional resource of strength comes from

rotating part. The non-rotating part is,due to the phase angle, fully transformed into the imaginary part, This ef
doubles the cut strength.) No other model has such a resource in cut strength, The introduction of a complex

parameter can somehow simulate the various versions of these phase-modifying models, A purely imaginary ¢ |
change the cut phase. However, both parts of the cut obtain an equal amount of change. A purely imaginary c d
the approximate equality of the size of the two cut parts. Thus one can arrange for a 45° positive phase angle u
Imec = -2.6 (GeV/c)"2 and obtain a purely imaginary cut at least at /t/ = 0, However, although we obtain the cc
rotation we lose in comparison with RRRT on strength. This happens firstly because of the 45° additional phase
applies to both parts of the cut and reduces in principle the effective strength with respect to RRRT from A =2t
Secondly, a purely imaginary c weakens the cut and the net effect is such that for the optimal phase angle there «
enhancement (nor loss) in strength of the imaginary part of the cut and there will be total cancellation of the real
our phase modification is not /t/ independent. Both phases have a small rotation velocity. Such a purely imagin
effectively the model by J, Anderson apart from the weak /t/ dependence, "Both models fail at the crossover cor
their lack in cut strength. For both models the simulating )\ is A = 1. Our zero, as well as that of Anderson,
than /t/ = .4. By switching on the real part of the correlation we encounter a new source of strength and also :
in phase. In order to avoid the additional unwanted contribution in phase we have to turn down the size of Imc. T
provides in turn a further boost in strength. The values for ¢ which move the crossover to /t/ = .15 are Rec = -.
and Ime = -1. 025 (GeV-[c)-Z. The effective cut strength is then /\ = 2.14 and we see that in the realpart of c we }

of strength which a purely ad hoc phase modification cannot provide.
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Helicity nonflip isovector amplitude (parameters used from Table I)

Model variant Ia - purely real correlation parameter, purely imaginary and stationary pomeron

Non-rotating part Rotating part
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Model variant Ib (purely irhaginary and stationary pomeron)
Helicity nonflip isovector amplititde {parameters used from Table I)
Dependence of the cut characterlzing quantities on 4 complex correlation parameter

Non-rptating part
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Model variant Ib (purely imaginary and stationary pomeron)
Helicity nonflip isovector amplitude (parametersused from Table I)
Dependence of the cut characterizing quantities on a complex correlation parameter

Rotating part
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Model variant Ib - parameters as in Table I. Complex correlation parameter and purely imaginary and s
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TABLE III Model variant Ib {complex correlation, purely imaginary and stationary Pomeron|
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TABLE III Model variant Ib (complex correlation, purely imaginary and stationary Pomeron)
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Polarization chart for model variant Ib with complex correlation
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Traditional reggeized absorption model with /\\ cut = 1. 00

Differential cross-a;:ction measured in "ﬂ:’/((.‘;e\//c)2
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Modulus v/n—lb/(cevlc)

Traditional absorption model with
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Traditional absorption model (purely imaginary and stationary Pomeron
and A\ cut =1,00)

See Table Ila for numerical values

¥ Helicity nonflip pole
~ = === ==~ Absorbed amplitude
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VI.1Il.3 - PURELY REAL AND NEGATIVE CORRELATION MODIFIED MODELS AS A CROSSING SYMMETRY.
PRESERVING SOLUTION TO THE PHASE PROBLEM

A more convenient way to manipulate the terms of the Gribov cut in complex vector representation as written
on pages 107 to 119, is to rewrite it as on pages 145 and 146 with the relevant terms explicitly expressed for fixe
and variable energies as done on pages 147 to 152. For certain purposes*it is specially instructive to write the
energy dependence term in powers of Ins as done for example for the non-rotating part on pages 151 and 152. Th
vector representations of pole and cut enable us to obtain a great deal of insight into how the phases behave,

and we learn that the necessary modifications in order to restore the most profound failures of the absorption
cut, as discussed on page 127, can be accomplished for either a purely imaginary and stationary pomeron
together with a complex "c" as we have seen, or for a pomeron with a significant real part at all /t/ values,

e. g. an initial phase of 101° and a slope of A'p =.6, together with a purely real "c". Indeed, as one can
see from the explicit formulas of the Gribov cut represented in vector form, the imaginary part of the "¢" can,

to a certain extent, be exchanged against the slope of the Pomeron.

A concrete model (Model V introduced on page 154): with the parameters as in Table I - and in addition -

Rec® = -1.5 Imc® = 0

Recl = -1 ) Imct = -1

has been given with numerical details. Rather than describe all the details of the combined effect due to the
Minteraction" of the "Gribov ¢" and the real part of the Pomeron, we are going to draw several possible variatic
mom, I, v, Vv, VI, on the t-heme: "Gribov ¢ " and Pomeron real part, while demonstrating how these joint
effects as purely real c and real part of the Pomeron accomplish the necessary phase modification. This has

been shown in figs. 18 to 23.

* e.g. the stabilisation of the energy dependence (see p. 160)
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At a fixed energy however the relevant quantities read as follows -
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In the case of fixed energy -

Non rotating’ IS -

Rotating
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. In order to stabilize the energy dependence of the phase we provide the parameter G with 2 slow energy dependen
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With explicit energy dependence for the 'non rctating' contribution
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For the "rotating" contribution
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VI.11. 4 A PHASE ENERGY DESCRIPTION OF ‘?;r-ﬁ'% AT 6 GEV/C AND FNAL ENERGIES WITH
A GOOD PREDICTION OF BOTH INELASTIC AND ELASTIC POLARIZATION OF 1 N SCATTERT
(MODEL V AND MODEL VI)

In Model V we have constructed (see Ardill et al (45)) the isovector helicity amplitude by means of the corre!
Gribov absorption model, We absorb with a helicity conserving pomeron pole which possesses a real part ¢
101° and a slope of o{'p = .6 ~ see fig. 32 page 179. The same pomeron is used as isoscalar helicity amplif
the elastic polarization see fig. 33 page 179. By describing the elastic polarization we encounter the same p
in (22,23). We were obliged to give the helicity flip shower factor a strong /t/ dependence, such that the de

lip ( L+ 4y {/)f
Modef[ . >Cu+ = C>“+>.l]£/)/@a/ ()/ //

turns for /t/ 2, , 6 into a constructive one.

The imaginary part of the helicity flip amplitude is in that way not only prevented from becoming negative a:
"untreated" Model variant V, fig. 27 and 28, but grows and falls rapidly in magnitude - fig. 29 - so as to acc«

rise and fall of the elastic polarization beyond the double zero -~ fig. 33 and 34. The parameters have bee
Table I, but with the addition of - ( \ omz»othAcc = |o}? < ”p -c ,

- o - - — .

T c®= -1 F- oo N, - For NS

Re ' - =1 J-ct=n D= -k ?ﬂ‘ Bk
When extrapolating our amplitudes to FNAL energies we stabllize the energy dependence of the helicity nonf
maximally such that the Initial cut phase has minimal energy dependence* and the rotational phase has only .
We accomplish this by providing the Gribov 'c' with an energy dependence such that
¢ =c + ¢, Ins
which results In a considerably stable polarization over a wide range in energy (flg. 36,37). The smaller g

traditional shrinking problem further out in /t/ causing a slower fall of OP%,Q U‘—'d') "7'""”) and a spread

trajectories at 6 and 200 GeV /c (fig. 39,40). The parameter values for the energy dependence of ¢ are
Re c,” = -.6225 © Rec,” = -.351
Rec,! = -. 1225 Re c,l = -.351
Im cll = -1 Im czl =0

which coincide with the parameter values found at 6 GeV/c.

* Since our absorptive factor is the full elastic amplitude the initial phase of the Pone ron possesses the experimentally observet
This rotates the initial cut phase by a few degrees in clockwise direction and is the only energy dependence of the initial cut pt
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MODEL VI Elastic amplitude differential cross section -~ Polarization chart
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Inelastic amplitude - differential cross sertion - Polarization chart
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Argand diagram

for the helicity nonflip
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Previous diagram for helicity flip isovector amplitude enlarged for

large /t/ region
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VII - SOME PURELY REAL AND POSITIVE CORRELATION MODIFIED MODELS

VII.l. - THE LARGE POMERON PHASE MODEL

VII.1. 1. - The Zero Residue Version { Model VII)

An excellent {-X‘z fit can be achieved if we provide the Pomeron with a large real part in forward direction,
and also a large Regge pole like slope. If, in addition, we introduce a f -~ Regge pole-residue parameterized
exponentials, the minimisation programme then chooses amplitudes and observables as shown in figs. 41,42, and
happens is that in this case the programme can arrange for an 'ad hoc' zero in the imaginary part of the amplitu

to the crossover position without dragging the zero of the real part too closely behind.

We show, in fig. 41, the parallel and perpendicular part (4la and 41b helicity nonflip, and 4lc and 41d helicity flip)
amplitude and our theoretical curve obtained by me ans of correlation modified absorption. The tran sformation
complex plane in which we find our theoretical curve and the plane in which amplitude analysis works has been c
the circumstances that, first Ambats reference depends on a model assumption for the helicity flip isovector am
becomes less valid with increasing /t/ from /t/ = . 35 onwards and, second, our theory assumes a different phas
doing the transformation one has to respect these complications. Fig.4lb and 41d show the orthogonal component:
of the components near the minimum of the modulus decides unambiguously the sense of rotation of the amplitude
origin of the Argand diagram with increasing /t/. The failure of the absorption model to obtain the correct sig
and hence obtain the correct sense of rotation is displayed in fig. 8 and 6, pages 103 and 10l. The incorrect relat
the two helicity amplitudes as seen in fig. 5 and 4, page 100 and 99, causes the polarization to become so disastrc

the proportionality between fig. 2 and fig. 5.

VII.1.2 - The Non-Zero Residue Version (Model VIII)

Case 1 Gribov c = 0
fig. 46 In this case we do not force a "crossover zero" but still the large phase of the pomeron moves tl
p.193 .

zero out in /t/ with respect to the traditional absorption model.

Case 2 Gribov ¢ = 1. 15
fig. 47 The Gribov ¢ switched on. Had not to arrange the basic modification although it still impro

p. 194
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VIII - THE CORRELATION MODIFIED "DERIVATIVE RULE" MODEL (MODEL IX) (46)

We have given, on page 4 the result of the derivative rule as applied to the helicity isovector nonflip amplitu

of our correlation modified absorption model.

The parameters, ¢, A and B as given on page 73 for the helicity nonflip amplitude, are determined by a x?
Ambats et al's ( § ) amplitude analysis data. We find Rec = .- -1, 067 (GeV/c)'Z, Imc = -0.629 (GeV/c)™
A =0.36467( mb/GeV/c)B = 6.58 (GeV/c)'Z with a X°

amplitude analysis data is shown in fig.48. Our choice of parameters gives a helicity nonflip amplitude which 1

= 2,832 for 14 data points. A comparison of our res

the origin in a clockwise direction as shown in fig. 49. From these figures we note the imaginary zero is at t =

while the real zero is at t = -0. 228 (GeV/c) -2,

Schrempp and Schrempp ( 47) have shown, in a model-independent way, for the same reaction and energy that v
that one can obtain the s-channel helicity flip amplitude by means of the derivative of the helicity nonflip amplitu
consequence of the peripheral nature of the process. The proper use of this rule, however, demands an exactr
for the helicity nonflip amplitude to begin with since the derivative rule tends to exaggerate any deviation from t
curve which goes through the centre points of the experimental data, How these deviations are amplified can b
fig. 50 on page 198 with fig. 48 on page 199, We illustrate in fig. 50 again the parallel and the perpendicular ¢

helicity flip amplitude which one obtains by rotating the amplitude in the complex plane relative to the isoscalar

amplitude.

As we have already noted, the helicity flip amplitude is extremely sensitive to any deviation in curvature of the
from the experimental data. Thus, the property of the helicity flip amp litude that it should have a constant phas
-t¥ 0.4 (GeV/c)Z is only maintained out to -t ¥ -0,175 (GeV/c)2 and is rapidly lost beyond this value. This can
This property which is revealed by the amplitude analysis, means that the difference between the phases of the ]
nonflip and the isovector helicity flip amplitudes is an approximate constant. This, in turn, scems to indicate t
Pomeron is similar to the slope of the S) polé taking the helicity flip amplitude as being approximately Regge b
that we are supposed to see in fig. 51 the behaviour of the isoscalar helicity nonflip amplitude having the same rz
helicity flip amplitude of the isovector exchange as a function of the 9 trajectory. In principle this feature
in fig. 51. However, the larger /t/ value loop should never reach into the first quadrant. Of course, fitting dai
that the Pomeron has a slope as large as the 9pde could make aur effort with a purely imaginary Pomeron only tl

choice, We have already seen that once we have included a nonflat Pomeron the fit will be considerably impro
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The fit to the observables as shown in fig. 32 suffers naturally from the inaccuracy in the nonflip amplitude. In :
derivative rule imposes its own nature on to the polarization as can be seen by a comparison between our theore
ization curve and the one obtained by Barger and Phillips ( 48), which are strikingly similar in structure. From
can see that the zeros in our polarization occur exactly where the phase of the nonflip helicity amplitude has its
points, namely between -t = 0. 025 (Ge\l’/c)2 and -t = 0. 05 (GeV/c)2 and shortly after -t = 0. 35 (GeV/c)Z. The

of the polarization r'esults from the effects of competitionbetween a shifted pt.aak and a stationary point of the pha
apbarent peak is caused by the turning point of the phase but is prevented from developing into an actual polariza
because of the differential cross section which is, at this point, still large but is falling off very fast such that tl
imum is shifted further out in /t/. This does not have time to develop a broad shape as we would like to see bec
stationary point is forcing the polarization to change sign. Finally, we observe a.phenomenon which, although n
consequence of the derivative rule, is also connected with peripherality (49). This is that the rate of change of |

cross section with respect to scattering angle is equal to the polarization up to a factor which is approximately c

the range 0£ /t/ <L 1.0(GeV/c 2.
g “~ ~

We have seen that by employing a Pomeron which is more rich in structure we could not only improve our fit to |
also exchange the actual unwanted imaginary part of the parameter in the correlation kernel for a real part of th
Then the correlation kernel could be retained as purely real in character and could, therefore, if it were positiv

a form factor describing the extended structure of the hadrons.

. e
The persistently negative nature of ¢ (apart from the cosmetic ¢ models) leads us to an interpretation within the .

parton framework, where care is taken of the particular sub-hadronic nature of the interaction (see. IX),

* Model VII and VIII
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IX - AN INTERPRETATION OF THE NEGATIVE SIGN OF THE CORRELATION PARAMETER

We have, in the introduction, remarked upon the need to do the Reggeon-Poreron convolution with both Reggeon a
Pomeron renormalized. The effective interaction range needed t.» be considerably shorter than is the case for th
single exchange. This has been borne out by the necessity to include into the Regge-particle coupling function the
mutual orientation of the transverse components of the Reggeons : Pome rong. This in turn provided a way to accot
for the effective contribution of inelastic intermediate states besides the elastic pole state in the Gribov-Migdal R
unitarity condition. Although the formal analogy to nuclear physics suggested parameterization of the modific
of the absorption model by including a parameter which seemed to simulate the oscillator length of a quark-antiqu
bound state, the actual persistently negative value of this parameter implying the shortening of the interaction ran

defied such a simple picture,

There has meanwhile emerged an intuitive interpretation (15, 50, 51) of the Gribov graphs based on the simultaneot
of multiperipheral and diffractive discontinuities in the two body amplitude. Seen in the light of several convergi
view such as the multiperipheral model, the parton picture andthe diffusion analogy via the Green's function for
it might be possibld to understand the meaning of the negative sign of "c". In the intuitive picture of hadronic i
it is understood that fast hadrons at distance b in impact parameter and at a certain "time" Ins cannot interact
reduce their energy by emitting a shower of virtual particlesﬂ“ﬁgpulate the Impact parameter plane and are separ

distances of the order of a Compton wave length due to Gribov's finite mass hypothesis.

Every produced particle is a step in the random walk across the impact parameter plane performed by the Regge
reducing the energy of the collidi_rig hadrons so as to bring them closer to each other. The higher the initial ener
steps have to be done, i.e. the more virtual particles are produced in a multiperipheral chain. The initial positi
colliding hadrons is the vector sum of the distances the produced particles are apart from each other. They def
interaction range which has a specific Regge component and boundaries due to the colliding hadrons. Due to the |
approximative absence of long range correlations it happens that the Regge interaction region is growing linearly
initial energy: the more steps to go, i, e. more particles produced. The average squared value of the vector st

by the impact parameter values of the produced particles is then the defined effective interaction region between
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colliding hadrons. The steepness of the exponentially parameterized Regge residues is then the non-shrink
of the interaction region. The introduction of the Gribov "c" seems to reduce the size of this region in the

It reduces the size by comparison to the single graph and also by comparison to the traditional absorption n

is preserved.

Why is this? In general the colliding hadrons produce several showers from which slower partons can e

of hadrons then takes place via the simultaneous interaction of the partons. The parton is reduced in enei

Each has VS X Ain the ¢. m, system.

e

%

I BN

2 2
~ted%a(kyoky)

Fig. 53

They are also closer in impact parameter. They enter the diffusion slowing down process from their "s]
by contrast to the "space,time" components of the initial single Regge exchange, where the hadron interac!
It seems to be plausible that the effective interaction range of each individual parton interaction is now bed

with the first order interactions. That is to say it is the "size" of the partons which'in higher orders is m

size of the hadron.
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X - AN OUTLOOK TOWARDS A UNITED DESCRIPTION OF HADRONIC TWO BODY INTERACTIONS

We do not wish to end on the spe culative note of the last paragraph without emphasizing that the good results on the
phase modifying nature of the negative Cribov "e" encouraged us to pursue the subject further, in particular to con

the isoscalar amplitude which could shed zew light on the phase of tie pomeron as prubed by the elastic polarizatio

scattering around and beyond the residue zero. That is to say a correlation modified moving Pomeron might be co
the elastic polarization beyond the residue zeros and a helicity amplitude which is regge behaved even for /t/ 7.6

be more satisfying than the adhoc-introduced showerfactor which converts the destructive cut into a constructive or

Thus, in conclusion we can say we have found a natural solution for the shortcomings of the optical model listed un
in the introduction together with a rather adhoc approach to point (2) in order to tide us over until we have constru
amplitude by means of the Gribov "c". The inelastic differential-cross section is still unsatisfying in the region
and we are still left with the shrinkage problem, see fig. 39 and 40, p. 185 and 186, but see the pole dominated mod

" Work is now in progress to investigate the introduction of iGribov "c"-like couplings into diagrams of the enhanced

type, (see fig. 54) LG @ 5
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deo (Tp—>T) | of
so as to correct the deviations of Oz){‘l L and d 9

from the FNAL data, while preserving the maximal energy stability of the phase as obtained in ‘our Gribov "c" tre

of the unenhanced diagrams.

With the isoscalar amplitude constructed, we could genuinely describe elastic.scattering, and, in particular, the
‘cross section and the dip problems in elastic scattering, but see also (37,53) and for a O</7° model see (54).
-Another feature of our correlation modified model is that it does not have to treat the real and imaginary part of t}
differently in order to modify the real and imaginary part of the amplitude differently. -Thus the consequences of j

..modification due to correlation for HCEX will be of interest. See for those reactions in phase modified '~ model:

~;as(55) and Egli (5).

: The description of the Pion-Nucleon system over a wide range in energy i, e, é é Jf{’.:é < ;200 (;;21/5_

and a relatively large range in momentum transfer i, e. .
¥ tatge rang Oroo & |t| ¢ OZL%;ZU/C)Q

 should provide the basis for a unified description of 2ll two body reactions connected via various symmetry scher

: +
_For example, see (53), once we have obtained the residues for P and P' from T =~ — ‘CT-‘/«-; \ the f from
i -1y —D oo,
the L‘EZ from 1 r /VlM and the ‘0 from Vo P — {"/6
L r
one can link, via (4 (7) factorization, quark model and the experimental necessity to account for the fact 1
Pomeron is not a ,")(.‘C")) singlet (use - ,g‘ "dominance model), the TN system with the KN system

elastic NN scattering i. e. all reactions dominated by the five leading poles.

There lies a vast and fascinating field ahead and models developed within the frame of the Reggeon diagram techni

are better suited to explore the systematics of hadronic interactions than traditional absorption.
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XI  APPENDIX




NORMALULIZATION AND UNITS, THE POMERON AND OPACITY

We express, in order to compare with the amplitude analysis by Ambats et al, the relativistic Invariant sec:

scattering amplitude in the centre of mass-system such that -

With g%, p* the three dimensional initial and final momenturn, E* the total cnergy and ©

Y=
Ji

O*
T

I

T s

.

-

TCEne) o

1

-, v - - . - : ..

*'the scattering angle,

centre of mass-system . S and t are the invariant total energy and transfor momentem respectively,

The differential cross~section in the centre of mass system recads - -

o v e e s - w4
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T . C .

’ ¥ ° 3 . a 3 .
with WK * the sclid angle in the c.m. system, sl and s2 are the spins cf the colliding particles, replacing-tt

invarinnt zmplitude we obtain the invariant differential cross section -
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st = emsimeareiee e m e ® o BAnm e man i e e b w8 e LSS e b s

" Qur normalization is therefore N =l 2ad in conscquence the optical theorem reads -

G = AT Tm [OCt=0)
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where the upper right hand o indicates kelicity nonflip. We decompose now the elastic helicity nonflip amplitude i

the stars, We denote the elastic amplitude by P (Pomeron). Thus we find -
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projecting out the partial waves and putting c0s. . © = Z we write ~
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.and obtzin with the help of the crthogonal relation
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! We insert the Pomeron 28 a function of /t/
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we make use of the relation
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and transform into impact parameter space b
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We obtain the Pomeron ’ -0 _ : po l‘l‘/\p
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This gives A - . =13

which ¢ompares with Hohler, Strauss value A= =4 ¢, 04

V7ith such a emall real part its presence is negligible where the diffcrential cross section in forward dirc

4
the optical point, namely 9" "‘7"' C R ) o h. 64 A here we have used th
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A
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aad use the small anele impact parameter dictionary (for elastic scattering q = p)

C e eme am e e s

T OJ(-.S )

thus we corvert the partial wave sum into an impact parameter integral -
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We lascrt the Pomeron dependence on b, which we have found above such that =

‘making use of the Fourler~-Bessel integral as before but now with l?‘—'ﬁ F - i
., ] .

. T AT T
: ‘T@.CS,%) - P F?’ L ’Q‘

results in the

Pomearon in [t/ spzce

The elastic differential cross section has been fitted by Ambats et al Ref ( )
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The isospin decomposition for "[[-oa —-_7?'6‘ rcads - N o l
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The last line follows frem the optical the.o:icm which gives in our normalization N = 1 the imaginary .Part

amplitude in forward direction such that -
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the amplitude from Tabls XX at page 1206 into the complex planc one obtains at /t/ = o
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If we neglect

2 '
we obtain < Jo} - 40 L 6s ‘”ié

”

- —— & —

whereas the actual measurement lies at /
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We found the Pormeron (isoscalar amplitude) in b and In ft/ Snace - C

.b ’ -'gz -
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the opacity coefficieat and Rz the radius of the 'absorbing region
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from the parameterization of the elastic differential crocs section

by a forwarc; diffraction peak which is to a very good approximation exponential over 2 small range
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We now consider the range /t/ =o for the differential cross section. Although the isovector amplitude contributes w

assume complete isoscalar dominance in this case we write -
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We have fitted Ambats isoscalar amplitude by G" 16 /@ at °© gﬂ///

ST : o )
RS . .. T AC. 9k ‘
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The scattering amplitude for the transition i 2. f for the spinless case in terms of angular momentum is expres:

via the "ecikonal matrix" qod such that it reads in our normalization -
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As we did in the case of the elastic amplitude we project out the partial waves and make use of the orthogenality

properties of the Legendre polynomials =
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As our notation already suggests, we identify ‘the Born amplitude SC' ! ’/,i- with an amplitude for the transiti

parameterized 1p a simple Regge pole exchange model i, e. in the case of 'E"P —DU*am  a single \€~Regge pol
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We take L\ - /[’) ) & /, (Xod and Insert the Regve pole in the form

o.
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»

where we have summed over non rotating and rotating part in which the Pole has heen split dus to its signatur

such that =
—_ /:qoiflo,
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and Q\g‘ contains the energy dependence such that
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