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ABSTRACT

We start with an account of the known bounds for n(3,g), the

number of vertices in the smallest trivalent graph of girth g,

for g ^ 1 2 , including the construction of the smallest known trivalent

graph of girth 9. This particular graph has 58 vertices - the 32 known

trivalent graphs with 50 vertices are also catalogued and in some cases

constructed.

We prove the existence of vertextransitive trivalent graphs of 

arbitrarily high girth using Cayley graphs. The same result is proved 

for symmetric (that is vertextransitive and edgetransitive) graphs, 

and a family of 2-arctransitive graphs for which the girth is unbounded 

is exhibited. The excess of trivalent graphs of girth g is shown to 

be unbounded as a function of g.

A lower bound for the number of vertices in the smallest trivalent

Cayley graph of girth g is then found for all g = 9, and in each

case it is shown that this bound is attained. We also establish an
fupper bound for the girth of Cayley graphs of subgroups of Aff (p ) 

the group of linear transformations of the form x *> ax + b where 

a,b are members of the field with p^ elements and a is non-zero.

This family contains the smallest known trivalent graphs of girth 13 

and 14, which are exhibited.

Lastly a family of 4-arctransitive graphs for which the girth may be 

unbounded is constructed using "sextets". There is a graph in this 

family corresponding to each odd prime, and the family splits into 

several subfamilies depending on the congruency class of this prime 

modulo 16. The graphs corresponding to the primes congruent to 3,5,11,13



 ̂•

modulo 16 ore actually 5-arctransitive. The gi ith of many of

these graphs has been computed and graphs with girths up to and including

32 have been found.
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Chapter 1 

Introduction 

1.1 Glossary

At the outset it is necessary to outline some of the basic concepts 

of graph theory and define some of the notation that will be used.

In general we follow the notation used in R.J. Wilson’s Introduction 

to Graph Theory [37] and N.L. Biggs Algebraic Graph Theory [5]

A graph G consists of a set V(G) of elements called vertices and 

a set E(G) of elements called edges together with a relation of 

incidence which associates with each edge two vertices called its ends.

If none of the edges have coincident ends, and no two edges are incident 

with the same pair of vertices, then we say G is a simple graph, and 

indeed we shall be dealing exclusively with simple graphs, or more 

briefly graphs. The two ends of an edge are said to be adjacent. We 

define a path of length & in G joining v^ to v^ to be a finite 

sequence of vertices of G

V. = u^, ... , U ^ = v .

such that u^_^ and u^ are adjacent for 1 ^  t ^  , and u^ ^ and

u^^^ are distinct 1 ^  t ^  &-1. A circuit or cycle is a path in 

which the endvertices coincide. An s-arc is the ordered set of vertices 

underlying a path of length s.

A subgraph of a graph G is simply a graph all of whose vertices belong 

to V(G) and all of whose edges belong to E(G). A graph G is 

connected if for each pair of vertices Vj^,Vj in V(G), there is a 

v^ Vj path in Gy: a maximal connected subgraph of G is a component of 

G. The degree or valency of a vertex v is the number of edges incident
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with V, and if every vertex in G is of degree 3 G is said to 

be trivalent or cubic. The distance between two vertices x,y in 

graph G is the length of the shortest path between them and will 

be denoted d^(x,y) (o k d(x,y) if there is no ambiguity).

An automorphism 0 of a graph G is a one-to-one mapping of the 

vertex set v(G) onto itself with the property that 0(v) and 0(w) 

are adjacent if and only if v and w are. These automorphisms form 

a group under composition called the automorphism group. We say 

that a graph G is vertex-transitive if the automorphism group acts 

transitively on the vertices and edge-transitive if the automorphism 

group acts transitively on the edges. Further if for all vertices 

u,v,x,y of G such that u is adjacent to v and x is adjacent to 

y there is an automorphism 0 such that 0(u) =x  and 0(w) =y, G 

is called symmetric. A graph G is s-arc-transitive (s ^  1) if 

its automorphism group is transitive on the set of s-arcs in G, but 

not transitive on the (s + 1) arcs in G; thus every symmetric graph 

is at least 1-arctransitive. Lastly and most importantly the girth 

of a graph G (which is the subject of this thesis) is the length 

of the shortest cycle in G.

Motivation

It is not easy to find trivalent graphs with large girth. When this 

work was begun there were no published examples of trivalent graphs 

with girth more than 1 2 , although the existence of trivalent graphs 

with arbitrarily high girth had been proved. Tutte C 4 ] and 

Bollobas [g] have published proofs that are in some sense constructive,
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Both start with a graph G on 2^ vertices with girth g in which 

every vertex has degree 2 or 3 and show that if there are any 

vertices of degree 2 in G a graph with more edges also of girth g 

and every vertex of degree 2 or 3 may be constructed on the same 

number of vertices. Pisanski and Shawe Taylor [30] have also 

produced a construction that develops a trivalent graph of girth 

g+1 from a cycle permutation graph of girth g, while the number of 

vertices in the new graph is roughly the square of the number of 

vertices in the original. The central problem examined in this thesis 

is the enumeration of n(3,g), the number of vertices in the smallest 

trivalent graph of girth g. It is known that this value must exceed 

a number close to 2^® [34], and as we have seen it is bounded by 2®, 

so significance will be attached to the value

c(g) = loggCnfSgg)).
g ®

which in turn must lie between \ and 1. Although it remains a mystery 

what happens to c(g) as g tends to infinity, in Chapter 5 we will 

exhibit some trivalent graphs with girth up to 32, and so obtain some 

upper bounds for c(g) , g < 32.

Contents

In Chapter 2 there is an account of the known bounds for n(3,g) for 

g ^12, and the smallest known trivalent graph of girth 9 is derived. 

This particular graph has 58 vertices - the thirty two known graphs of 

girth 9 with 60 vertices are also catalogued and in some cases 

constructed.

Chapters 3 and 4 are largely concerned with Cayley graphs. A Cayley 

graph can be obtained from a group G with a set of generators fi
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not containing the identity satisfying the additional property;

-1
X e => X e fi .

The Cayley graph F = F(G,0) is the simple graph whose vertexset 

and edgeset are

V(r) = G; E ( D  = {(g,b)|g'^e !2}.

If consists of three involutions, or an involution and an element 

of order greater than 2 and its inverse, the resulting Cayley graph 

will be trivalent. A trivalent Cayley graph will be said to be Type I 

if its generating set consists of three involutions and Type II 

otherwise.

Chapter 3 contains a proof that there exist trivalent graphs that are 

Cayley of arbitrarily large girth and a similar result for symmetric 

graphs (Cayley graphs are all vertextransitive [5]). It also contains 

a result concerning the number of vertices in a vertextransitive graph 

with valency k and girth g.

Chapter 4 contains the construction of the smallest trivalent Cayley 

graphs of girth g where g ̂  9, and some examples of groups and 

generating sets giving trivalent Cayley graphs of girth up to 17.

One particular area of investigation will be the Cayley graphs of 

the groups denoted Z(p, , k) by Coxeter, D?ucht and Powers Cll] 

where p is an odd prime and k a primitive root modulo p. There is 

an upper bound on the girth of such graphs which is established and 

attained.
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Because the girth of an s-arctransitive graph must be at least

2s-2 [34], it would seem that highly arctransitive graphs would

be a fertile area to look for graphs of large girth. However

there is a wellknown theorem of Tutte which states that there are

no trivalent s-arctransitive graphs with s > 5  [35]. In Chapter 5

we show how to construct a family of graphs that are at least

4-arctransitive for which it is conjectured that the girth is

unbounded. There is a one-to-one correspondence between members

of this family and the odd primes. The family subdivides into several

subfamilies depending on the congruency class of the prime modulo 16.

The subfamily of graphs corresponding to primes congruent to 1 or 15

modulo 16 is the same set of graphs as that defined by Wong in terms

of primitive subgroups of the projective special linear group PSL(2,p)

[38] . As shall be shown the number of vertices in the graph corresponding
3to prime p is of the order of p if p is congruent to 1 or 7

modulo 8 and of the order of p^ otherwise.

Some of the most interesting results are those portrayed in the numerical 

tables to be found at the back of the thesis. Firstly there is a table 

showing the smallest known trivalent graphs of girth g ̂ 1 7  and some

of their properties. Secondly there is a table giving the girths and

degree of arctransitivity of the Cayley graphs of Z(p,(p-l)/2,k) 

where p is a prime less than or equal to 23; finally there are 

various tables associated with the sextet construction of Chapter 5.



11.

Chapter 2

The (3,g) cages 2 4  g ^  12

A (3,g)-cage is defined as a trivalent graph with girth g such 

that there are no other graphs with less vertices with these 

properties. This chapter will be devoted to the search for 

(3,g)-cages in the cases 2 ^ g  ^ 1 2  in particular the case g = 9.

Lower bound for n(3,g)

There is a lower bound on the number of vertices in a trivalent graph

of girth g either obtained by counting the number of vertices at

distance strictly less than (g + 1 ). from a given vertex or by
'2

counting those vertices at distances less than from either

endvertex of a given edge L 34]. If graph G is trivalent and has 

girth g and n vertices then

(g-l)/2
n ^  3(2 ) - 2 if g is odd, and

g/2+1n ^  2 - 2 if g is even.

This minimum is rarely attained. The excess e(3,g) is defined as 

the difference between n(3,g), the number of vertices in a 

(3,g)cage, and the minimum n^(3,g) where

(g~l)/2 .n^ - 3.(2 )- 2 if g is odd, and

g/2+1n^ = 2 - 2 if g is even .
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The Known (3,g)cages

By considering the multiplicities of the eigenvalues of the collapsed

adjacency matrices it has now been shown by various authors that the

excess e(3,g) can be zero only if g is equal to 3,4,5,6,8 or 12 

(see [5]).

All these values of g correspond to unique cages with excess zero.

The (3,g)cages for g = 3,4,5,6,8 respectively are the complete 

graph Kĵ , the complete bipartite graph g, the Petersen 

graph on 10 vertices, the Heawood graph which has 14 vertices, and 

the Tutte graph on 30 vertices. Their uniqueness is proved by

Tutte [34], as is the uniqueness of the McGee graph which has

24 vertices and girth 7 and consequently has excess 2. The (3,12)cage 

on. 126 vertices is described by Biggs [5] and Benson [4] and was 

proved unique by Rees [33] and others. O ’Keefe and Wong [29] have 

proved that a (3,10)cage must have 70 vertices and excess 8 and that 

there are at least 3 of these cages. One of them was found by Balaban, 

and the other two were discovered by O ’Keefe and Wong and independently 

by Harries and will be referred to here as X and Y.

Girth 9 and "Tree-Removal"

From the three graphs with 70 vertices, graphs with 60 vertices and 

girth 9 may be constructed as follows.

Let V be a vertex in a trivalent graph G of girth 10 and let 

^1*^2* *** *^12 the 12 vertices at distance 3 from v such 

that v^ is at distance 2 from v^^^ if i is odd.
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See Fig. 2.1.

V12

11

10
VV,

Figure 2.1

Define a new graph H whose vertex-set and edge set are

VCH) = V(G)\{x EVCG)|dg(v,x) 4  2}

and E(H) = [E(G)X(V(H) x V(H))]vj A

where A is the set of edges {(v^jV^), ...

The new graph H is trivalent; we now prove every cycle in H is 

of length at least 9.

Let C be a cycle in the graph H.

If no edges in C are in A, then C is a cycle of G and

consequently of length at least 1 0 .

If there is just one edge (v\,v\^^) say which is in both C and A, 

then there is a circuit C* in G corresponding to C with the edge

(v^,v^^^) replaced by two edges since v^ and are at distance

2 in G. But G has girth 10 so C* has at least 10 edges and C

must contain at least nine edges.

If C contains two or more edges in A it must also contain 2 paths

v^Vj^ and v^ in H where v^.v^.v^, and are all in
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There are paths from and to v of length 3 in G, so there 

is a path of length at most 6 in G but not in H. If there

was a path of length less than 4 in H, G would contain a

cycle with less than 10 edges, so d^(v^,v^^ must be at least 4. 

Similarly must also be at least 4. Hence C contains

at least 10 edges, and H has girth at least 9.

This result may be generalized to obtain an upper bound for 

n(g,3) in terms of n(g + k ,3) for all g 4 6  as follows.

Proposition

n(g,3) 4  n(g + 1,3) - n^( ,3).

Proof

Let G be a trivalent graph of girth g and let 

Ap(x) = { veV(G) 1 dg(v,x) = r} .

s
Then U A (x) is a tree consisting of all vertices at distance 

r=0 ^
less than s+1 from x if g > 2s and we shall say it is rooted

at X, and has radius s. If |_®/^ is odd it is possible to

create a graph H of girth at most g-1 by replacing the tree

rooted at a given vertex x with radius s =  r ^ ^ / 2| U A ( x )
r=0 ^

with edges joining those vertices in A^^^ that were 

at distance 2 from each other.

If is even, if a given edge (y,x) in E(G) is contracted
s

to single vertex x of valency 4, and then the tree U A.(x)
i=0 ^
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where s- | ^ /2 j end those vertices in t>iat were at-
distance 2 in G joined, the new graph will again be at least g-1 

in girth.

Balaban used this method, starting from the (3,12) cage and 

removing fourteen vertices to find the smallest known trivalent 

graph of girth 11 which has 112 vertices [1]. The (3,12)cage is 

edgetransitive [4], and the tree to be removed is rooted on an 

edge so only one such graph can be produced in this way.

Trivalent Graphs of Girth 9 with 60 Vertices»

More trivalent graphs of girth 9 with 60 vertices can be created

from the (3,10)cages by tree removal as the tree to be removed is

rooted at a vertex and the three (3,10)cages Balaban, X and Y

have 3,4 and 8 vertex orbits respectively under the action of their

automorphism groups. Just two of the resulting graphs are isomorphic,

so 14 trivalent 60 vertex girth 9 graphs have been obtained ( c<rn<6;w n p -

Previously five such graphs were known, two of which are Cayley graphs

and will be described in Chapter 4. The other three are named after

Foster, Evans and Balaban/Biggs respectively. The Evans graph is

the only known trivalent graph of girth 9 on 60 vertices that is

vertextransitive but is not a Cayley graph. Only one of these graphs,

the Cayley graph named after Foster and Frucht [18], has the property

that its diameter, which is the maximum distance between two vertices

in a given graph, is 5. Graphs with the property that their diameter

is less than or equal to 5 (g+1 ) where g is their girth, are known

as generalized Moore graphs. This is the largest known trivalent

generalized Moore graph.
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Table 4 contains various details about the thirtytwo known 

60 vertex trivalent graphs of girth 9 including the number of 

9-cycles they contain, the automorphism group and the value of 

the smallest eigenvalues of their adjacency matrices.

A Trivalent Graph with 58 Vertices and Girth 9

Only one trivalent graph with 58 vertices and girth 9 is known,

that being described in a paper by Biggs and Hoare [6 ]. This

was discovered while examining edgereplacement schemes and can

be derived from a 60 vertex trivalent graph (itself derived from X)

as follows. In this graph XC there exists a subgraph A,B,C,D,E,F,G,H

shown in Figure 2.4 with the property that through the 2-arcs ABC

and DBF there are no nine-cycles.

A

C F

Fig. 2.4

It is possible to remove the vertices B,E,H and add the edges

(A,C) and (D,F) to obtain a graph F on 57 vertices with girth 9,

in which every vertex is of degree three except one vertex (G) 

which has valency 2. Elsewhere in the graph there is an edge (X,Y)

such that dj,(X,A) = d^(Y,A) = 7. By adding a vertex Z to the

vertex set of F, and replacing the edge (X,Y) by the three edges 

(X,Z), (Y,Z) and (G,Z) a trivalent graph of girth 9 on 58 vertices 

is obtained.
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The Value n(3,9).

In the known graph on 58 vertices described above there are 2 2-arcs 

which are not contained in any 9-cycle but unfortunately no means 

of removing either of them and reconstructing to obtain a trivalent 

graph on 56 vertices with girth 9 has yet been discovered. Hence 

the upper bound for n(3,9) remains 58. Using a computer McKay has 

shown that n(3,9) is at least 54 [28], but at present it cannot 

be said which of the three possible values 54,56,58 corresponds 

to the true number n(3,9).
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Chapter 3

Some Families with Increasing Girth

In this chapter we shall investigate families of cubic graphs with 

the property that the girth is increasing. As we have mentioned 

previously, Tutte and others [34] have shown that given g greater 

than or equal to 3 there exists a finite trivalent graph with girth 

at least g - we start by showing there is a Cayley graph with these 

properties. The argument is similar to that used by Evans [16] to 

show that given k ^ 2 ,  g ^  3 ' there is an embeddable g-net of 

valency k.

First we need two lemmas.

Lemma

Let G be a group. If and are normal subgroups of finite 

index in G, then the intersection of and is also a normal 

subgroup of finite index in G.

Proof

By the Second Isomorphism Theorem the quotient group is

is isomorphic to N. . Now N^N_ is a subgroup of G and

N_ is of finite index in G so N_N_ must be finite.
^

Also the order of N« is the same as the order of N N«
/N^riN^ ^ /N^

so N- is finite. But N„ is of finite index in G so

so is finite.



Let G be the free product of a finite nunbei’ of cyclic groups.

Then G is residually finite, that is given any non-identity

element g in G there is a normal subgroup N of finite index
g

in G that does not contain g.

Proof

This was proved first by Gruenberg [20]. The neatest proof is in a 

paper by Eaumslag and Tretkoff [3].

Theorem 3.1

If n is an integer larger than 2, there is a finite group whose 

Cayley graph is trivalent and has girth at least n.

Proof

Let G = < R^, Rg|R^ = R^ = Rg = Ig >, where 1^ is the identity

element of G. Then by the Lemma G is residually finite. Hence 

given E a non-identity element of G we can find a normal subgroup 

of finite index in G not containing g.

We now use the set of generators {R^, R^, R^} to construct A a Cayley 

graph of G, and we denote the vertex in V(A) corresponding to the 

element g of G by Vg. A is in fact the infinite trivalent tree.

Let S = (y Iv  E G, 0 < d^(V^, V^) < n}, that is the set of words in G 

of length less than n. S is finite.

Now let N = N . Then N is of finite index by the Lemma.
Y E S ^
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Q
Let r be the Cayley graph of quotient group /N using

{NR^.NRg.NRg} as the generating set. We claim P has girth at

least n.

For suppose there is a cycle of length m in P where m is 

strictly less than n. Then

Nw Nw ...Nw = N for some w. in (R ,R_,R_}j. 2 m 1 JL 6 V
so = N since Ng = gN for all g in G

and w_w_... w is in N.L a m

But w-w„.~iw -is in S since m < n. and thus w.Wo— w is not in 1 2 m ’ 1 2  m
N^l*”^m cannot be in N. Hence there can be no cycles of lenj

less than n in P and P must have girth at least n.

If the subgroups referred to in the above proof as Ng are chosen 

more carefully we can ensure that the Cayley graph P is not just 

vertextransitive but also edgetransitive.

Corollary 3.2

Given n 3, there exists a finite trivalent graph that is symmetric

and has girth at least n.

Proof

Again let G = <R^,R2 ,Rg| = R 3 = 1^> , and let A be the

Cayley graph constructed from G using {R^,R2 ,Rg} as the set of 

generators. As in the previous proof we let S = {ylyeG,

0 < d.(v , V ) < n}A Y ’ Ig
Given g = R. R. R. ...R. with i. € {1,2,3} 1 ^  j < m, define

^1 ^2 I3 ^m ] “
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1*2 “ Rjli B ***^ni where P represents the permutation (123).
1 2  m

n is clearly an automorphism of G.

Now given y we choose Ny such that Ny is a normal subgroup of 

finite index in G not containing y such that

Ny = < R^, R 3 IR1 = %2 " " ^1 " ***“ t̂r “ ^G^ only if

Njj = < R^, Rg, RglR^ = Rg = R 3 = = ...= nw^ = Ig >.

since y e S if and only if Ily e S the image of N = Ny
y e S

under II will be N.

Let r be the Cayley graph of ^/N using {NR^,NR2 ,NRg} as the set 

of generators. Then F has girth at least n; it is just required 

to show that F is edgetransitive.

Suppose Ng^ is adjacent to Ng2 in F Then gĵ  = ng2r for some

n in N and some r in {R^,R2 ,R3 }. This means

ngj^ = JI(ng2 r)

= Hn IIg2 Hr

= n ’ JIg2 TIr where n * e N and

Hr must be in {R^,R2 ,Rg} and so NRg^ is adjacent to NIIg2 - Hence

n represents an automorphism of T  and it stablizes the vertex 

corresponding to the identity element while cyclically permuting its 

adjacent vertices. Since F is a Cayley graph and all Cayley graphs 

are vertextransitive [ 5 ] F must be symmetric.

The same results can be obtained for kvalent graphs where k > 3 by 

similar methods. As we shall see we can also construct trivalent
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2-arctransitive graphs in this way. We use the Lowel Central Series

of the group G = < = Rg " *3 " ̂ G^'

Definitions

Given x,y elements in a group G, we write the commutator 
-1 "1X y xy as (x,y). For subgroups A,B of G the notation (A,B)

will mean the group generated by all (a,b) with a sA, b c B .  If

G.q = G and G^^^ = (G,G^) for N ^ l ,  the series

G - Gq ^ G ^  ^ G g

is called the Lower Central Series of G. If g is a member G^ 

but not a member of G^^^ we say g is a commutator of weight i.

We have that G^ is a normal subgroup of G for all i.

Let G — < ,R2 fRg I Rĵ  — R2 ~ R 3 — 1q ̂  $ and let G^ denote

(G,G^_^) where G^ = G , that is the ith term in the Lower 

Central Series of G. Let F^ correspond to the Cayley graph of 

the quotient group ^/G^ using *^i^2 * G^Rg) as the

generating set.

Theorem

The girth of F^ increases unboundedly.

Proof

Mal*cev [2?] has shown that G is an N-group, that is the infinite

intersection G. is the identity element in G. This means
i > l  ^

that given an element g of G, there exists r^ such that g is not 

in G^ for all i greater than r^.
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As in the proof of Theorem 3.1 , we let A be the Cayley graph of 

G using generating set and define

^n ~ (ylY E G, 0 < d^^v^,Vy) < n} where represents the vertex

in V(A) corresponding to the group element g in G.

Now let r be the largest value of r for all y in S . Theny n
the girth of must be at least n by a similar argument is

that used in Theorem 3.1.

The graphs r are finite. Gaglione [19] has shown that i/p
^ X i+1

is elementary Abelian of order 2 ^ where

= "/n J  w("/k) (k=k) (1 )k n■ ^/n
k>l

where p is the Mobius function, and

“n = -1/, , ^  Ci„Cl - - 3 x h ]
•dx x=0

From these formulae we can calculate the order of ^/q , and hence

we find the number of vertices in is given by

L ^2 where L = E X
1 ^

The first nontrivial graph in the sequence F̂  ̂ is F g which is 

the cube. This has 8 vertices and girth 4, Fg has 64 vertices

(2)

and girth 8 [17], while F̂  ̂ has 2^^vertices and has been computed

to have girth 14.

Theorem 3̂.4

The girth of F^ is less than i^ if i ^ 3,
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Proof

First we need a result concerning the weight of a commutator. If 

u is in and v is in G^ , then (u,v) is in G^^j [2 1 ],

and the words (u,v) and (u ^,v) correspond to cycles in '

Choose u and v such that the lengths of the words u and v 

correspond to the girths of and respectively, and (u,v)

is not the identity element.

Let u = R ... R, R R, since R u R is in F. and woulda D a b a a i
be of shorter length than u if R^ were the same as R^. Similarly

let V = R .. R , where R is different from R ,.c d c a

Then (u,v) = R^.. R^R^... R^R^... R^R^... R^. If there is no 

cancellation in (u,v), that is R^ ^ 4 and R^ ^ R^,

there must be a cancellation in

(u -̂ ', v) = "^ ^ d ' ' '  ̂ a^c *‘*^d since R^ = R^.

Hence if g(F..). represents the girth of the graph F.i 1

gCTi+j) < 2(g(n) + g(rp) - 2

so sUjjj) 4  4g(r^) - 2

and g(r2n+i) < 2 (gCr„) + g ( q ^ p )  - 2 .

2Suppose g(F^) ^  i whenever 2 ^  i < n .

Now if n = 2i g(F^) ̂  4(g(F^)) - 2 4  n^ - 2 < n^

and if n = 21+1 g(T^) < 2(g(r.) +g(q^^)) -2 < (2i+l)^ -1 < n^
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But gCfg) - 4 and gfPg) = 8  so by induction 

2g(r^) < i whenever i is greater than I»''

We now turn our attention to the values if the number of vertices

in L  or |v(r^)| is taken to be 2 Recall that is

given in equation (1 ) and is given in equation (2 ), but is

alternatively seen to be the coefficient of in the infinite sum

A = 6(x^ + x) r (2x® + 3x^)i . 
i=0

2 3 2Since ( l -3x - 2x ) = (2x-l)(x + l) and the nearest zero to the

origin is x = J, the radius of convergence of Ea^x^ is J and

consequently as n ->- » ”n+l 2 .
an

But a ̂  is much the largest term in the sum

30 ^n+ly^ also tends to 2 as n tends to infinity, 
n

2^Thus as n » the number of vertices in T • tends to 2 and so
2 , . c.g(r )

as g(r^) < i and |V(r^)| = 2 tends to infinity as i

tends to infinity.

Theorem 3.5

The graphs in the family {r^} are all s-arctransitive, where s ̂  2,

Proof

Given G = R . R. ,,,R. with i. e {1,2,3} 1 < j < m , define 
1 2 ^m ]
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Tig - R„. R_. .. R^. where II represents an element of the
1 2 m

symmetric group of permutations on the set {1,2,3}. II is an 

automorphism of G, and the image of G^ under H is still Ĝ .̂

We follow the proof of Corollary 3.2 and find that II corresponds 

to an automorphism of the graph fixing the vertex corresponding

to the identity element. Because there are six permutations on 

3 letters, the order of the stablizer of a vertex is at least 6 and 

the graph F^ must be at least 2-arctransitive.

Additive Excess

Until now in this chapter we have been viewing excess as a multiplicative

function of g. We now show that although c(g) may tend to g as

g becomes large, the additive excess, the actual number of extra 

vertices required as the girth increases, Is unbounded. In this section 

not only trivalent graphs will be considered but also graphs in which 

every vertex has degree k, or k-valent graphs. Biggs has shown that 

for each odd integer k the excess e^ ^(g) of a vertextransitive 

graph with valency k and girth g is unbounded as a function of g [7 ]. 

It will now be shown this is true for all even integers k as well.

Let G be a vertextransitive graph of girth g = 2r + 1  and valency 

k, and let A^(v) denote the set of vertices at distance i from 

a given vertex v. Because there are no cycles of length less than g

.i-1|a^(v )| = k(k - 1) 1 < r.

The number of cycles of length g through v is equal to the number 

of edges in E(G) which join two members of A^(v), and as G is
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vertextransitive this number is a constant x independent of v.

Let J denote the number of edges from a vertex of A^(v) to one

in A^^^(v). The excess of G is given by | U A^(v) | , the
s>r

number of vertices at distance greater than r from vertex v, and 

will be denoted by e.

Lemma

(g-1 )
0 < k(k - 1 ) ' - 2x < k e.

Proof

Each vertex in A^Cv) is adjacent to one vertex in Ap_^(v) and 

k - 1 other ones so that

2x + J = (k - 1) |Ap(v)|.

But |A^^^(v)| ^  e, and each vertex in A^^^Cv) has valency k,

I Iso we have 0 ^  J ^  ke. Putting |A^(v)| = k(k-l) gives the

required result.

Theorem 3.6

For each integer k ^  3, there is an infinite sequence of values of

g such that the excess of any vertextransitive graph with valency k

and girth g satisfies e > •

Proof

Firstly if k is odd, Biggs has shown e > ^ k  for all g in an 

infinite set of primes S^.
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Now if k is even there is an odd prime p dividing (k-1). 

Let g = p^^, where m is a positive integer. Let the number 

of cycles of length g in G be N and let the number of 

vertices |v (G)| be n.

Each of the n vertices is contained in X g-cycles, so 

nX = Ng, and g must divide nX. But g = p^^ so either

X = 0 (mod p^) or n = 0 (mod p^).

Suppose first X = 0 (mod p™).

Then J = k(k-l)^®’^ V 2  - 2X = 0 (mod p^).

But J > 0 since G is connected, so J ^  p^-

From the lemma we have ke ^p^', so e ^  /g .
/k

Next suppose n = 0 (mod p^).

Now n = I U A (v)I 
s>0 ^

I U A (v)I + e 
s=0 ®

r _
1 + E k(k-l)^ + e

s=l

= {(k-l)2 (G"l)-l} + (1+e).k-2

Hence (k-2)n = k{(k-l)^^® ^^-l]+ (e+l)(k-2)
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But n = G (mod p^) and (k-1)^^^ = G (mod p^) since

p divides k-1 so

0 = -k + (e+l)(k-2 ) (mod p^)

Hence e = p"')

Bannai and Ito have shown e > 1 for k = 4 [2 ] ,

so

Thus e > Æ  .
'k



Chapter 4

Trivalent Cayley Cages

This chapter is devoted to the problem of finding the smallest 

Cayley graphs of a given girth. It is true that for some small 

values of the girth the "Cayley Cages" are of similar order to 

the ordinary cages, but there is no general result of this kind. 

Since Cayley graphs are all vertextransitive the results in 

Chapter 3 concerning the excess of vertextransitive graphs apply. 

The (3,k) Cayley Cages k ^  9

We start by noting that the (3,4) cage K _ is the Cayley graph0,0

of the group using the three involutions as generating set.

The Heawood graph, the unique (3,6) cage is also a Cayley graph, 

the group being a subgroup of the group of linear transformations 

of the field with seven elements isomorphic to the dihedral group 

of order 14, the generating set being the three involutions 

{1-x, 2-x, 4-x}. Examining C^^ and shows that the unique

(3.5) cage the Petersen graph is not a Cayley graph and indeed the

(3.5) Cayley cage has considerably more than 10 vertices.

Theorem 4.1

Trivalent Cayley graphs of girth 5 have at least 50 vertices.

Proof

Let r be the smallest trivalent graph of girth 5 which is also 

a Cayley graph, and let it be the Cayley group G -with, generating
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set fi. We have that G has more than ten elements.

Consider the cycles of length 5 in the graph. Each such cycle

corresponds to an identity word the generators of

G. Suppose W^ ^ ^i+l some i. Then the five words

^1^2^ 3^4^5 * ^2^3^4^ 5^1 *’’*>^5^1^2^ 3^4 ^^st all represent different 
cycles through a given vertex in the Cayley graph.

Let Ep(x) denote the set of vertices at distance r from a

given vertex x, and let the subgraph fpCx) have vertex-set and 

edge-set

r
V(r (x)) = U A (x); E(r (x)) = {(v,w)| (v,w)eE(r)}

1=0

There cannot be six edges from AgCx) to AgCx), or T would be the 

Petersen graph, so there must be exactly 5 edges between vertices 

in Agfx).

Now we show x is not a cutvertex; this means the graph remains 

connected when the vertex x is removed. Every 5-cycle through 

X must also pass through 2 members of A^(x), and there are at 

most 2 5-cycles passing through x and two given members of A^(x). 

Hence there is a path of length 3 between any two members of A^(x) 

not caontaining x. Thus x is not a cutvertex. We also have that 

through any 2-arc there is at least one 5-cycle.

There are six vertices in Agfx). Since there are six edges from 

vertices in AgCx) to vertices in A^(x) and five edges from A^Cx) 

to Agfx) there must be exactly 2 edges from A^Cx) to Ag(x). Suppose 

these 2 edges have a coincident end in A^Cx) vertex V say. Then 

there can be no path from Ag(x) to the
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vertex x which does not pass through V and V must be a 

cutvertex. But x is not a cutvertex so the vertextransitivity 

of r. is contradicted. Hence e^ and e^ have distinct ends 

in Agfx), and similarly they have distinct ends in A2 (x).

Let the edges e^^eg be (Vj^,W^) and (^2 *^2  ̂ where 

are in AgCx) and are in Ag(x). Hence Ag(x) =

has at most one neighbour in Ag(x), and exactly one neighbour 

in AgCx), so there is a vertex {U say in A^(x) joined to W^,

X

X Aj^(x) Agfx) Ag(x)

There is a 5-cycle C through the 2-arc Any path from

to not containing e^ must contain 02 since 62 is the 

only other edge connecting A^fx) to A^Cx). Hence e2 is also in 

C. C contains but 5 edges so (U^W^) and must also be

in E(r). Now consider the subgraph D2 whose vertexset is 

A2 (x)^^{V^,V^}. This is a graph with 4 vertices and 4 edges, which 

must contain either a 3-cycle or a 4-cycle contradicting the girth.

Hence the only word that could possibly represent a cycle of length 5 

in a graph of girth 5 is for some generator S.
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Thus r has 'Type II'. Let G = <R,S> where = 1

be the group whose Cayley graph is F. Suppose the subgroup generated 

by S,<S> is normal in G. Then RS^R is in <S> for all values 

of a and hence <R,S> has ten elements. But F has more than 

10 vertices so <S> is not normal in G.

Sylow's Theorems state that if the order of a finite group H is 

p m ,  where p is a prime not dividing m, then all subgroups of H 

of order p^ are conjugate, and the number of them is congruent to 

1 modulo p and divides to order of H. Since R is of order 2 and

S is order 5 the order of G must be divisible by 10. By applying

Sylow's Theorems we find that any subgroup of order 5 of a group of 

order 20 or 40 must be normal, and Coxeter and Moser [12] have shown 

there are no groups of order 30 with 6 Sylow 5 subgroups so again any 

subgroup of order 5 a group of order 30 must be normal. Hence the 

order of G is at least 50.

We find that if G is given by the presentation

G = <R, S I R^= = (RS)^(RS"^)^ = 1>

G is of order 50, and the Cayley graph of G using {R,S} as generating

set is indeed trivalent and of girth 5.

Corollary

There are no edgetransitive trivalent Cayley graphs of girth 5, nor

are there any Cayley graphs of girth 5 of Type I.

Proof

We have already shown that all Cayley graphs which are trivalent and
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have girth 5 are Type II. Suppose F is the Cayley graph of the
o c

group G with generating set {R, S} where R = S = 1^. Then 

there is a 5-cycle through any edge labelled S but there is no

5-cycle through an edge labelled R, and hence F cannot be 

edgetransitive.//

Before examining the trivalent Cayley cages with girth greater than 

5, we need a result involving dihedral groups. The dihedral group 

is the group of symmetries for the regular n-gon. Let G be 

a dihedral group of order 2n and let G' be the cyclic subgroup 

of G of order n. Let 0 be a generating set of G chosen such

that the resulting Cayley graph of G is trivalent.

Lemma 4.2

I
If F is the Cayley graph of G with generating set Tf the girth

of F is less than or equal to 6.

Proof

Suppose F is Type I. Then Q consists of 3 involutions {R,S,T}

say, if none of R,S^T are in G ’, then the product RST is not
2in G', and (RST) = 1 and the graph contains a 6-cycle. At least

one member of is not in G ’, R say, so if S is in G'
2(RS) = 1  giving a cycle of length 4.

If however F is Type I I , then consists of one involution R
-1

say and an element of order >2 S say and we have RSRS = 1 and 

F contains a 4-cycle.

Hence the girth of F is at most 6. //
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Theorem 4,3

The smallest Cayley graph with degree 3 and girth 7 has 30 vertice 

Proof

First let T be the Cayley graph of C^ xDg with the generators 

A,B represented by the permutations

A = (1 2), B = (1 2 3) (4 5 6 7 8).

The shortest identity word in A and B is ABAB^ and F has 

30 vertices and girth 7.

The unique (3,7) cage, the McGee graph has 24 vertices and is not 

vertextransitive and consequently not Cayley. There are only 3 

nonAbelian groups which have 26 or 28 elements [l2]. Two of these 

are dihedral groups whose Cayley graphs must have girth less than 

7 by the Lemma. The third group is the dicyclic group which

contains only one involution, and whose Sylow 7 subgroup is normal. 

These two properties ensure no generating set may be chosen from this 

group to give a trivalent Cayley graph that is connected.//

We now examine the cases where the girth is 8 or 9.

First various possibilities have to be eliminated.

Lemma 4.4

The girth of a trivalent Cayley graph on 36 vertices is less than 8. 

Proof

We separate the trivalent Cayley graphs into 2 classes. Suppose G
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is a group with 36 elements, and let F be the Cayley graph of G 

using S as generating set.

Suppose F is Type II. Then S = {x,y} where x is of order n 

and n is greater than 2, and y is an involution. Now either the 

resultant Cayley graph has girth less than 8 or n ̂  8, so we consider

the possible values of n where n > 8. Let X denote the subgroup

generated by x.

a) |x| = 1 8  Then X is normal in G being of index 2. Hence yxy = x^

for some a. From this we have

2
x^ = (yxy)^ = yx^y = x,

2So a E 1 (mod 18). There are only two solutions to this 

a E ± 1 (mod 18), and thus yxyx ^ is a word of length 4.

b) |x| = 12 If X is normal <y,x> is a subgroup of order 24 which

is not possible. Hence X is not normal, so there are

3 right cosets of X X, Xy and Xyx. Xy | Xyx so Xyx ^ Xyx^
2 2 and thus Xyx = Xy and yx y is in X. But only two

2 _2
elements x and x in X are of order 6 so either
2 2 2 -2 yx yx or yx yx is an identity word and the graph

contains a 6-cycle.
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c) |x| F 9 If X is noriTial^<x,y> contains only 18 elements. Hence

X is not normal. Let z = yxy. The cosets Xz^ (Ô ^ i ^ 8)

are not all distinct (since |g | = 35), so z^ belongs to X

for some j, 2 ^ j ^ 4, and Xr\<z> is a nontrivial proper
3 3 3subgroup of <z> . Hence X r \ < z > = <z >. Thus z yx y belongs

to X and must be either or x

3 3 3 3If yx y;= x , y commutes with x and yx is of order 6, Since

G contains 4- Sylow-3-subgroups and 3 cyclic groups of order 6 
3(conjugates of <yx > ), counting the elements of G we find the

distinct elements xyx x ^yx,y must all lie in the unique

Sylow-2-subgroup of order 4- and xyx ^yxy = 1 giving a word of 

length 7.

On the other hand , if yx^y = x one of (yx)^, (yx)^x ^ or 

X ^(xy) '̂  is the identity and again we have a word of length 

less than 8 corresponding to the identity.
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Now suppose r is Type I. Then S = {x,y,z} where x,y,z are

all of order 2. Either the girth of F is less than 8 or each of

the products xy,yz,zx are of order greater than 4. Suppose this

is the case and that without loss of generality the product xy is 

of the highest order among them. We now consider the possible order 

of A the subgroup of G generated by xy.

a) IAI =18. Then G is a dihedral group and the girth of F is

at most 6 by Lemma 4.2.

b) |a | = 9 ,  Then <x,y> is of index 2 and normal in G. Hence
2either (xyz) or yxzxyz is the identity and F

has girth at most G.

c) |a | = 6 .  Suppose F is of girth 8.

Let M denote <x,y>. M cannot be normal in G

since |<x,y,z>| is not 24. Hence either zxz or

zyz is not in M. Suppose zxz is not in M. Then

M has 3 cosets M,Mz,Mzx. If Mzx = Mzy, then
2zyxz is in M and we have either (zyx) or zyxzxy

is the identity and F contains a 6-cycle.
2So let zyz be in M. (zy) is of order 3 and

2 2 2 2 consequently (zy) = (yx) . (If (zy) = (xy) F

contains zyzxyx a 6-cycle).

Now consider N = <z,x>. Similarly we have that exactly

one of yzy and yxy is in N. But z(yzy)x = yxy so 

yzy is in N if and only if yxy is in N. Thus we 

have a contradiction and F is of girth less than 8.
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Hence Cayley graphs on 35 vertices have girth less than 8 . //

Lemma 4.5

The girth of a trivalent graph of order 40 is less than 8 and the

girth of a trivalent Cayley graph of order 56 is less than or

equal to 8 .

Proof

Let G be agroup with 8p elements with p=5 or p=7. We know from 

Sylow's Theorems G contains a normal subgroup of order p or if 

p=7 a normal subgroup of order 8. (In this particular case any 

Cayley graph of G must be disconnected if T is of Type I since 

all involutions lie in the unique Sylow 2 subgroup and of girth 

less than 8 if it is of Type II since the only elements outside the 

Sylow 2 subgroup are of order 7). This normal subgroup is unique 

and cyclic. Let S be a generating set of G such that the 

resulting Cayley graph F is trivalent.

Suppose F is of lÿpe II. Then S consists of an involution y 

and an element x of order greater than 2. We now consider the 

possible orders of X the subgroup generated by x.

a) |xI = 4p Then X is of index 2 in G and is consequently normal 

in G. Hence yxy = for some a. From this we have

,â  / .a aX. = (yxy) = yx y  = x .

2Hence a = 1  (modulo 4p), so a = ± 1 (modulo 2p) and
2 2 2 —2 2a = ± 2 (modulo 4p), Thus either (yx ) or yx yx is
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the identity and T contains a 6-cycle.

b) |xj = 2p is of order p so the subgroup generated by x^

is normal and cyclic . Again we find either (yx )
2 -2 .or yx yx is the identity and T contains a 6-cycle.

c) |x| = 8 X is now a cyclic Sylow-2-subgroup of G. y is not in

X so y must be inside a distinct cyclic subgroup of order

8 generated by z, say. Thus y = z^^ and since y does not

lie in X no power of z can lie in X and the cosets

Xz^ ( 0 i ^ 7 ) must all be distinct. Thus we get a ^

contradiction on the order of G, and deduce that there are 

no groups of order 40 or 56 which are generated by an 

involution and an element of order 8.

If the order of X is less than 8 T contains a cycle of length less 

than 8.

Suppose r is lype I, and S consists of 3 involutions x,y,z. We 

look at the order of the product xy, and by similar arguments to 

those used above, find the conjugate of xy by z is either xy or 

yx if xy is of order 4p, 2p or p, and T contains a 6-cycle.

Hence either the girth of T is less than 8 or (xy)^ = (yz)^ = (xz)^ = 1.

Suppose p=5 and (xy)^ = (yz)^ = (xz)^ = 1. Then G contains 

5 Sylow 2 subgroups H^, H^, H^, H^, H^ each isomorphic to Dg.

Let H^ = <x,y> , Hg = ^y,z> and Hg = <z,x>. Each of these is 

selfnormalizing . Now xH^x = H^ and xH^x = Hg and xH^x is not
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but x(xH2x)x = Hg, so one of and contains x, say

Similarly z is in exactly one of and and so is y . But

if y or z are in or Hg = and if y and z are

in Hg Hg = . Hence we have a contradiction and one of the

previous cases must occur.

Hence the girth of a trivalent Cayley graph is less than 8 if it has

4-0 vertices and less than 9 if it has 56 // .

Lemma 4-. 6

The girth of a trivalent Cayley graph with 54- vertices is less than 9. 

Proof.

There are only two nonAbelian groups of order 27 and in one of them 

A every element is of order 3 [i2 ].

Suppose G is of order 54 and its Sylow 3 subgroup is H.

Suppose H is isomorphic to A. Let S be a generating set giving

a trivalent Cayley graph. If any member of S is in H the Cayley 

graph contains a triangle; if not and G is of Type II the element 

in S of order greater than 2 must be of order 6 and the graph

contains a 6-cycle, and if the graph is of Type I it also contains a

6-cycle since the product of any two generators is of order 3.

Now suppose H is Abelian. Suppose T, is the Cayley graph of G

is Type I. None of the three involutions generating G lie in H,

but their products pairwise must all lie in H and xz . zy . zx . yz = (xyz) 

is an identity word. If on the other hand T is lype II with generating 

set {x,y} where x is not an involution, then either yxy.x \ y x  ^y.x

2
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2 -2or X .xy.x .yx is an identity word depending on

whether or not x lies in the subgroup H , p has girth at most

8 in this case.

The remaining possibility is that H is given by the presentation

< S,T I T^ = T"^ STS^ = 1 >

a group of order 27 containing 3 subgroups isomorphic to the cyclic 

group of order 9, whose centre Z is of order 3 and generated by 

the cube of any element of order 9.

Let r be a trivalent Cayley graph of G.

Suppose r is of Type I, and the generating set is given by {x,y,z}

a set of three involutions. If any of the products xy, yz, zx

which all lie in H have order. 3 F contains a 6-cycle so suppose

the order of each of these products is 9. Let K be the dihedral

group of order 18 generated by x,y. If the conjugate of K
2by z is the same as K, (xz) lies in K, xZ commutes with xy 

2and (xyz) = 1 so F has girth at most 6. Hence there are 3

subgroups of G all conjugate isomorphic to K each .containing 9

involutions. Since these subgroups intersect in a cyclic subgroup

of order 9, these 27 involutions are all distinct, and they must

comprise all the elements in G not in H. But xyz is not in H 
2so (xyz) = 1  and F has girth at most 6.

Suppose now instead p is of Type II with generating set {x,y} 

where x is not an involution and y is. If x is of order 9, 

x^ lies in z and either yx^yx ^ or yx^yx^ is the identity. If
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3X is of order 18, coset enumeration swiftly shows yx y lies in 

the subgroup generated by x and again yx^yx  ̂ or yx^yx^ is 

the identity. The only other possible orders of x are less than 

9, so r must contain a cycle of length less than 9.//

We are now in a position to establish the number of vertices in the 

smallest trivalent Cayley graphs of girth 8 and 9.

Theorem 4.7

The smallest trivalent Cayley graphs with girth 8 have 42 vertices. 

Proof

The Tutte graph on 30 vertices is the unique (3,8)cage. Using the 

fact that this graph is bipartite and that there are 24 8-cycles 

through each vertex it is verifiable that this is not the Cayley 

graph of any of the three nonAbelian groups with 30 elements.

Biggs. and.,Ito have shown that excess 2 is not feasible in this 

instance, so there are no trivalent graphs of girth 8 with 32 vertices 

The only nonAbelian groups of order 34 or 38 are dihedral so by 

Lemma 4.2 there are no trivalent Cayley graphs on 34 or 38 vertices 

with girth more than 6. Lemmas 4.4 and 4.5 rule out 36 and 40 

respectively as possible orders for trivalent Cayley cages.

However, the group generated by the permutations

A = (1 2), B = (1 2 3) (4 5 6 7 8 9 10), or alternatively 

given by the presentation

G = < A,B I A^ = B^^ = ABAB”® = 1 > ,
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has a Cayley graph using (A,B} as generating set with 42 vertices

and girth 8. //

Theorem 4.8

The smallest trivalent Cayley graphs of girth 9 have 60 vertices.

Proof

As was mentioned in Chapter 2 McKay has shown that any trivalent 

graph of girth 9 has more than 52 vertices [28].

Lemmas 4.5 and 4.6 show that there are no trivalent Cayley graphs 

of girth 9 with 54 and 56 vertices and the only nonAbelian group 

of order 58 is dihedral. Hence the smallest trivalent Cayley graphs 

of girth 9 have 60 vertices. Two are known.

Firstly the icosahedral group with generating set of permutations

{(1 2 ) (3 5), Cl 3) (4 5), (1 4) (2 5)}

has a Cayley graph with girth 9. This is known as Foster's graph [18]

Secondly the group with generating set of permutations

{(1 2) (4 5), (I 2 3 4) (6 7 8)) 

has a Cayley graph of girth 9, This is an unpublished graph of Coxeter.

fThe Cayley graphs of Aff(p )

Given a finite field GFCp^) with p^ elements

consider the group Aff(p^) of affine transformations of the form 

X H- ax+b, where a,b are members of GF(p^) and a is nonzero.
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f fThis group is sharply 2-transitive and is of order p (p -1).

Let R represent the transformation x h- -1 -x and S represent 

the transformation x h- ax where a is a primitive element of GF(p^)

Theorem 4.9

R and S generate the entire group Aff ( p^),

Proof

Take any element T of Aff(p^) where Tx - m x + n  with m nonzero.
• • i iSince a. is primitive m = -a for some i. Also either T = S

or n = -a^ for some j .

Then

mx + n = mx - a^

= a^(-1 + a ^mx)

= ai(-l - a^ i x)

so Tx = S^.R.S^ ^x and hence Aff(p^) = <R,S>.//

Hence the group with generating set {R,S} has a trivalent Cayley 

graph with p^(p^-l) vertices. We shall be interested in the girth 

of this graph. Should p^ be congruent to 3 (modulo 4) both R and 

S correspond to odd permutations of the elements of the field and 

the graph is bipartite.

Particular cases

The girths of all the graphs with p ^  23 are given in Table 2.

Certain of the graphs are of special interest.

i) If p =11 choose primitive root 7. Coxeter and Frucht [13] have
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shown the resultant Cayley graph which has girth 10 is 

3-arctransitive.

ii) If p = 17 and primitive root 3 is chosen, the Cayley graph

has girth 13. This is the smallest known graph which is

trivalent and has girth 13; it has 272 vertices.

iii) If p = 23 and if 5,15 or 17 are chosen as primitive roots

then the girth is 14. The group Aff (23) has the presentation

I 9 99 S 4- 9Aff(23) = <A,b |a = B = AB AB AB >

and A,B are equivalent to R,S when the primitive root is 17.

The Cayley graph with Ü A,B ] as generating set is 4-arctransitive, 

as we shall see in Chapter 5.

Although the girth increases initially as the prime power increases 

there is an upper bound on the girth of a trivalent Cayley graph
f

resulting from Aff(p ).

Theorem 4.10

If G is isomorphic to Aff(p^) and T is a Cayley graph of degree 

3 resulting from G then the girth of F is less than or equal to 14.

Proof

The only involutions in G are of the form x H- a-x for some a.

All the involutions are contained in the ; ronp {x w- a±x} which is a
f fgroup of order 2p . But F is the Cayley graph of Aff ( p ) and F

is trivalent, so F is generated by some R,S where
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Rx H- c - X 

Sx H- ax + b

where a is not equal to 0 or -1.

Then

((RS)^ RS X = -(a (-l(a(-1 (a ^(a ^x-a ^b) - a ^b)+c)+b)+c)+b)+c) = d-:

for some d.

2 —2 2Hence ((RS) RS ) is the identity and F contains a cycle of 

length 14.//

Theorem 4.11

The smallest subgroup of a group of the form Aff ( p^) to beget a 

trivalent Cayley graph of girth 14 is of order 406.

Proof

Let F be the Cayley graph of a group G a subgroup of Aff(p^)

generated by

R X c - X 
~nS X ->• a x

fwhere a is a primitive root of p and n > 1. Let the order of 

S be m. Since S™ is the identity and the girth of F is 14 m^l4,

f fNow nm e -1 (modulo p )  so p ^  mn + 1.

But |V(F)| = |g 1 ^  mp^

^  14(mn+l)

^  14(14.2+1)

> 406.
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This minimum may be attained if = 29 and the generators

R : X 28 - X 

S : X a- 4x

are chosen.//
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Chapter 5

The Sextet Graphs

In this chapter we construct a family of highly transitive graphs 

for which it is conjectured that there is no upper bound for the 

girth. I have been unable to prove this conjecture but some 

partial results are given. The family is also of interest 

because it yields graphs which are in many cases the smallest 

known trivalent graphs with their particular girth. The girths 

and orders of the graphs known to have girth less than 32 are given 

in the Tables.

The Sextet construction

Let q be an odd prime power.

The projective line PG(l,q) may be identified with the set 

L = GF(q)u{«}, where GF(q) is a finite field with q elements.

A duet is an unordered pair of points {a,b} on L and a quartet 

is. an unordered pair of duets whose cross-ratio is -1.

Thus we shall write

{a,b I c,d} is a quartet <=> = '1

with the conventions about the element « giving

{«^a |b,c} is a quartet <=> ~ -1.

A sextet {a,b |c,d| e,f} is an unordered triple of duets such that 

each of {a,b | c,d} , {c,d | e,f}, {e,f | a^b} is a quartet.

The group PGL(2,q) of linear fractional transformations
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t H- ■ ^ (a,b,c,d e GF(q) , ad - be / 0)

2acts sharply 3-transitively on L and its order is q(q - 1)

Lemma 5.1

1 2The number of quartets is -g- q(q -1). The number of sextets is 
1 22^q(q -1) if q = 1 (modulo 4) and 0 if q = 3 (modulo 4). 

Proof

Clearly PGL(2,q) acts transitively on the duets so we need only , 

consider a particular duet {0,™}. Now {0,* | x,y} is a quartet 

if and only if x + y  =0, so there are ^  (q - 1) quartets containing 

{0,»}. The number of quartets is

Y  ' ^ q ( q  + l). j ( q - l )  = -|q(q^~l)*

Since the points {O , “ , 1} determine the unique quartet {O,o°|l,-l} 

and PGL(2,q) acts 3-transititively on L, it acts transitively on 

the quartets. The condition that {0,«>|l^-llu^v} be a sextet-are

u + V = 0, uv = 1,

so that UjV must be primitive fourth roots of unity i and -i.

If q ^ 1 (modulo 4) there are no solutions and consequently there

are no sextets. If q = 1 (modulo 4) there is a unique solution.

Thus each quartet determines a unique sextet and each sextet arises
1 2from three quartets so that the number of sextets is ^ q ( q  -1).
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From now on we shall assume q = 1 (modulo 4).

From Hirschfeld we have that an involution in PGL(2,q) is uniquely 

determined by two pairs of corresponding points, and that if the two 

pairs from a quartet, then the fixed points of the involution are 

the third pair in the unique sextet determined by the given quartet [23]

For example if the quartet is Q = {1 ,-l |i ,-i} the involution is 

iq(t) = -t and the fixed points are {0, «}. The four points of 

Q may be split into two po-ifiS' in two other ways, R = {1 -i|-l,i} 

and S = {l,i|-l,-i} and the corresponding involutions are

i%(t) = %  , ig(t) = "4/j. .

Solving formally to obtain the fixed points of i^ and ig we see 

that we require a square root of i, that is an eighth root of unity. 

Now if q = 1 (modulo 8), q-1 = 8n and t is a primitive element of 

GF(q) then = o is an eighth root of unity and = i. So in

this case the fixed points of i^, i^ and ig are 

and we remark that they form a sextet.

This remark is the basis for the construction of a cubic graph whose 

vertices are the sextets. We shall suppose that q = 1 (modulo 8), 

and let o denote an element of order 8 in GF(q). The sextet 

{a^a^|b^^|c^c^} is adjacent to {aj^a^ |bj>^ |c],cp if

aĵ  , a^ are the fixed points of the involution
determined by ^1^2*^1^2

bj , b’ ^1^1^^2^2
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In fact {a’j^^a^} is the same as Thus there are three

sextets adjacent to a given sextet, each having one duet in common 

with it. Furthermore it cannot be verified that the relation of 

adjacency is symmetric (since PGL(2,q) is transitive on the

sextets we need only check one sextet). Thus we have a cubic graph

S(q) with ^/24 q(q^-l) vertices.

In order to show that an element g of PGL(2,q) is an automorphism

of S(q) we remark that if 8^, 6^ are the fixed points of an involution 

jq then g8^, gO^ are the fixed points of gj^g ^ = j^^. Hence g 

preserves adjacency in S(q) and the group PGL(2,q) acts as a group 

of automorphisms of S(q).

The components and automorphisms of S(p^).

Now we come to consider the size of the components of S(p^). The 

component of S(p^) containing the sextet mentioned previously 

k^ = |l,-l|i,-i} will be denoted by S^(p^). We have already

established that each element of PGL(2,p^) preserves adjacency 

and corresponds to an automorphism of S(p^).

Let A : t H- B: t h- » where

a denotes an eighth root of unity in the field GF(p^).

Theorem 5.2

The automorphisms A,B are twin shunts of a 4-arc in S(p^),
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Proof

We consider the actions of the first five powers of A and B on

the sextet = {1 , -1 Itg 1-g 
1-0 * 1+0

1+0 0-1 
0-1 * 1+0 "* -1 —1} . A^ k = B^ k

for 0 ±  i <_ M- but A^k _ = B^k . .
—  —  -1 -1

Hence A and B do correspond to twin 4-shunts . y

There is a theorem of Tutte [34] which states that given a connected 

graph G with automorphism group Aut (G) and two elements X,Y in 

A.ut(G) which both act as shunts on an s-arc then <X,Y> , the 

subgroup of Aut(G) generated by X,Y acts at least s-arctransitively 

on G. Hence <A,B> the subgroup of PGL(2,p^) generated by A,B 

acts at least 4-arctransitively on S^(p^).

Theorem 5.3

S^(p^) is isomorphic to S^(p^) if f is greater than m and p
m _is an odd prime, and p 5 1 (8 ).

Proof

Suppose Op an eighth root of unity in GF(p^) lies in a subfield 

GF(p^) of GF(p^). Then the elements 0,«,1,-1, i,-i ,Op,-o^ where 

i = o^ must all lie in the subset GF(p™)vj{*3» As A,B generate a 

group that is vertextransitive on S^(p^) and A,B are linear 

fractional transformations involving only powers of Op the elements 

of any sextet in the same component as k^ must also be in GF(p^)vj£°0,
and S^(p^) is isomorphic to
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Corollary

f 2Sg(p ) is isomorphic to S^(p ) for all odd primes p with f

greater than or equal to 2, and S^(p^) is isomorphic to S^(p)

if p H 1 (mod 8).

Proof

p ^ =  1 (modulo 8) for all odd primes. ^

From now on we will only be concerned with the family of graphs 
2

where p is an odd prime. A,B will be considered as 
2elements of PGL(2,p ) and G will denote <A,B> the subgroup of

2 2 PGL(2,p ) generated by A,B. G acts vertextransitively on S^(p )

and as G must be isomorphic to one of a small number of subgroups
2 . 2 of PGL(2,p ) we have a way of calculating the order of S^(p ).

If p = 1 (mod 8), we need only consider S^(p).

First we consider the cases where p = 1  or 7 (mod 8) when A,B are
2 2 both within PSL(2,p ) the subgroup of PGL(2,p ) consisting of

those linear fractional transformations

at + b
ct + d

2where ad - be is a square in the field GF(p ).

2The subgroups of PSL(2,p ) were found by Dickson and are listed 

in [24].

Lemma (Dickson)

f
The group PSL(2,p ) has the following subgroups:

1) Elementary Abelian p-groups

2) Cyclic groups
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3) Dihedral groups

4) Groups isomorphic to

5) Groups isomorphic to

6 ) Groups isomorphic to A^

.7) Semidirect products of elementary abelian p-groups with cyclic groups 

8) PSL(2,p^) with m|f and PGL(2,p^) with 2m] f.

We remark that there are no subgroups of PSL(2,p^) isomorphic to

X . It is also true that there are no such subgroups of PGL(2,p^). 

Since this group itself occurs as a subgroup of PSL(2,p^^) [14]. So 

we have immediately:

Lemma 5.4

In all cases G = < A,B > acts 4-arctransitively on S(p).

Proof

We have seen that G acts transitively on the 4-arcs, so G must act 

either 4-arctransitively or 5-arctransitively. G is a subgroup of a 

PGL group and so it cannot contain the subgroups of type S^ x 

required as the vertex-stabilizers in the 5-arctransitive case. Thus 

G acts 4-arctransitively. J!

Recalling the remarks following the Dickson Lemma, we see that the 

determination of the order n of S(p) now depends on the order of G: 

we must have n =  |g |/24.

Theorem 5.5

2G = <A,B> is isomorphic to one of PSL(2,p), PGL(2,p), PSL(2,p ) 

or PGL(2,p^).
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Proof

G contains the subgroup fixing the sextet k^, and the element

A which does not fix k^. The only category of subgroup of PSL(2,p^) 

strictly containing an subgroup is category 8 by the Dickson Lemma.//

Theorem 5,6a

If p E 1 (mod 16) G = PSL(2,p).

Proof

A,B lie inside . PGL(2,p) and have square determinants. Hence by 

Theorem 5.5 G must be isomorphic to PSL(2,p).

Theorem 5.6b

If p E 9 (mod 16) G = PGL(2,p).

Proof

The generators of the stabilizer of k^ are induced by matrices with

square determinants and so they belong to G n  PSL(2,p). The element 
2A also belongs to G n  PSL(2,p) and it is not in the stabilizer of

k^ so GnPSL(2,p)~ PSL(2,p). Since 4 contains the element A not

in PSL(2,p) we must have G =  PGL(2,p). Jj

Theorem 5.6c

If p E 15 (mod 16) G = PSL(2,p).
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Proof

2 _Since p = 1  (mod 16) in this case we can choose a primitive 16th 

root of unity t in GF(p^) and put o - . The matrix = (t /2)

induces the same automorphism as A, and it has the properties

î’îdet A = 1 ,  A A = 1 ,  o ’ o o ’
Awhere A^ is transpased conjugate of A^ with respect to the field

automorphism x ^ x^ of GF(p^). In other words A^ belongs to

the special unitary group SU(2,p^). The same is true for = (t/2 ) ^B,
2and so G = < A, B> is a subgroup of PSU(2,p ). However it is known 

' 2that PSU(2,p ) is isomorphic to PSL(2,p). Hence by Theorem 5.5

G is isomorphic to PSL(2,p). U

Theorem 5.6d

If p s 7 (mod 16) G = PGL(2,p).

Proof

In this case we cannot normalize A so that it is both special and 

unitary - this is because =-1 when p = 7 (mod 16), whereas

= 1 when p = 15 (mod-16), So we must proceed rather 

differently.

2 2Let G denote the stablizer of k and let K = <G ,A B >. G is.o o o ’ o
l~r r —1generated by the elements A B A  ( l ^ r ^ 4 ) ,  or by the

transformations t ^ / t ,  t i t , t->^^ ^^/(l+t). We can choose 

matrices representing these transformations as follows;
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0 -i\ jo 0  ̂ -iy/2 1//2 '

■/'1 0 1 \o o ' '• i//2 i//2 /

2 2 -1 2 which all belong to SU(2,p ). The matrices = (2o) A and

= (-2o) induce the same automorphisms as A^ and B^ respectively

and both belong to SU(2,p^). Thus as before we have K = PSU(2,p^)= PSL(2,p

l~r r —1 2 2 • •Now for each generator A B A  , A ,B of K the result of conjugating

by A or B is also in K- Since AB K we must have AK = BK = KB = KA.

It follows that there are just two cosets of K in H, so from

Theorem 5.5 G = PGL(2,p). //

It DUst be remarked that when p = 7 or 15 (mod 15) the group G is not
2a ’’canonical" subgroup PGL(2,p) or PSL(2,p) of PGL(2,p ); the 

coefficients of the generators do not lie in GF(p),

Case p E 3 or 5 (mod 8 )

Lemma 5.6c
2 'G is isomorphic to PGL(2*P )

Proof

2
In this case p e 9 (mod 16) so a is not a square in the field 

2GF(p ). Both -1 and 2 are squares however, so neither A nor . B. is
2a member of PSL(2,p ). In a finite field the product of two

nonsquare elements is always a square. Hence the product of two
2 2 2 elements of PGL(2,p ) outside PSL(2,p) must always lie in PSL(2,p ).

2Thus if is the intersection of G and PSL(2,p ), G^ must

contain AB A^B A^B ^ and A^B ^ the elements generating the
2stabilizer of the vertex k^. G^ lies inside PSL(2,p ) so we may 

now apply the Dickson Lemma. Since G contains a vertex-stabilizer
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0 -l\ fa 0 \ '-Î//2 Î//2 '

■/'1 0 1 \o o ’ '■ i//2 i//2 /

2 2 -1 2 which all belong to SU(2,p ). The matrices A ^ -  (2 o) A and

= (-2a) ^B^ induce the same automorphisms as and B^ respectively

and both belong to SU(2,p^). Thus as before we have K = PSU(2,p^) = PSL(2 ,p

1 —3? 3T* — 1 2 2 • •Now for each generator A B A  , A ,B of K the result of conjugating

by A or B is also in K- Since AB ^ e K we must have AK = BK = KB = KA.

It follows that there are just two cosets of K in H, so from 

Theorem 5.5 G = PGL(2,p). //

It Tiust be remarked that when p = 7 or 15 (mod 16) the group G is not
2a "canonical" subgroup PGL(2,p) or PSL(2,p) of PGL(2,p )j the 

coefficients of the generators do not lie in GF(p),

Case p E 3 or 5 (mod 8 )

Lemma 5.6c
2 'G is isomorphic to PGL(2#P )

Proof

2In this case p e 9 (mod 16) so a is not a square in the field 
2GF(p ). Both -1 and 2 are squares however, so neither A nor . B. is

2a member of PSL(2,p ). In a finite field the product of two

nonsquare elements is always a square. Hence the product of two
2 2 2 elements of PGL(2,p ) outside PSL(2,p) must always lie in PSL(2,p ).

2Thus if G^ is the intersection of G and PSL(2,p ), G^ must

contain AB A^B A^B ^ and A^B ^ the elements generating the
2

stabilizer of the vertex k^. G^ lies inside PSL(2,p ) so we may 

now apply the Dickson Lemma. Since G contains a vertex-stabilizer
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2which is isomorphic to Sĵ  and a further element A which is 

not of order 2, must be isomorphic to either PSL(2,p), PGL(2,p)

or PSL(2 ,p2 ).

All elements of PGL(2,p) and PSL(2,p) have order dividing one of
2p-1, PiP+1 [24]. We now show G is isomorphic to PSL(2,p ) by

2showing that the element A of G^ cannot be a member of any 

subgroup isomorphic to PGL(2,p) or PSL(2,p).

-1 2 4The eigenvalues of the matrix $ (A ) lie in the field GF(p )
14.and have order dividing p - 1. The order of these eigenvalues
2 2 must divide the order of A , Hence if A lies in a subgroup

isomorphic to either PGL(2,p) or PSL(2,p) the eigenvalues 
“1 2of $ (A ) must have order dividing p-1 or p+1.

and the characteristic equation of this matrix is given by

 ̂ ] X + 1 = 0.

We now use the identity (cr-1)^ = o(/ 2 -2 ) to obtain

. _ / 2 - 2  + /r-4/r- 1 0 )
1 4

, \ 2 — yc"— 4 / ^ — 10 )
and ^2 = ---------- 4----------  •

Each element of GF(p^) may be expressed in the form a+b»^ for 

some a,b in GF(p), since is contained in GF(^) but not

in GF(p). (0 + 0  ^)^ = 2  so /2 = 0+0 Hence

cj~l -(cj+1
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(/2 )^ = (o + a

3 -3
o + a

4, -1 Va (a to)

= -/2 .

Thus (a + b/2)P = a - b/2 if a,beGF(p).

Suppose has order dividing p-1 or p+1 . Because X^ is in
2GF(p ), and members of GF(p) a,b may be chosen such that

. /2 - 2 + a + b Æ
h  =  4-----

, X / 2 - 2 - a - h / 2
2 =  4-

X^ = X^ or X^^, and X^^ = X2 .

But

p _ -/2 ~ 2 + a - h /2
^ 1  4

Immediately X^ =f X2. Also there can be no value of a satisfying 

(a-V^)^ = - 4 Æ - 10 in GF(p^) so (b+1) ^ 0 and X^ ^ X^. Hence 

the order of X̂  ̂ does not divide p -1 or p+1 .

2 2 Hence A lies outside all subgroups of PSL(2,p ) isomorphic to
2

PSL(2,p) or PGL(2,p) and the group G^ must be PSL(2,p ).

2G strictly contains G^ and is a subgroup of PGL(2,p ) and

con sequently must be isomorphic to PGL(2,p^).
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The 5-arctransitive Cases

2There are further automorphisms of GF(p ) under which sextets are
" 2preserved, which are not contained in PGL(2,p ). The group 

2PFL(2,p ) is constructed by adjoining the field automorphism

(f): X of GF(p^). We need to find the values of p for which
2(f) induces a new automorphism of So(p ).

Theorem 5.7 ■

. O o
The group PFLC2,p ) acts transitively on S^(p ) if p 5 3 or 5

(mod 8 ).

Proof

Let p = 3 or.5 Gnod 8 ), and a denote an eighth root of unity in 
2

GF(p ). Now the sextets

k_2 - {ato 1 0 , œ I -a^ }
~ to *™  I i  ^  f “  1  3

k^ = {i,-i|l + /2 , l - i ^ l  -1 + /2 ,- 1 - Æ  }

kg = {1+/2, 1 -  /2 1 3 e/2 - 1)"1, (l-i/2 I -3 (1 + i/2 )"^ , (1 + i/2)"^}

constitute a 3-arc. We now use the fact that (a+b)^ = a^+b^ in a 

field of characteristic p to establish that this 3-arc is fixed 

by the field automorphism

Two adjacent sextets have one duet in common. If a duet D is fixed by 

an automorphism a, then 2 adjacent sextets containing D are either 

both fixed by a or both moved. It is easily verified that the three

duets {i, -i}, {1+/2 , 1-/2 } are all fixed by and consequently

so are the sextets k_^, k^, k^, kg. The duet {a,-a} is fixed if 

p E 5 (mod 8 ) but not if p = 3 (mod 8 ); however the reverse is true
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for the duet {3(1/2 - 1)'^, (1 - i/2) which is fixed if

p E 3 (mod 8) but not if p E 5 (mod 8). Hence if p E 3 or 5

(mod 8) the automorphism <f> is nontrivial and it fixes a

four-arc (containing the 3-arc k k k k_ and one other sextet)-1 0 1 2
2and thus S (p ) is 5-arctransitive. //

If p = 1 (mod 8) then S^(p^) = S^(p), and ^ acts trivially
2

on S^(p) since it fixes the subfield GF(p) of GF(p ). If
_ 2 p = 7 (mod 8) the automorphism of S^(p ) induced by (J) is the

same as that induced by y : x ^/x and so FTL(2,p^) induces
2a group of automorphisms acting 4-arctransitively on S^(p ).

Hence the only family of 5-arctransitive sextet graphs is 

{S^(p^) 1 p E 3 or 5 (mod 8)}
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The girth of S^(p).

Now we attempt to find the girth of S^(p) by examining the constitution 

of the cycles in the terms of the shunts. The girth of S^fp ) has 

been calculated for various values of p and tabulated in Tables 3 1 - 1 5  

in the Appendix - here we are interested in the effect on the girth 

as p becomes large. It is believed the girth tends to infinity.

Definition

We define a positive word of length n in x and y w(x,y) to be a 

string of n letters each of which is either x or y. Given a 

positive word in x and y w(x,y) and a semi-group H containing 

two elements u,v , the element of H Wy(u,v) is obtained from 

w(x,y) by replacing each x and y in the string by u and v 

respectively and treating the string as a product in the semi-group H.

Suppose r is a cubic graph on which the group G acts s-arctransitively 

where s ^  2. Let Pq »Pj_$••• »Pg be an s-arc in T. Then there exist 

elements of A,B of G representing the twin shunts mapping P q »P-j_j ... ,Pg 

onto its successors Pp?"'»Pg*Ps+i ^l»***’^ s ’̂ s+l*

Theorem 5 .8

There is à one-to-one correspondence between the cycles through the 

s-arc Pq jP ĵ j... aPg and the positive words such that W^(A,B) is 

the identity in the group G.
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Proof

Let 5...,Pg = be a cycle of length g in F and let

^g+k ~ ^k all nonnegative k. Pi»*-3Pi^.g is also an s-arc, so

by the s-arctransitivity of G there is a unique element of G

such that W^p^ = p^^^ 0 4  a 4  s. For instance = 1^ the identity
element of G. We now find possible expressions for W^^^ in terms

of W. , given 0 < a < s.

Now W.Ap = W . B p  = W . p  ^, = p.^ 0 < a < s-1. The vertices1 ■’̂a 1 -̂ a i^atl -^i+a+l =  =
W.Ap and W.Bp are both adjacent to W.Ap , , and1 ’̂s 1 -̂ s 1 ^s-1’

W.Ap T = W.Bp . = p .., but neither of them can be p .. , since1 ^s-1 1 ^s-1 -^s+i’ -^s+i-1

p ,. - = W.Bp _ = W.Ap -. Hence one of W.Ap_ and W.Bp_ must be s+i-1 1 ^s-2 1 ^s-2 1 ^s 1 -̂ s

p and so W.,_ is either W.A or W.B. Now using inductionS+l+1* 1+1 1 1

and the fact that W = 1_ we have W. = C,C^... C. where C. iso G 1 1 2  1 ]
either A or B for all j and consequently there is a positive word 

W(A,B) in A and B such that W^ = Wg(A,B). But w^ = w^ = 1^ so

each cycle corresponds to a positive word W(A,B) in A and B such

that Wg(A,B) = Ig.

Conversely, suppose Wg(A,B) = 1^ for some positive word, say

W (A,B) = C, .,.C = Ip with C. equal to either A or B for all j .G 1 g b ]
i

Let W^ z n Cj and W^ = 1^. Now let pu^^ = Whp^, so p^ = W^p^ =

W. ,C.p . But C.p = P t so p. = W. _p_ which is adjacent to1-1 1^0 1^0 ^1 ^1 1 - 1 1

W. = p. Hence p is a sequence of vertices with the1-1^0 ^1-1 ^0*^1 ^g ^

property pj|̂ is adjacent to p^^^ 0 ^  i ^  g-1 . Further if p^_^ = p^^^ 

then = W^_^P2 which is not possible, so p^s— jPg must be a
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cycle (pg = because = 1^) through the s-arc p^,...,

, elements in the ring R ofand 6 =

2 x 2 matrices whose entries are polynomials with integer coefficients. 

Let W(X,Y) be a positive word of length n.

Then /  a (x) b (x)w w
W = Wj^(a,3) =

for some a^(x), b^(x), c^(x), d^(x) polynomials in x with integer 

coefficients. The leading coefficient of each of these polynomials 

is always ±1 , and a^(x) and b^(x) are of.degree” n while c^(x) and 

d (x) are of degree n-1. This is easily verified by induction.w

Given p = 1 (mod 8) there exists an element in GF(p) of

order 8 . Let fljc) denote the polynomial f(x) with coefficients 

reduced modulo,p. We define the mapping 4)̂  from the set of positive 

words in a and 3 to the group PGL(2,p) of linear fractional 

transformations of GF(p) as follows. If W = w^(a,3)

From' theorem 5.2 we deduce the following lemma.

Lemma 5.9

When a,3 are considered as positive words in a and 3
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and (j)̂ (3) are twin shunts of a four arc in S(p).

Let Ip denote the identity element of the groups PGL(2,p) 

and W = w^(a,3) an element of R.

Theorem 5.10

If 4)p(W) = Ip for every p in an infinite set of primes P 

then 4>p(W) = Ip for all primes p.

Proof

Suppose - Ip for some word W and prime p.

a (a )t + b (a )
6 (W) :-t K- ---- ----------- ^  , where o satisfies o + 1 = 0  (mod p)

6 (W) = I implies b (a ) = 0 ,  which in turn implies a satisfies^p P w p ’ P

the equations b^(x) = 0 and x^+1 = 0 modulo p simultaneously.

Then the polynomials b^(x) and x^+1 when considered as elements

of the ring of polynomials with coefficients in have a common

nonconstant factor. If m = m reduced mod p

b (x) = b x^ + b _x^ ^ + .. + b^x, implies b (x) = b x^ + .. b^x. w n n-1 1 w n 1

The resultant of b (x) and x^+1 is the determinant of thew

(n + 4 ) X (n + 4) matrix
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M

1 0 0 0 1
1 0 0 0 1

1 0 0
1

\ - l  ^n-2

n n -1

n
h

0 0 1

h  °
0

The resultant of two polynomials vanishes if and only if they have 

a common nonconstant factor [36]. Hence detCM^) E 0 (modulo p).

If M =

1 0 0 0 1 
1 0 0 0 1 

1 0  0 
1

^n ^n-1 ^n-2
n n-1

n
n

0 0 1

0

then det(M) e det(Mp) (mod p). But det(Mp) E 0 (mod . p) so 

p divides det(M). If det(M) is nonzero only a finite number of 

primes divide det(M) and consequently 4>pCW) = 1^ for only a finite

number of primes p.
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y
If det M = 0 X +1 ■ and b(x) bave a common nonconstant factor,

if
and since x +1 is the minimal polynomial for each of its roots 

x^+1 divides b(x).

Taking the resultants of x^+1 and c(x), and of (x^+1) and 

a(x) - d(x), we obtain the result that either = 1^ for

only a finite number of primes p 

or

W = (x^+l)K + g(x)I

where K is an element of R and I is the matrix and

g(x) is a polynomial with integer coefficients.

In this case é (W) = I for all primes p.P P

We are now in a position to examine, f i r s t l y t h e  length of the 

shortest odd cycle in S^^p) and secondly the girth itself, as p 

tends to infinity.

Theorem 5.11

Given an odd number g there exists a prime p^ such that the 

length of the shortest odd cycle in the graph S^^p) is longer than 

g if p is greater than p^.

Proof

We need the fact that if p 5 9 (mod 16) S^Cp) is bipartite and contains 

no odd cycles. Let W = be a positive word in a and 6

of odd length. Then ♦ (W) does not correspond to a cycle in S(p)
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if p = 9 (mod 16). Thus by Theorem 5.10 $p(W) only corresponds 

to an identity word in S(p) for a finite number of values of p 

and we can define p(W) to be the largest prime with the property 

4>p(W) = Ip, the identity element in PGL(2,p). Since there is 

only a finite number of positive words of a given length, if 

is the set of positive words of odd length less than or equal 

to g, then all the odd cycles in S(p) are of length greater 

than g if p is more than p(W) for all W in S .

Theorem 5.12

Either there exists a value g and a prime p^ such that if p > p^ 

then the girth of S(p) is g, or given g there exists q^ such 

that if p > q^ then the girth of S(p) is greater than g.

Proof

As in the previous proof we define to be the set of positive

words of length strictly less than n and p(W) is defined for 

words W for which there exists a prime tt such that <()̂ (W) | 

to be thelargest prime with the property ~ ^p(w)* ^

if there is no such prime. If I is the length of the shortest

word W such that (J)p(W) = Ip for all primes p, then if p - is

more than p(W) for all W in the girth of S(p) is gl if

no such word exists then given g > 0 if p is more than p(W)

for all W in the girth of S(p) is at least g.
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Remarks

Hence we have constructed a family of highly transitive graphs for 

which it is conjectured there is no upper bound to the girth.

The family also yields examples of graphs which in many cases are 

the smallest known trivalent graphs with a given girth. The girths 

and orders of the shunts of the graphs known to have girth less than 

32 are given in the tables on pages 77f; we now take a closer look 

at some of them.

In the family of 5-arctransitive graphs, the simplest case p = 3 

yields the graph S^(9) which is Tutte’s 8-cage [34] ; its group 

is Aut(Sg) = PrL(2,9). It has 30 vertices. The next graph is the 

family is S(25) with 650 vertices. This graph was found independently 

by R.M. Foster and J.H. Conway but it has not been published before. 

There are only five known 5-arctransitive'graphs with less than 

1000 vertices; one of the others is a 3-fold covering of S^(9).

2No other graphs in the family S ( p ) ,  p = 3 or 5 (mod 8 ) have been 

previously noticed, and it seems that it has not hitherto been recognized 

that an infinite family of 5-arctransitive graphs can be constructed in 

this way. The general idea of using octahedral (S^) subgroups of 

PSL and PGL groups has been familiar, at least since the paper of 

Wong [ 38 ] in 1967.
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The original motivation for this study was a question raised by

Djokavic and Miller [15]. In our notation, they asked for a formula
2for the girth of the graphs S^(p ) in the cases p = 1 or 15

2
(mod 16). We have already seen that in these cases Sg(p ) has 

1/48 p(p^-l) vertices and its automorphism group is isomorphic to 

PSL(2,p) and in fact also acts primitively on the graph. The girths 

of many of the sextet graphs have been computed but no general result 

has been found. There is, however, apparently no upper, bound for the 

girth. Consequently the sextet graphs provide examples of cubic graphs 

with given girth g for many values of g for which no specific

example is known except as a result of unwieldly general theorems,
20For example, the graph S^(313) has girth 30. It has 277^656 = 2 

vertices, whereas previously it was known only that at least 2^^ 

vertices are necessary and 2^^ vertices are sufficient [34],

Of the sextet graphs whose automorphism group is isomorphic to PSL(2,p)

Ito has shown [25] that only PSL(2,7) and PSL(2,23) can act

4-arctransitively on a Cayley graph so 8^(49) and 8^(529) are the 

only Cayley graphs in the family. 8^(49) is the Heawood graph with

14 vertices which we have already seen is Cayley in Chapter 4.

8^(529) has 506 vertices and is the Cayley graph of the group G 

with the presentation.

I 9 22 5 2 4G = < R  ,S I = 8 = R8^R8 R8 > .

We have already encountered this group as PG(1,23) with the generators

R : X H- 22 - X , 8 : X 17x,
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and in terms of the shunts the group is generated by

B and A^b “ Â*̂ B ^A^B ^a '^ .

This was established using "Cayley" a grouptheoretic computing 

package.
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Appendix 

Table 1

Table 1 is a tabulation of the results discussed in Chapter 2 and 

Chapter 4. N(3,g) is taken to represent the order of the smallest

known trivalent.graph with girth g, and N^(3,g). the order of the 

smallest Cayley graph with these properties. If the value given is 

marked with an asterisk it is not known whether this figure 

represents the true minimum or not. Either the group attaining the 

known minimum is named or a reference to a previous chapter or 

another table is given. The 2-fold coverings mentioned are obtained 

as follows.

2-fold Coverings

Let G be a graph of order m with odd girth g and vertexset

V(G) = {v , V } and edgeset E(G). Define V X G ) = {v*,.. v ’}.1 m ° 1 * m
Now construct a new graph G ’ with vertexset V(G*) = V(G) wV'(G) 

and edgeset

E(G') = I (Vg.Vj^) eE(G)} .

This graph is bipartite and can contain no cycles of length g.

A graph with 6072 .vertices and girth 17

Let G be the Cayley graph of the group PSL(2,23), with generating 

set {R,S} where

R : X H" and S : X H- X + 2 (mod 23)
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acting on the set GF(23)^j[™j where » + a = «> and ~^/q ~ °° »

Then it has been verified by computer that the girth of G is 17,

Table 2

Table 2 gives the girth g and diameter d of the Cayley graph of
f

Aff(p ) with generating set <R,S> where

R : X H- -1 - X and S : x H- ax (mod p).

The arctransitivity of the graph is given in the column marked s 

and the number of vertices in that headed |v(G)|.

Tables 3.1 - 3.5

2Tables 3.1 - 3.5 give the girth g of S^Xp ) for odd primes p. 

The constant c represents g' loggn where n gives the number 

of vertices in the graph. |a| and |b) represent the shunt orders

and Wg gives the identity words of length g where known.

Table 4

Table 4 contains various details about the 32 known 60 vertex 

trivalent graphs of girth 9. N represents the number of 9 cycles 

in the graph and G its automorphism group. corresponds to

the smallest eigenvalue of the adjacency matrix.
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g n^(3»g) N(3,g) Graph N^(3,g) Graph

3 4 4

4 6 6 %3.3 ,6 *3,3
5 10 10 Petersen 50 [C4]

5 14 14 Heawood 14 Heawood

7 22 24 McGee 30 [C4]

8 30 30 Tutte ■ 42 [C4]

9 46 58'* [C2] 60 [C4]

10 62 70 Balaban & c.
a

100 [1 1 ]

11 94 112* [ 1 ]

12 126 126 Benson

13 190 272* [T2] a272 [T2]

14 254
*

406 [04]
a406 [C4]

15 382 * , 9.620 S (31 ) o
16 510

*1240 2 fold cov.

17 766
a6072 a6072

18 1022
&12144 2 fold Cov.

a12144
19 1534

20 2046 a , 2 s 14910 S (71 ) o
21 3070

22 4094 16206* S(73)

25 . 12286 149768* 8^(193)

28 32766 527046* 8(223)

30 65534 1227666* 8(313)

32 131070 5892510* 8(521)

TABLE 1
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P |V(G)| a g d s

7 42 3 6 6 1

11 110 2 10 7 0
7 10 7 3

13 155 2 9 8 0
6 9 8 0

17 272 3 13 8 0
5 12 9 0

10 11 8 0

11 11 9 0

19 342 2 12 9 0
3 12 9 0

' 14 10 9 0

23 506 5 14 9 . 0
7 12 10 0

11 10 11 0
15 14 10 0
17 14 10 4

29 812 2 12' 10 0
3 14 11 0
8 14 11 0

14 10 13 0
18 12 11 0
19 12 11 0

31 930 3 12 12 0
13 10 11 0
17 14 11 0
24 14 12 0

TABLE 2
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SEXTET GRAPHS

S(q) is defined for q a prime power = 1 (mod 8)

|s(q)| = N =|^<l(q^“ l)* and PGL(2,q) acts 4-transitively 

S(q) has K components, all isomorphic, denoted by S (q).

|s^(q)| = = N/K and a group G^ acts S - arc transitively,

P

(mod 16)

P

(mod 16)

S(p)

K S . G

S(p2 )

K

2 4 PSL(2,p) 2p(p +1 ) 
1 
1

p(p^+l)

PSL(2,p)
PTL(2,p^)
PPL(2 ,p2 )
PGL(2,p)

9
11
13
15

1 4 PGL(2,p) p(p +1 ) 
1 
1

2p(p^+l)

PGL(2,p)
PPL(2,p^)
PTL(2,p2)
PSL(2,p)

So we get five families of connected graphs :

(1 ) S(p^), p = 3,5 (mod 8 ), 5-transitive, bipartite.

^2 (2 ) S„(p). p = 1 (mod 16), 4-transitive, primitive.

^3 (3) S„(p"). p = 7 (mod 16), 4-transitive, bipartite.

(4) s(p) , p = 9 (mod 16), 4-transitive, bipartite.

^5 . (a) p 5 15( mod 16), 4-transitive, primitive.

TABLE 3.. 0
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p E 3,5,11,13 (mod 16)

n =  ^  p^ (p"^-l), = PrL(2,p2)

2
P g

3^ 8 .613

5^ 12 .779

1 1 ^ 20 .808

13^ 24 .734

19^ 28 .746

TABLE 3.1

This family contains 5-arctransitive graphs so the order of the shunts 

a,b and girth words are not relevant.
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p = 7 (mod 16)

n = 1 , 2 
2-4 p(p - 1 ). = PGL(2,p)

P g C |a| |b|

7 6 .634 6 8 6a

23 14 .641 24 22 (aba\)^

71 20 .693 70 72

103 22 .703 104 104 ( a V a \ ) ^

151 26 .659 152 152

167 24 .733 168 166

TABLE 3.3
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p = 15 (mod 16)

n = i p ( p ^ - l ) .  = PSL(2 ,p2 )

P g C |a| |b| Wg

31 15 .618 15 16 a^^

47 15 .738 23 23 (a^b^)^
1379 13 1.025 13 20 a

127 21 .732 64 32 (ab^)^
19191 19 .902 95 19 a

223 25 .712 111 111 ab^a^ba^ba^b^

239 21 .862 119 119 (a^b^ab^)^

271 25 .746 27 135 (a^b^)^

TABLE 3.5
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GRAPH

S 
T1 

■ T2 
BB 
PF 
XA 
XB 
XC 
XD 
YB 
YC 
YD 
YE 
YF 
YG 
YH 

BALA 
BALE 
BALC 
PSl 
PS2 
HI 
H2 
H3 
H4 
H5 
H 6 
H7 
H 8 
H9 

HIO 
Hll

X .min
-2.51803
-2.61803
-2.73205
-2.56155
-2.61803
-2.78165
-2.78327
-2.78686
-2.78790
-2.78327
-2.78686
-2.78804
-2.78683
-2.78790
-2.78299
-2.78165
-2.78816
-2.78419
-2.78165
-2.68909
-2.71199
-2.68867
■2.65527
■2.77253
-2.80734
-2.78804
■2.71397
■2.80592
■2.75372
■2.77178
■2.70076
■2.78804

N
60
60
80
72
96
84
76
74
75
76
74
75
74
75
76 
84
75
72 
84
76 
80 
76 
80
73
72
73 
78 
71
74 
73
75 
73

|G|
360
120
120
48

144
24
8
4
6
8
4
2
1
3 
2 
6 
2
4 
8 
4 
1 
8

10
1
4
1
1
2
1
1
1
1

TABLE 4
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