
- 1-

ELECTRON INTERACTION WITH ATOMS IN INTENSE 
ELECTROMAGNETIC FIELDS

by

MICHELANGELO ZARCONE

Thesis submitted for the degree of 
DOCTOR OF PHL'LOSOPHY

R .H .C . L IB R A R Y

CLASS
No. 'Z.or
ACC. No. U L  //S *
Date ACQ. ‘S'S

1 n

the Faculty of Science of the University of London

Royal Holloway College July 19 84



ProQuest Number: 10097558

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10097558

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC 
789 East Eisenhower Parkway 

P.Q. Box 1346 
Ann Arbor, Ml 48106-1346



—  2 —

to Silvana and Valentina



—  3 —

AKNOWLEDGEMENTS

It is a very great pleasure to thank Professor 
M. R. C. McDowell for his constant help, advice and
friendship throughout the course of this work.

I am also indebted to Professor G. Ferrante and 
to Dr. S. Nuzzo for useful discussions, and to 
Dr. D. L. Moores for his assistance with computational 
p r o b l e m s .

I would like to thank all my friends for making
my stay in England so enjoyable.

This work was supported by the Science and 
Engineering Research Council under Research Grant 
No GR/B/6682.0.



—  4 —

ABSTRACT

In the first part of the thesis we consider two 
theoretical problems:

(a) The Kroll-Watson result for laser assisted potential 
scattering of charged particle has been extended to the 
case where a uniform static magnetic field is also 
present, and the consequences examined.

(b) The problem of the transition of an incoming plane 
wave state of a charged particle entering such a magnetic 
field, to occupy Landau levels is solved in both the 
adiabatic and the sudden cases. The cross section for 
potential scattering in presence of a magnetic field and 
tks. limit for B>0 are derived.

The second part of the thesis deals with laser 
assisted electron impact ionisation of helium atoms. The 
slow electron is described in a ^ e e - s t a t e  close-coupling 
formulation. Conditions for the observation of the p r e 
dicted splitting of the "Erhardt" pattern of the triple 
differential cross section are discussed.

R .H .C .
l i b r a r y
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C HAPTER 1 

INTRODUCTION

The study of atomic collisions in presence of strong 
fields has received in recent years increasing attention.

The presence of an external field changes, signifi
cantly, the conditions of the electron-atora scattering 
processes; the electromagnetic field, ex changing energy 
and momentum with the projectile and the target can play 
the role of a third body, opening new channels and all o 
wing the observation of electron-atom collision p a r a m e 
ters which would not otherwise be observable ( A rather 
complete and updated list of contributors on the topics 
may be found in the review paper of Clark et al ̂  ̂ and 
in the proceedings of the International Colloquium on
Atomic and Molecular Physics Close to Ionisation Threshold 

( 2 )in High Fields ) .
In this thesis we will consider different collision 

processes involving strong magnetic fields and/or radia
tion fields. Usually in laboratory conditions the energy 
changes caused by a magnetic interaction are small compa
red with the characteristic energies of the system, so 
that the scattering processes are not affected by the p r e 
sence of the field while its interaction with the target 
atom can be treated perturbatively. However, in experiments 
with highly excited atoms, in solid state physics and in 
astrophysics, situations are encountered where perturba
tion theory is not applicable to the target and the effect 
of the field on the collision process is not negligible.
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The same is true for the interaction with a radiation 
field except that it is easier to meet the conditions at 
wh ich p e r turbation theory becomes inapplicable, for e x a m 
ple, using very intense radiation fields (lasers) or in 
vicinity of r e s o n a n c e s ’.

Magnetic fields are of much interest in astrophysics 
This interest dates from the discovery by Hale in 1908 
of magnetic fields in sunspots from the Zeeman splitting 
of their spectral lines. More recently the discovery by 
Kemp et al  ̂̂  ̂ of circu larly po l a r i s e d  continuum
radiation from a white dwarf and its interpr etation as

7being due to a magnetic field of 10 Gauss has led to 
renewed interest in the study of atomic properties in
strong fields. Since then the existence of large magnetic

> 1(
(4)

12fields in pulsars, thought to be up to 10 Gauss at the
surface, has also bee n demonstrated

The situation in a laboratory context is very diffe
rent . In fact the strongest magnetic field used in

6laboratory is of about 10 Gauss. Most classical Zeeman
e ffect studies have been performed routinely at fields

4 4typically in the range 2 10 - 4 10 Gauss. Pauthenet
(5)and Dransfeld repo rted that several laboratories

4could produce fields of 20 10 Gauss over a useful d i -
6stance of 5cm. Higher magnetic fields up to 1.6 10 Gauss

have been oroduced transiently by d i s charging a large
(6 )

capacitance through a single turn coil by Furth et al

Considerably higher fields have been produced by
4 5implosion techniques. A field of between 10 and 10 

Gauss is p r o d u c e d  and then the field is rapidly c o m p r e s 
sed in a tine of microseconds by an explosive device. 
Fowler et al  ̂̂  ̂ rep orted a field of 1.4 10 Gauss
lasting for 2y*S. This technique has the disadvantage of 
be ing self-destructive.
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Due to the intense stress in the containing cham
bers and to the thermal heating caused by eddy currents 
during pulses an upper limit exists for the production 
of steady fields in laboratory. This limit depends some
what on the available materials but is typically about 
10^ Gauss. These intensities are not very high; in fact,
in atomic units, the unit of the magnetic field is eaujoS to 

94.96 10 G a u s s .
However, in some particular cases the effect of high 
fields may be observed at low fields. For instance, in 
solids i) the mass of an electron in motion is represen
ted by the effective mass m*̂  , which may be several orders 
of magnitude smaller than the mass of the electron in 
free space m, and ii) the dielectric constant is not
equal to 1, as in the case of free space, but may have

(8 )a value in the range 10 to 50 . Both of
these facts contribute significantly to the change in 
the ratio of the magnetic energy to the Coulomb energy 
(denoted by ) from the case where the atom exists in 
free space.

We have , _ ,

where is the cyclotron gyro-frequency and

is the effective Rydberg with D the dielectric constant. 
Now, if we suppose D = 50 and râ  =0.1 m , then ^  is a factor 
of 2.5 10^ greater than for the case where D = 1 and mT = m .
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In other words, if a magnetic field of strength
410 Gauss (a fairly weak field) was applied to the solid

9the effects observed could be those of a field of 2.5 10
Gauss (a strong field) in free space. In free space D = 1,
the energy corresponding to "K is 1 Rydberg when

9i.e. 8=2.48 10 Gauss.
From now on, a weak magnetic field will be referred 

to as one in which the ionisation energy I^ of the target 
dominates the Landau energy ( ) of the magnetic field
so that the magnetic potential may be treated as perturba
tion and both the projectile and the target as unpertur
bed system.

The region of field strengths in which this occurs
9

for atoms in their ground state is y  «  1 or B « 1 0  Gauss.
We will define a strong magnetic field as one in 

which the magnetic interaction becomes dominant (^W, > I ) .
t U  4, ^For thé case of scattering of charged particle by a

Coulomb potential the unperturbed system is given by the
projectile embedded in the magnetic field, while the
Coulomb potential is considered p e r t u r b a t i v e l y . In this

9case > i and B *> 10 Gauss.
Moreover, a magnetic field affects also the struc

ture of the atomic target. For ^ « i  it causes the ordina
ry Zeeman level splitting, for i the quadratic

oJl&o
Zeeman term becomes important and for > i. the magnetic 
field completely dominates the Coulomb fiëTdValïd we m o 
ve into what is known as the quasi -Landau regime where
the motion of the atomic electrons is close to that of 
free electrons in a magnetic field and the atom takes a 
characteristic cigar shape along the magnetic field.

These effects on the atomic levels are described
C 9 ) ( 1 2 )more fully by Garstang , and in more recent reviews '
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For collisions in presence of
electromagnetic radiation, we have a very different s i t u 
ation. The ratio of the radiation electric field 6 @ to 
the atomic (-static Coulomb) electric field is

i f  = [ M L I a .

where J]" is the intensity of the laser and is the Bohr
16 , 2radi us j andjjae comes equal to 1 for an intensity 1=7 10 W/cm .

Before the advent of high p ower lasers, all labo ra
tory radiation sources p r o v i d e d  very weak fields J ),
and the serai-classical theory of the interaction of radiation with 
matter was formulated treating the electron and the atomic target as 
unperturbed system and the electron interaction with the radia
tion field as perturbation.

With the use of today's lasers it is easy to obtain 
magnitudes of the a pplied fields comparable with or g r e a 
ter than the mean atomic field (^  ^  i )/ the interaction 
of the charged particle with the target can be considered 
as a perturbation, with the projectile embedded in the laser 
field as the unperturbed system.

The interaction of the laser with the atomic target 
can be neglected if the laser frequency is off resonance 
with any of the unperturbed atomic levels and for not too 
intense radiations. In fact, since the target atom will 
be in the laser field for some time before the collision 
takes place, the probability of multiphoton ionisation (which incre
ases with intensity) during this time may be important and 
then the collision cross section will depend upon the 
time spent by the target in the laser field before the 
collis ional process. This fact limits the intensity of 
the laser beam used in the experiments.
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A great deal of theoretical work has been done in 
collision theory in presence of such intense magnetic 
and/or laser fields.

For collisions in presence of strong magnetic fi
elds, early treatments are due to T a n n e n w a l d ^ ^ ,
Goldman  ̂̂  ̂  ̂ and Ventura  ̂  ̂  ̂  ̂ ' ; more recently Onda ̂  ̂  ̂  ̂
Brandi et a l  ̂̂  ̂  ̂ , and Ferrante et al  ̂̂  ̂  ̂ 
have renewed the effort to provide a viable theoretical 
treatment for potential scattering in presence of a strong 
magnetic field. Onda has developed a nonrelativis tic va
riable amplitude method for charged particle scattering 
by a screened Coulomb potential in an uniform constant 
magnetic field, while Brandi et al have given a deriva
tion based on the Green's function formalism; finally. 
Ferrante et al have found that the optical theorem for 
this kind of collision process has a different form 
from the usual one. They found that, for collisions in 
presence of a magnetic field, the total cross section for 
transitions into all the allowed final states is expressed 
through the real part of the elastic scattering amplitude. 
Very recently Ohsaki  ̂̂ ^ ^  ̂ ^ has reconsidered the problem 
of potential scattering going to higher order in a simpli
fied Born series and derived a threshold law for the Landau state 
excitations, as well as the energy dependence of the cross section.

One of the problems in the scattering of electrons 
in the presence of a strong magnetic field is that in the 
limit B — >0 it is not obvious how to recover 
the formulae derived for the magnetic field free case.
This difficulty has its origin in the different boundary 
conditions implied for the two different cases. In the 
first case the particle motion is bound in the plane per-
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First Born Approximation; (FBA)

In chapters 4 and 5 we generalise the above
derivation to the case of laser light of arbitrary
pol a r i s a t i o n .

In chapter 4 we briefly outline the generalization
(19)of the solution of the Schrôdinger equation for a

particle in a magnetic and a laser field of arbitrary 
polarisation. In chapter 5 we develop a formalism for the 
calculation of transition amplitudes and cross sections. 
The constant magnetic field is assumed to lie along the 
z axis, and the following polarisations are treated in 
de tai1:
a) linear polarisation along the z axis
b) right hand circular polarisation in the xy plane
c) left hand circular polarisation in the xy plane
d) linear polarisation along x
e) right hand circular polarisation in the xz plane.

th^ ÇIt is found that in FBA i(yu cases a) and b) with
weak field and high frequency, the cross section mantains

(20 )the form obtained by Kroll and Watson for collisions
in presence of a laser field alone. Moreover, an important 
feature appears for any polarisation when at least one 
component of the radiation field is in the plane of the 
magnetically confined motion. In this case, when the 
laser frequency matches the cyclotron frequency 
a resonant denominator switches on multiphoton processes, 
but in view of the work of Ohsaki^^^'^^^ our results must 
be treated with some reserve.

Despite the great amount of theoretical work
present in the literature not many experiments for colli
sions in strong fields have been performed.

To the best of our knowledge the only experiment 
reported for collisions in a magnetic field is that of
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(2 1)Blumberg et al ; they reported photodetachment cross
sections of S in the presence of a magnetic field of 
about 15 kG. The application of a magnetic field produ
ces structure in the cross section with a periodic depen-

(2 2 )dence on the light frequency. The authors interprète
such structure as due to the excitation of the detached
electron to discrete cyclotron (Landau) levels in the
magnetic field. A more recent discussion together with

(23)results on SeH is given by Larson and Stoneman
(24)while Clark advances a different interpretation.

Also for laser assisted collision processes, only
a few experimental results exist.

(25,26)Weingartshofer et al reported measurements
of multiphoton free-free transitions for electron Argon 
collisions in presence of a CO^ laser.

On the other hand, theoretical studies of collisions 
in "tW presence of laser radiation V\,o,s become a well
established branch of the theory of collisions. See for .

(27) (28)reviews on the subject Ferrante and Mittelman
In our opinion more efforts must be devoted to sug

gest to the experimentalists particular processes where 
the presence of an external radiation field can give rise 
to some particular measurable effect. With this problem 
in mind, we derive in chapter 6 the triple differential
cross section for ionisation of helium by electron impact 
tKe

in presence of a laser radiation. We observe that, for 
a simple laser model and a polarisation perpendicular to 
the momentum transfer and for particular ejected electron 
angles, the single photon absorption process dominates 
the other ones and this itself may be interesting experi
mental ly .
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Finally, in chapter 7 we investigate the observa
tional conditions under which the predicted splitting of 
the \̂ a s er assisted electron impact ionisation of atoms 

(̂ triple differential cross sectio^ occurs. Different laser 
models are considered: homogeneous single mode, inhomoge
neous single mode, multimode laser. Particular attention 
is also paid to the variation of the cross section with 
the laser polarisation, and it is found that the splitting 
is always present when the polarisation is perpendicular 
to the momentum transfer.
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CHAPTER 2

THE WAVE FUNCTION OF THE ELECTRON IN A HOMOGENEOUS MAGNETIC 
FIELD AND THE PLANE-WAVE STATE: ADIABATIC AND SUDDEN 
APPROXIMATIONS

I

1. INTRODUCTION

Faisal^^^ and, independently, Ohsaki  ̂̂  ̂ , have considered the

problem, first posed by McDowell  ̂ , of the expansion of a

plane wave in Landau states. The situation arises from the conceptual 

scattering experiment illustrated in Fig. 1. A beam of electrons of fixed 

energy E represented in the field free region (I) by a plane wave enters 

a region (II) in which there is a uniform static magnetic field, along 

the 2-axis

B = Bz_ .

In order to calculate cross sections of reaction in region II, one 

needs to know the occupation numbers (or better, the occupation amplitudes) 

of the Landau states before any collision. Faisal and Ohsaki give apparent

ly different results, though Ohsaki gives no details of his analysis.
( 2 )Ohsaki*s result (eqs. 6, 8, Ohsaki .) can be written in the present

notation (see section 2) as

ik,
e ^  [ n! j f  ( Dn(o) . I I . 1 _ im(4>-(*)̂ )

/ÎTz 
K, ̂

where n(o) = — —  ,and that of Faisal (1982, eq. 1 1) a.s
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with (integer) I Ml < », Direct substitutions of the above expansions 

show immediately that both (1) and (2) exactly satisfy the Schrodinger 

equation of the electron in a constant magnetic field with a fixed energy, 

provided of course, the sums over the degenerate m-states exist and satisfy 

the constrain
k /  ,

n ■ - Y ( +  m + 1)] > 0 (3)

for all m. In the next section we reanalyse the adiabatic problem and 

show that the expansion coefficients identical to that of Ohsaki are ob

tained, provided region II has a large but finite extent L L 'v ~  in theX y y
plane perpendicular to the field. To satisfy this requirement his m-sum 

should be restricted to within a finite range, with a lower limit

v - ’ - ÿ

(see eq. ( 42 ) below), and this is in fact imposed by conservation of 

energy perpendicular to the field.

We then consider the completeness relation of Faisal's result and 

compare it with that of Ohsaki. The normalisation constant of Faisal's 

solution is easily found to be

T T . ^S(y) (u)
X y Y

where

n(o) f .

“ m = -|M|
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wi th

(n(o) -2;l)l“ l („(o) -
Tn,m (n(o) + 3 2 ^ )  %

(see eq, (48) below).

It will be seen that T = 1 for m small and falls off rapidly asn,m
(y) for large |m| > n(0). Thus the m-sum in Faisal's expansion is

effectively and automatically confined to the same range of states.

Furthermore, as y 0 their expansion coefficients become identical

and both the solutions reduce to the plane-wave state. The two

(alternative) adiabatic expansions (1) and (2), therefore, contain

essentially the same information and differ apparently due to
the different choice of normalisations of the basis set (Landau states)

used. The detailed analysis of the adiabatic case is presented in section

2. In section 3 we analyse the case when the magnetic field is, instead,

applied suddenly and we derive an exact expansion of the plane wave in

Landau states valid for any region of free-space and for any value of the

magnetic field.

2. ADIABATIC CASE

In region I we suppose the beam of electrons is represented by a 

plane wave

$(£) - (7)

with energy

—m.

E - + k|) (8)
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in an obvious notation. Using cylindrical polar co-ordinates 

we can write (7) as  ̂̂  ̂

*(r) = ( L e ^ Z gii"(<,.<,k) J (K,p)—  m J- (9)

where is the initial azimuth.

In region II, the non-relativistic Schrodinger equation is
(5)separable (Landau and Lifshitz 

are

), and the Landau wave functions

1
'‘'n.ra.k^

nl
(ntIm I)I (p)e^""‘̂ e^^^nm (10)

with
(11)nm

Here we have measured the field in units of a reference 

field B .

Y = B
B

a.u., B^ = 2.35 x lO^G, (12)

where is the cyclotron frequency, L^(x) is an Associated

Laguerre Polynomial, and

o = Yp ( 13 )

Of course (10) corresponds to region II being the whole space. 

However, the Landau states are in fact confined perpendicularly to 

the field (see equation 33 below), having exponentially small
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density ( for fixed (n,m) and B) for ç greater than some 
finite value. So we shall argue that we can use these 
solutions in a region which is not the whole space, provi
ded n and m are appropriately restricted.

We wish to find a linear combination of Landau solutions

which reduces to the plane wave (9) when the field tends adiabatic-

ally to zero, i.e. to find coefficients C (n(y)) such thatm

lim (x(r) = E C (n) \lf . (r)) = t(r). (14)
YX) -  m = —  m -

Writing (10) as

where A is a normalization constant , then P (p) satisfies nm nm

d ^P  , dPnm . J- . nm .
dp" ^

wi th
■ 2 2uE ^

a = — rr- - 2ym . (17)nra ^ 2
i/vi g

We restrict the motion ■ to the interval. Then
as . ̂  >0, we have, for mj^O

^nm + " ^ ^nm + ^nm = °

Wi th
P

=  °  ( 19 )
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and n denotes the number of nodes in P (p ) on (0,L)nm
and goes to infinity as y  -»0 ; here

2 2 PE. 2
•ii

The required solutions in the limit y + 0  are regular Bessel 
functions of integer order |m| , and argument Kĵ  f except 
in the case m = 0 , when the paramagnetic term, in
equation (17) can be ignored. Thus in this limit.

= J|ml
(20)

«wi th
(21)lim J, I (K.L) = 0

L-H» ^

If we retain the paramagnetic term, then the argument of 
the Bessel function is

qp = (K ^  -  2Ym)^p = 2y^ p ( 22)

whe re

V = u + J(|raI + 1). (23)
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Now we know (Erdelyi Vol. 1 pp 277-281) that for arbitrary

Y, from (15)

P (p) = L^“ l(o)nm ' n
with

1

i -  (I)^ r c (n) f/r ir m n./L_ m =z

o
n o= as Y 0. Moreover o

11. • ""Y 1 ,
n - n :o o

(24)

G = YP^ (25)
emd provided

a = v^, X < I/ 3  (*)

then the leading term in the asymptotic expansion of (24) is

- ^ 2 + 1 ^  V-l” l/2 J, , (qp) . (26)n. |m J

provided V »  1 and |m( is bounded.

We can therefore write our expansion for small y as

x(r) = Z C j n )  ^  (^)=
jn = -00 z

I S l M l l  ^-|m|/2 J ( q p )  / V  înî  (27)
nl m

ik z .
J I I ( q P ) e ^ e^^ . (28)

Since K_^ is constant,

= 4y{n + ; ( jmj + m + l)}a.u. (29)

then for any finite m, n = n (m) is a constant and

(30)

hence, provided (*) holds.
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x(r) = Z J|m| ^
i m — —

where qp-^q^p = K^p as y 0. Comparing (31) and O')

Cm("o) = V î= I- (32)X y
which is Ohsaki’s result.

It remains to show that (*) holds. We note that

radial distribution of Landau states is such that the mean square
.. . (7)radius is

<p>^ = (33)
Y

and this sets an approximate upper bound on v ,

V = 2  yL^ = gmu. (34)max L
Now for (*) to hold with Kj_ constant, then since when 

y 0 , V behaves as y we must have

^  X = 1/3 . (35)

Now equation (33) says that if we fix and hence L, 

then the states present

are those with v 4  These all satisfy (35) if

''max ^ '’l  = but from (34) and (35),
SO this is true.

The plane wave expansion (9) is such that for P ^  L,
* . . * terms with m ^  M are negligible, where M' is given by

the requirement

. _ e Kj_L
<< 1 (36)
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* r nor M = I j . (37)

The maximum value of m occurring in (0,L)
-1is 2v^ if (35) is to be satisfied. That is m^ = 2y

* —O /3"But ■ M = 2  eKj_ Y » again from (35), so

M <

K , <  '

or provided the cyclotron radius satisfies

R = - — ^  L . (38)c 2y

This is of course an obvious requirement. What we have shown

is that, provided (38) holds, all the states included in (0,L) are
Asufficient to reproduce at least the leading 2M terms in (9). 

Moreover, since the squared moduli of the expansion coefficients

I W I '  9  ' (39)X y

are independent of m, the occupation numbers of the Landau slates 

considered in our expansion are also independent of m , and thus 

as expected, are proportional to 1/N where N is the number of Landau 

states degenerate in energy in a unit area perpendicular to 

the field^ ^
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The normalisation of our expansion (14)leads to the completeness 

relation

S = E =m
(40)

■ ^ L i r  7  ■ ^ = 1m X y » m yL

ais said before, the sum in (31) and in (40) is restricted to values of

the quantum number m such that the corresponding wavefunctions for a

given energy are confined inside the area L . The maximum positive 

value of m from eq (29) and eq (33) is given by

“l  = -^r (91)4y

while the minimum negative value is

= yL^ - 2m ^  (42)

and the sum in (40) becomes

s = 1 ----------------------------------------(43)
4Y L

If the adiabatic condition eq (38) is verified, i.e. if

<<1 f i . (44)

By choosing to satisfy (35) then for fields (Y^'^ > i  K / )  strong com- 

pared with the total.energy, we get the completeness relation 

S = 1 .
We note that the size L of the box must increase faster than l/y as y ^ 0
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Finally we briefly discuss Faisal's expansion coefficients and the

completeness relation of his expansion. We note that his expression

corresponding to C^(n^) is due to the use of a different normalisation of

the basis states (Landau states) and goes over to eq.(32)in the limit Y “̂ 0
(1)

In fact, writing his expansion (eq.(ll), Faisal ) in terms of

the Laguerre polynomials and taking into account the normali-
2sation constant L L • » L ) the ratio R of each term of hisX y m

expansion (see eq.(2)) to that of eqs. (1) or (14), is 

Taking the limit for y ^  O of eq. (45) we have

Thus as y ->■ 0, both sets of expansion coefficients become equal 

and the results reduce to the plane wave state, as desired.

The completeness relation for Faisal's expansion, taking into 

account the different normalisation of his wavefunctions is

- ^ Ÿ ^ ( u V R ) T ^  •

Again for y 0 (or n ®) we have S* S, provided again

that L 'V — , , c > 0. For y X 0 the difference between
Y-0 c

S and S' is in the factor
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For fixed n and small values of m we have

T = 1  n,m

and for large m >> 1

T —n ,m 2^

so the factor T gives automatically a cut-off. in the sum necessary to 

get convergence in the completeness relation. But, in any case, using 

the Tricomi expansion with the leading terra only, required us to 

impose an upper bound on j m|_, so there is little difference in the 

approach between the two expansions. The actual difference arises from 

the fact that in taking Faisal's approach the limit y 0 of eq (30) 

is not taken. In consequence, Faisal  ̂̂  ̂ . requires a stronger sufficù/Acg, 

condition on the way the field vanishes at the boundary; that is in 

the present C/lrueL|aiov we allow the field to exist with a constant value 

throughout the box, while in the earlier paper by - the field

was required to behave as p  ̂̂  ̂  ̂  ̂ at large p. Both sets of 

coefficients are closely equal for small p (i.e. small |m|) and for 

all p when y 0 .

3. SUDDEN APPROXIMATION-

In this section we consider a very different situation from

that treated in section 2. We consider the case when the field

(initially B = 0) is suddenly switched to a finite value B X 0. Then 
the electron undergoes a rapid "sudden" change in the Hamiltonian

operator. The plane wave becomes a linear combination of Landau

states. Of course,in this case it will not be possible to return

to a plane wave if the field is then adiabatically reduced to zero.
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The appropriate expansion is, again,

$(r) = (L ) ^ exp{i k*r) = Z C* . (r) (49)
- -  n.m.k; "'"'kz -

where ijj ' (r̂ ) are the Landau wavefunctions eq (10). Owing to the 

orthonormality of the Landau wavefunctions we have

= j ^  - (50)

Substituting eq (10) and eq (9 ) in eq. (50) "and performing the integration 

we get

Qf _ ^Iml (-1)" r  n! 1  ̂  _.-?( |m| + 1).(-1)^ r  n! 1 ^  Y- 3(|m| +
L(n + |m| ).’ J  .n,m • ^2 |_(n + |m| j: J  . ■ / L LX y

2, X ,2r (o )
exp{ - i m(J) } (51)kj^lco)

whare k ̂  = k ^  (o)• + kj^(o), and in (49) k^ = k^(o).

It is of interest to note that these coefficients have the form of

Landau wavefunctions with the spatial variable yp^ replaced by the 
2constant kj^ (o)/y. They are in fact the Fourier Transforms of the 

corresponding Landau functions.

As we said, the Landau wavefunctions are localised in the plane 

perpendicular to the magnetic field around the value of the mean square 

radiusVeq. 33 , and almost totally confined to the classically accessible 

region, i.e.

YPmin YP' < YP^a* (52>

with

yp^in=C(n + |m| + J)^ - (n + 3)^] (53)
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and

YP,bx = + l™l + V '  " . (54)

with, of course, y < P > - [yp*. + YP* ]/? .min max

Similarly it follows from (51) that when the magnetic field is 

switched on the significantly occupied states are those with quant 

numbers n or m satisfying the relation

um

kj^(o)
= 2n + |m| + 1  (55)

that is, t h e ’occupancy of a degenerate n^^ Landau level decreases
2

rapidly with increasing n up to n^^^ = (o)/2y.

4. CONCLUSION

The adiabatic expansions considered in sections 1 and 2 and 

the sudden-switching expansion in section 3, give alternative 

descriptions of the electron states involved (depending on their mode 

of preparation) in the calculations of collision transition probabilities 

for electron scattering in presence of a magnetic field. The physical 

difference between the adiabatic expansion and the sudden-switching 

expansion is that the former consists only of the degenerate Landau- 

states. The sudden-switching expansion derived in section 3 is an 

exact expansion of the plane wave and, instead, contains all the 

Landau eigenstates including those not degenerate in energy with the 

field-free plane wave. However, it gives the correct result when the 

field is suddenly switched on. If the field then later goes 

adiabatically to zero, it does not go over to a plane wave. Moreover 

the two expansions correspond to different experimental situations.
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The sudden description in section 3 is valid if we assume that 

the magnetic field is switched on in a time t much shorter than the

period of oscillation of the electron in the field T = 2ïï/üĵ , where

is the cyclotron frequency.

Now we consider the region of validity of the two models. Suppose 

that the magnetic field changes smoothly from zero to a given value 

B 0) in a spatial region of dimension x . In this case in order 

that the sudden approximation be valid the relation

TT V ’X << (a.u) (56)

must hold. That is the contrary of the adiabatic condition (38).

Since x is in general, for any experiment, a macroscopic quantity,

condition (56), it is readily achieved at weak laboratory fields [see

(12)above]. However, in this picture the "sudden" approximation is not 

valid except for very fast electrons at the highest laboratory fields 

in current use ('̂  20 KG). The correct expansion is then an adiabatic one 

given in sections 1 and 2 .
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CHAPTER 3

CROSS SECTION FOR POTENTIAL SCATTERING IN PRESENCE OF A 
MAGNETIC FIELD AND LIMIT FOR B K O .

In this chapter we derive the cross section for 
potential scattering in presence of a strong magnetic 
field utilising the scattering electron wavefunctions 
obtained in the previous chapter in the adiabatic expanr 
S i o n .

As shown in chapter 2 the linear combination of
Landau states 

oo

L  C  4 ______

goes over the plane wave state as O . Consequently
a cross section derived with the use of wavefunctions
(1) must go over the field free Rutherford formula
when the magnetic field goes to zero adiabatically.

In eq. (1) C ) are the Landau wavefun-
• m ,  rv^,

ctions and the expansion coefficients are given by

J / TT*
'2)

)LyLu \o J
where is the azimuth angle of the vector ]<.

In the S-matrix approach the cross section is gi
ven by the probability transition per unit time , di
vided by the incident current density and summed
over all the final states and the degenerate initial 
states ^

-  /  y
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where

The sum in eq, (3) is taken over all the final 
quantum numbers corresponding to all the Landau levels 
with a final energy given by

2 =  K ^ + i < 2 =  + R j  C5)

Following usual procedures, the matrix 
element for a transition between the initial state %  C ̂  ̂ 
and the final state C t  ) caused by the potential V C 1 ) 
is given by

< A | T |  X C > =  2 _ | T l ^  <-?=) > :

Z
. -pr • \
•y

X  y  I 1 1 " !  Y  }  ‘® ’

For a potential with axial symmetry the magnetic 
quantum number is conserved during the collision, then 

Z /vw

and eq. (6) becomes

Putting C|) =: , , and taking the squared m o d u 
lus of the matrix element, we obtain
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"Y r w \  rw . u  V  L-tACVv\ fW* ^ X ‘-‘J

(8 )

Due to the uniform distribution of the scattering 
centers and to the axial symmetry of the magnetic field 
it is possible to average the squared matrix element 
over the azimuthal angle (|> obtaining (Cf. Ohsaki^  ̂ )

J T4 2

Z -  1 1 1  X

_  4 T r ' ^
‘  L x ' L i

To get

(Ŷ ,(VA

— ?  K t  C C L ' i  I T |  Y  C 2 ) > 1  ( 9 ) ̂ f^;rvnKj..

To get the cross section we need the current densi
ty of the incident particles along z:

( 1 0 )

Averaging over the azimuthal angle -2H

_  I T  _ i _ _  ti T  I Y  t x >  1 ( 1 1 )
'  y  l , 4  7 T  U
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we obtain

<3l(vic (1 2 )

This expression is equal to the current density for 
a free p article normalised in a box of dimensions

L ^ -  L y  L«j L-2, .
Su b s t i t u t i n g  eq.(12) . and eq. (9) into eq. (3)

we get the cross section
^  J _ _  T T ^  U  H

TOT - -  2 L y L j  t  K ^ .

(13)

I n t r o d u c i n g  the density of final states along z 
we t r a n s f o r m  the sum. over to an integral

(14)

where

fC£4)-
d ( £ + ) -  i l Z -

d  c2rr ti
( 15)

Finally, substituting eqs. (14) and (15) into eq.
(13) we get for the cross section the expression

«,„= z  i i  . k t
n m

( 16 )
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ÀA\io
We will now prove that this cross section goes over the 
field free value when the magnetic field goes slowly to 
z e r o .

From eq (5) we see that for a fixed energy 
the limit for O implies m o O  for any bounded
value of m. Consequently the sum over n can be trans
formed into an integral

where P \ is the density of states in the plane per-
pendicular to the magnetic field

and

y  -•> ( kj. d  K l  ci U)%  J  y  '
'4

= Ly Lv̂  ( oos O ' S LJ (17)

where we expressed as

k, = k  Si'/n 0  
4

( 18)

being the scattering angle.
Substituting eq. (17) into eq. (16) , the cross 

section for 0 is given as
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A 3 the field free Rutherford differential cross 
section for Coulomb scattering with V  (.2 )= A o  / t /  is

^  ^    1  (20)
dSL L 4  0/z )

to prove that a q . (16) goes into eq, (2 0 ) when the
magne t i c  field goes to zero we must prove that

X .  1 | v |  4 -

- ZL. A."" _ _ % !
L j  6/2.

(2 1 )

■“ The" m a trix element for transitions from a p arti
cular initial L andau state /Yl̂• /»t , to a final
Landau state ^  induced by a Coulomb potential

in the FBA is  ̂̂  ̂
-,'/z

< " 4  ( s - y I v K  =  B s
(mj,+\/rnlV. ( A n ^ - v l ^ O )

m,- ! !

+ l/v%l+1  ̂ 4. 1 ̂ V ') C "  (22)

where are confluent hypergeometric functions,
L  C X) are Laguerre polynomials and X — ^  ^  with

4, z k, - K,. the transferred momentum along z; (the quantum *1
numbers n and m used in our formulation are related to 
the q u a n t u m  numbers N and s used by Ferrante el a 1 
by the relations m=N — s and n = N — (|m\+ ra)/2 ).
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C o n sidering a well collimated incident beam we can 
assume r  O and therefore nrv^so , rra - o

In this case<S:„. „ I 1 1'0,0, K*; Ij; ( i ,  X , X )  (23)

The hypergeometric function rela
ted to the incomplete gamma function X ) through
the relation

(24)

(4)
(Erdelyi et al , vol 2 pag. 133).

Using the expansion

r ( - r 0 | i > 4 ) =  ^  ^  r A -

' X  + ro, 4. i L (.X + 031 V
-V • •■1 (25)

(Erdelyi et al (4) , vol 2 pag. 140), we have

\-->0

l^fVA _ J ---
rA^->(P

m

[ x - v r A ^  - ^ l Ÿ

(26)

- r
Negl e c t i n g  the terms of order and putting

( 2 7 )

wi th

Q. -
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we ge t

4  (  ̂/ I - 03.̂  , y )  = - L- ̂ —  (28)

Substit u t i n g  eq (28) into eq (23) and using
the relation

9jt; + kij = ( k)\ K^sw’-©'- k S>‘Yo & /z (29)
we finally obtain the equality

(2 1)

Eq. (21) proves that the cross section for p o t e n 
tial scattering in presence of a magnetic field goes over
the field free one provided that we use as u n p e r t u r b e d
wave functions the linear combination of Landau states 
d e r i v e d  in chapter 2.

We note-that as the second term in the expansion of 
the hype r g e o m e  trie function (eq. 2 6  ) is

(Mj +  O  _ _ J   _  _ L  Y  kj. j,

c a +  i r  [ q ^ .  +

the leading correction to the cross section is proportio- 
nal to ^  V \K/ith Bivona and Ferran te ;
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CHAPTER 4

WAVEFUNCTIONS OF A FREE PARTICLE IN PRESENCE OF A MAGNETIC 
FIELD AND A LASER FIELD OF ARBITRARY POLARISATION.

In this chapter we derive the solution of the 
Schrôdinger equation for a free particle in presence of 
a magnetic field and a monochromatic radiation ("laser"). 
These solutions will be used in chapter 5 to evaluate 
transition probabilities and cross sections for electron 
scattering in presence of a strong magnetic field and a 
laser of arbitrary polarisation.

We assume that (a) the magnetic field is constant, 
uniform and directed along the z axis, (b) the radia
tion field is taken in the dipole approximation (c) with 
arbitrary polarisation, (d) homogeneity.

The Schrôdinger equation for a particle of charge 
Q, and mass jx. in presence of an external field is given 
by

whe re
(2 )

) is the vector potential of the radiation field in 
the dipole approximation, and is the vector poten
tial of the constant magnetic field; the electric field 
£ Ct) and the magnetic field (5 are obtained as:

M ( 3 )
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since P'B - A - p = - i k 2 . A putting 7 * A : O , equation
( 1 ) becomes

+ 6 at. 7  + ̂  At
jjic ~  “

(4)

Introducing the unitary transformation (Cohen- 
Tannoudji et al  ̂̂  ̂ )

T = _ “L Q- A i  • ^
. t c  -

(5)

we get rid of the terms A% A u  and in eq. (4)
and the transformed wavefunction

satisfies the new Schrôdinger equation
«

tq 4  ̂ - Y
whe re

H :  -

4

(6 )

(7)

i 0, k Am . V  4
yc

a A t _  Q êCe)-^

i t

(8 )

At this point is convenient, to specify the geometry 

of the problem. Putting

■ A h =
( 9 )
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we get a configuration where the magnetic field is along 
the z axis and the electric field has an arbitrary p o l a 
risation. In such a geometry the Schrôdinger equation 
(7) becomes

(1 1)

(1 2 )

Making the following transformations:
a) the coordinates transformation

b) the unitary transformation

c) one more coordinate transformation

y  -  X  C t )  ( 1 3 )

d) and finally the transformation

Y (2X|? 1^- [3:1 ' B-l] T "-4'

with
^ 1 -  R C t ) - [ x ( e ) ,

Eq (10) becomes
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Û 6 ,

=  i t ,  4 > C ï , t ) (15)

In eq. (15) we note that the term

L  = j L [ i ' ’4 Q £ . R ^  ^  y yP C '
gives the Lagrangian function for the classical system. 
Moreover the terms enclosed in squared brackets are equal 
to zero , because they represent the components of the 
classical equations of motion for a charged particle in 
presence of a magnetic and an electric field, given by

* »

_ û £ u +
à C • ( 16)

The Lagragian term in eq. (15) is removed 
the t r ansformation

by

A  I L  d  2r % (17)

that gives rise to the new equation for

( 18)

Since the Hamiltonian of eq. (18) does not contain, 
explicitly, the coordinates ^^and its solution will be
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where ^^ the solution of the equation

with GJç^zl^l^ the cyclotron frequency and ~ ^  .
^9 (2 0 ^ is the Schrôdinger equation for an harmo

nic oscillator oscillating along the y axis around the 
point y^ 
is given by

with frequency Co» . The solution of eq. (20) 
(2)

- l E t
V,

sx\> 1z (2 1 )

whe re

and

\ 2  j 2/^

(22a)

(22b)

n = 0 ,1, 2 . . . , is the quantum number characterising the n-th 
Landau level, |-l^(5)are Hermite polynomials and (̂r>\ is 
the normalisation constant.

We note that, in eq. (20) the charge of the particle 
is present through y^ so that the solutions for a p ositi
ve and for a negative charged particle are different.

To obtain the solution of the original Schrôdinger 
equation (equation (1)) we must go back from the wave fun
ction the wavefunction Using the unitary
tran S fo rmati ors given by the equations (19), (17),
(14), (12) and (5) . we get

exjy 2 H j s ) (23)
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where

(23a)

and

C = ra (23b)

is the normalisation constant of the total wave function.
The quantities X,Y,Z, X, Ÿ ,Z in eq (23a) are the 

solutions of the equations of motion (eqs. 16) and can 
be easily found; in fact, adding • the first equation of 
the system (16) to the second multiplied by i, and 
p utting

pr 'k + iy , p‘rÿ+xy
Q

we ge t

p  ^  ^ P  -  ”

whose solution is

p r y 4 i y =

with ^

T T x + i T T j Z  s j  [ A -X:

" 5  "  I  ^ ' • 3
(24)

X --6 &  ̂  ( t- 't)

L
d t (25)

Moreover from eq. (24) we get the relations

that with the help of the first two equations of (16) 

give
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f l y .  , f r , =  - ^ ÿ ; ,

and also

(26)

X TT̂  - y TT.
Finally integrating the last of the equations (16) 

and p u t t i n g

f - -  P a ]I ' a  » J (27a)

and

- p “  ~  ("^^1 -  C  Px (27b)

we get for the function of equation (23a) the
more compact expression

The wave functions given in eqs. (23) - (28) are
the appropriate ones for calculations of matrix elements

i kand cross sections for scattering in presence of two e x 
ternal fields, when the electron embedded in the magnetic

0/A
and ele ctric field id considered as unperturbed system

CUand the Coulomb potential is considered as perturbation.
In order to clarify the physical meaning of the 

derived w a v e f u n e tions, it is useful to calculate the mean 
values of some physical quantities:
a ) normalisation constant

The orthonormalisation condition gives
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SO that when Chcu z (V\io % M  /̂e have

M l "  ^
C ^ = c y c ^ =  14 —  T T T  <: J (29)

b ) ene rgy —

< E > =  < ' t ' l * t ^  l 4 - > =  ( ' n < - j ( ' L y f +

4 ^ r z \ f * { ^ i - z  ''■-iî-
(30)

the energy of the particle is then given by the energy of 
an harmo n i c  oscillator plus a time dependent part due to 
the forcing caused by the laser field;
c ) momen t u m

< p > -

—  -  (31)

the component of the momentum along y is not conserved;
d) coordinates

- X +() ( • * ■ " x  ) ^  (32)

again the mean value along y is time dependent, moreover 

since .,
*/z

" ■ ' ^ ' (33)
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the me an squared deviation of ^ from its mean value is 
equal to zero

<  ? >  =  o

as is found for an harmonic oscillator.
From these mean values it is clear that the derived 

w a v e f u n c t i o n  describes the motion of a charged particle 
in a laser and in a magnetic field in terms of an h a rmo
nic o s c i l l a t o r  along the y axis with center of o scilla
tions given by

(34,

The center of oscillation is then dependent on the 
p a r t i c u l a r  polarisation of the laser field and 
o s c i l l a t e s  about the point

as in the absence of the laser.
0.6

A l ong the z and x axes the charged particle moves 
under the influence of the electric field only, so the new

effect is confined to the motion in the y direction.
C o n c l u d i n g  this chapter we discuss, briefly, some 

p a r t i c u l a r  cases of the solution (23).
a ) La ser field equal to z e r o .

In this case ~ ^ and consequently

P =  .

_ Pe! tPx +  Pg 2  -
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Moreove r 
\'/2

and the wavefun c t i o n  (23) becomes

(36)

C Z  <2X|p [ e ^ i 4  ^  t ]  j V

^  ^  i  ^  f  E" % 3  ^  ' 3 7 '

that is the wavefunction of a particle in presence of a 
m a g n e t i c  field given by Landau and Lifchitz^^^.

We note that the solution (37) and the more g e n e 
ral (23) have been derived in a cartesian geometry and 
tha t , i n  this case, the constant of motion are : the m o m e n 
ta along z and x, p and p , and the quantum number n .z X
This is not the only geometry possible, in fact, as it 
has been shown in chapter 2, for collisions in presence 
of a m a g n e t i c  field it is more convenient using c y l i n 
drical coordinates with constant of motion given by p^, n, 
and m, where m is the component of the angular momentum 
along the direction of the magnetic field,
b ) Ma g n e t i c  field equal to z e r o .

In this case, since as 6*^0, '^->cO it is not p o s s i 
ble to get the solution for B=0 as a limit of the wave fun
ction (23) . The problem is analogous to the one already
so l v e d  in chapter 3, for the case of particle scattering 
in p r e s e n c e  of a magnetic field.



-56-

REFERENCES

(1) C Cohen-Tannoudji, J Dupont-Roc, C Fabre and 
G Grynberg, Phys Re y A_8 2747 ( 1973)

(2) A S Davidov Quantum Mechanics (Oxford Pergamon 
Press 1976)

(3) L D Landau and E M Lifshitz Quantum Mechanics 
(Oxford Pergamon Press 1965)



-57-

CHAPTER 5

POTENTIAL SCATTERING IN THE PRESENCE OF A STATIC 
MAGNETIC FIELD AND A RADIATION FIELD OF ARBITRARY 
POLARIZATION

The free-free transitions("bremsstrahlung" ) of a 
charged particle scattered by a potential, in a static 
uniform magnetic field, is of interest not only in itself, 
but for applications in astrophysics and plasma physics.
We do not reference all the literature here but refer to, 
for example. Ferrante et al.  ̂̂  ̂

If a time dependent monochromatic electro-magnetic 
field (which could be thought of as a model of a laser) 
is also present, then it is possible to excite transitions 
between the quasi-Landau levels in both single and multi
photon modes, in both the direct and inverse bremsstrahlung 
proce s se s^f ̂ The problem has recently been addressed by 
Bergou et al. These processes are closely related to
laser photodetachment or laser photoionization in a magnetic 

(2 3 )field. ' Of interest is also the study of the line shape
(4)of the scattered radiation by electrons in a magnetic field.

In this chapter we concentrate on the effects of 
polarisation of the radiation.

To simplify, we assume that the radiation field is 
homogeneous, single mode, and sufficiently low energy for 
the dipole approximation to be valid. The magnetic field 
is a static uniform field taken along the z-direction.
The last part of the chapter discusses the modifications 
when the central potential V(r) is allowed to perturb the
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L a n d a u  energies, but not to distort their wave functions « 
This c o r r e s p o n d s  to the "distortion" approximation of 
Ba tes r e i n t r o d u c e d  recently by Rynfuku and Watanabe.  ̂̂  ̂

We d e scribe the scattering by choosing a gauge for
the m a g n e t i c  field such that its vector potential is

0 / 0 )  (1)

in C a r t e s i a n  coordinates with respect to the scattering 
centre. The unper t u r b e d  wavefunction for a single s c a t t e 
ring centre may be writ ten

n> = = C e"iGnt/R e * ^ “ exp|- P^(t')df|-

H^(n) (2)
thwhere E is the energy of the n Landau level n

£  = (P^/ TTy (t) , Pg) (3)

and (n,p ,p ) are the quan tum numbers of the electron. 
The q u a n t i t y  jr = (n^rïïyfO) defines the time dependent
m o t i o n  of the electron at right angles to the magnetic

, (7)field, and following Seely

p 2 (t) = |£(t) - §  A^(t) I - [Px - (4)

where Q is the charge of the particle of mass m^ and 
A the v e c t o r  potential of the radiation field. We have

c  _ —1
n = Cy - Yo “ 2B  ̂PQ (5)

where P q  is the Larmor radius and y^ = -cp^/QB, is the
centre of oscillation, in the absence of the radiation.
The functions H (x) are the usual Hermite polynomials.

n
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With this choice of gauge the Landau quan t u m  numbers 
are not (n,in^,p^) but are as specified above. We evaluate 
the B o r n  a p proximation to the S-matrix

= f <f|V|l>dt (6,

(where | i> = 1 similarly for | f > ), by
a v e r a g i n g  ove r  all scattering centres in the plane normal 
to z . We are able to obtain a result for the total cross 
s e c t i o n  all states of principal q uantum number
n^ to all states of pri ncipal quan tum number n ̂ , in which 
the e l e c t r o n  momentum transfer is

g n.:' 2ïï
 ̂ s 

1
rig ! Zrti\J =  —  CO Pzj_Pzf

whe re

o . . n ^ r i .  ripin. ^
dqy | V ( 2 ) | 2  |c ^(2)| P e ‘’ | L „  ( p ) |

"i

P - [q. + q„ ]m 2  ' '"y ' " o

(7)

(8)

and is the number of photons emitted or absorbed. The
c o e f f i c i e n t  C is the Four ier c o efficient ofV

d f  [rr^(t-) + I  ( f  )]

m  ti c d f  ( f  )

where we have specialised to Q ~ 
A s s o c i a t e d  Lag uerre polynomials,

TT
fi ° X

b- e . The L a

(9)

(X ) are
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C") = è   ̂ (10,

a n d  V(^) is the Fourier transform of the potential. We
su m  an d integrate over final states and over all degenerate
i n i t i a l  states (which corresponds to an integral over p ,

^i
p and a sum over n ) to obtainX f f

« n_. I m ^ ^i" 2ir o
z, Pz

1
2 jtA

7 - ^ r i p “ ri- n^'^n. o
dqy |V(a)| |C^(q)I P (p)| (11)

i f (n£ >, n^) .
E n e r g y  conservation implies

2 2 nfilcuc + p^^/2m^ = /2m^ - v K  (12)

We p o i n t  out that the cross sections (11) exhibit 
the s p e c i a l  feature that the final electron momentum along 
the m a g n e t i c  field appears in the denominator. This is the 
us u a l  s t r o n g  magnetic field result, which may give rise 
to q u a s i  — res on an ce s at the q u a s i - L a n d a u  state thresholds.

To p r o c e e d  further, we need to specify the form of 
the s c a t t e r i n g  potential and determine (q) for a given
r a d i a t i o n  field vector potential. For the most general form

. r.L(in dip o l e  approximation) of A (t) — [A  ̂  cos (m^^t + <>ĵ ) /

A y  cos + ^y), A^^cos(üij^t + ] , we £ind

| C J 3 )  1^ = (X) , (13)

being the Bessel function of integer order, while
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X = X^(a2 + s2)'> , . (14)
O

We also have

a = a c o s<p^ - b siri(jiy + c cos*^ + d sin,#^ + f cos^y 

0 = a siri(ÿ^ + b cos*y + c sin(^^-d cos<>^ + f sin<ÿy,

,L “ l  u ,L “ c  *'̂ z ‘1z
^ ° — --- —  : ^ ^ y 9 x  — --- — ’ = =(1) — w W_ — (ilL e  L e “l

'i = ^ x S - 4 V ' -  ^ = ^ y ^ y - r V -  '^5)W_ -(J w_ - w ^L e  L e

As s c a ttering pot ential we take a scree n e d  Coul omb 
p o t e n t i a l  V ( r )  =  ( V ^ / r ) e x p (-y r ) , y i e l d i n g
V  (q) = 2 n V g  p ̂  / ( p + S) ^ / with C = ( P / 2  ) + y^) •
Wit h  the appropriate procedures, c o r r e s p o n d i n g  results for 
C o u l o m b  and the e x p onential p o t entials may be obtained.

To p e r f o r m  the required integrations in equ ation (11), 
it is useful to specify to some p a r t i c u l a r  radiation field 
p o l a r i z a t i o n s .

(1) T a k i n g  the radiation field linearly p o l a r i z e d  along
the z axis, A^«(t) = A^ cosoj^t, we have x, = x — — ^

2 ^ ^ 2 °In this case the squared Bess el function J ^ (A^) may
be taken out of the integrals over q and q , andX y
e q u a t i o n  (11) becomes

— E d  (A^)d,p r (16)
\j = — ao

w h ere  ̂ is the total cross section in the absence of
the radiation field with energy c o n s e r v a t i o n  still given 
by e q u a t i o n  (12). Changing the integr a t i o n  variables, d^^  ̂
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may be written as

q m 2 2
%  pQ V

" ' / ' I

f l ' l B n^,rii (C) (17)

(Hf ^  n^) , wit h

(p + Ç) ^ exp(-p)p “ ^ i | L | ^ f - ^ i  ( p ) | 2 a .

(18)

If in equation (18) we put n = 0  then = 1, andi o
the integration over p may be carried out to give

C" f - i= (-Ç) (n^ + Ç) (ç) - (n^ - 1) ! +

nf- 1
+ Z (Z - 1) ! (n. + C) (-Ç) 

2 =  1
n ^ - 1 - 2

(19)

(Hf ^  2) , with.

B^ = - e^E^(ç), and B^(Ç) = (1 + Ç)e^E£(ç) ,
E ̂  be ing the exponential integral.

This result (17) was first obtained, but in a dif-
(9 )ferent form, by Ventura , while (17) and (18) were given

(1 0 )by Pav l o v  and Panov but (19) is new. The different
forms arise because of different Choices of coordinate 
system and gauge. Ventura's form for (17) is expressed 
in sums of products of squares of confluent hypergeometric 
functions of the second kind and associated Laguerre 
polynomials. We now demonstrate for some particular cases 
that his expression and ours are equivalent.
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= 0 the result is trivial. For other 
cases we have been unable to show analytic identity, but 
find that the two expression are identical if our quantity

“  n^!

and Ventura's quantity

(£)

2 "i s !

(20)

X Ll J  ^(-Ç)]^+-i^[L ^ Z s:(s+n,-n.)l[*(s+l,n.-n,+l,ç)]^ (21
^ " f  "i s=n^+l ^ ^ ^ ^

are identical. We have investigated this for the case 
shown in Table 1 and find that this is always the case, 
allow i n g  for the slow convergence of the sum in A .

(2) For right hand circularly polarised light in the 

x y - p l a n e , A^(t) = (A^ cosm_ t, A ^  sintu.t, O) ,O ij O Li

we find = X A / (ül_ - Ü) ) ,

2 2 ^with “ (q ^ q y ) . Using the relation connecting
p to qj^ (given by equation (8)), X 2 is expressed as

X 2 = tp wi th
(2 2)

For this case, equation (11) becomes

-n

V. " 1
n f •

»-2dp (p + Ç) exp (-p)p
"i

(23)

(nf i  "i)'
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Table 1

Ç = 0.01
^1 ^2

0 5 4.966 (-2) 4.965 (-2)
0 100 1.009 (-4) 1.004 (-4)
5 10 1.304 (-1) 1.303 (-1)

10 20 3.102 (-2) 3.102 (-2)

C = 1

^1 A 2

0 5 2.982 (-2) 2.981 (-2)
0 100 9.898 (-5) 9.843 (-5)
5 10 3.821 (-2) 3.821 (-2)

10 20 , 1.535 (-2) 1.535 (-2)

C = 100

^1 A 2

0 5 8.914 (-5) 8.862 (-5)
0 100 2.494 (-5) 2.470 (-5)
5 10 7.628 (-5) 7.628 (-5)

10 20 6.295 (-5) 6.294 (-5)



— 5 5 —

and the integral is fairly readily evaluated numerically.
To unders tand the structure it is again convenient 

to restrict our attention to n. = 0. Using the series 
rep r e s e n t a t i o n  of the squared Bessel function, the in te
gration over p may then be carried out to give

'2,m_ p 2lf V  2O
<24)

with 4-v+k ̂ defined by equation (19), and

g(v,k,t) = i2l)."[2(v+k)l:J_k/2)2(''+k!. , [(v +k) !]2(2u + k) ! k:

E g(u,k,t) i (t) .
k

for small t (weak radiation field, high frequencies, 
weak magnetic fields, and, of course, 7̂  w^) , (24)
reduces to

= Z j; (t) cl'" , (25)V = -00 ^ -I

where  ̂ is given by equation (17) with n^ = 0 and

In general only the terms with | v | make
s i g n i f i c a n t  contributions. In the general case n ^ 0 a 

simi l a r  result may be obtained but ®ri£ + v + k  ̂̂  ̂ 
no longer given by (18). The approximation
wil l  be valid even in the presence of a Coulomb potential 
for large n.,n^ (as discussed further below). Our result

1 s

(2 2 ) then suggests that resonance effect)become important
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whe n 0) w In this case the arguments of J (t)L c     ”   - V
become large, and their contribution to from
mu l t i p h o t o n  effects (|u | > 1) may dominate. On resonance
a better approach may be to solve the problem of the 
p o t e n t i a l  V(r) together with the magnetic field as exactly 
as possible. One would then identify a pair of levels 
whose separation was , and use the normal Bloch
model for the laser interaction with these two states.

(3) (a ) Left-handed circularly polarised radiation
(polarisation vector in the xy p l a n e ) .

A^(t) = (A^ cosw,t,- A^ O) , givesO Li O Ij

h a  = ^ 0 ^ 0  •

(b ) Linear polarisation along 

A^(t) = ( A ^  cosw^t, O, O), gives

^3b = ^ 0 ^ 0   ̂ ^ “ c ’ ~ -"c'

(26a)

(26b)

as in case (2).
(c) Right-handed circularly polarized light in the

xz plane

A^(t) = (A^ cos(ü_ t, O, A ^ s i n m - t ) ,  gives

•■^3c =
%

2 2, 2 h

again going into 
L

3c - w_) -1 (26c:
a)L-o>c



again as in case (2). Similar results are obtained for
other polarisations.

The results of case (3) may be summarized as follows
(i ) Linear polarisation is neither necessary nor

sufficient to produce the resonant denominator
( ^ in the Bessel function argument.

(ii) W h a t e v e r  the polarisation provided, with at least
one component of the radiation field in the plane
of the magnetically confined motion, a resonance
d e n ominator switches on multiphoton processes,
when w_ w Li C

(iii) When w_ ^  w the effect of the radiation field L C
on the electrons motion along the magnetic field 
may be neglected.

We note that our results go over to those of other
authors when the radiation field is switched

(14)off. As shown by Blumberg et al it is not straight
forward to obtain the result in the case of no magnetic 
field from that for B 0. However, the limit process has 
bee n c arried out successfully for several case by e.g. 
Ohsaki^^^^ , Blumberg et a l  ̂  ̂ and Kara and McDowell^^^.

What are the possibilities of testing our result?
It is easy to see that it can only apply for large n^ 
and n^, because the potential causes both a level 
spl i t t i n g  and shift for low n ^ ,n^. The level splitting is 
due to the symmetry breaking by the spherically symmetric
potential; in effect the s degeneracy is removed, or in

(16)  ̂ (17)our terms the p degeneracy. S ta r ace and Rau have
X

shown that the energy levels are well approximated in the 

JWKB method, when the potential r ^ = (p ̂  + z )
is replaced by p ”*^. that is the energies for a given m
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and TT are found as the solutions of

I V(En»p) pdp = (n + !j)ir

and for Coulomb potential

p 4p

They show that for not too large n, the energy spacing

^ n + 1  n ~  ^n+l~ whereas for very large n,
w , . “*• 2 y R y , which is the Landau s p a c i n g . Kara andn+l,n
M cdowell confirmed this without use of the JWKB result. 
Furthermore this result is well verified experimentally^ '  ̂ 1 

In considering free-free transitions, we have in
mind an astrophysical plasma, such as mi ght be associated
with, say, a neutron star. We assume a field B of the 
order of lO^^G, thus would normally think that y 10^ 
was the correct scaling parameter. However, the source 
of the electrons here is primarily fully stripped F e , and 
the Coulomb field is - o ^ / / with 'v 25 . Looking
at V(p) we see that

V (p , Q q ) = V (p , 1)

—  2and the effective scaling parameter is y ' y (25) , so
that as far as the continuum levels of the ion ("the quasi-
Landau" levels) are concerned, we expect them to be similar
to those calculated  ̂ for atomic hydrogen at y' 3 .
Detailed energies for the low-lying states in Fe XXVI are

(19)given by Ruder et al . At large n the spacing is
2y Ry = 4 X 10^ Ry = 2 x 10^ e V  = 2 x 10^ °K.

This is comparable with temperatures of interest in the
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photosphere of neutron stars, i.e. a E kT , so the
free-free process is reasonably rapid if the cross section 
is l a r g e .

Nevertheless the free-free transitions at a E 'v kT
may be d o m inated by transitions between low lying levels.
For example, for the (001) to (0-11) transition the energy
difference^  ̂ at 10 G is about 0.5 keV, whereas the
L a ndau spacing is 4 x 10^ Ry v 50 keV. Thus given a
comparable cross section this contribution will be of 

10order e times larger. It is thus important to calculate 
this and similar contributions to the free-free rate.
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CHAPTER 6

L A SER-ASSISTED ELECTRON IMPACT IONISATION OF HELIUM

Laser assisted electron Impact ionisation of atoms has
(1),(2 )been considered by several authors

Very recently Cavaliere et al^^) and
(4)

Banerji and Mittleman have given explicit formulae

for the triple differential cross section (TDC) in the First

Born Approximation (FBA). Both sets of authors* results are

equivalent, though the latter authors specify more exactly

the approximations involved. Thus they apply to a low

frequency electromagnetic field (so that the cross section

may be regarded as slowly varying whe n  the incident energy

changes by hw or, alternatively, that hu is small compared

w i t h  the energy of the slower of the outgoing electrons).

Further, the field is treated as single mode, homogeneous,

and in the dipole approximation, and is not in resonance

wit h  any atomic transition frequency , while finally the

laser field IC-I at the atom should be small compared with ' — L '
the Coulomb field.

Cavaliere et al have applied the theory to

ionisation of atomic hydrogen, evaluating the scattering

cross section in the FBA using a Coulomb wave to describe

the slower final state electron. They predicted that in the

case that E was perpendicular to the momentum transfer — L
K. of the faster final state electron, the normal dipole- — if
lika pattern of the TDC would split symmetrically. They 

also predict that when is parallel to K^£ r the peaks do
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not split but the ratio of the forward to the backward peak 

is considerably smaller than in the field free case.

Since measurements in atomic hydrogen, even in the 

field free case, are prohibitively difficult in the coplanar 

assymetric (Ehrhardt) geometry, it is of interest to carry 

out calculations for helium. The present presents

such a calculation for helium at one energy, and one 

scattered electron angle in FBA. We are of course aware 

(Byron et al Ehrhardt et al ^^^^ ) that in the field

free case the FBA gives an inadequate description of the 

backward peak, the main correction being a Second Born 

Approximation effect. We hope to consider the Second Born 

Approximation in the laser assisted case at a later date.

We restrict ourselves here to one of the situations 

studied by Ehrhardt*s group ^^^ , namely an

incident electron of energy E^ = 256.5 eV, wave vector 

k^, a fast outgoing electron of wave vector k^, at 4^ to 

the incident direction, and a slow outgoing electron of 

energy 3 eV at angle 8^ (which varies) and wave vector K-

Then the FBA to the TDC may be written

d ’g(L) ^ " j" a  ) ■3^(0)
dîîi dflj de n = -oo " " dflj de k^ + n "h w

(1)

Ê g„(L)
n =
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where the left hand side is the TDC with the laser on, and 

the right hand side is a sum over the number of photons 

absorbed (n < O) or emitted (n > 0) of the field free cross 

section at energy + nil w , times a squared Bessel
function of argument

^  (Kif - K) • El • <2)

We choose to describe the fast electrons (k.,k^) by— 1 — r
plane waves, but to use a close-coupling expansion for the

target state and the slow ejected electron. The relevant

expression for the TDC in the absence of the field has
( 9 )been given by Robb et al and need not be repeated

here.

We choose to begin by studying the standard Is - 2s - 2p 

close coupling model. The calculations were carried out 

using the IMPACT code, and a program GOSION (Jakubowicz and 

Moores ) for the reduced matrix element. Our program

for evaluating (1) above using any close coupling model for 

an arbitrary (L,^) coupled target will be submitted to 

Computer Physics Communications.

We tested our TDC code by comparing with the results

of Robb et al and of Jacobs and the comparison
( 8 )(Fig. 1), in which the experimental data (Ehrhardt et al ) 

are normalised to Jaco b s ' result at the forward 

maximum, shows excellent agreement with the results of
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90

180

Fig. 1 T O G O  for helium for a 256.5 eV incident electron 

energy, a scattering angle 9 = 4 ^  and an ejected 

electron energy of 3.0 eV. Dashed line, Jacobs 

1974; dashed point line, Robb et al 1975; solid 

curve, present work; dots, experimental results 

of Ehrhardt et al 1972.
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Robb et al, but disagrees with Jacobs* results for the 

backward peak. We concur with the reasons advanced by 

Robb et al for their, and our, disagreement with Jacobs.

We then tested the low frequency approximation by 

calculating the field free cross section as a function of 

incident energy from 252 to 260 eV. The results for the 

forward and backward peaks (Fig. 2) show that the cross 

section is indeed slowly varying over AE = iïw for both 

frequencies considered. These were Ü w  = 1.17 eV, 

corresponding to a Neodymium-glass laser and ‘hoj = 0.12 eV 

corresponding to a CO^ laser.

We considered the following cases for each of the two 

frequencies, and a laser intensity of 5 10 vcm

£ l  - L  — if ' — L II — if ■

Case I *h(i) = 1.17 eV

(a) The results are shown in Fig. 3. They are symmetric 

about 9^ = 130°, the direction of The upper most

curve is the field-free case, while the others (labelled 

by n) are for n = O, 1, 2, 3. The pattern is quite simple 

The n = O contribution dominates at the forward and back

ward peak where it is very close to the field-free value 

(TDCO). The one-photon absorption contribution is small 

at the forward and backward peaks but has four maxima, 

with the two larger being close to the forward direction.
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</)I
CM OO 0-3
w■o
c•o
■o

0
(b)

0

0
260256 253254252

E:(ev )

Fig. 2 T D C O  value for the forward peak (a) and backward 

peak (b) as a function of the incident electron 

0nsrgy 7 other parameters as for Fig. 1.
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with an intensity about one-fifth of the field-free value.

There are two additional zeros due to zeros of Jj { \ i ) ,

which we discuss further below. The contributions for

> 1 are similar but decrease rapidly with increasing n .

Since, in this case, varies between

0.03 and 2.47; when is small (X^^ = X^^ , so the

partial cross sections decrease rapidly with increasing n

near 120^ and 310^. When X is not small there is a zeron
of the field-free cross section.

The cross sections for emission (n < O) are in general 

slightly lower (for fixed 0^) than for absorption, since 

they are proportional to the field-free cross section at an 

energy + ntioj for emission and E^ - nhw for absorption, 

and Fig. 1 shows that the second is the larger. We note 

that the sum in eqn. 1 is to within our numerical accuracy 

equal to the TDCO.
(b) W i t h  parallel to , the pattern (Fig. 4) is

more complicated, but the complexity is due to the

behaviour of the Bessel functions (Fig. 5). Thus for

n = o J (X ) has zeros near 50° and 210° close to the o 0
zeros of the TDCO and shows a similar pattern to the TDCO, 

though an order of magnitude smaller. However, for n = 1, 

Jj (Xj) has zeros near 90°, 170°, 270° and 360°, so the 

corresponding contribution to the TDC has these zeros in 

addition to those of the TDCO. Its maximum value occurs
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100

075

i2)075

150 300250

-0 25 (0)

Fig. 5 Bessel functions (X) as function of the

ejected electron angle for the process described 

in Fig. 4. The numbers on the curves indicate 

the number of photons absorbed.
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along , where it is about 1/16 of the TDCO. Over a

wide range of angles, far from a zero of any of the 

relevant Bessel functions, e.g. near 130^, three-photon 
absorption dominates.

Case II 11 w = 0.12 eV

Here the arguments of the Bessel functions are large, 

indeed about a factor of one hundred larger than in the 

previous case, due to the factor w  ̂ in the argument.

Thus neither in case (a) nor in case (b) does any simple 

pattern emerge. Since 1Ïw << 1 a.u., we may take the TDCO 

independent of energy, thus equation (1) becomes

_ d^g (0) " 1
d̂ ^i ddg de d ü  j dd^ de ^ n n

Thus a measurement of the TDCS in the presence of a

weak laser field is essentially a measurement of a squared

Bessel function! Note, however, by choosing such that

(Xg) = O, for example near 240^, with perpendicular

to K.^, we see a situation dominated by single-photon 
— I f ,

processes, with (L) = 2 a_^(L) i.e. by single-photon 

absorption, and this itself may be interesting experimentally 

Our conclusion that a measurement of the laser assisted 

cross section, knowing the field-free cross section, reduces
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to a measurement of (x) is hot restricted to ionisation, 

but is quite general, and applies equally to excitation. 

However, it does not hold if our assumptions of a weak 

field, low-frequency photons, single mode homogeneous 

laser, off-resonance, and slowly varying cross section, are 

not satisfied. Clearly theory and experiment should 

concentrate on investigating the phenomena when one or more 

of these assumptions do not hold.
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CHAPTER 7

CONDITIONS FOR THE OBSERVATION OF THE PREDICTED 
S P L I T T I N G  OF THE LASER ASSISTED ELECTRON IMPACT 
TRIPLE DIFFERENTIAL CROSS SECTION OF ATOMS

INTRODUCTION

The presence of a strong electromagnetic field ("laser”) 
changes significantly the conditions of the electron-atom 
scattering processes. In fact the photons of the laser, 
exchanging energy and momentum can play the role of a third 
body, opening new channels and allowing the observation of 
electron-atom scattering parameters which would not other
wise be observable. Many of the processes studied, such as 
elastic and inelastic potential scattering,^ electron 
impact ionisation,^ ^  x-ray ionisation,^^ Compton effect^'^ 
etc. lead to, in the first order treatment and when the 
laser is treated in dipole approximation, a cross section 
given by a product of a squared Bessel function (carrying 
all the -information about the laser field) times the field 
free cross section calculated at a shifted final energy 
that takes into account the number of photons absorbed (see 
Eq.(l) below). The modulating effect of the oscillating 
squared Bessel function as a function of the scattering 
angles gives a significant modification of the angular dis 
tribution of the free particle in the final state. This 
effect is particularly prominent in electron impact ion
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isation of atoms. Recently Cavaliere et al  ̂ for hydrogen 
atoms and Zarcone et al^ for helium atoms have evaluated 
the triple differential cross section (TDC) in the first 
Born approximation (FBA) for different laser polarisations.
In both cases the way that the shape of the angular dis 
tribution of the ejected electron is changed is shown to 
depend strongly both on the parameters characterising the 
laser (polarisation, intensity, frequency) and those of the 
electron-atom scattering process (incident and final 
electron energy, scattering angle). Moreover, the con
tribution to the cross section given by the process where 
no photons are absorbed exceeds almost everywhere the con
tribution given by process with n ^ 0. More recently 
Zangara et al^ have reinvestigated the ionisation problem
using a more realistic laser model. For spatial or temporal

8 9inhomogeneity and for a multimode laser the cross section
preserves the factorised structure of the homogeneous case. 
However, the squared Bessel function is replaced by a more 
complicated expression. For the cases considered they show 
that neither the inhomogeneiti.es nor the multimode structure 
cancel or drastically alter the predictions made on the
basis of the homogeneous, single mode laser. In this chapter 
we give a complete analysis of the dependence of the shape 
and the intensity of the TDC on the different parameters 
involved in the collision process for the case of a single 
mode homogeneous laser and also for the inhomogeneous and the 
multimode case. In particular, we will emphasize situ
ations where the TDC for n 0 photons dominate the zero 
photon one. This work is intended to give a useful guide 
*to the choice of the collision and laser parameters involved 
in setting up a possible experiment.
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HOMOGENEOUS, SINGLE MODE LASER

The theory of laser assisted electron impact ionisation with 
a single mode homogeneous laser has been discussed by 
different authors. Here we give only the main assump
tions and the limitations assumed in the derivation of their 
result.

The laser field is treated classically as single mode 
and homogeneous. The field is taken in the dipole approx
imation. Further the effect of the laser on the atomic 
states is neglected, so that the laser electric field 
is assumed considerably smaller than the characteristic
interatomic field E = Z^e/a ^ = 5 x 1 0  V/cm, and inat o
addition it is supposed off-resonance with any atomic tran
sition frequency w^j. For the initial and final fast 
electron wavefunctions they assume laser modulated plane 
waves and for the slow ejected electron laser modulated 
continuum atomic states. The latter states are approximate 
solutions with positive energy of the Schroedinger equation 
of an atom in a laser field. This approximation is valid 
when the momentum provided to the free particle by the laser 
p = “ A(t) is smaller than the particle's own momentum 
p = flic, i.e. when 5 = E^/w< <<1.

Within these approximations, the FBA to the TDC may be 
written as

= Z J 2 (X ) , = I a (L) (1)dill df̂ a dE n n dîli d^z d£ nn=-°° n=-^
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where the left-hand side is the TDC with the laser on and 
the right-hand side is a sum over the number of photons 
absorbed (n < 0) or emitted (n > 0) of the field-free cross 
section (TDCO) at energy

= k^^ - iĉ  + E + ntîüJ , (2)

times a squared Bessel function of argument

\  - c ' - s  L •

In Eq. (2)-(3) k._ = k. - k_ is the momentum transfer, K—if — 1 — f —
is the slow ejected electron's momentum, E is the atomic 
ionisation potential, and £ is the laser electric field

3intensity. As shown in our previous paper the TDCO is a
slowly varying function of the final energy. For processes
involving a small number of photons, it can be regarded as a
constant over a wide range of n. All the features of the
cross section due to the laser field are buried in the
Bessel functions. Moreover, for H and He, the TDCO
presents the well known two-peak structure^ showing that the
maximum ionisation probability is given when the ejected
electron leaves the atom along the directions ± k^^ and is
zero in the direction perpendicular to it. Due to the
factorised structure of the cross section, the TDC will also
be zero in the direction perpendicular to k^^; consequently 
any change in the shape of the TDC can occur only in a
small angular range around the directions t k^^. For this
reason we can restrict our analysis by fixing the ejected



-88-

electron angle at 9 = k • k.. = 0. The Bessel function isk —  -if
an oscillating function with the different low-order zeros 
ordered in the following way^^^^

^ Q = 0 , Xg = 2.405 , X ^  = 3.832
(4)

X^^ = 5.136 Xq  ̂ = 5.520 X^^ = 6.382

etc., where the upper index is the order of the zero and 
the lower is n .

The change in the structure of the TDC and the relative 
importance of contributions from different numbers of 
photons n depends strongly on the particular range of 
variation of the Bessel function argument X^ Eq.(3). For 
very small values of X (X = 0) the main contribution to 
the TDC comes, of course, from the n = 0 process, since 
X^^Q = 0. Increasing X the n = 0 process loses import
ance, so that when X - X^ , the n = 1 process is more
important for by X = 1.45 we have

(1.45) = Jq {1.45) . (5)

For values of X >> 1 the situation becomes more com
plicated, and since the zeros of the Bessel function become
much closer we find a more complex and modulated structure 
for the TDC.

The variation of X as a function of the electron 
ejected angle depends strongly on the collision parameters 
and on the laser parameters. For example, in our previous 
calculations for H e l i u m / w i t h  the following parameters:
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= 256.5 eV, E^^ = 3 eV, 0 = 4

tü - 1.17 eV and = 5 10 V/cm we have 

we have

IXI = (0.4, 4.4) for E ||k._—L —if
and (5)

|X| = (0.0, 2.4) for Ê i
while, in the case considered by Cavaliere et al^ for 
hydrogen with Ê  = 1 5 0  eV, Eej = 5 eV, 6 = 5°, w = 1.17
and E^ = 10^ V/cm we have

|X| = (0.008, 0. 1 ) for £ I I k.,—L' ' —if
and (6a)

|X| = (0.0, 0.064) for E^i k^^ .

The difference in the range of X in Eq.(6) and (6a) gives
a complete explanation of the different shape of the TDC
for the two polarisations and/or the two examples con-

2sidered. In fact in Cavaliere et al's example X << 1 
and the only Bessel function zero contributing to the 
change in the structure of the TDC is the X = 0 zero, the 
n = 1 photon process being much smaller than the n = 0 one.

One interesting experimental situation is when 
processes with n / 0 dominate the n = 0 process. In this 
context it is useful to investigate for which values of the 
laser parameters (intensity, frequency and polarisation) we 
can have Jg(X) = 0 and some ^  g ( ̂  ) 7̂ 0. For reasons 
discussed above, we confine our analysis to the region 
around 0^ = 0 , and we use the collision parameters given 
above (Eq.5) for electron-Helium ionisation.
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2

i

12030 <80
CL

FIGURE 1. The curves relate the values of the laser
electric field intensity I [10^ V cm“ M  and

(measured from the 
for which X =

X = X 1II the 0
laser polarisation 8^
momentum transfer k._—1 rthe first zero of or
second zero of Ji , in the simple laser 
model, with the geometry specified in the 
text).

In Figure 1 we plot the value of the electric field laser 
intensity and the laser polarisation angle — l *
which give the zeros Xô  = 2.405 and X = 3.832 
respectively. We see that for not too large a given laser 
intensity it is possible to select a laser polarisation 
corresponding to the X = Xô  so that the probability of a 
zero photon process with the slow electron ejected along 
k.^ is zero. Accordingly, the probability for the n = 1
 ̂ 2 Iprocess will be Ji (Xo ) = 0.27, which implies a large

cross section
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0.2

0.5 1.51.0C O

FIGURE 2. As Figure 1, but now relating the inten
sity to the frequency w (eV) for \q ,

X2 # X II II for 0L = 0.

It is important to note that, due to the small differ
ence between the two curves, this effect can be observed 
only with a laser with a field intensity determined to 
better than 10%. We see also that the most favourable 
situation for this geometry is at low intensity for 0^ = 0, 
while for 0^ = 90° the intensity must be very large, and 
the model is inapplicable.

In Figure 2 we instead show for the more convenient 
polarisation 0^ = 0, the laser intensity and frequency for 
several values of X. Again, for a given value of frequency
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we can choose a value of the intensity corresponding to the 
curve with X q̂  s o  that J = 0 .  We note that for low 
frequency, or high frequency and high intensity we have a 
situation where it is not possible to select a particular 
zero of Jo(X), because this would require a laser with an 
unrealistic homogeneity (for the low frequency case) or an 
unrealistic resolution for the high frequency and intensity 
case.

In the next sections we will examine in more detail 
the influences of the laser properties (inhomogeneity and 
multimode structure) on the intensity and shape of the TDC.

INHOMOGENEOUS SINGLE MODE LASER

A real laser normally has a strong macroscopic inhomo
geneity associated with the decision to focus the radiation 
in order to increase the field in the collision chamber. 
Consequently different target atoms will be found in 
regions of different field strength and the measured dif
ferential cross sections may be affected by such an inhomo
geneity.

The theory of particle-atom collisions in the presence
of an inhomogeneous laser has been developed in recent 

7  8years. ' The inhomogeneity may be both temporal and 
spatial, and in both cases the factorised structure of the 
cross section of Eq.(l) is still valid. However, the 
squared Bessel function is now replaced by a more com
plicated function F^(n,X).^'^

The basic assumptions of the theory are (i) the laser 
is supposed single mode, with an amplitude depending 
on the spatial or temporal coordinates; (ii) the scale of 
variation of the field amplitude is assumed very small 
compared with the typical lengths defined by the collision
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event. In this scheme the cross section is calculated 
following the same procedures used for the single mode homo
geneous laser with constant amplitude, and then an average 
is performed over all the relevant space-time points where 
or when the particular collision occurs.

The resulting averaged cross section depends on a para
meter Y given by the ratio of the electron beam dimension 
s to the laser beam dimension a , for a spatially inhomo
geneous laser, and to the ratio of the detector response 
time To to the duration of the laser pulse T^ for a 
temporarily inhomogeneous laser. For the spatially inhomo
geneous case with y 1 we are in a situation where few 
of the scattering events are in the laser field. With 
temporal inhomogeneity where the detector is not able to 
respond separately to two collisions within To r in which 
time (To >> T^) the laser intensity may have changed 
appreciably. In the usual Gaussian model of inhomogeneity, 
the average electric field involved in the collision is 
smaller than that for a homogeneous laser, so many-photon 
events should be less important.

When Y << 1 the laser field intensity for any 
collision in the scattering chamber may be considered 
constant during the collision, and the inhomogeneity of the 
laser does not affect the process.

The most difficult case to discuss (as always) is when
the scales are comparable, i.e. Y f and we examine
this below, first quoting the results of the earlier 

7,8papers.
For a spatially inhomogeneous laser with a laser field 

intensity distribution characterised by a Gaussian

4>(x,y) = exp{- 1/2 a(x^ + y^)} (7)
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the squared Bessel function J ̂  is replaced in the factor
ised TDC, Eq.(1) by^

00

F^^(n,X) = Z G^(X^,k) YV~+~1cT  ̂̂ ~ exp{-(v + k)}} (8)

where V =|n| and

(-1)^(2V+ 2k)!(l/2X
G^(X^,k) = ----------------2-------    • (9)

k:[(V + k)!] (2v + k):

For a temporal inhomogeheity with a field intensity given 
by a Gaussian function

f(t) = exp{- 1/2-^ t^) (10)

We have similarly^
CO

F.^(n,X)= Z G,,(X k)f — erf{0.5lii(v+k)l’'̂ }[ (II)
k=0 V \ v  + k)'^^ ’

in terms of the error function.
The behaviour of these complex expressions is far from 

obvious, but the behaviour is readily computable for X^
not too large (X < 10).

= 2 In Figures 3 and 4 we compare the behaviour of F^ (n,X)
and F^ (n,X) with as a function of X for the cases
n = 0 and n = 1 respectively. As expected the inhomo
geneity decreases the contribution from the n = 1 process 
in favour of the n = 0 process, especially for small 
values of X. For both the temporal and spatial inhomo
geneity the curves keep the oscillatory behaviour of the 
Bessel function, even though they are smoother and the zeros 
are dumped out. Moreover, the distance between successive 
minima is larger than the corresponding distance between two 
successive zeros of the homogeneous case. From this fact we
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O 2 6 8

FIGURE 3.  ( X ) ; -------- (n,X); -*-F^ (n,X)
compared for O < X < 8 and n = 0.

can deduce that the TDC will present a laser modulated 
behaviour, but with a less rich and pronounced structure. 
Under conditions when a splitting of the forward and back
ward peak is predicted (n = 1 process) the resulting lobes 
will be rather further apart than in the homogeneous case.

In the homogeneous case it is always possible to choose 
parameters of the scattering process and/or of the laser, so



—  96 —

0.2

2 86U

FIGURE 4. As Figure 3 but n = 1 .

that for a particular ejected electron angle the n 0 
photon processes are more important than the n = 0 process. 
In the present case this will occur for slightly larger 
values of X than in the homogeneous case. In conclusion we 
can say that for small values of X the behaviour of the 
inhomogeneous functions F^^ and F^^(n) are very similar to 
that of the squared Bessel function. For increasing X 
F^^ and F^^ rapidly get out of phase with showing a
phase advance and strong damping. Thus the behaviour of the 
system with inhomogeneities is increasingly different from 
that of the homogeneous system. However, these inhomo
geneities will only be important at low frequencies and/or 
high intensities as we have seen in section 2.

MULTIMODE LASER

In this section we will examine the modifications expected
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in the laser assisted electron impact ionisation TDC if the 
laser is multimode. Following Zoller,^ the radiation of a 
multimode laser with a large number of uncorrelated modes 
may be represented by a chaotic field. Using the Gaussian 
properties and the first-order correlation function, and 
allowing the laser frequency band-width A w to become 
vanishingly small, it is possible again to get a factorised 
TDC of the same form as the homogeneous single mode case, 
with

F^^(n,X)=exp{-1/2 X (1/2 X  ̂) (12)MM n n n

where I is the modified Bessel function (Abramowitz and n
Stegun, ref.(12) Eq.9.6.3). A comparison of the function
F»»(n,X) with the square Bessel function is made in MM
Figures 5 and 6 for n = 0 and n = 1 respectively. The
function F*^(n,X) is (Monotonie, decreasing with increasing MM
X and shows no oscillations or zeros. Consequently, we 
expect the same behaviour as in the single mode homogeneous 
case for very small values of X, X << 1. Moreover, in 
this case it is not possible to have a situation where the 
n = 1 contribution to the cross section is larger than the 
n = 0 one. The only zero present is for X = 0 and n / 0, 
so again for a laser polarisation angle 8^ = 90 we have a 
splitting of the forward and backward peak, but it is not 
possible to have such a splitting for any other polar
isation .

CONCLUSION

More realistic laser models than used in the derivation of 
the Kroll-Watson result, which allow for spatial or temporal 
inhomogeneity or multimode effects, do not change the shape
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FIGURE 5. J (X);  for n = 0.n MM

nor strongly affect the magnitude of the predicted TDC 
obtained using a simple single mode homogeneous laser model, 
provided the laser parameters (frequency, intensity and 
polarisation) and the collision parameters (incident energy 
scattering angle, final energy and target atom used) are 
chosen in order that the value of the argument of the 
relevant Bessel function is restricted to A << 1 .
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FIGURE 6 As Figure 5 but n = 1 .

For the more interesting experimental situation when 
for X >> 1 processes with n = 1 are predicted to be more 
likely than that with n = 0 in the simple model, the more 
realistic laser models predict an attenuation of the effect, 
and in some models the predicted splitting is wiped out, 
except in the case of when the laser polarisation is perpen
dicular to the momentum transfer.

REFERENCES

1. N. M. Kroll and K. M. Watson. Phys. Rev. A 17 1706 
(1973).

2. P. Cavaliere, C. Leone, R. Zangara and G. Ferrante. 
Phys. Rev. A 24 910 ( 1981 ).

3. M. Zarcone, D. L. Moores and M. R. C. McDowell.
J. Phys. B: At. Mol. Phys. Jj6 LI 1 ( 1983).

4. G . Ferrante, E. Fiordilino and M. Rapisarda.
J. Phys. B: At. Mol. Phys. J_4 L497 ( 1981 ).



— 100 —

M. Jain and N. Tzoar. 
A 18 538 (1978).

and

Phys. Rev. A 1 5 1 47 ( 1 977);

J. Phys. B: At. Mol.

5.

6. G. Ferrante and E. Fiordilino.
Phys. j_5 2157 ( 1982).

7. R. Zangara, P. Cavaliere, C. Leone and G . Ferrante.
J. Phys. B: At. Mol. Phys. 21 3881 (1982).

8. R. Daniele, G . Ferrante and S. Bivona. J. Phys. B:
At. Mol. Phys. J_4 L213 (1981).

9. P. Zoller. J. Phys. B: At. Mol
10. P..Cavaliere, G. Ferrante and C.

At'. Mol. Phys. 23 4495 ( 1980).
11. J. Banerji and M. H. Mittleman.

Phys. 21 3717 (1981).
12. M. Abramowitz and I. A. Stegun.

ematical Functions, Dover Publications Inc 
( 1965) .

Phys. 
Leone.

21 L249 (1980) 
J. Phys. B;

J. Phys. B; At. Mol.

Handbook of Math- 
N.Y.

R . H . C
Ul


