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IT

ATJSTRACT

The scattering?: of slow positrons by Helium atoms is
of particular interest now that positron beam experiments
are being performed. The purpose of this thesis 1is to
carry out an examination of past theoretical investigations
of the problem as well as to explore various approximation
schemes for describing the problem within the framework of
the close-coupling method, where the total wave function is
expanded in terms of the eigenstates of the target Hamil-
tonian and of the lositronium system. The numerical tech-
niques associated with solving the ensuing coupled intego-
differential equations are described in detail. A novel
use of a graphical display device as an aid to debugging
the computer code is illustrated. The theoretical approxi-
mations include (1) allowing for all partial waves (2) tak-
ing into account the 2P states of both Positronium and
Helium (3) the addition of correlation terms {a means of

allowing for short-range effects.)
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CHAPTER I

.REVIEW OF POSITRON ATOM SCATTERING' PROCESSES

The problem of scattering of positrons by atoms has received
increasing attention since the advent of sophisticated theoretical
treatments of electron-atom scattering and the feasibility of
performing positron beam experiments. The physical differences
between positron interactions and electron interactions of an
atomic system can be exploited to produce more information about
the contribution of particular processes of interest. Unlike the
electron problem, in the positron case the projectile is distinguis-—
able from the target atom electrons and no allowance for exchange
terms is required. However, if Positronium formation is taken into
account in describing the collision processes, then rearrangement
terms appear which in effect replace the exchange terms of the
electron problem. Because of lack of symmetry, these rearrangement
terms are more difficult to handle than exchange terms.

The main problem in theoretical calculations is to provide
an adequate representation of the target atom state during the
collision process. The mean static field of the'atom, which
would attract an electron, repels a positron, but the induced
dipole moment of the atom (polarization of-the atom) is attractive
in both cases. If Positronium is formed, then it will also
be polarized by the positive ion remaining. The various

approximation methods formulated to account for

X.H.C
UBRAK?



these physical processes* are described in the sections follow-

inc

One of the first experiments was that of Marder,
Hushes, ku and Bermett(p who studied the enhancement of
Positronium formation by a static electric field. The posi-

tron energy can be divided into four regions determined by
the atomic ionization energy EJ@l‘ the first excited state
nd the threshold energy for Positro-

nium formation E as sljjom in Figure 1.1 which is a sche-
matic diagram for positron Helium scattering processes.

If E then the energy region (E -E )
is known as the "Ore(zgap " and is the energy region in
which Positronium is most 1likely to form. For positron
energy < E* only elastic scattering will occur while in
the region (E - E ) Positronium formation competes
with atomic excitation. Finally for positron energy > h
Positronium will be formed but with energy such that it is
likely to dissociate through further collisions. If we
assume that there is a uniform distribution of positron kin-
etic energy after the last inelastic collision we can esti-
mate the fraction P of positrons forming Positronium as

follows:

For Helium this inequality becomes:



A0
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Figure 1.1 A schematic diagram of the energy levels

for positron Helium scattering



In their theoretical paper corresponding to the experi-
i (1) A ’ (3)
mental results of Harder et al* Teutsch and Hughes
analysed the diffusion <pf the swarm of positrons through
gaseous Helium making the following assumptions:

(1) the time required for the positrons to slow down
to thermal energies was negligible in comparison to the time
required for positron annihilation.

(2) the positron jnergy distribution was Maxwellian.

(3) the elastic m<pmentum-transfer cross-section was
energy-independent.

These assumptions must be viewed cautiously in view of
the consequent theoretical disagreement with the momentum-
transfer cross-section value of .02[) TTag at an energy of
18eV.

The various theoretical approximations used in positron

atom scattering processes will now be examined.

1.1 Rorn Approximation Methods

The Born Approximation is the most well-known approxima
tion in collision theory and consequently will be described
very briefly. The wave equation for a one body problem in a

field V(r) is:”

= V (0 () 1.1a

a
where k is the incident energy of the particle. The asymptotic

form of is:



where | &) is the scattering amplitude* We now assume that
the particle wave is not affected to a large extent by the
scattering centre so that' we may replace 17() on the right

hand side of equation (1l.la) by the unperturbed wave function
ik'C

e * The first Born Approximation is given by :

(t>e 1.2
This can be solved to give and thus a first approximation
to the scattering amplitude e If is now substi-

tuted in the right hand side of equation (l.la) then a
second approximation and scattering amplitude

are obtained which will be the second Born approximation.

Thus we are obtaining ) by iteration as follows:
()] .

I' (') = Y
where [ V *k 7] -V (t) 1.7 a

A= g 1.ido

*T *T
] ~ A

and X'n ('r—hae .J.0 t . %«9) 1l.4c

r

It can be seen that this method depends on the interaction



between the particle and the scatterer being small and is

thus more applicable to fast collisions than alow. In slow
collisions between positrons and atoms the charge distribu-
tion of the atomic electrons is distorted to such an extent

that the 1st Born approximation cannot be expected to give

reliable results.

(a) Positron Hydrogen Collisions.
———————————— (uT = ————— ==
Massey and Mohr used the 1st Born approximation to

calculate cross-sections for formation of Ortho-P'ositronium
in the ground state. The potential energy V of a positron .

in the mean field of a Hydrogen atom is given by :

1 f1I I 1-) 1 = Pe. ( 1*5
\  Ivr.l
where A is'the normalized ground state
Hydrogen function in atomic units and is the position

vector of the positron with respect to the proton.

Since W'p> 1is positive and therefore a repulsive po-
tential, it will distort the incoming positron wave. Massey
and Mohr %ﬁérefore'used a distorted wave approximation to try

to take this into account. That 1is, the plane wave approxi-

mation in the Born formula is replaced by the function:



and is an empirical approximation to the Mean Static
Field solution (see Section 1.”) for K= I . The resulting

cross—-section was a factor of 1/2 smaller than the Born

result.



1.2 Variational Method's.

The Kohn variation?l method is describe” in detail in
Chapter II and consequently only a brief outline of the
basic variational procedures will be given here. For
simplicity we consider the case of a single particle with
zero orbital angular momentum scattered by a spherical
potential V(r).

!

The wave function describing the scattering of the

particle satisfies the following equation:

where L =
»

is subject to the following boundary conditions:

1i'fO ~ +V1) 1.8b

Consider the integral I given by;

I = J [u-NJct')]  13yCE\ Jt- 1.9

Because of equation (1.7) X=0 . ©Now consider a small arbitrary

A

variation in ~ such that:



AN (™ - 0 &t £-0 1,10a

A (£) A—’CO 5 flsun (kr+%) thiai. (kr*lj ). TV/] . 1.10b
Using the fact that 1=0 the variation in I is given by :
5 = g [ “cxr>+~T|/cn] [L-V @]

T - 1.11

The expression (l1.11) was obtained-by using equations (1.10)

and 1s correct to the first order in .

(@) The Kohn and Hulthen *s. Methods,

Taking A = "eclj we obtain the following:

C r_‘&Dsw\krh k'A'~.coslch 1.12
and 5* t J — 0 1.13

Let us consider a trial wave function containing
parameters ¢ ”*....and satisfying equations (1.8a) and
(1.12) but not (1.7). Writing we have the

following :
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Thus equation (1.13) is satisfied if:

0 for - > 1.14a
I~ = -k _ 1.1"fb
Equations (1.1U) define Kohn*s wvariational method. Referring

to equation (I.I3) we may write:

Therefore, to the second order in the best approximation

to the exact R is given by:

R - kv
1.15
We may use a further condition, namely:
= 0
which requires = 0 1.16

Equations (1.1Ua) and (I.I6) define Hulthen’s wvariational

method.
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(o) Schwinger*s Variational Method.
The important difference between this method and the
previous two is that the trial function is not required to
have a particular normalization such as is defined by

equation (1.12), We consider equation (1.7?) where the trial

wave function satisfies the following boundary conditions :
1.17a
0 Sater h C Gl k> 1.17p
C>xD
Therefore the phase shift is defined by:
1.18

oo

satisfies the following integral equation :

1.19%9a
where -k 8wk c3kt if f<t*
1.19b
= -k aotkr Sake= if » % £
Since (O = B Swvkr £ |
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comparing this to equation (1.17b) we obtain %

©
C = -k V(£') 1.20
Now consider the integral in the following form:

1.21
and choose the wvariational approximation to such that
r=* 0 , Using the fact that the Green's functions G
satisfies:
we have that :

[ +J G- (£ ") 3jf "] = V('I'l, @
1.22
r* 1
- V) (O + & F)V(e>virA(r’)

Substituting equations (1.18), (1.20) and (1.22) into (1.21)

gives the following expression for oAl

1.23

J ")\ )svked h
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This defines the Schwinger variational formula. If we
choose ( £ = (vlkc we obtain :

= 1.24
where and V|~ are the first and second iterated Rorn

phase shifts respectively.

(c) Positron Hydrogen-Collisions.

One of the first wvariational calculations was that of
Massey and Moussa ©) who calculated zero-order phase shifts
using two types of wave functions. . The first function
contained-no allowance for distortion of the positron wave

(6)

and was of the form used by Massey and Moiseiwitsch for

electron Hydrogen scattering: .-

-1 4 ~clwtc. A (l-e ™) coskip 1.25
(6)
Again following Massey and Moiseiwitsch terms
‘dependent on N =(x were added to where ¢ and

are the positron vectors of the electron and positron
relative to the proton respectively. The second function F™

was

+ M+ (M) e (te. 1.26



10

Both Kohn's and Hulthen*s methods were used but no
appreciable difference in the phase shifts was found in
using B} and , See Table 1-1.

Rather than considering distortion of the incoming
positron wave, Moussa.(7) considered distortion of the

Hydrogen atom by the presence of the colliding positron

The total trial wave function ~ was chosen as:

S (> = Vo (M + fo

AN

where is the ground state Hydrogen function and:

N

where = and <= -1 (P) the ground state

Positronium function and G was chosen as:

Ce.

where

and 1K is the kinetic energy of the Positronium in rydbergs.
()

Moussa applied the Kohn and Hulthen methods with a, b and

c as the variational parameters for the single energy *ig"

and s-wave scattering only. The elastic scattering cross-

section was reduced when was included in the trial wave
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-
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function but not by a sufficient amount to give any agreement
with the experimental results of Marder et al.(l) The form
chosen for G is unlikelyto be adequate for non-asymptotic
distances which could account for the relatively small* change
in the cross-section value.

Extending the calculations for obtaining equation (1.24)
to the scattering amplitude defined in equation (l.lb) it can
be shown that if and are the scattering amplitudes

obtained from the first and second Born approximation respec-

tively, then the best approximation for the true scattering

amplitude | that can be obtained from and is given by :
" '-B . ' (8)
Usin”® this method Moiseiwitsch gained agreement with
(5)
Massey and Moussa and an extension of the approximation
- (9)
a "method due to-Newstein toallow forpolarization,

resulted in a decrease 1in the cross-sections.
- - -- (10)

Moiseiwitsch and Williams used asimplification of
the second Born approximation and Schwinger’s method to calcu-
late differential cross-sections for elastic scattering. The
positron* energy considered was greater than 200 eV so allow-
ance for excited states of the atom was included.

(11)
Schwartz calculated the elastic scattering for zero

angular momentum using the Kohn variational method and the

following type of trial wave function :
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1.28a
whe re f is of the form:
-r
1.28Db
p
and Pp = f -f" , . K is a variable
scale parameter adjusted to aid convergence. The ensuing
phase shifts are displayed in Table 1-1.
(d) Positron Helium Collisions.
: TToT
Koiseiwitsch and Williams applied the same methods

to positron Helium scattering, for energies greater than
300 eV, as for positron Hydrogen scattering. The two
methods gave little agreement and at small angles the differ-

ential cross-sections differed by a factor of three.

1.3 Bounds on the Scattering-Length.
According to effective range theory, for short-range
central potential scattering, koot 3" (where is the s-wave

phase shift) can be expanded in powers of k as follows:

kesb ) 1.29a
Qa

where a is the scattering length and the effective range.

Alternatively we may define a as follows:
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@ = Irt' - HA i1 1.29b
k=-"0

Up to this point there has been no criterion to judge whether
the addition of more variational parameters would produce
improved phase shifts. Spruch and Rosenberg(lz) generalised
the results of Kato(l3) to show that the Kohn wvariational
method provides an upper bound on tbe scattering length.

We first of all consider the case of zero energy scattering

in a static central potential V(r). Referring to equation

(1.15) the exact expression for H is:

1.30

where satisfies equation (1.12).

If we consider equation (I.30) in the limit as k-40

we obtain the following:

I 1.32a

1.32b
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and a is the true scattering length. The normalization of

in the =zero-energy limit has been changed by a factor
of Ic. Estimating the size of the integral term on the right
hand side of equation (I.31) will give us some measure of the
error incurred in the variational calculations. Spruch
and Rosenberg(14) showed that if the potential V(r) could
not support a bound state then:

"\ 4 0 1.33
~o

Therefore equation (I.31) reduces to:

That is, any choice of parameters in the trial function

will yield an upper bound on the scattering length so the

choice leading to the smallest wvalues of (a” ) will

provide the best approximation to the truezscattering length.
In the one-dimensional problem Kato(1 ) calculated upper

and lower bounds”bn the error term in equation (I.30)* By

considering ‘the" associated eigenvalue equation:

\'
pc) = 0 1*35
where S — , P 1s a non-negative weight function and
satisfies the same boundary conditions as , it can

be seen that there exists an infinite set of discrete eigen-

values. If we denote the smallest positive eigenvalue by d
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and the smallest (in magnitude) negative eigenvalue by —

then :

- for all n 1.36

Since where (tiyy = 0

we use equation (I.36) and the fact that:

to obtain the following expression:

- . p) H4 N &L W ret)
(12 L
Spruch and Rosenberg generalized this to the
scattering-of a particle by a compound system. Providing the

following conditions hold, namely:

(1) the eigenfunctions of the associated problem
form a complete set.

(2) Levinson's theorem generalized to a many-body system
is wvalid. That is : when the exclusion principle is not in
effect, the phase shift for zero energy scattering is nTT

where n is the number of bound states of the system.
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(3) no three-body bound state exisgs for the positron

Helium system. |

then the scattering length obtained from Kohn's variational
method for positron-Hydrogen is an upper bound to the true

scattering length.

(a) Positron Hydrogen Collisions.
~ nn
Spruch and Rosenberg considered two types of trial
wave functions. The first corresponds to the Mean Static

Field approximation:

-1
where = £ & is the ground state Hydrogen func-
tion and:
= 0 at r, =
where a, 1s the scattering length in the Mean Static Field

Approximation.a I was found to be positive and was an upper
bound on the scattering length for the true problem.
The second type of function F”" contained terms in p

to allow for polarization of the Hydrogen atom:
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The parameters g, 's, t and v are varied and the linear

parameters determined variationally to give the least wvalue
r

of the scattering length. This produced an upper bound of
rl»356ao showing that the positron is attracted to the

Hydrogen atom at low energies. The addition of a further
-t

term IT similar to the first excited state of

Positronium reduced the upper bound to -U97ao which can be

(til)

compared to Schwartz's ! wvariational result of -2.Ian.
(15)

Allison, McIntyre and Moiseiwitsch calculated the

scattering length for elastic collisions using the Kohn

and Hulthen variational principles. The total wave function

A

Tor total angular momentum zero was chosen as:

where
and
F &) = fp [ ("t+pe. 7)(l-e ' f, 1
and and T are arbitrary parameters. *~ contains allow-

ance for the polarization of the Hydrogen atom (see Section

1.5) and F obeys the following asymptotic boundary condition:
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hence the calculated scattering length is ~ . Varying the
T *
parameters p* and I iji the variational methods, the best

value of the scattering length was -,785ao which is greater
I (12)
than Spruch and Rosenberg's upper bound result, A.

probable cause of error in Alison et al's choice of wave
function is the omission of any allowance for virtual Posi-

tronium formation.
(16)
Houston and Moiseiwitsch used Kohn's wvariational

method to calculate seattering lengths. By considering the
function F” defined by equation ( 1,26) in the limit of

zero energy but replacing the exponential terms by ¢

and e respectively, a negative scattering length -.466ao0

(11)
was obtained. This is less accurate than Schwartz's

since only linear dependence on the positronium coordinate

was accounted for.
> (11)
A further trial function similar to Schwartz's

defined by equations (1.28) in the =zero-energy limit was
(16)
used by Houston et al, 5

N't
N
\Y t « A
where "k + 4 1%37
LU’ *
and is the ground state Hydrogen function. Calculations

were performed for. N=4, 10, 20 and 35 corresponding to all
possible wvalues satisfying 6+m+tn(l, 2, 3 and 4 respectively
with ~0 . Optimal values of and y were calculated

for the N=4 case and these were used for the remaining cases
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The lowest scattering length of -1*8%ac was obtained for
N=35* Allowance for Positronium formation was made by

including a further term:

This reduced the lowest scattering length to -1.92ao0.

(b) Positron Helium Collisions#
nrj
Allison et al. applied the Kohn and Hulthen varia-
tional methods to positron Helium scattering where the total

wave function ©~ (£, for zero orbital angular momentum

was chosen as:

$ [ I ] ECL,)
where A Ct,,r» ,1,") = Al-t ! +
and h 1 s the same as in the positron Hydrogen case. The

Helium ground state function YO “s the 3-parameter approxi-

mation to the Hartree-Fock function given by Green, Mulder,

(17)
Lewils and Woll:

wW 1.38a

where u )= N [ 4-L, e J 1.38b
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and A, D, C and N are defined in Chapter II. The constants

and were chosen so that for large was the
first order correction to arising from the dipole terra
of the perturbation due to the positron, see Section 1.5*

As 1in the Hydrogen case, the scattering length for
positron Helium was negative, equaling -.l6ao in the Kohn
method and -.10ag in the Hulthen method. Since the Helium
atomic function is approximate no rigorous bounds can be
applied in this case.

(16)
Houston et al. extended their variational method

to Helium using an analogous trial wave functions

N 't , £, . i >PB, ,Pi
where is defined in equation (1.39) and:
_y*ll I .

and is defined by equation (1.37)%* is the operator
interchanging all coordinates 1 and 2 and *

for i=1 and 2. Calculations for N=4, 10 and 20 were per-
formed, the smallest scattering length of -.398ao being

obtained for maximum N.
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14 Partial Wave Theory and the Close Coupling Approximation,
We expand the total wave function * in terms of the

eigenstates of the target Hamiltonian. For simplicity we

will consider the case of positron Hydrogen scattering, with-

out allowance for Positronium formation.

W
where is the nth state Hydrogen function satisfying:
(i = O 1.40a
r J
where it) " ® 1.40b
t

F~ satisfies the following boundary conditions:

FA(t,) = O at
~ + . . i
FAM L Lo
where = 5 and E is the total energy of the system.

We are considering the positron with energy kO incident on
the atom in its ground state of energy Eo,

The Schroedinger wave equation is;

o°
v}
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Premultiplying by (t?) , integrating with respect to 1,

and using equation (1.39) we obtains

1.02:
where ’ i A j__2 - I)),)'*)), 1.42b
11 p
To solve these numerically we expand F, in terms of the
spherical harmonics as follows:
1.43

Therefore substitution of equation (1.43) into (1.42a)
yields the following system of an infinite number of coupled

second-order differential equations:

cl +k* - € 0 f ]f) Y_ V,A- F,- @) 1.44

(a) Polarization Potential
Consider a positron incident on a Hydrogen atom in its
ground state. The positron energy kO being insufficient to

excite the atom we have:

0] for 'J ~
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where and E is the total energy of the system.
is defined in equation (1.40a). From equations (1.45) we
obtains
F. - e ~ A, B

1.46
r 0 fo

Since the K (") for v+l are bound state functions decaying

exponentially, for large the right hand side of equation

(1.42a) will be replaced by a single diagonal potential term
(18)

O &") e Castillejo, Percival and Seaton showed

that s
Fm (tp') -i.~MO (Ip) F, (@) t 0/~J_ )

ko - Ks

and hence, substituting n=0 in equation (l1.42a) we obtain:

Therefore the polarization potential V (t) is given by :

Substituting equation (1.43) into (1.4?) and using equation

(1.42b) we obtain:

E/\
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"o 4') =

Using the addition formula for spherical harmonics (see

equation 2*12) this reduces to:

r— r r b
it’!
0
)g. | «0

where

if r
Thus :

I AJ
. I an\
«H't0  aeti)<- (k.-k*. )

where fl.'t =
Because of the factor of in (r ) the largest

contribution asymptotically will arise from the Smallest 2
value. Considering 6=0 for Hydrogen, = 0 because of
the orthogonality of the Hydrogen radial functions. There-

fore the dominant term is the 6=1 term and:

F.'1T
H nv0 (e BL.")
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1.48a

where §. = ~ A Ianl 1.48b

NIy (e '-el')

and d is the polarizability of the atom.

(b) Close Coupling Approximation

*If we assume that the effect of any spin-orbit inter-
action is negligible then the total orbital angular momentum
with quantum numbers L and ML and the total spin with guantum
numbers S and Mg are separately conserved during the collision
A convenient representation is one that is diagonal in
LML SMs which will be labeled P = ( LM ~ S )
where 8, and are the orbital angular momentum gquantum
numbers of the atomic electron and the positron respectively
and Iand n are the wave number and principal gquantum number
of the positron and atom respectively. Thus instead of the

expansion given by equation (1.39) we uses

A (€, = 2 Fpp'fJd 1.49a

where can be expanded as s

H-p = (i.s.*p) \ 1.49b
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o M

where .. is an eigenfunction of the total orbital angular
momentum L. s and $ represent the spins of the electron and
positron respectively and the system is initially in the state

r ¢ Fop, satisfies the following boundary conditions

1.50

As an illustration we consider the case of a positron
incident on a Hydrogen atom without allowance for Positronium
formation. Substituting equation (1.49) in the Kohn varia-
tional principle (see Section 1.2 and Chapter II) we obtain

the following set of coupled second-order differential equa-

tions s

A IS L u

F. (@ i) F; (£) 1.51
where " arid the subscript P has been omitted since

the above equations are independent of the boundary condi-

tions. We have that:
L T *
¢)=* " Ay (Paf P;.'K) 1*52

where , (*/m) 1.52b
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Hv (.1 >P-y 4) = 5/ 1.52c¢
U)
where 47°= 1, f if r™ f
and , > =f* if
is defined in equation ( 1.39b) and is a

Legendre polynomial.
In the Mean Static Field approximation only the ground

state of atomic Hydrogen is included in the expansion (1.49).

Thus equation (1.5la) reduces to:

F (f) = V P\f) 1.53a
if
where vV o= 1.53b
In the Strong Coupling approximation we include any two
s-states of the Hydrogen atom - therefore equation (1.51a)

reduces to the following pair of equations:

- eeti) 4

In the distorted - wave approximation one of the
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coupling terms in the pair of equations is set to =zero.
In many problems it is necessary to allow for inter-
actions of intermediate states therefore more terms in the

expansion (1.49) would be included.

(c) Positron Hydrogen Collisions

Smith and Burke(lg) calculated the L=0 phase shifts in
the static and strong coupling approximation. ¢ The scatter-
ing length in the static case were found to equal +0.582
and the addition of the virtual 2s state of Hydrogen in the
strong-coupling approximation onlyreduced it to +.564. The
phase shifts for L=0 calculated in the static, strong coup-
ling and 1s-2s-3s coupling scheme are presented in Table 1-2.
Comparing these to the reliable variational results of
Schwartz(ll) it can be seen that spherically symmetric states
in the close-coupling expansion are not adequate allowance
for polarization of the atom.

This was confirmed by Castillejo et al.(18) who
considered the contributions of different states of the
Hydrogen atom to the formula (1.48). Using E%e matrix ele-
ments tabulated by Green, Rush and Chandler( ! they found
that the 2p state accounted for 65#8" of the polarizability.

(21) (22)
Therefore Burke, Schey and Smith (see Burke and Smith 23))
performed a 1s-2s-2p calculation and McEachran and Fraser(
calculated S, P and D partial wave phase shifts using wvarious

combinations of the Is, 2s, 2p, 3s, 3p and 3d states of

Hydrogen. The results for S-wave scattering presented in
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Table 1-2, demonstrate the extremely slow convergence of the
close-coupling expansion with respect to the bound states of

atomic Hydrogen.
(12)
Since Spruch and Rosenberg demonstrated the importance

of allowing for wvirtual formation of Positronium, Cody and
(24)
Smith formulated a close-coupling expansion including the

Is and 2s states of Positronium. Results for the Is state
(25)
were given by Cody, Lawson, Massey and Smith and are
(25)
presented in Table 1-2, For k»/-1 the Cody et al, results

are as good as those of the 5-term close-coupling expansion
(23)
of McEachran et al, but for k<"1 the phase shifts remain

negative. It is necessary to include the 2p state of Hydro-

gen before the scattering length becomes negative.
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An interesting modification to the close coupling expan-
(26)
Sion was suggested by Perkins who replaced the exponential

terms of the orbital radial functions (equation (1.40b) by

terms containing a parameter in the exponent. Explicitly,

)

the 2p and 3d functions ( ﬁ:l and f%a ) are replaced by fic
and re respectively where d and © are chosen to maximise
the phase shifts. The bound theorems on the phase shift are
still wvalid provided that the exact ground-state wave func-
tion is wused. The s-wave phase shifts using the Is and

modified 2p and 3d terms were comparable to the 6 term close

(23)
coupling expansion of McEachran and Fraser.
(c) Positron Helium Collisions
U)
Massey and Moussa performed s-, p- and d-wave calcu-

lations in the static approximation and then included a polar-

ization potential {f%x)& where d is of the order of atomic
dimensions. The addition of the polarization for k=1 resulted

in an increase 1in the phase-shift as is to be expected.

In comparison, Kraid;27) allowed for Positronium forma-
tion in the ground state and found that the phase shifts were
up to three times larger than the corresponding static results
and were positive for energies less than or equal to .16.

The scattering length was negative (-.9193) and since there is
no exact Helium ground state function there are no rigorous
bounds on the scattering length in this problem. From the

results presented in Chapter V it can be seen that this

change in sign of the phase shift at low energies is directly
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attributable to the choice of the Hylleras uncorrelated hydro

genic function for the Helium ground state:

4% (f, t 1.54
IT
where ~
It

The S-wave phase shifts are presented in Table 1-3.

1*5 The Method of Polarized Orbitals

In the adiabatic theory we assume that the projectile's
velocity is so small that allowance for the distortion of
the charge distribution of the atomic electron may be calcu-
lated assuming that the projectile is at a fixed point. If
we consider the case of a positron incident on a Hydrogen
atom in its ground state, then the perturbation potential

due to the positron fixed at is :

where e is the atomic electron coordinate relative to the ~
proton. According to the first order perturbation theory,

the perturbed wave function of the electron will be:

= "o<b) -~ £ "W 1-55

Ev-k,
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where (©Iv/1ly) 1'56a
vitct) = ="laSJil e~ ) i*56b
and . (n = 1.56c¢

It is clear that the perturbed wave function depends on

so in the Polarized Orbitals method we write:

if (0O +''Vr. ,.%) 1-57

where =0 for fp<

We expand \| I,»") 1in a multipole series keeping the

dipole term only:

4= - “ ®ip 1'58
fa
where G 1is the angle between and £~ ¢ The ground state
Hydrogen function with associated energy satisfies:
[ Hf -E.] *1,(0 = 0 1.5%9a
where H *= ~V, and A o T 1#59b

The Hamiltonian for the positron and the Hydrogen atom is:

3 HE t VEt. .5, 1.59¢
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and since we are assuming that the positron is at rest we

neglect the 9 term. letting E, be the first-order pertur-

bation of the energy we obtain:

[ +tf ) = [F.+E, 1 ( f )

(30)
Using equation (1.59%9a) and the result given by Sternheimer
that F, = (Gj\Lo) = 0 , the above equation reduces to:
[Hr -t.] Cp” =
Substituting —TT e and using equation (1.57b) we obtain:
r” -"\
-V, - el (., = X e . cw(P
f.
The substitution: tP — ~ .R Jt).c o & gives:
-d YA % el o(im = 1.60
A/
The solution to equation (I.60) has been given by
(30)
Sternheimer and is! , .
~ = & (W +1< )
1 L
Therefore the expansion for is given by :
(r , - E JL% 1.61
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where E (\,r,) = I if $ > H
“ o if
(28)
Temkin has shown that in the limit as « this tech-
fe . .
£ is equivalent to first order
perturbation theory. If we consider the total expansion of

» equation (1.58) will be replaced by:

)
= - a 1.62
and the corresponding expression for is:
£
= 'PotO - ¢ tr )P >, 1.63
Jif ' e £,"'

Thus ¢tP 1is merely the dominant dipole term (C=l) of the
asymptotic form of the first-order perturbation of the total

wave function. The total wave function is given by :

$ = 'f (to P.(If)

It can readily be seen that substitution of this wave func-
tion into the variational methods described in Section 1.2
would produce terms quadratic in 0/ which would invalidate

A (24)
the first-order perturbation theory. Thus Temkin and Lamkin

projected the Schroedinger wave equation onto the known part
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of the asymptotic wave function as follows:

Thus the scattering length obtained from this method cannot
be taken as an upper bound. Simplifying equation (1.64) we

obtain the following equation:

[ 7 ” <_k</ ] (fr) "= n 1.65a

where th = Nt ” AA 4 1.65b

This 1is identical to equation (l1.42a) except for the addition
of the attractive potential ~ €+ In the limit as @

we see that Ji= S the atomic polarizability of Hydrogen.

(a) Positron Hydrogen Collisions

nsT @ —————————————=

Cody et al. gave results for a close coupling
expansion with the addition of the polarization potential.
Two cases were considered:

() Mean Static Field.

(2) Virtual Positronium Formation.

The, s-wave phase shift results are displayed in Table 1-4
where it can be seen that the polarization potential is
sufficiently attractive to produce a negative scattering
length in both cases.

(31)
Bransden included virtual Positronium formation in
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the ground state by a perturbation procedure and calculated
S- and P- wave phase shifts. The L=0 results are displayed

in Table 1-4, the IL=1 in Table 1-5.
(32)
An interesting method was formulated by Stone who

considered the distorted atomic wave function to be of the

form given by perturbation theory. The total wave function

is taken as:

IE j2eSinal 1.66
where #\V) and are the Is and 2s states of atomic
Hydrogen respectively and and p(r) are chosen such that
the energy of the atom is a minimum. Three cases were
considered :

(1) « 0O and ©~ &Y = the 2p state of Hydrogen.

(2) G4'% 0 and (tO* (ML) eflj e part of A
defined in equation (l1.61). This corresponds to the addition

of all p states of Hydrogen.
(3) 0 and il'= which therefore includes all
p states and the 2s state of Hydrogen.

To illustrate the method we will consider the simplest

case, namely case (1). The functions satisfy equation
(1.39). Now consider the distorted Hydrogen atom with energy
E*. We have:

+1



Multiplying on the left by 1+ "M« (M 7 and integra-

ting with respect to we obtain:
£~ i Aly)[ E, 4V, (£)ta (fpj
( 1)

where Vi (®© is defined by equation (1.112b) Thus to minimize

we consider 7™M™0 which gives:

P = Vv,
As o~ " »0 and the atom is left in the unperturbed
ground state. Hence for large , p 1s small and
and V may be neglected. Therefore :
~0, = " i (00] 1.67
E.-E, i

This 1is exactly the perturbation result obtained from equation
(1.55) when only the 2p state is included. Therefore the

Schroedinger wave equation will be: f

t, fo ir-dpl I
Premultiplying by > and integrating over we

obtain :



[Vp +F-Eo] F (tp) - [ \/, (tpi #V_ (p) ] F (£p) 1.68

where the polarization potential Vp is given by:

MP (r-pl = - A (Tp) \I,, (tp)

It can be seen that:

ME@)  -i 0, (M

By inspection of equation (1.65b) the total polarization po-

tential for large resulting from the inclusion of all p
states 1is - and * 3* is 65«8% of
(18)

this in agreement with Cas tillejo et al.

Equation (1.68) was solved by using the partial wave
expansion as in the close coupling method. Exactly the same
procedure is followed for cases (2) and (3)* The £=0 phase
shift for case (3) are displayed in Table 1" from/which it
may be concluded that this procedure gives equivalent results
to the more complicated coupled equations method.

A modification of the close-coupling method that gives
the correct dipole polarizability by explicitly including the
polarization term of equation (1.61) was suggested by Damburg

(33)
and Karule . If in the 1s-2s-2p approximation the term
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R (see equation (1,56b) 1is replaced by :
21

where C is a normalization factor and adjustment made to
the corresponding energy, then the dipole polarization is
fully accounted for without losing the lower bound on the
phase shift. In addition an extra term whose atomic radial

part contains :

will account for the quadrupole polarization.

) i'ositron Helium Collisions
(27)

Kraidy added the Temkin-Lamkin polarization to the
following cases:

(1) Mean static field.

(2) Virtual iositronium formation in the ground state.

As was to be expected from the positron Hydrogen
results, the scattering length for both cases was negative,
see Table 1-3, The Hylleraas function given by equation
(1.5°') gives a polarizability of 1.1 in comparison to the
experimental wvalue of 1,376. Calculations (1) and (2)

were repeated using this "modified” dipole term and the

phase shifts increased accordingly.



Similar calculations to case (1) by Massev, J.awson

and Thompson using the numerical Har.tree Fock Helium

function produced elastic cross-sections slightly larger
than those of Kraidy.(2T) This was to be expected since
the Hartree Fock Helium function gives a polarizability of
1.56 so increasing the attractive polarization term.

A scattering length calculation including the dipole
and quadrupole distortion terms of the Helium atom was
performed by Hashino(35) The Helium ground state function
of Green et al.(zo) defined in equation (1.38a), was used

in the Kohn and Hulthen variational methods. The best

value of the scattering length was -.5"6.
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1.6 Expansion In Sturmlan Functions
The Sturmian functions $ are a complete basis
without a continuum and are the solutions of the following

equation*

S.eio 1.69
Jit
where f£© 1is a fixed negative number and the eigenvalue
is chosen to ensure that © =0 and decays

exponentially for aymptotic r. If V(r) is the potential

energy of the system and the ground state binding energy
then I and S,, equals the ground state radial func-
tion. This is the only Sturmian function that equals a

physical wave function.

The normalization of the is such that:

1.70

Instead of the expansion given by equation (I.38) we use:

1.71a

where

where C U i S a Clebsch Gordan coefficient defined

in Section 2.4b and L is the total angular momentum of the



50

system.

Substituting equation (1.71la) into (1.41]) we obtain :

-2 - fe.M ¢ 'A +1 -a -e

1.72

The Sturmian equation for positron Hydrogen scattering is:

Substituting this into equation (1.72) we obtain the

Irv‘{

Multiplying on the left by " integrating
with respect to r foa %\ and using equation (I.70) with
V(r) - -2. we obtain:
il o+ - (E-Fo") (V * kt, He. ('r)
w
+5 Ul (neG ;>) .U~ 0 L.73a

where
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s, 1.73b
Ty . v 0]

U~ can be simplified by performing the angular integrations

as shown in Section 2.4 for the %)Ositron Helium problem.

(a) Positron Hydrogen Collisions
Rotenberg*s (36) phase shifts obtained from the above
Sturmian expansion were in good agreement with the varia-
tional results of Schwartz.(ll) As in the usual eigenfunc-
tion expansion, the p Sturmian functions had a large effect
on the phase shifts. The Sturmian function expansion gives

very good convergence 1in comparison to close coupling but

unfortunately no bound theorems exist for this case.
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3*7 Non-Adiabatic Theory

(371
Teiiikin applied a non-adiabatir method to positron
Hydrogen scattering. Considering the Schroedinger wave
equation (1.41) the total s-wave function can be
expanded in terms of the Legendre polynomial as follows:
e-0
where is the angle between y, and f* e+ Therefore the

Schroedinger equation simplifies to:
Apeet) (H#)-a\Fir, H4E le

where A Jp = A il
Stp"

Ws0

and C = j «nﬂIb (cosCp) £

where
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We * 'p< +,

For 7=0 we have that C 1 and equation (1.73)

reduces to the following two equations :

"A +i ~E -4.” b,-40 if~.| 1.76a
o I

1.76b

satisfies the following boundary conditions:

£ (. - 0 1.77a

0 1.77b
-i
where *0 ¢,) =IT e is t, times the ground state

Hydrogen function. ©~ * also satisfies the following conti

nuity conditions: %

mv
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As a first approximation the coupling terms on the
right hand sides of equation (1,76) are neglected to give
a zero- order solution . Performing the usual pre-
multiplication, subtraction and integration of this equa-
tion and equation (1*76) and simplifying using Green *s
Theorem, the following expression for the exact phase

shift ~ 1s obtained:

where is the zero-order phase shift and .

Since the right hand sides of equations (1.76) will not

be negligible for r.= , the zero-order solution will
n’ (37)

not give good results in this region. Therefore Temkin

considered equations (1.76) for n=0 and 1 and substituted

AN

the zero-order solution in the coupling term of the

equation to produce a ~ e The forms of ©~ " and were

chosen as 2

4 — v ° "o

where 1, = A (Fy-t-Q ANIiNv*=J 1.79c
rpS> ”

and " 1.79d
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and D is a parameter. Three types of expansion were con-
A M
sidered for * o’
(1) 1s-2s-3s close coupling expansion
(2) the Sturmian functions and replacing

1s-2s-3s Hydrogen functions

(3) the same Sturmian expansion as in case (2) except
that « . ~
)
where ME'r3 1is the coefficient of 5p(") 1in the Sturmian
expansion. The phase shifts for k=.2 were as follows :

Case (1) .0359
Case (2) .224
Case (3) .219
(11)
Since Schwartz’s result at this k-value is +.135>
the inadequacy of close coupling expansion using s-states
only is emphasised.

The non-adiabatic theory can be extended to higher

partial waves by defining the Lth partial wave function

I—I

Temkin calculated p-wave phase shifts by retaining?

as

terms in the Schroedinger equation in * and 1 ~ only.
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(31
There was no agreement between these and Bransden’s

perturbation results, see Table 1-5%

1.8 Bounds on the Reactance Matrix.
(38)
(a) The Optical Potential Model

The essence of this method is to reduce the many-body
problem to an equivalent pne-body problem with a suitable
potential term. We first introduce the concept of projec-
tion operators. Two operators P and Q are defined such
that P projects on to the ground state of the target and Q"

on to'the excited states. If $ is the total wave

function in a positron Hydrogen collision then:

%

where is t* times the ground state Hydrogen function

defined in equations (1.39)# Thus :

LY~ ICr, .B
) r-4® )

The operator Q is therefore given by:

and =0 1.80b



Now consider the Schroedinger equation!

[H'E:] [pt+(?] 0

This can be expressed as a pair of coupled equations by

operating either with a P or a Q from the left giving:

P[h-E ] A =0 1*81la
Q[r-F][?(?] 1 =0 1,81b
Using equation (1.80b) and the fact that Q , equation
(1.81b) may be solved for as follows:

1.81c
where G (E) is the Green’s function of the operator

] * Substituting this into equation (1.8la)

gives :

p [H+V,"-E] PI =0 1.82a

where = -PHO G-*E) Hf . 1.82b

Equation (1.82a) 1is' a one-body problem with the potential
term known as the optical potential. It should be

emphasised that the expression for the optical potential
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is purely formal because of the term [(? (H—«=)C1 LN

projects on to an infinite dimensionless space, thus in
practice this reciprocal operator cannot be determined.

Equation (l1.8la) can also be solved for Pf

PSS = + I PHP (~ . 1.83a

P(E-H)P

where P i s the wave function satisfying?2

P [ H-eJ Pip = O 1.83b

These are precisely the close coupling equations obtained
by retaining open channels in the expression since the

coupling to states outside of P is neglected by setting

Q=0 . Substituting equation (1.83a) into (1.81b) we

obtain :

[ H + HP_J PH -E](?$%$ = -4HPS" 1.84
p(e.-n)p

The simplest form for the operator P is:

where is the ground state of the target.
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(o) Multi-Channel Reac tions
We first consider a partial wave decomposition of the

exact total wave function

A - A (Il) 1*65
where (0 is the nth. state wave function of the target
with associated energy and the summation includes an
integration over the continuum. We define a projection

operator P that projects on to the set of M possible final
states (both open and closed). Therefore in the ith. open

channel we have:

where L; 1is the total orbital angular momentum gquantum
number in the ith. channel, A; contains the spherical
harmonic functions in . and Clebsch Gordan coefficient
required to give the correct orbital angular momentum

and A; and satisfy :

where R is now the multi-channel R-matrix, and ~ runs

over all open channels. Hence:
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p
We now consider the approximate function © formed by

truncating the infinite sum in equation (1.8"):

where m runs over all the M coupled channels, N of which

are open. The asymptotic boundary conditions are now:
j A A .
(39)
Hahn, O’Malley and Spruch imposed this boundary condi-

tion and the following:

for each value of m in the sum of equation (1.86) and

obtained the following set of M equations :

Pp[lH-£-] pJ** = 0

By writing the Hamiltonian H as:
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where Hx is the target Hamiltonian, T the kinetic energy
operator of the incident particle and V the interaction

of the incident particle with the target, equation (1.82a)

reduces to:

[ CT(K',-E ') 1+ + IL(s') = 0

where I is the MxM matrix. Ex the diagonal matrix with
elements the column matrix with elements ujlx) and

the optical matrix potential given by:

VvV + \/($ \
where is a column vector with elements * By
introducing the (MxM) matrix where :
(39)
Hahn et al. showed that was a negative
J1X

definite operator and therefore olRX) was positive definite

where it exists. It follows that for a single open channel

whe
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where is the true phase shift. This expression is wvalid
for all energies less than that at which the next channel
would become open. The theory is easily extended to show
that the addition of more virtual excited states of the
target will give an improved phase shift. If inelastic

channels are open then it can be easily shown that :

Jio

where M is the I tk. eigenphase shift. This result has

' ~
also been obtained by McKinley and Macek(fr» who considered
the explicit form of the coupled equations (1.83b) and
also by GailitislUl) who considered an energy where both
elastic and inelastic scattering was possible. If the
projectile kinetic energy is sufficient to excite the first va

lowest states of the target then the projection operator P

can be defined as:

p " Kc 1
ui
where is the wave function of the ith. atomic state.
Thus if the trial function is chosen as:
$ (f_.-tfl) 144 y A X — li (_"4)
. I "

subject to the conditions:
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“ 0 for 1=1)... ,wv 1.88a

and 5 1 <> for (P o| 1.88b

then the reactance matrix R satisfies a lower bound principle.

(o) Positron Hydrogen Collisions
[42)
Hahn, O'’Malley and Spruch derived a minimum princi

pie for single channel scattering by considering equation

(1.84) and by using the basic inequality :

ktot+ < ket (VY 1.89%a

where kee+ ( -0) = k«+

+ [ PH-e] (15t" 1.8%
P(E-H)
where 0 satisfies Oi(9(1T but is otherwise arbitrary,
is the trial wave function and * the exact solution of
p
equation (1.83b) with phase . (a,b) denotes the inner
product of a and b. Solutions for L=0 and incident ener-
gies less than 6.8eV - the threshold for Positronium forma-
(43)

tion - are given by Hahn and Spruch who define P as

follows $ for an arbitrary function
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@)t e fplop) ' JE T ACkEDP)

Therefore the expressions for and are :

= 4,V.)Usill ' 1.90a

~ X 1.90b

t.:
where e - ot & 1.90c
(1+k:) "'
eti -A,-f,
and - T c 1 #90d
P and Q are orthogonal since has been chosen ortho-
gonal to for 0=0 and the Legendre polynomial Pp ensures
(43)

the orthogonality for , Hahn and Spruch chose

A" (11**0) thereby reducing equation (1.89b) to:

IcfoN ) —-*>,0
Where A = 4-(«4**>QHPJO0 + ,<?[H +HP 1 PH-t](® J
P&-H)
The coefficients in equation (1.90b) are chosen by 1
ol
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-1
minimizing A ¢ If we substitute kr=n in equation (1.90c¢)

will contain some excited states of the Hydrogen atom

(those with 6= J# Using this substitution and taking:

CP3)

where Jo- - , Hahn and Spruch obtained phase shifts

equal to or slightly lower than the close coupling results

(23)
of McEachran et al. By varying the parameters

and in equations (I.90) rigorous lower bounds on A
were obtained. These are presented in Table 1-4 and show
that Bransden*s(31) perturbation results for L=0 are
extremely poor and those of Stone(32) are too small.
Kleinman, Hahn and Spruch(44) extended the minimum
calculation for total orbital angular momentum L*1 and 2
by suitably modifying the expressions for and Q&
Again calculations with L -n gave phase shifts in good
agreement with close coupling and rigorous lower,bounds
were obtained by varying and . Results for L=1 are
displayed in Table 1-5 together with wvariational results
(45) (11)
of Armstead who extended the Schwartz variational
formulation to P-wave scattering.

The minimum principle calculations clearly demonstrate

the disadvantage of the close coupling method because of

the slow convergence in 6 - the angular momentum of the
Hydrogen states - and also the principle quantum number n.
(31)

Bransden *s L=0 perturbation results were much lower
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(43)
than Hahn et al*s. and sometimes of the incorrect sign

although the L=1 phase shifts are in reasonable agreement
(44) (37)
with Kleinman et al*s. for higher energies. Temkin's
non-adiabatic P-wave phase shifts are also lower than
(4b)
Kleinman et al's. and are therefore a less accurate
approximation.

It is clear that the minimum principle is extremely
useful in deciding which of the many approximation methods
produces the best phase shifts. The form of chosen by

(43) (44)
Hahn et al. and Kleinman et al. is restrictive in
the sense that the summation over 6 must obviously be
finite and a limited number of values of 6 are therefore
chosen. For L=0, contributions from 0 "0."5“were included

whereas for I=1 and 2, 0t”*"3 . But these phase shifts are

still rigorous lower bounds on the true phase shifts.

1.9 Further Adiabatic Methods.
(a) Second Order Polarization Potential
In Section 1.5 it was noted that in the limit as
>co t the method of Polarized Orbitals was equivalent to
first order perturbation theory. The second order adiabatic

potential is given by %

~ 1*91

where
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is the nth. excited state of the target and V is

(46)
defined in equation (I.52). Dalgarno and Lewis showed
that equation (I.91) could be written as:
(0]lv/|oyol”]o) 1.92a
where " satisfies:
= 70 N o IV 1.92b
(46)
This is easily derived by considering the Schroedinger
equations for ©~ and *
[ = 0 1.93a
0 1.93b
*
Pre-raultiplying equation (1.93a) by and (1.93b) by
and subtracting the two gives:
(E ,-0 J = 1 [(p, 1.94
where | 1s an arbitrary function. Using the relation:

the right hand side of equation (1.94)can be written:
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Therefore if we choose | such that:

where is an arbitrary function, Green’s theorem can be

applied to the right hand side of equation (1.94) to give:

Uo-0(>-JHo) = (w-1]1%]0)

Multiplying by ( o a n d summing over m gives:

We now apply the summation formula:

A TEd N (. IMT A

\Y

where L and M are any dynamical variables and obtain:

11°I~ T

} g

If we choose = \Iit) then we obtain equations (I.92).
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(47)

Dalgarno and Lynn solved equation (1.92b) and evaluated

(1*92a) exactly. For positron Hydrogen scattering the

expression for is:

t t Et ({r') - o1'"

where Y= 557215 is Euler’s constant and:

@

-f K

(48)
(o) An Adiabatic Approximation

Referring to Section 1.5 the Hamiltonian for the
positron Hydrogen system is given by equation (1.59c).

Consider the following adiabatic wave function given by
(48)
Drachman:

1'96

where G is an adiabatic correlation function describing the

distortion of the target and F(t") is the positron scatter-

ing function. Equation (1.96) is substituted into the

Schroedinger equation, the usual premultiplication by

and integration over performed to give:



- (it <G"™>)[Vp™I<."] F + V) c\y> ) )F =1 o F 1.97

where k - E+1 and use has been made of the fact that the

function % 1s a bound state so that:

If « is now chosen such that CGr* = o then equation (1#97)

reduces to:

1.98
Substituting ~ & in equation (1.92a) it follows that:
[ 3 = <6V >
and Vv, =
where ', is the familiar static potential. Therefore
equation (I.98) becomes:
where V, and are defined in equations (1.53b) and (1.95)

respectively.
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(c) Positron Hydrogen Collisions

(48)
Drachman used the adiabatic method Jjust described
to calculate low-energy S-wave phase shifts. These were
(11)
larger than those of Schwartz and the scattering length

obtained whas -2.54 showing that the polarization potential
is too attractive. Since the adiabatic method is least
accurate when the positron is near to the nucleus
Drachman(48) modified the potential by considering the

monopole term of »ip) 1ls expanded in terms of the

Legendre polynomials:

Q@
and , the monopole term, contalns all the short-range
effects of since terms for M)0 will contain inverse
powers of satisfies:

Co, 10(%)
where VO = 1'or
= 0 for

Referring back to equation (1.92a) the expression for the

potential due to the perturbation is given by :
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where C and I. satisfy equation (1*99) for r.tf. and
r ~ R (48)
respectively. In this case 4 U, Drachman repeated
the adiabatic calculation by using the following expression

for the full potential in the Schroedinger equation:

u-0v, _

where is a parameter. Agreement with Schwartz’s scatter-
ing length necessitated choosing o=* and this value gave
good agreement over the whole energy range up to the thres-
hold for Positronium formation.

.An alternative method of reducing the over attractive
polarization potential near the origin was formulated by
Callaway, LaBahn, Pu and Duxler(49) who calculated a-repul-
sive correction term to the dipole polarization which falls
off asymptotically as {J. For Hydrogenic wave functions,
this term exactly cancelled with the monopole part of the
polarization term at the origin. The 5-wave phaee shifts
are presented in Table 1-6 and are considerably smaller
than Schwartz’s(ll) showing that the correction terra is
too repulsive.

In order to apply the lower-bound orinciple of

(41) (48)
Gailitis , Drachman defines a trial wave function as
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follows :

1.100

where Ip satisfies equations (1.88). 6 is the usual correla-
tion function satisfying equation (1.92b) and H contains
short-range non-adiabatic terms. Substituting Ip into the
Kohn variational expressions yields two coupled equations

in F and H whose solution for L=0 gives phase shifts

roughly 10% lower than those of Schwartz(ll) with a scatter-
ing length of -1.85» see Table 1-6. The L=1 phase shifts
presented in Table 1-5 are close to the lower bound results
of Kleinman et al.

By considering the effect on the S- and P- wave phase
shifts of various multipole components of the adiabatic
polarization potential, Bransden and Jundi(Sl) showed that
the dipolo and gquadrupole components were the most important.
The addition of these two components to the static interac-
tion produced phase shifts less than Schwartz’s but the
further addition of the monopole component cancels the phase
shifts to exceed those of Schwartz(ll) thereby giving
weight to Drachman’s(48) argument of empirically suppressing
this term for S-wave scattering.

The inclusion of Positronium states in a wave function
expansion introduces special difficulties because the two

different sets of centre of mass coordinates produce integral

operators. In operator formalism this would require the
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projection operator for separating out the two channels to
be determined from an integral equation* An interesting
alternative was suggested by Chen, and hittleman(52)

who used the positron coordinate to label the iositronium*

The ensuring coupled equations contain no integral operators

but the centrifugal term of the equation representing

the closed iositronium channel 1is modified by the addition
of an energy dependent term.

(53)
Fels and Mittleman used this coordinate change and
(52)
the projection operator P defined by Chen and Mittleman

which results in:

Ik, 7

where and are the ground state Hydrogen and Positro-
nium functions respectively and Ik, is the energy of the
outgoing Positronium. This —expression is substituted into
equation (1.83b) with a partial wave expansion of F and G
to produce two coupled ordinary differential equations.

Terms such as :

where ~ LK) = t in the
limit as 0 reduce to the polarization potentials of

Hydrogen (t**'=1 ) and Positronium ( ="). The off-diagonal
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7

terms vanish exponentially as ~oo ¢ For above thresh-

(53)
old energies Fels et al. considered various types of

. . : . (9)
polarization terms including the ---— form and a

(29)
modification of the Temkin-Lamkin form. The dominant

P-wave partial elastic cross section was found to be very
sensitive to the form of polarization and the inclusion of
any of these terms reduced the total elastic cross section.

The S-wave phase shift at threshold was a factor of six
(11)
smaller than Schwartz’s and it may be concluded that

the additional centrifugal term effectively makes the inter-

action less attractive so reducing* the phase shift.

(51)
Bransden and Jundi performed a two-state approxi-

mation calculation above threshold including various combi-
nations of the monopole, dipole and quadrupole polarizations
of Hydrogen and the dipole polarization of Fositronium.

A linear extrapolation of the M-matrix in the no-polarization

case predicted wvalues of the S-wave elastic phase shift below”
(25)
threshold in good agreement with Cody et al. The elastic

cross sections are smaller than the equivalent results of
(53)
Fels and Mittleman and near threshold were sensitive to

y . . | |
theorm”bf polarization.

A recent calculation of rigorous bounds on eigenphase
(55)
shifts was performed by Hahn and Dirks who used a
(56)
generalized variational bounds formulation by Hahn.

The elastic cross sections were smaller than both Fels

(53) (3'")
et al’s and Brandsen et al’s being somewhat closer



to the latter.

(d) Positron Helium Collisions e

(571
Drachman applied the same procedure to the case of

A

Helium choosing the function as follows:

- [ 1+C (G-Gre>) t

where is the ground state Helium function, G and 6"the
first and second order adiabatic correlation function and
its monopole part respectively and C and are parameters.
The static potential V, was calculated using the two term

analytic approximation to the best Hartree function which

(56)
gave
r -S-EV' 1
= L Se - e J
whereas V, and , calculated using the uncorrelated

shielded Hydrogenic function defined by equation (1.54),

are given by :

where V; is defined in equation (1.95) and X

With reference to part (a) it can be seen that a Hydrogenic

ground state wave function must be chosen for the target
(47) e
atom if the Dalgarno-Lynn method for calculating

78
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is to be used* C and d. are chosen to ensure that has the

correct polarizabilityl «

The S-, P- and D- Iwave phase shifts are smaller than
the close-coupling resﬁats of Kraidy(27)' The S-wave
phase shifts are displayed in Table 1-7.

Kestner, Jortner, Cohen and Rice(59) used an effective
potential evaluated in the adiabatic approximation but
retained only the Hwnoéole, dipole and quadrupole terras.
Their phase shifts are comparable to Drachman’s(57) adia-
batic results, with a best scattering length of -.575%*

No allowance for virtual Positronium formation was made*
(49)

Callaway et al. calculated 5-, P- and D- wave

phase shifts for the following four cases :

(1) Mean static field

(2) Adiabatic approximation with dipole polarization

(3) Adiabatic approximation with monopole, dipole and
quadrupole polarization

(4) Adiabatic approximation with "extended" polarization

i.e., case (2) + correction terms.

The S-wave phase shifts for cases (2), ((3) and (4) are

presented in Table 1-7* Cases (2) and (4) produce smaller
(57)
phase shifts than Drachman whereas case (3) results are

(57) (59)
quite close to both Drachman’s and Kestner et al’s.
Referring to the Hydrogen case, the extended polarization

is probably too repulsive and this could perhaps be correc-
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ted by addition of wvirtjual lositronium terms which are

o\

known to be attractive.
(50) J
Drachman extended the lower bound calculations to

Helium by defining a tj'ial wave function as follows!

where G satisfies:

and His the appropriate Hamiltonian. The ensuing S-wave
phase shifts are displayed in Table 1-7* If the Helium
wave function was exact these would be rigorous lower
bounds and would show that Callaway et al’s.(49) extended
polarization results are too small. One immediate source
of error is the use of the uncorrelated Hydrogenic func-
tion "k Civen by equation (1.54).

Fels and Mittleman(GO) applied their coordinate change

method using dementi’s analytic fit to the Hartree-Fock

wave function:

where U. = ( > KV .e
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and ¥ and € are defined by Fels et al.(eo) The ground

(61)
state Helium energy used was Schwartz’s variational
value of -5«897448. The total elastic cross-sections above

(27)
threshold for L-0 are a 1little higher than Kraidy’s

virtual Positronium results but the I.=1 are an order of

magnitude larger. The addition of the Temkin-Lamkin poten-

tial reduced the cross-sections by two and the L=1 results
(27)

are now smaller than those of Kraidy allowing for the

dipole polarization.

1.10 Resonances in Positron atom scattering
(@) Resonance Mechanisms
A resonance can be interpreted as a quasi-bound state
of the compound system of the target and projectile. At a
resonance energy the phase shift increases by W?agd the
cross sections exhibit the familiar Breit—Wigner( > pro-
file.

V.'ith reference to Section 1.8(a) we consider the solu-

tion of equation (1.82a):

PlH-E] PJ: = C*HP © A 1.101
A set of functions which are eigenfunctions of the opera-
tor QHQ with eigenvalues can be introduced:

=0 1-102
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Since these functions span O-space we may uses

E =9’

where ~ denotes a sum over the discrete and an 1integration
over the continuous spectrum. Since for simplicity we are
considering only one open channel, below the energy of the
lositronium formation threshold ( )> the only non-zero
part of the total wave function is P”* , thus QHQ will
possess a discrete spectrum (pound states) in this energy
region with eigenfunctions that wvanish as r*~"co . For

A —

{
energies the do not wvanish asymptotically and
Q

the eigenvalues form a continuous spectrum.

is now expanded in terms of the as follows :

m 1£.%1 1.103
( C)

Thus equation (1.101) may be written as:

where the notation used is HpQ = pHQ and Hgo = QHP etcetera.
Consider the case when E is close to an eigenvalue of

Hoo and re-write equation (I.I03) as follows :
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nic

The formal solution to equation (1,104a) is:

- Pp 1.105
where [H ~
and satisfies equation (1.80) with replacing . The
Green’s function & of the operator [H-E] can be written

in standing wave form in terms of a product of a regular and

irregular solution:

6-(t,,r it'.r,") -~ fo KAV i i-i°6
JU !

Multiplying equation {I.I05) on the left by

and rearranging we obtain :

and substituting this into equation (I.IO5) gives:

py = I 1.107a

F-2c”-A]j
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where Aj= A & ' A 1.107b

and / is the shift in energy from caused by interaction

N .

with the continuum term

Using equations (1.80) and (I.I06) the asymptotic form

of will be :

Pp * /X 1.108a
TS I 1 * i

where kx i 1.108b

E - Ej'™- A;

and i Py = X 1 Eo 1H 1$5 >1

The resonance position can be seen to equal (E"-t ).

The total phase shift is ( ) and if it is assumed that

the level shifts Aj are small, the resonance energies can
be determined by a calculation of the ei’*renvalues of
Operating on the left of equation (1.102) with

gives!

1 ~4 > N 19 184 1.109%a

which by the Hermiticity of Q and OH can be written:
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In ) IS > 1.109

A trial wave function can now bo chosen for substitution:

into a wvariational calculation.

(o) Resonances in positron Hydrogen scattering
(631 (64)
Mittleman employed a projection operator that
projected out the ground state of Hydrogen and Positronium

to investigate the resonance structure just below the n=2

level of Hydrogen. The trial wave function was chosen

as :

To investigate the rep®ions below the Positronium forma-
tion thresholds the following trial wave function applicable

to the energy region below the nth. level of Positronium was

used :

In both cases, infinite sequences of resonances were found

because of the degeneracy of the eigenfunctions of different

angular momenta for n%ol. Consequently no resonances of this
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type are possible below*the ground state Positronium forma-
i A
tion tlireshold and the possibility of resonances here was

investigated numericallJ by Bhatia and Temkin where Q

was taken as an U-state of the Hylleraas type;

I £ V»s
and Q = I- ¢ >5<LYotN)1
It was found that —>? rydbergs from above with
0 and '""™™1 ¢ This Of course corresponds to a Positronium
at infinity with res™®ect to a stationary proton which means
that there is no resonance.
(54)
Bransden and Jundi found a very steep rise in the
L=0 cross-section for Positronium formation when any form
of polarization was included. It would seem that this was
due to a pole in the R-matrix Jjust below the Positronium
threshold giving rise to a resonance in the positron
Hydrogen channel at this energy. However Drachman(66)
showed that this effect was spurious on account of 322)

;omission of the coupling terms in Bransden et al’s.

formulation.
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I'll Processes Involving Positronium

i'osi tronium may exist in two forms! para-Positronium
(singlet spin data) with a lifetime of approximately 10***
seconds and ortho-Positronium (triplet spin state) with a
lifetime of approximately 10%“" seconds# The annihilation
of para-lositronium leads to the emission of two photons
whereas that of ortho-Positronium gives at least three -
photons. There are several processes whereby the three-
photon annihilation is replaced by the two-photon annihi-
lation thereby effectively resulting in the destruction or
"quenching" of the ortho-Positronium. These are discussed

in part (c) of this section.

(a) Scattering of Posit ronium
(67), (68), (69) (70)

Fraser and Fraser and Kraidy used a
close coupling expansion in the Kohn wvariational method
to calculate low-energy S-wave phase shifts for ortho-Posi-
tronium scattering from Hydrogen and Helium. In the
former case, allowance for the possibility of conversion to
para-Fositronium by electron exchange must be made. In the
case of Helium this conversion is not possible for ortho-
positronium energies less than 194#8 eV (see part' (c)). The
cross sections were found to be highly energy dependent, in

'
contrast to the assumptions of Teutsch et al.(3) The Hvdro-
1

gen results can be compared to those of Massey and Mohr “
who used the P.orn-Oppenheimer approximation to calculate

(67) i
elastic cross sections. Fraser’s values of 192 TIvo
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and 2.92'Ebj for zero energy and 6*8 eV respectively were
smaller than those of Massey et al.(4) who obtained 2303?(}
and 25 T respectively. These Hydrogen calculations were

a crude approximation neglecting all angular terms except
the zeroth and making no allowance for polarization.

The addition of an attractive effect such as the Van
der Waal’s interaction term (this is the force of largest
range acting between Positronium and an atom and is in fact
the dipole-dipole interaction which occurs between two
neutral polarizable systems. It varies as where
< 1is the distance of separation of the two systems) and a
better Helium function than the Hylleraas uncorrelated
function would probably improve Fraser’s Helium results *
since the exchange terms are repulsive. The calculation
for I=0, 1 and 2 was repeated by Barker and Bransden(71)
with the Van der Waal’s term included and the phase shifts
are presented in Table 1-8. The long-range potential has
quite a small effect.

(b) Formation of Positronium ,

In the case of Hydrogen Massey and Moussa( )determined
the cross sections for the formation of Positronium in the
Is and 2s state using Born’s approximation. This has al-
ready been described in Section 1.1 so it will Jjust be

emphasised here that the maximum cross section of at

an energy of 14 eV clearly demonstrates the importance of
————————————————————— J*g-J

*A mistake in Fraser’s first Helium paper resulting in

(69)
excessively large cross sections was corrected by Fraser.
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allowing: for virtual Positronium formation. The calcula-
tions were repeated by Cheshire(72) whose cross sections
were 20% higher.

(53)

Fels and Mittleman's Hydrogen results differ from
Bransden et al's.(5 ) of course but were in qualitative
agreement with a variational calculation by Drachman(73)
which showed the Positronium formation cross-sections to be
greatly reduced relative to the Born approximation near
threshold.

' (74)

Massey and Moussa used Born's approximation for the

case of Helium and obtained a maximum cross section of

at an energy of 27 eV. A similar calculation by
Kraidy(27) produced larger cross-sections for energies
22 eV. The addition of wvirtual Positronium and the Posi-
tronium dipole polarization to the static field of a close
coupling expansion tripled the total cross sections without
polarization for energies up to 30 eV. Fels and Mittleman's(GO)
Helium results* bear no resemblance to the close coupling
results being a factor of a thousand smaller.

A cross section that is frequently used in experimental

work 1s the diffusion or momentum transfer cross-section

defined by :

4¢The Positronium cross sections given in figures 2 and 4

of this paper are to be reduced by a factor of 2.
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in units of Ta* where is the phase shift for the 6th.
partial wave. At low energies, the momentum transfer cross-
section is approximately the same as the elastic scattering
cross-section.
75) . . . .

Leung and Paul studied the diffusion of slow posi-
trons by the method of delayed coincidences and, contrary
to the findings of Marder et al. , found no enhancement

of Positronium formation upon application of an electric

field. Near the Positronium threshold, the momentum trans-
&
fer cross sections were found to be y .115 Too . Diffusion

cross sections were calculated by taking a linear combina-

(57) (50)
tion of Drachman’s non-variational and variational
results as follows:

S*x = 50 (I-A )do
to (57)
where are the non-variational S-wave phase shifts
(50)
and So the variational . The P- and D-wave non-varia-
tional phase shifts were used. The optimum value of A
(75/
was found to lie between 0 and 2. Leung and Paul elimi-
(34) (27)
nated the results of Massey et al. and Kraidy from

consideration since their wave functions did not produce

adequate wvalues of (see part (c)). (76)
A similar conclusion was reached by Tao and Kelly

who calculated the allowable wvalues of the averaged momen-

tum - transfer cross-sections in an energy range .1 eV to

& & ~
17.8 eV to be 'ITa* to *3.To® . However the Massey et al.
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results fitted the experimental results quite well but not

(50), (57)

to such a degree as Drachman’s*

(c) Positron Annihilation

The rate of annihilation of positrons in an atomic
(77)

gas 1s given by %

= T c N
where is the classical electron radius , ¢ 1is the speed

ACa

of light, N the number of electrons in the target gas
is proportional to the pressure p) and 'Zgff is the effec-
tive number of electrons per. atom in a singlet state rela-
tive to the positron. The rate of annihilation into three
photons of a positron-electron pair in a relative triplet
state 1s smaller by a factor of 1115 therefore the total

(78)
contribution of three-photon annihilation to the total

Q

decay rate is % = J of

™S’ '

If we consider the wave function

having asymptotic form:

whe re , are the electron coordinates and f*the
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positron coordinates then is the normalized atomic wave
function and is normalized to correspond to one posi-

A

tron per unit volume asymptotically then i s given by $%

1
It can be seen that “eff gives a measure of the probability

of finding the positron and an electron at the same point in
space-®

During a collision, the positron of the orth-Fositron-
ium pair may find itself at the position of an atomic elec-
tron, form a singlet spin state and promptly annihilate.
This process is termed "pick-off” quenching and should not
be confused with "exchange" quenching which occurs when the
atom and Positronium exchange an electron, so converting
ortho-Positronium to para-Positronium. Since the ground
state Helium function 1s in a singlet spin state, exchange
quenching cannot occur for orth-Positronium energies below
the triplet excitation threshold of 19.8 eV.

Duff and Heyman's(79) measurement of the pick-off

quenching rate of ortho-Positronium in Helium gave:

' 0(

(68) (69) 1
Fraser calculated with the static exchange

trial wave function with no allowance for polarization

effects. This wvalue of .033 obtained at a Positronium



energy of .0018 (corresponding to a mean Positronium speed

. (74)
of 6.6x100 cm/sec as given by Duff and Heymann clearly

demonstrates the inadequacy of the trial wave function for
quenching calculations particularly since other experi-
(80)
mental values are even higher.
(71) (69)

Barker and Bransden repeated Fraser*s calcu-
lations with the Van der Waal's interaction and found that
Z—eff was increased to .048 which is still considerably
smaller than the experimental wvalues.

(34)

Massey, Lawson and Thompson used their static field

plus polarized orbital wave function to calculate

for positrons on Helium. Their results are in reasonable
(27)

agreement with a similar calculation by Kraidy. In

these calculations Zgff < 2 (the Dirac rate = number of

electrons in the Helium atom) but the addition of virtual
(27)
Positronium terms produced values greater than 2 for

low energies, see Table 1-9# This is to be expected
since virtual Positronium formation is essentially a

short-range correlation effect providing an increase 1in
(81)

attraction for the positron. Most experimental results

yield values of Zgff lying between 3.0 and 4.0.
(82)

A variational calculation by Houston using the
(16)

trial wave function of Houston and Moiseiwitsch (see

Section 1.3b) produced a very high value of 4.61.
(83)
Drachman applied his adiabatic non-variational

(57)
method with complete monopole suppression to the

annihilation of positrons in Helium and obtained ZzZg™"
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(27)
values a factor of 2 larger than Kraidy's with a zero

energy value of 6.32, Application of a variational method(50
reduced the values giving 3*66 at. zero energy. The two sets
of are displayed in Table 1-9*

(75) (50)

Leung and Paul found that Drachman*s variational
calculations the best theoretical fit to their experimental
results, their optimum wvalue of in thermal equilibrium
at 77°K being 3.677 - .025.

Recent work by Pels and Mittleman (private communication
to M. H. Mittleman) suggests that the direct annihilation
of positrons by capture dominates the annihilation process
except in a very small energy band above threshold.

It clearly is obvious that more work needs to be done
on the positron Helium system since this is a case of
practical interest. It would be instructive to investigate
the disagreement between the above threshold close coupling
results and the adiabatic approximation with coordinate
change.(GO) Several additions to the close coupling

expansion that take into account long-range attraction as

well as short-range correlation effects are discussed in

Chapter VI.
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CHAPTER 11

CLOSE COUPLING THEORY OF POSITRON HELIUM SCATTERING

2.1 The Schroedinger Wave Equation

The wave equation for the Positron Helium system is

given by:

where the Helium nucleus is considered to be of infinite mass
and therefore taken as the origin of coordinates.

f. . r and r are the coordinate vectors of the two
electrons and the positron respectively, m the common elec-
tron and positron mass, r;; = r;— for t =1, 2 and

p and E is the total energy of the system.

To change to atomic units we substitute for £ in
&
equation (2.1) where % = * = .53 x 10 c.m. 1is the
— au

Bohr radius.

The unit of energy is the Rydberg = * = 13.6 eV therefore
Zko

in atomic units equation (2.1) becomes:
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The Hamiltonian H of the whole system may be expressed in the

following forms I

H = ~ )+~ — 9, +A-T 2+3a

£ o' Fy o Pey pr by,

where = X.> and ?2¢c = * ~E>)

2.2 TheVariational Method
(@) TheExact WaveFunction

Consider an axially symmetric wave function * ~
satisfying equation (2.2) where x and 5" are the coordinate
vector and spin function respectively of the separation of
the two clusters and © and represent the remaining
coordinates and spin respectively. For example, 1if we are

considering the configuration of a positron and a Helium

atom then;

Neglecting spin-orbit interactions we take advantage
of the fact that the total orbital angular momentum with

quantum numbers L and the total spin with gquantum

numbers S and Ng and overall parity of the system with quan-
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tum number TT are all separately conserved and expand the
I t

total wave function, initially in the state P’ , as follows:

2.1

where * — 0,6™ LML . and the channel index -0=

Here n and 6, are the principle and orbital angular momentum
quantum numbers respect! vely of the target and k, and 6" the
wave number and orbital angular momentum respectively of the

projectile. The function satisfy the following boundary

condi tions:

2.ba
r-u -1 IS
wvij' (/) ~ kv k Ao
i ~Sr
2.5b
- Ikv)
(iS< 0
K-» oo
Ls
where R is the real symmetric Reactance or R-matrix.
Consider the following expression:
I - 2.6

where H is defined in equations (2.3) and dT is the volume
element for integration of the independent variables over all
space. For arbitrary variations about the exact wave

function we obtain the following expression for
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- [”_Ej 2.7
correct to the first order in * We note that Ipp= 0
since ~ p 1is an exact solution of equation (2.2). We have
that :

- Y.
IS
and satisfies equation (2.5a) and the following:
kS
" W > oos (K*x.—6jir") 2.8
. X

Equation (2.7) can be written as follows:

where T =:1:V.'V,l is the sura of the appropriate kinetic energy

A

operators. For example we have:

T = =( v , ) for a positron and a Helim atom.

for Positronium and a Helium ion.

where T =
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)

Consider the expression! i'T given by

2.9
Applying Green’s Theorem we obtain:
‘ N
< L KI -] -Ji- 2.10
S. 1

where the surface integration is taken over the surface of a

sphere with centre at the origin of coordinates and radius

large enough to ensure that has assumed its asymptotic
form. The surface vector element JS %= xx «X and

is the volume element of the u coordinates.

, fn'
We expand iIx as follows :

2.11a

where L ~ 2.11b

2.11c

The C*s are Clebsch Gordan coefficients (as defined in Rose

"Elementary Theory of Angular Momentum"). We will use the

following orthonormalization formula for the spherical

harmonics function
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Substituting equation (2.11) into (2.10) and using equations

(2.8) and (2.12) we obtain$%

yoosine -y
K5 Ii
Following the same procedure for the ~ coordinates we obtain

ince Limit 70

Therefore the final expression for S i i s

LT e

Ls |

That is
r A [I1.,." °

Li
Therefore we may consider the variation of the wave function

for each L and S. Thus : ~

2.13

This provides the basis for a variational principle since
4 j is stationary with rexpect to the arbitrary

variations considered.

(b) The -Approximate WaveeFunction

Consider an approximate wave function which can be



1oU

everywhere expanded in the following form:

- Y ¢, (ﬂ

r X
where P runs over the number of coupled channels considered
in the asymptotic region , satisfies equations (2*5)
except that the trial R-matrix will also be approximate

We consider the expression:

wed ' b

Following through the steps of part (a) but remembering that
we are considering a particular total orbital angular momen-

tum L we obtain:

5[C<] ml MC

by using Green'’s Theorem. We require the approximate wave

function to satisfy equation (2.13) therefore:

and the righthand side of equation (2,14) must therefore be
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zero.

Writing the following;

and using the fact that — =0 and equation (2.15) we

obtain:

Therefore we have the following expression for the exact

R-matrix:

ft*"l — Rl"l _I_ I""l 2.16
Consider the expressions A’U. and B where:
. n
= Y \ [
D:J
a
=E 1 ["-="]
]:E'
It can be seen that 6.7 = <A;a] and the right hand side of
<
equation (2.1L) equals (A2®I4-6_ ) , therefore wecon-
TIT &L

aider ~ only:
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p'v j '

Since A Apr 7 4 for arbitrary variations SF then
the terms independent of SF must each be zero. Therefore
we have :

JEL M 4 = 0 2.17

This defines the radial equations for the general system

2.3 Derivation of the Radial Equations
(&) The Trial Wave Function
Since we are only considering the ground state of the
Helium atom and the Helium ion the trial wave function
a particular total orbital

angular momentum L reduces to:

where 1, 2 and p refer to the two electrons and the positron

coordinates respectively, (i& 1is the ground state Helium
atom function, F~ (£) describes the motion of the positron
relative to the proton, the ionized Helium ground

state function and vo(p) 1is the Positronium ground state

106
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function . iNkﬁ describés the motion of the Positronium
relative to the proton a”d the superscripts p -and 0 denote
para-positronium (parallel spins) and ortho-positronium
(anti-parallel spins) respectively, is the normalized >
overall spin function of the positron and the electrons where

denotes symmetry with respect to interchange of x and
y and denotes antjL-symmetry with respect to the same
interchange. is the operator interchanging all coordi-
nates 1 and 2.

To reduce equation (2.18) to a simpler form we express

the Positronium spin functions as linear combinations of the

electron spin functions as follows:

+ 1 2.19a
i a
= -1 7 \ 2.19%9b
a a
(i >Xp) = (p,il) - 1 X(p, k) 2.19%¢
a a
TCi.ap) = -J. 7. (p,ii)i-*» 2.1i9d
a a
For example: X (p,1i")~ a (p (la.)
where vl ao““(”"a(ﬂp(i” is the singlet spin
state of electrons 1 and 2and and are the

spinors representing "spinup" and"Spin down" of particle

a respectively. Hence:
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O'Pjf, (I,)7. G.19)

To satisfy the Pauli Exclusion principle ~ ~(1,2,p) must
be anti-symmetric in the electron coordinates since there are

no spin-dependent interactions. Therefore the coefficient of

o°

ir* the above equation must be zero. This leads to

the following expressions:

.p . o(k)
A \ Al) + C (n) — 0 2 .20a

PpW .M « )
M (sr) - v (?') = 4- L (Z) 2.20b

(4 ity
Thus if we write & V) ~ ! M and use the fact that
X (plau * ) equation (2.18) becomes:
2.21

Since the spin function % i§) is normalized to unity any
summation over the spins will give a factor of one. Hence

we may consider the spatial part only of equation (2.21) for

substitution into the wvariational principle outlined in
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Section 2.2, Our total spatial wave function is thereforei

2.22
(b) Wave Functions and Energy Values.
The normalized Helium ion ground-state wave function
g™ t) with binding energy satisfies i
2 .23a
~o0aEm =1L € 2 .23b
JTT
and the normalized Positronium ground-state wave function
w(*) with binding energy =1 satisfies:
(f) 0 2.24a
p
'i
2.24b
Wcf) = 1
e m

The exact eigenfunction of the unperturbed Helium ground
state Hamiltonium is not known so in this work we will use

the 3-parameter Hartree-Fock wave function given

byi



2.25
p kv
where u @) = N \~t +-Le j 2 .25b
and a = 1.455799 , b =2a , c = 0.6 2 .25c
-A
N 1 + C ~ Ve 2 .25d
ktK 4 )

n satisfies :

A -&-A: Ht 2.26

ﬂ_ A

where the wvariational Helium bindinp energy £H = 5«72334 rydbergs

is 1.4” away from the experimental binding energy value of

5.808 rydbergs.

A

If we denote the kinetic energy of the positron by k

110

and that of the positronium by then the total energy E

of the system can be written as follows:

Therefore :
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L = a(ktl-E") 2.217

(C) The Radial Equations for Positron Helium Scattering

In the notation of Section 2,2 we have three sets of

coordinates: ~
(1) X = and " Positron plus Helium atom

2) ~» and ~ Positronium plus Helium ion

3) & = ~ = (f1.0

Hence substituting equation (2,22) into (2,17) we obtain the

following two expressions denoted by arid (£,)
respectively:
= 0 . 2.28a
=0 2.28b
The simplification of H a n d 1 is ocutlined in detail

in Appendix A, The final result is:

c €



r 1i7) P K)
- B~ O\ PFi@p.f)™'.L - IXlm ('T.)

=4 040
and S =
P(r') = fr,1'-")"("-")
A It-t'l
[ Yr.Li']

r-

.29b

.30a

.30b

.31a

.31b

.31c

We now expand r ( and o © in terms of the spherical

112

harmonic functions Yg® . Since we only consider the Helium

atom and Helium ion in their ground state,

the total orbital

angular momentum L is equal to the orbital angular momentum

A

of the projectile. Thus:

I1)

I
o
z

in

2 .32a

2 .32b
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Using the formula!

= 1 0(")1 2.33
f f fllr r >

the orthonormalization formula (2.12) and equations (2.32),

equations (2.29) reduce to:

A K1l VEHK Ih) == s 2.34a
) 7s)

ng
- ejerd) +k* ?@ P 2.34b

a0- O D
,/ <« "
The Kernels K and K are given by:
©" r
2.35a

Kii (<r,0= 371 2.35Db
and the local potential by :

-a.r > ~A "NV \
= 4N \') hc ~ (WJ/f & 2.36

[’L‘ mww a -A

2.4 Simplification of the Kernels

(a) The Functions S and P
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From equation (2.23), (2.24) and (2.31la) we obtain:

S = 3N vna 2.37
. (<37 (La’

P (t-) = 2 + P ir 2.38a

P (n = 2.38Db

(b) Kernel K @

Using equations (2.24) and substituting f|= iq%—A ,

~ we obtain the following expressions

9. 4+,)4p,) N ") w.(+V)U—l(+4w’( ,—C'fb iw"") 2.39
J L BL (BT}

where primes denote differentiation. Thus equation (2.30a)

reduces to:

E P.

+450"" (<) +

The following substitutions,

now used:

i-r+i
4

"l +kA{ 1

(t/) T . — +l_|i]

originally suggested by Fraser

, are
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@
-
w i lls-ill -1 A *',4~ (y) 2,4ib
I-11 «t X
>
W = J_~ (AL <0)P(vi) 2.41c
>£-tl1 ft !
M (i%g-t0 +>(1|t-t1) = 2 2.bid
Iif-£ 1 1r*£ 1 (TT A
u(laj-ri)u. >li-]1r|)p7pi-tl) = 1 2.bie
fr »
where ~ » J.5 and is the Legendre Polynomial#

The superscript A and u is defined as follows:

A
If A=1 then w is replaced by w

€] T
If A=-a then u .1is replaced by the 1st derivative u
If A=a then u is replaced by the 2nd derivative u e

Alternatively we may express equation (2.41) in the following

form:
# —iM1-K1Af-t1
= MjUCP.O J Bx(4)A" A
oI
B - ljeql—*|at—tl !
K M = NTi+Gp") PTili H 2.b2b
|i-z1

1
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2.42c
la.-tl
A*( —IffI \
M"6+CP.1)3 DBv('DEx (f-t) . Av| 2.42d
I Ur-tlli-t
A
2.42e
-
where is the interchange operator interchanging a and
b and - Nfr 2 ) . _——
£5ir

Using equation (2.40) and (2.41), equation (2.35a) may be

written as follows:

where we have used the notation X {I> <.
i)

This expression for K can be further simplified by

use of the addition formula:

P\»"Ez -

AVK_I_I l""llt

and the orthnormalization formula given by equation (2.12).

Therefore the kernel K can be written as follows:
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M [ 'Hj <0~* «4Xt u 4 2.44

with the notation that N = JN € 0
Since 1in this work |% are considering t=0 scattering
the final form of equation (2.3%a) will be (dropping the

superscript "=0 ):

t 0
i + AE) = " 2.45a
Jf.
where ' K (t.r) = tA-ITT 'S " (0]
~\ "MoC'H )X~ (")+ N, <) 2.45b
©
(c) Kernel K

Using equations (2.23) and (2.24) and substituting
oL v e and we obtain the following

expression:

N~ opl r.t* J

Therefore substituting equation (2.46) into equation

(2 .30b) we obtain the following:
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AN A >0 ufx—

We now make the following substitutions:

fe (1%--il) b(aJi-tl) "1 4 2.48a
o\
f @=0) M0 (h-i)'u~z) =1 7 2.48b
ler-21 1r-£ T f A
To = 1 y~ 2.48c
A1 »
where and are defined in part (b). Alternatively we

may express equations (2.48) in the following form:

2.49%a

2.49b

.i 2.49c

Ui-t \

where My cj (IXtl) 2.49d

oT



Using equations (2,27), (2,46) and (2,48) the

kernel
by equation (2,35b) may be written as follows:
-V Y A
vV &
where ~ = if 4y "<«
and if "
and we are using the notation ~tO0O = 7~ (I'f9 and

Using equation (2,43) and the relation:

CaMtXa'KVi) C(xXVK*;000)c(N).Vj )

VIr(3.xVi).

where the C*s are Clebsch Gordan coefficients defined in

Section (2,1), The angular part of the last term of

can be written as follows:

= Jtv C” (e, \;oe.o0)

The angular part of the remaining terms of L/ii

119

given

.51

is :
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(») 7 )b £,)  ("35) dy,if,

©

A

Therefore K can be written as follows:

(0
Kw. =" 4 - (up.] dp I
? fat+iy
* 4 Is"™*', L{4iAl«EAV') 5. A>—) 2.52
\'y (XU\Y
For 0 we use the relation G 0~ 000) = .and obtain

the following forms of the second radial equation (2,34Db):

®

Ii—k \0): 'kA(OK,(<r,<r,) 2.53a

where K*(c,,0 = 10ajpT (1+P]

2.53b

2,5 Cross-Section Formulation

(a) The Scattering Amplitude

A

The total wave function must satisfy the following
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boundary condition:

which represents an incident scattered wave and superimposed
outgoing spherical waves. The system is in an initial state
1 »A 'A ' ' '
X = (v (/ M" ! I vV is the
I
scattering amplitude for the reaction Y -—>Y and the

notation follows that of Section 2.2.

(b) The differential Cross—-Section

The flux of particles passing through an area ©~ 1is

given, by
f *
A
where is the wave function of the particle and m its mass.

The differential cross-section Q is defined as follows:

Q ) = Scattered flux per unit solid angle
Incident flux per unit area

Referring to equation (2.54) we obtain:
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IYHI I

is the differential cross-section for a

collision in which the emerging particle has changed its

spin from to " after exciting the target atom from
the state to ( )
(c) Total Cross-Sections

The total cross-section Q of an atom for particles of
a given velocity scattered by the target per unit time is
obtained by integrating the corresponding differential cross
section over all scattering angles, averaging over initial
spins and summing over final spins. Therefore:
Ar

2.56
vV

(d) The Scattering Matrix
Since the wvarious formulae have been given by Blatt
(84) (85)
and Biedenharn and Percival and Seaton , only a brief
description will be given here. With reference to Section
2.1, asymptotically the total wave function consists of the

target atom and a superposition of ingoing and outgoing

spherical waves.
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M1
¥n. = , 2.57
(@
Is FMuiMf :
where F (%) A. . A -E. .t 2.58
ke—V eo
= kX A P = (rk,G,E, LMuS M, ) , M = (nC,

The scattering matrix S is defined by:

where the sum is taken over all incident channels - S is

related to the R-matrix in the following manner:

Equation (2.58) is written as : ¢

- 4 = 4 s H4. 2 .60
l. , |
"3
The incident total wave function is composed of an

incoming plane wave with the target in the state
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Using the expansion:

1.

X .
e A i -1(9 +15

cjif ) i e - e
X— »co

and combining the angular and spin functions using Clebsch-

Gordan coefficients, equation (2,61) can be written as:

The outgoing part &/f\ of the total wave function is
defined by:

. ot

b’ =kp! - 5

LS +\(9,

ZA Z'f-wl'

ce'xv.'dce M , ) [ --

A

Since must contain outgoing spherical waves only the

coefficient of the ingoing waves must wvanish:



o°

Therefore j}p reduces to:

;0.
IS
c(e>, 'Ix: M.)cl(e.’e,; s M)
. . v, A ty
Expanding the functions 7 and (\ we obtain:
£t iE )
L Hi
SN
c (. sdr , + Ms)e L "S

Comparing this to equation (2.54) results in the fallowing

expression for the scattering amplitude:
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Therefore the total cross-section formula reduces

|
i Y iTgg.
k,/ yd (ai.,+tiXae,.iXe.,,+0

where the transition matrix T is defined as:

to

126

2.63

2.64



CHAPTER IIT

KERNEL CCMPUTATION

3.1 Integration Procedures.

(@) Kernel K

The functions > Ko 2?2 -Ko V 45

are defined by equations (2,42) and can be written as follows;

=M. +CP,J &jRe
~ 44T,y
K. (<@'"")= \ A
4 ( )
Ko (A, ., ) 4
t % — (IV[—,JL
\o / (@a.0-V=5") [)

" KrlJ)(Ar-1"~0 ¢

r H
— N.Jj c|T%.P(|dr:|) ("+C(tJ
o

o\o
<

By inspection of equations (3.1) it is clear that the presence of the

radicals IrrTH " and ( <r 4r - ) in the
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3.1a

3.1b

3.1c

3.1d

3.1e
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denominator of the integrands will lead to numerical difficulties,

since for =1 the first radical vanishes for r=< and the

second for r=iff-. %is difficulty can be avoided by the following

(€8)
change of variable suggested by Fraser;

32a
3.2b
3.2¢c
For example. If we consider , its four different forms will be;
,0 (P)A = M. (i+C-PA)a. j d*~.X, t (P A i) G<p (1

a
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40 ~ " EDp.i) 5. xi. X
H m
3 - —@XaI (i)
I, Y =-"*00"cpttk daf .x” v3f)e " I$ << JaT
‘I
4
where X,— (/f£,-pi-4-p|+dp * A XA* - (ptit+-t-pf +al
( k > XA = ((k cl ttl ~kik »
W \ » \ k
It should be noted that the new radicals are non-vanishing in the
ranges of p and specified. The integration over * was performed
using a lé-point Gaussian quadrature.
K,” can be divided into two parts: one dependingon k  and
one independent of k . Therefore, using the notation of Section 2.4
we can Vrite the following:
o> L1 -6
N IE (£.1) 3.3
o
3.4a
flrd K,r k-) = >4Ti[s [3-£,.-A
A ("' +AX/n-k) {. i'")" P>t M 3.4b
@
K and K \x were tabulated separately for r= o(*ob5)c¢(*1"36L

and <r = <05 (05)9 (-1) 11 <5 . The expression for K (0 " <
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is derived as follows;

By inspection of equation (3.12) it can be seen that; KO (

but Limit 1

4 e
f0
Therefore K (O, = O but K (o™ <) =0
since v contfidns factors of £ . The only terms contributing
Q) »
to (r/r) at r=0 are the following:
UTT -as t IP W
= —-ia«TT ~ t AN ~ f (Lfi+ v Cft (kt+ata J (

r I ! r (:I:|‘/y £ J

Therefore using the above results we obtain;

= - luir S'|'4NJTIA_A +ac N<r e t Ce

U1y a*3.Y JAJITT

3.5

o) Kernel K

The functions * Ao defined by equations

(2,49) can be written as follows;



>

where Is defined by equation (2.49d).

We make the substitutions defined by equations

(3.2).

Therefore

-<rXj-Lty(efl) -~

~n , for example, will be given by;
J rt+'
A>(p.A" (1+pSX
M
4
?1 if dp
AN
s a a \Y)
) '} H 4 v
Where ~Mi>N a> and are defined in part (a).

These
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3.6b

3.6b

O<P< T

angular integrations were performed using a l6-point Gaussian quadrature.

The Legendre function

formula;

was generated using the following recursion
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(2-X+D)w Bx (w) “A P, (w) 3.7a

(w)=I ad P W=w 3.7b

can also be divided into two parts as follows:

n \ 1A (4
M) K 44 @ o' 1) 3.8
p <O
Q) a p ( pi
where = |12 (kTT) A 3.95
r o0
a) I AT
=ia.? (ieF) dr,,
3.9

Here, equation (2.52) has been simplified to give equation (3.9%).

The summation over X was taken from X =0 to X =10 . The integration
over fp will now be described, the interval of integration being .1 and
the upper integration limit being taken as I6.

Since is symmetric in { and 0" it is only necessary to
compute Kar< >3 ~ brief inspection of
equations (3.6) would lead one to assume that the integrand of equation
(3.9p) is discontinuous at four points: = @ " KA.  sud
But closer examination of the form of defined by equation (3.6b)

reveals that there is no singularity in the integrand for -U +1
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and therefore the function defined by equation (3.6c) is the
only function with a singular integrand, in this case at tp e Ir

14

Therefore the integrand of X N Is discontinuous at the

two points wp = and and allowance for this must be made

in the integration over

It follows therefore that o g will be discontinuous
at the point . This is clearly shown in the graphical displays,
see Section 3.3(c).

K~ »~ and were tabulated separately for aj and <
= '1('1)1G'0 . The proof that K3 (0> t~) = 0 is as follows:

From equation (3.6a) and (S.A"d) it can be seen that:

5. (-,0) - O
-it
but Limit

-.0 r T '

Since we are considering the case < ©~ < and is
symmetric we examine >7) ' From the above results it is
clear that K , ) - 0 . By inspection of equation (3.9%)
it can be seen that “is no factors of inverse powers
of <« since in this case * Therefore the summation over X
will vanish at <» O and X o) ~ ~(o ~

3.2 Numericeil Checking Procedures.

(@) Kernel K a
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At the points p— E the functions given 'by equations (3.1) can
be solved in closed form. Substituting and (T—n , where W™

is any positive, non-zero integer, equations (3.1) reduce to the following:

I Jh (1 +)
I
- b,
e 4 J_ (e 1Gt=Ed)+J 3.10a
[ A s
oy 1 £ I uli)
-iv(3" 4
-1
-1l VPepgh b
= M. A a - e 3.10b
FE )
3.10c
( AR Atk
~0 (Ttid.rv) = M, (1"-CPjJ dT|. M .k'iliu)
/T(3-1II)10)
3.10d
4
AT -1

-n(3-«Z) (I
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= kN (li—c J, I () - [ + Tv(cuta.yi-ajl) 13
.n(33LI9)N,
~ 1 fyi AV 3 0+ 3
("va)N, > T
-nC*—-aW'”
~ Mo JfcdNC (uP, ™) @..”) '""JIX + WV («,+ayi'aT)) ]
I v
-,Ci.iJI) \ P
e f @) “ [y% 4A @ta 14a J L 3.10e
Ur:nY \ ooy
a d
where X, (1Y :1i0) ~ (I+dJji) and (L va>bT) ™ (14 ~ J1)
S I ~ 14akb @Et'l)'™ and ~ I+ (oL+t+a”ys »
A separate computer code was written to calculate ffo ~ ~
and given by equations (3.10). Because of the symmetry in a and
'i all cases were checked for C - 0 . as defined by equation

(3.10d) introduced special difficulties since the integral term:

-0 Ir(r4

4 1A °

gives a logarithmic term plus an oscillating series. The series did not
produce satisfactory results on account of round-off errors. Therefore

d
the substitution e0(3-31""") (IkkJai) = t was performed trans-

forming the above integral to:
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f

a" j Lo t
rv(®-aid) *-U+.13) ”

a
which was then computed using tables and a desk calculator. Xo > 4
and 7" were each checked for wu=1 and 5 giving seven figure
agreement. ~ ~ wals checked for «v=\ giving five figure agreement.

A further test is to write a separate routine calculating the 3+ *
and ~ 5 using a I6-point Gaussian Quadrature, before the substitution
of equations (3.2) is applied. This was done for *=1*4 and =
and gave a minimum of five figure agreement. It is interesting to note
that the same test applied to =M™ and <r=*8 and 1.6 gave disagree-
ment at the third significant figure demonstrating the effect of the
singular integrands at the upper limit of integration. The following
alternative method was used in the case of "= =

Substituting (1'7])=x In equations (3.la) we obtain for =<

Using Taylor's theorem we expand the well-behaved function

about x=0 as follows :

t = e 7" LI (X )

Therefore we may rewrite the expression for



£ JBx - oA —&r

K, = MXt+CPj,"'") ~ A e -—a (k<)
r d

where 1(o-,0.)= M, (14CP,*,)e J A& ( |-1«,<rx) Xx

0

W o oa . i 3
; . ([3ara  JT4T-Q8e4ar 4 ped3T-
1 T +1

pak

and the integrand of the integral term is now continuous in the range

considered.

An identical process was carried out for the remaining functions

and a program computing this form of the integrals gave a minimum of

five figure agreement.

() Kernel K

Substituting «r - and tr=rv 1in equations (3.6) we obtain;

« " (,3-ad5.rt)’ @B. +0

'+1 - .

(u/aT,n) (X -iiiT1)

(I-ajxn,)*

137

dx +

)
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since "Via, ™ = (aMm,)

was checked in a similar manner to

and gave a minimum of five

(3.6) reduce to;

41

Using the substitution

rM

figure agreement.
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Jlo(ij nJdT)WJc - 0) both
were checked using the code for K

The tests were run for

For =r equations

th u I,

these become ;

a. G3(;/)\i

a.@+ob3
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and the integrands now have first order derivatives in the range

considered. Using the same substitution for - Xs- we obtain the
following;
2¢
a
~I J-a "
J.

- f
10

9

A

Therefore a separate code was written calculating the s given by
equatiohs (3.6). For f=o or Xr the new forms of the ~5
described above were used with the transformation:

<

U'i) = <3 ~
\\\

0 enabling the same I6-point Gaussian Quadrature to be used. At least

five figure agreement was obtained. *?

3.3 An Alternative Helium Function.

The simple Hylleraas Helium function:

o ( A //\ =y



1Uo

Yo
with a corresponding energy = X/A = 51,6953125 can easily

be obtained from the Eartreej-Fock function defined in equations
(2,25) by substituting C=0] and <«=yu . Therefore the code
was written to allow the use of both functions. This necessitated
generating the Hylleraas Kernels. K (Hylleraas) was
tabulated by re-running the kernel code but K~ (Hylleraas)
is a linear combination of tke energy dependent and energy
independent parts of K 33 (ipartree-Fock) as follows:

© 0)
K (Hylleraas) K (Hartree-Fock)

(Hylleraas) = (Hartree-Fock) + 0.0280275 (Hartree-Fock)

This can be seen by inspection of equation (2.53b) which shows
Kii to be dependent on the Helium energy. Tables 3-1 and 3-2
present" a sample set of values of and K , using each
Helium function, for small and large arguments respectively.
Although the kernels are similar for small .arguments, the Hartree-
Fock kernels are a factor of five larger numerically than the
Hylleraas at large distances.

For small arguments, the Hylleraas kernels generated by Kraidy(27)
(private communication to P. Fraser) agreed to a minimum of 3
figures for  Kand k for K (data received from Fraser
only gave four figures). It should be mentioned that the angular
integrations of Kraidy‘s(27)calculation used a 10-point Gaussian

quadrature.
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TABLE 3-2 .

A comparison of the kernels K using the Hartree-Fock (H.F.)

and the Hylleraas (H.) ground state Helium function.

X ,0 KJ kY @ Ka  (H-F) Kii (5.
10. ,k.8  .03632 .03350 01888 .01838
10. ,4.9  .01187 .08864 02336 .02283
10. ,5.0 -.06005 -.04903 02710 02646
10, ,10.0 .1010 (-04) .2317 (-05) 4748 (-05) .6591 (-06)
10. ,10.1 .9331 (-05) .1926 (-05) .3549 (-05)  .4705 (-06)
10. ,10.2 .7946 (-05) 1512 (-05)  .2624 (-05)  .3321 (46)
10. ,10.3 .6447 (-05) A144 (-05)  .1922 (-05) .2323 (-06)
10. ,10.4  .5065 (-05)  .8433 (-05) .1398 (-05) .1613 (-06)

The numbers in parentheses denote the power of 10 by which the

equivalent entries should be multiplied.
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3.4 Use of the Visual Display Device.

The geometric characteristics of the kernels can easily be
verified by the visual display de\d.ce. K , K and K %3
are continuous and exponentially decaying asymptotically. Figure
3-1 presents photographs of and =0 (oS
which clearly show the discontinuities of at <= -" and Ig.

is seen to be continuous and both functions exhibit the
correct exponential decay.

Figure 3-2 presents photographs of K and ®
for = o(Y)lo which again show the single discontinuity of

K at fT-1'S and the smaller magnitude of the kernel for
one of the arguments'large,

A simple code was written to transpose and Figure 3-3
presents photographs of and r) for r-oO0Oc™”.
In this case the discontinuities are at <=I*8' and 3.&.

Figure 3-4 presents photographs of K;" and Ké&.
fory £ =0(0¢c) ¢ produced from the Hylleraas Helium function
which can, be compared to Figures 3-1 and 3-3. The curves
are_very simili but the curves are a different shape near
the second discontinuity point.

By inspection of Figures 3-1 to 3-4 it is clear that, after
a certain value of <r , a larger step size would have been adequate

for all three kernels. This value of < can easily be determined

by using the graphical display.



Ihh

. &
Figure 3-1 The upper photograph shows K*(1.8,r) for o'=0(.05)5«

i)
The lower photograph shows (1.8,<5Y) for <rK) (.0S) 5e
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Figure 3-2 The upper photograph shows K*(3.5><3') for <§"=0(.1)10,

(o
The lower photograph shows K* 23.$,<s’) for <s'=0(.1)10.
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DATA SET T1

Q@I
Figure 3~U The upper photograph shows Kg (1*8,f) for cr=o(.05)5#

The lower photograph shows K~ (1.8,f) for f=0(.0$)s.
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Initially and were generated at a constant step
length of *1 but the visual display device demonstrated this to
be inadequate near the points lacking a first derivative. After
examination of successive graphs it was decided to generate Kja.
(and therefore K,%) at intervals of .05 for r and o’ 5
Because of the complexity of and the large amount of computer -
time required to generate it, was tabulated for the constant
step length of .1 and was interpolated for the half-values later
in the iteration code.

A further interesting fact brought to light by the graphical
displays was the comparatively large size of the kernels when
both arguments are large, even thou” the kernels are almost zero
for one argument large but the other small. K was therefore
tabulated out to x =32 and a=1?.5 and out to x =<r=11.6.

At these distances both kernels were of the order of 10"".
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CHAPIER 1V

ALGORITHM FOR COUPLED INTEGRO-DIFFERENTIAL EQUATIONS

4.1 Matching Procedure and Iteration Strategy.
The algorithm described in this section is the matching algorithm
(19)
of Smith and Burke. The system under consideration is a set of M second

order ordinary integro-differential equations:

h (x) = J*.a

where U,= (x) = -~I<. ~ VM (x) 4,2

and V-—-(x) may be either short range exponentially decaying potentials

. . 1
or integral operators. Let there be NA positive ¥ (open channels) and

therefore (M-NA) negative K. (closed channels). In this section it
will be assumed that jx will take the values 1, 2, -———- , NA and will
be associated with open channels, X will take the values 1, 2, ———,

(KMNA) and will be associated with closed channels and i will take the
values 1, 2, ——-——-, M and will label the elements of the total, solution
vector. ~

The asymptotic form of the solutions are defined by physical con-
sidérations such that P" (x) will be oscillatory and (7<)
will decay exponentially. FEach equation has two integration constants
so 2M constants must be specified for any value of the independent veuriable

X before the numerical solution can begin. If the closed channel functions

are integrated out from the origin, they will asymptotically contain



TpO

t IX ! -1k x
the components e and e In a numerical calculation
+1kx|x - IkKMx
the contribution from e , will soon swanmp* that of e
In order to obtain a physically meaningful solution, (x) must decay

1
exponentially at large x. TD avoid the numerical difficulty encountered
in outward integration into the asymptotic domain, we show below, in

section (a), how linearly independent outward solutions are generated

starting at the origin and integrating out to some point where the
t 1kx|x . i . .
term e 1s not too dominant, while other linearly independent

inward solutions are generated starting at the asymptotic distance

and integrating inwards to . The required solution over the whole
range of x is some linear combination of the outward solutions and a
different linear combination of the inward solutions. The linear co-
efficients are determined by matching the solutions and their derivatives
at = and imposing em overall normalization condition.

A

It is known that we require solutions of equation (4.1) which have

the form:

4.3
for > 0 and Jji * =1, 2, , NA
and = Tk.M X) for <0 4.4

where  1"7"" is the real symmetric Reactance or R-matrix from which

we obtain the cross-sections. These asymptotic forms are a linear
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"Tkrl
superposition of the functions sin , COS X and e

Consequently, the problem &t hand is to construct the correct linear
combination of these basis functions. It can be seen that there is

not a single set of the solution vector * F (x)] where:

F, &) 4.5

3.

JEM O (o%).

but NA such sets denoted by the superscript O in equations (4.3) and
(4.4) . Alternatively, we can examine this problem from the standpoint

of needing to find 2M integration constants for the system of equations.

(@) Solution of the System of Homogeneous Equations.
The system of homogeneous equations is obtained from equations (4.1)
and (4.2) by setting all integral operators of (%) to zero. A

known boundary condition is:

F»" x) =0 atx =0 for 1=1, 2, M 4.6

where by P. (¥ we mean the total solution vector N k= (x) N ’
see equation (4.5). Therefore M of the 2M constants for the system of
equations are known. The remaining M may be determined by specif>*1ng the

derivatives of F . (x) at the origin. There are M linearly independent '
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ways of choosing these derivatives, designated by d» They are chosen

to be:

for X“1, 2, M 4.7

Using these boundary conditions we integrate out from the origin
to compute the Jifamilies of solution vectors which we shall label F e
As already pointed out, these solutions must be terminated at scme point

ym and another set of solutions generated starting from the asymptotic

distance and integrating inwards. Asymptotic solutions of equation
(4.1) will be:
for k >0 4 .8a
for < 0 4 .8b

Thus (M-NA) constants have already been eliminated by specifying
that the coefficients of e must be zero. There remain (MtNA)
coefficients A", and to determine. Setting A", B” and

equal to unity one at a time with the others zero will generate (MHNA)

linearly independent solutions in the region ‘r $k s f° denoted by
(X) for p=1, 2, ——, (M NA).
S
Therefore ; A
& for >

4.9a
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o # n (M*R) 1

That 1is; 1 A g

0 6

> >

1

1 4.9

1

1

1

1

1

0 C)

0 1 MANFL

We can now construct any solution of the homogeneous portion of
equation (4.1) by taking appropriate linear combinations of  f.

and E%(B as follows:

M N
General outward homogeneous solution = * r. ) for 4.10a
I
General inward homogeneous solution » 4.10b
M |

where the superscript > denotes that solution vector for the particular

> value.
2]
Determination of the NA sets of (2MfNA) coefficients u and T3 %
The two solution vectors and their derivatives must match at M
giving the following system of equations;
r tW (?)
h (x) M for >)=1, 2, NA
o 4.11
M

where a prime denotes differentiation.
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A further NA equations depending on V are required. The velue

of the inweird solution for open channels, see equation (4.10b), at

H+NA
n't . A N> ., ,
XJp = 5% iwk. . r,ﬁ: + Wg/l).)qut 147 %1 l//\lft
. (?) .
because of the construction of 6*" , see equation (4.9). But

from equation (4.3) we require that:
for »—1, 2 ,— , NA

Therefore by comparing coefficients of sink f. and cos k f we

obtain the following:

4.12a

53}&5 kf' R ' 4.12b

where is the R-matrix for the system of homogeneous equations.

Thus equation (4.12a) provides the necessary NA equations for each

_™ ")

value of 1) . The NA sets of (ZMtNA) equations determining and U .

may be conveniently expressed in the following matrix form:
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v)
) '
0
(>0 A M
- 1 1+i _ ML
1
1 (>(?)" 0
I
lr , o
it
o w0 1.
N1 I0 1 x A e
M | Nfl M.NFL
For example, to calculate the *o=i solution vector, this system of
equations is solved with in the (2M+2)th. position of the ri~t

hand side column matrix and with zeros everywhere else. The R-matrix

can then he determined using equation (4.12b).

(b) Solution of the System of Inhomogeneous Equations.

The matched homogeneous solutions are now substituted into the

integral terms on the right hand side of equations (4.1). One outward
Vo p

solution vector (x) and one inward solution vector G (x)

is generated for each value of . In other words, a particular integral

is obtained so that we have:

M
YW ) w

General outward solution = t (), Fi ® for 4.14a

A

(4

General imweird solution = m o+ \ ® for 4.14b

A'l

ja3a] £y

where we emphasise that and w° are the linearly independent



homogeneous solutions,

&

N

coefficients u and

are not the same as
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not the matched homogeneous solutions. The

N)
and T©"

eilthough the summations are still over the homogeneocus solution vectors.

Determination of the NA sets of

Imposing the same continuity conditions at

case we have:

&
(altNA) coefficients and I

as in the homogeneous

M-tNR 1 (p)
F; (%) W
LW P
« I 1) )
/W - Cosk.t.e

We have as yet to specify the boundary conditions that will be

imposed on the particular integral.

w V CY)

nth. iterate JN &)

for 6 X 6 fp .

We choose the value of the

We will refer specifically to the

w £ W)
06x6 £ and (x)

(n-1)th. total outward

solution and its derivative at x=0 as the initial conditions for generat-

.V Ig)
ing J. (X

and its derivative at x= 1,

TX P ,
That is:

IX) Ix)
»0

and the value of the(n-1)th. total outward solution

as the initial econditions for generating

M ®)
n-l w
i (X) for n>1

K=0
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FIA

GL ™

whereby u . we mean the

(x) 7 =

equation (4.7) we see that "F.

equations can be rewritten as follows:

nv th)

0; at x=0

"n-l VI"'" ' = I W p

K»0

€3
The coefficients u” are defined in part

Ibe asymptotic boundary conditions are:

(n-1)

@)
(n-1)th iterated u

(a
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for n=1

But from

therefore the above

4.15a

. for n>1

4.15b

for n=1

of this section.

forn>1
4.15¢c
for n=1
V
Z_
R is the (n-1)th. iterated R-matrix obtained from the (n-1)th.

total solution and R is the R-matrix obtained from the homogeneous

equations.
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Using equations (4.9) we can write ~ Jf£° for

J =JNAt1, M ¢NA and therefore o (£ ~ =
We write the asymptotic boundary condition for the derivative as follows:

np(s) 60
K (4 for n>1

4.15d
for n=1
IKIZ""' “ycVEl)
Consequently, the remaining NA matching equations are:
-0 for 1; - NA 4.16a
while the elements of the R-matrix are given by:
(a ) («-0 i N)
4.16b
: . . )
Here we have omitted the superscript n from the coefficients w

We will continue doing so. unless we are referring to an iterate other
than the nth.
In an analagous way to the homogeneous case, the NA sets of (2MtNA)

W) ©
equations determining Uy and o, may be written in the following

matrix form:
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K) 1
ow) J-")
F; (x) 1 - C M 00
M
| w,
o
C. w-) - a,(-x)
I -k
4.17
P
o o
o 1
1 ant\R
1 j
K:
Dh.... M\ Nfl MA+|

It should be noted that the (2MtNA) x (2M+KA) matching matrix is
identical to the equivalent matrix in the homogeneous case, only the
right hand side column matrix is different.

These matched solutions are now substituted into the integral
terms of the right hand side of equation (4.1) and the process repeated

until the R-matrix has converged. In other words, the nth. iterated

solution (rj (x) 1is forced to have the asymptotic form given by

equation (4.15) and the nth. iterated values at are substituted into

equation (4.17) yielding u g4 and JoFS The total contribution
U)

of the homogeneous solutions, that is \ K x) I and

S N> r. i) ~ J

y Wp r. X in equations (4.14), must tend toward zero as

>
the particular integral approaches the required solution.

To make the iteration procedure transparent, we write the in-
homogeneous system of equations in the form:

n (<1

F; (A + - Ix) - U, (X)
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co

where

a

and T denotes the number of iterations performed.

In the inner region, 0 6x6 £~ we have:
a1 KV n ' Y CY e n.1w)
fL V- AN V- 18 T 1Y) = L. &)
M M M
and d =+ = 0
J= -1
which can be added together to give:
M M
. n
.r.r'Fi.,, ¢ kK W+ > “gF ®
&| = uic=1

For convergence we have that:

u>N y b()

and o (x) 0
I\
where for stability and accuracy we expect N ~ 10

M

(c) The Case of 1 Open and 1 Closed Channel.

This is the case when %, >0 and %k A <0 . The homogeneous

equations are:
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j +N+kx E R =0 4.18a

and A -EU A =0 4.18b

To determine the outward solution in the range 0 6 x6f%, (o)
(o]
we follow the process outlined in (a). Two solution vectors r. = g

for A= 1 and 2 are generated. By inspection of equation (4.18n) we LFJ

see that:
k (x) = f1 e + B e
x) u)
where A and B are four constants. But we choose the following

boundary conditions :

k =0 at X -0 4.19

and = S 4.1%

0
which leads to A( = B (D=O and A 6’7: B
alkj
U)

It is known that cn x) will be required for the numerical

procedure and this is determined by equation (4.18a). That is,



E, (x) = + V{x))F, (x )

"
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” and thus the

limiting value of § cg% at x=0 can he calculated, see

section 4.2. We choose the Jjlinearly independent solutions by imposing

the following boundary conditions :

p/ \x) =0 at X=0 4.20a
@ 1
and Af. (X) _ 4.20b
X >to
. @® .
Since N F, (~)y™ 0 at x =0 it follows by
(a.)
the existence and uniqueness theorems that P, (x) = 0 . Therefore,
we have the following:
_ 4.21a
o
Fpoo(x) = 4.21b
aik, |
(]
and F, (x) is generated using the boundary conditions given by
equations (4.20).
To obtain the inward solution in the range f 6x6

(A

we generate three solution vectors

for

= 1, 2 and 3. The following boundary conditions are known:
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(p) (p) I (p)
1 ® 7 fli SuvkX + 6, dbh.Ix
X

»(P) ® -IkjK
and (r (%) e
X—p» o0
(?) (?) (?) , ,
where A, ;s and C%, are nine constants. Setting:
©
A, = 5 for 1= 1,12 and 3,
iP 0 J
B.
Cig
| () Ko« W . -l
that is: A, " 1 A’ 0 0
8, 0 > g = 1 B - 0
0 .k 0 Aa.. 1

we obtain the following:

PR
k (r] - 4.22a
0]
4.22b
0
0 4.22¢c

SRV
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starting with these values at x= we ca$% generate the
. . j . .
three solution vectors irmarcp to x - ; The matching matrix

equation (4.13) becomes: |

@ @
F, ® O " % wB @ O w, 6
0 Fj (%) 0 0 (% 0
0 ( 1
F, ® 0 mG, ®w G, ® O w, — 0 4.23
- w' u)'
0 =) 0 0 Gj o

-1

and R M ~ “ai ¢ 17 this particular case the R-matrix consists
of one element only so the subscripts will be omitted from now on.
Therefore, the matched and normalized solution  F(x) to be used

in the integrsil terms of equation (4.1) will be:

W, ® TW, & ) 4.24b
'0

Since we know that the only solution of F*(x) that is consistent
with both sets of boundary conditions is (x)= 0 then the
coefficients and must be zero also - a self consistency

numerical feature that the computer code exhibits correctly.
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To obtain the particular integral for the inhomogeneous equations,
I
the solution vector gjven by equations (4.24) is substituted into
the integral terms of equation (4.1) and one outward solution vector

(x” and one inward solution vector generated. The

boundary conditions given by equations (4.15) become;

y 0 oFx=0

% ' 1 r
7 IX) J;1%9 1t ) u . for TW>
K"0 J O
for W=\
k, +R axk-g,") for > 1

for TV

UA %, (k-1 - £ skt for W>1I

A1 A r

for W=\
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Following the method outlined in (b) the cg™umn matrix on the

|
right hand side of equation 1(4.17) will be;

Yy LA - lyx)
o K
and the matching matrix is defined by equations (4.23). The coefficients

A

u,,u , W and w © determine the matched solution vector

given by:

F; (x) = 4 LA +",F, ® 4.25a
4 9 + B Ix
§ (X +Wj5 x) for 1XX 4.25b
r

4
ﬁ x) + )
This process is repeated until the R-matrix converges.

(d) The Case of 2 Open Channels.
3L SL
Here both k, and k © are positive and the homogeneous equations

are given by equations (4.18). By inspection of equation (4.18b) we see

that:
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(0 S
x> = Hj, + cotk™x
&9 (4
where A " and are 4 constants. But we choose the boundary
conditions :
) =0 at X=20 4.26a
and i C K 4.26b
X»0
r -
therefore (%) O and F. (x) =
Because of equation (4.26) also so we have the
following:
|l
%.() x> = F, ® 4.27a
o
Fe ) = o) 4.270
_k sikgx
To obtain the inward solution in the range 6 X6 f
£
| ® ¢
we generate four solution vectors © x = for
G-"(x)

p — 1, 2, 3 and 4. The following boundary conditions are known;
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r (5) ’(X; 3 .(p) 4- ﬁ"Dj“ Cosi—X

and B . (B are sixteen constants. Setting

where A
1
(ol (@)
A A, for =1, 2, 3 and 4
B A.

we obtain the following:

2] r 1 -
ark. 1" 0 LR ¢ ! ) -
0 3.'"fo
L » .
(O
By inspection of (4.18b) it can be seen that (x" k*x
and (x) =aikj™x are solutions for all x and since there is no term

in axskj™x in the outward solutions given by equations (4.27); the co-
)

efficients of this term, , in the matching equation must wvanish.
Applying this to equation (4.12b) we see that J» " ~ 0
It follows from the symmetry of the R-matrix that R|& = O . This

is a further self-consistency numerical feature that the computer code

exhibits correctly.
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, starting with the above values for G-. " we can
generate the four solution vectors inward to x=r The matching

matrix equation (4.13) becomes;

. r
A ain 0 0
Fi (%) 0 - ® " > &) M| 0
(a) .
0 - TR 0 (¥ 0 ~AHCy) 0
p(>!
F, (%) 0 -6, ix) 0 ~s, 0 0 0
0 (¥) 0 -C' (x) 0 0
0 0 1 0 0 0 or 5 ,
0 0 0 1 0 0 W
and
Therefore the matched and normalised solution R. (x» to be
used in the integreil terms of equation (4.1) is;
M o)
ﬁ’w v, (4(X) for 4.26a
LR B I
w, ;- (d
W, G (%) 4 ) for 4.28b
{<
s

To obtain the particular integral for the inhomogeneous equations,
equations (4.28) are substituted into the integral terms of equations

(4.1) and a single outward solution vector FN (%) and a single



inward solution vector

Therefore the column matrix on the right hand side of equation

will be:

and R K
/x
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®

is generated for each value of v=

for > 1

for n=

for w NI

and 2. The boundary conditions are:
l
v v
(x) =0 at x=0
mEfw ! ! Y (0
J, J,
“ 00 ¥ 0
p2l
L .M 1 u
nJw'
10
where R = R

, the matrix obtained from the homogeneous equations

(4.17)

JL ")

3r'<x)
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(0B %) @ ) .
The coefficients u, and (", — U
ICIM
from equation (4.16a) and )= 0 as explained previously)
m - 17)
determine the matched solution vectors =) given by:
Np* () "X (1
r; @ = 3,ix)+u, E X for 0i
A 'ﬂ:—')
ix) 4 Ix)
(%)
(*> for (xX”»
P &
3» IX ™1 ®)

To continue the iterative process the matched solutions given by
equations (4.29) areesubstituted into the integral terms of equations

(4.1) and the whole procedure repeated until the R-matrix converges.

4.2 Runga Kutta Method and Interpolation Formulae.

The Runga Kutta formula for integrating ~ A

J1x

subject to the starting condition

1 (k+)kMikj+Hk
t r

where k

and i = _ *rll

4.29%9a

4.2%

4.30



172

With a second order differential equation =J x" we

substitute N, = and transform the original second order
differential equation into two coupled first order differential

equations given by:

It can be seen that the initisIl values of y and Au at x

are required to start off the integration. Ax

(@) Starting Values at the Origin For Equations (4.1).

We write equations (2.4la) and (2.48a) in the following form:

(x,x) 4.31a
bl («h) <, - ag @ ~ 31b

The system of homogeneous equations will be
F.oa&) = - (k, ¢+ V(x))F (5 4.32a

JIx”
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f 1 " (0)
= AN k (il 4.32b

Jlx*

The boundary conditions are specified by equations (4.20) and
these ensure that pj ” =0) = O , where a double prime
denotes the second derivative. To find thevalue of rE, i fx= O)\
we must calculate the Limit £ (x)V (X) e+ since V (x)

P "ma X
Using equation (2.36) we s==) that:
-1 \Y 3 \ \Y4
: - W
$\j(8) = "VN & v+ htce (x#1)+ ACe (x+ A )
4 - u " F uHi>
O
Since N~ K we have the following:
k=0
<>
Limit (x)V(x) =" Limit xM(x) = "' 4 - voe v 4a
K—»0 * Cu. U-"if
~ ~ If since N J A
u' UrN1iY
r(« ", \ '

Therefore (x*0) = "

It has been shown in section 3.1 that K f 0 for O~ 0
therefore there will be a contribution to (x=-0) from the

integral term in equation (4.3la). It was also shown in section 3.1
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that K (<r,0) = 0 for ail values of <
Since K (ct*o0) =0 it follows that K o~ t) = =0
for ail values of (@& therefore there is no contribution to 'x=0)

from the integral terms in equation (4.31b).
It can be seen that we requirevalues of |.(x) at x=nk where r
is a positive, odd integer. In the positron - Helium problem £ consists
of integrals that cannot be (solved in closed form therefore they must be
tabulated for set values ofpc. The required values at x = nkcan then

A
be acquired through interpolétion. We use Newton's forward Interpolation

formula:
1 to = Jo t A | 1 i{s-\)a + tU 0 (3 -a) A +
x! it
where = | (%%) and
B . * ol

A {.-A 1 -A e.

o°

In particular Newton's forward quartic interpolation formula reduces to:
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i(t-iXs-jys-")" - s ( i - . 4.33

a! 3! 4!

4.3 Numerical Checking Procedures.

The equations under consideration are

11 + V(0 + F, (x) = Dtx) 4.34a
L + kK Ft(*) = E(x) 4 H (%) 4.34b
where J) (x) = " 4.35a
o
n»
E (*) = _ F, (o-) K.,i (x,<r)- Ar 4.35b
H x = B. (O %, ). & 4. 35¢

The integrands of D(x), E(x) and H(x) are discontinuous at well
defined points which necessitate dividing the integration into several

regions. Simpson’s rule in the following two forms was used;

Yv even 4 36a
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tv odd
« ra 4 )
where [.=] (X) ) = + etcetera.

At the 'beginning and end of the integration range it was necessary

to use Simpson's rule of integration over one interval only as follows;

~B)/

e,

AF3IK
A = ~.360

K41 II

Because of the variation in step len”h of K ,3 and therefore K

(see Chapter III) the following single-interval formula was used;

<kek ooo)(o*op@\]o

A = =k ~ I4| (x-h)t J (x+ik) 4 36
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4. 36e

The kernel A is discontinuous at <r= (as well as
&,
at (T=x ) and all of these half-values are not tabulated. The following

formula was therefore derived;

K«—4%
<o ——ee oK. .. Gl o

Total Area =
= -
Tt is interesting to. note that the wvalue of the function at the
half-value (xtH4i) is not required. Tbe only value of x for which this
could not be ééplied.was x = .05. The value of K,” (-05',*05.8‘5

was calculated using,a quartic interpolation formula, see section 4.2;

(*P0s) I 1f*{oi.s)K,~ (;O5,-0is)™ F" (02)K, " (;08,-05) |+- K " (0s,«) Sk
of

where FAN(N*0ALT) K (0 S',* was calculated using
B 0 SV'EJ & a.")) Fréd.)K"1 H KT G -Dad

k(«) K, ( 4-).
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(a) The Functions (x) , 'F (x) and H (x)

By inspection of equations (4.35) it can be seen that the integrands
of N E"(x) and M (x) are discontinuous at the points X
and x; r=x and 2 x ; <r=x respectively. Therefore three separate *
routines were written to calculate D, E and H.

Using equations (4.36a) and (4.36b) we define the following notation;

S, @NV)- X~ @®V (o, Hin)v-———-——————————- +1 K *

where F corresponds to either D, E or H and |[.{r) represents the integrand

D
of the .corresponding integral. For example f & =

Consider the cane of D(4.95). The integrand &= "
has singular first derivatives at the point <r~ 2.i"75 (which is not

tabulated) and the point = 4.95 (which is tabulated). As shown below,

the integration must be split up into four sections, namely;

o< @~ 1'4-139"
X'krlS & \r *
6 <6 b'.0

¢c*0 < rri n*b
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The first two sections occur "because of the singular first -
derivatives and the second two because of the change instep length
at <r=S" from .05 to .l. Using equations (4.36a), (4.36b), (4.36c)

and (4.36f)we may write the following:

wk-'\") - 5, f 1 (-os)! -t-2|a-V5)+
f s, (a-s-5,a-i?) V (+0S-)J /tik is )*-a>|~s-"0)-|V -")72 c .n
36 ]

Similar formulae can be derived for E and H. Each integration routine
was checked separately using a suitably discontinuous straight line graph.

The case of )> (x) will now be illustrated;
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for 01 <«5X

A
K- for xc< *X
K a
= -4 for X <<r<n 3
Therefore the area fl (x) under the graph is given by:
A (x) = 2~ £3X ~20 for Oi Xinr
4
“2L ~ 1905 433x ~ i’ for ™ < X
4 X 3. a
and the discontinuity at x = 11.5" is clearly demonstrated. Exact

agreement wets obtained on these checks.

(o) The Interpolation of )) (x) ~ F (x) and H )
The same tests as illustrated in part (a) were used. Because the
upper integration limit must necessarily be taken as finite, the

numerical integration introduces a further discontinuity in D and E.
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As was shown in part (a), * ") is discontinuous at x=II5
since for x > II-S' the jkiscontinuity in the integreuad at <r=X
is out of the range of integrjation. The interpolation of (x)

must therefore be split up into the following two sections;

The code allowed f t o Jake any value between 18 and 32.

Hex') will be discontinuous at the point since for

X c r t h e integrand has two discontinuities and for x >

it has only one. Since K is tabulated for therefore
the discontinuity is fixed at x = t-1 . The interpolation of E(x)

is performed as follows:

Since iG discontinuous at r=x and is tabulated
for X and O« *L —>1\‘f, this discontinuity will always fall in the
range of integration, thus H(x) will be continuous for all x in the

range 0SS x< it
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(c) The Iteration Procedure for One Open and One Closed Channel

We rewrite equations (4.1) in the following way:

t.37a
_ ™
4.37t
where i- = il. t + ki I=1.A
and W, 3" and are the appropriate integral operators

as defined in equations (4.1) The superscript T denotes the nth.
iterate and it can be seen that the (n-1)th. functions are substituted

into the right hand side of equations (4.37) to produce the nth. iterated

functions.

To steirt the iterative procedure we set all integral operators to

zero and solve the following:

0] 4 .38a

4 .38b

By inspection of equation (4.38b) we see that = 0
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The functions h~» and eire now substituted .into the

inhomogeneous terms of equations (4.37) giving the following:

=0 4.3%
~ ™+ E, 4.3%

It can be seen that equation (4.3%) is identical to equation (4.34a)

r- CO p
80 that rv = r, .We continue this process until the R-matrix

(defined in Chapter II) has converged.

An interesting symmetry arises if isset equalto zero.

In this case equation (4.37b) reduces to:

idx = F, = - since F, = F|

- d @
and this equation is identical to equation (4.39). Therefore 3. -@BT1" .

Continuing the iterative process we reach the following result:

mn') («'0
rI = F for n odd
p 1V p C)
Ix " r for n even

/

%1is feature of the iteration silgorithm was displayed by the code.
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Check on Equation (4.3Ya).

Setting I (X) . J J equation (4.37&) was solved vith an

inhomogeneous term:

—Ax
H
replacing A fa To ensure the same boundary conditions
as in the positron-Helium case, A was taken as 3 . The particular

integral ~* &®  for the ejgquation is:

= ( QA+tx +cx +-dx* )e

where a = (-1 4-10K-I8TK

c = K (L-X)
4 A
d = mJ
3L
K = 1
kN1

The general solution is given by;

FI (x) = k1 ( si*k,x + Rc.osk,x) au * (x)
=



18$

where R is the R-matrix which in this case is a scalar. The boundary
condition F, (x "0 )= 0 ] gives R = - k| a.

4
Therefore F, (x) = k, swwllg, X - k,x 4 (x)

Five figure agreement between the computed answer and this analytic

answer was obtained.

Check on Equation (4.37b). c
- 5X
This equation was solved with an inhomogeneous term e
¢ — (" (-0

replacing 4 Fa, T ‘. To ensure the

same boundary conditions again, B was taken as 2. The particular integral

(x) for the equation is:
J5 = ee

and the general solution is given by:

_I —_
N (x") - He + e
The boundary condition ©") = 0 gives b= o~ therefore:

kvi,

K+ &



Six figure agreement between the computed answer and this

analytic answer was obtained:

(d) A Different Iteration Strategy.

In section 4.1 we described the iterative technique used
for solving the system of equations (4.1). 1Instead of the
boundary conditions specified by equations (4.15) we initially

imposed the following conditions on the particular integral;

It can be seen that equation (4.16) will be replaced by:

186
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Therefore the right hand side matrix in equation (4.17) is replaced

by:

The iterated R-matrices produced from this set of boundary
conditions were identical to eight significant figures to those

B produced using the method of section 4.1.

() Checking the Code Using Analytic Kernels.

Consider the following pair of coupled equations:

.o
e 4.40a

8

& AT

8
.

A /A, xe 4.40b

These are of the same form as equations (4.34) with =" and:
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* Ol

K = ]:II./\<r,x) = -",x<re

-G (=)
Kw. x«) * - /x"xo-e.
By taking the Laplace Transform of equations (4,4)) and applying

the positron-Helium asymptotic boundary conditions the solutions F

and F_* are seen to be:

= k, 4 L 3 (o1, aosk, x4-1Ca, k, M) &8> (<%, k, ')t ] 4.41a

C (1>5-ki") 4*xX4,-0"e ] 4.4ib

for k*» >0 and G> |k&|

where & fa,k*) = “ C(ou, k™) = ~ = I
Ale"
P aton -’
XjJ= \ sz ~and LN~ j§JT6 F 4.42
o

Numerically X, and Ij differ since the upper limits will be 32 and

11.6 respectively to match up with the original code. The upper
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limit for I i s taken as 17.4.

The phase shift J 1is given by the expression;

Equations (4.41) were solved iteratively by a separate check ~
computer code. Table 4-1 presents the first few iterated phase
shifts of each code for O0L»b=3, U, =ioco , yx 10 and ]gk; Y.
The zeroth iteration shows immediately that we can onlyexpect
four place accuracy in the code.

Although the analytic kernels do not possess the discontinuities

of the true kernels some attempt wasmade to match thetwo sets for

values of x emd r near the originby choosing;

I, = Vil - s K= . , 1=5"

Since convergence was slow the check code was run keeping a
and b fixed at these values but varying and by factors
of 10. Table 4-2 clearly demonstrates the slower convergence for
large yx* and and also shows that the second kernel K
affects the convergence to a larger extent than K,a -
4,4 Use of the Visual Display Device.

The size and shape of the functions )> , F and H defined
by equations (4.35) determine the behavior of the iterated functions

and . Their geometric characteristics have already
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Figure 4-1 Photograph of a superimposition of D(x), E(x) and H(x) for x=0(.03%)$

a
obtained from the %$Ueraas Helium function at an energy k,=1.0.
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TABLE 4-1

A comparison of the "exact" iterated phase shifts of the check

code and the "computed" phase shifts of the positron-Helium code

for , yx”"= 100 yx” =-10 and ky = o5
Iteration Exact Iterate Computed Iterate
0 .0 -.2252 X 1lo'®
1 .05739 .05737
2 .05634 .05632
3 .05998 .05995
4 .05985 .05982
5 B .06008 .06005
6 .06006

7 .06008 .
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TABLE 4-2

A partial table of the number of iterations necessary for convergence

in the check code for a=H, b-5 and yw and as shown.

925.0 92.5

10
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been discussed in Section 4.3(a) and () and Figure 4-1 presents
a photograph of a superimposition of "F & and fl for x=o/*os)S"
obtained from the Hylleraas function at an energy k =10

Below is a sketch identifying the curves.

Figure 4-2 presents photographs of the first iterated ()
and for x»0 (.1)10 and Figures 4-3 and 4-4 present a
photograph of a superimposition of the first eight iterates of

and FjJ® respectively obtained from the Hylleraas function
at an energy E,; TO . Below is a sketch identifying the iterates

of F. in Figure 4-4.
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Figure 4-2 The upper photograph shows F, (x) for x=0(.1)10.

The lower photograph shows F*(x) for x=0(.1)10.
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C4T4 SET 15
il
'I))_
o,
(1] .I.
T !
g Il
’l
Figure 4-3 Photograph of the first 8 iterated F, functions obtained from the

Hylleraas Helium function at an energy k =1,0.
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It is clear that F, and Fy* are displaying their correct
asymptotic sinusoidal and exponentially decaying form respectively.
All the functions mentioned can be seen to be continuous and have
a first derivative at x=5* A mismatch is easily detected as
demonstrated in Figure 4-5 which shows photographs of F'&) and (>
for x»0 (.1)10 deliberately mismatched at x=5. A more subtle error
is shown in Figure 4-6 which is a'photograph of the first two
iterates of = which were interpolated for midpoint values using
a routine that had an incorrect minus sign. This is an excellent
example of the usefulness of the graphical display since this error
would be difficult to detect without laboriously drawing a graph

by hand.
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Figure U-U Photograph of the first 8 iterated F* functions obtained from the

Hylleraas Helium function at an energy k, =1.0.
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Figure U-$ Photographs of F, (uoper) and F*""lower) deliberately mismatched

at x=$.
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0 s000

Figure 4-6 Photograph of the first 2 iterated E(x) functions interpolated for the

midpoint values with a deliberate error in the interpolation routine.
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In conclusion, it has been found that a graphical display
device is a very effective tool for de-bugging a congputer code
whose elements possess distinct geometric characteristics.
Althou” numerical checking must still be implemented, a visual
display now replaces the drawn graph. The display is particularly
useful for deciding upon the range and step size of integration

and invaluable for comparing succeeding iterated solutions.

4 .4. Review of Alternate Iteration Methods.
Alternate iteration methods fall into two broad categories.
In the first, the actual iterative procedure is different to that
of the matching procedure that has been described in section 4.1
and in the second, techniques of speeding up convergence are applied
to an existing iteration procedure.

In the first category, we have the method of Burke and Schey(87)
which is essentially that of the matching procedure but with a
different set of equations replacing equations (4.12a) and (4,16a).

N A integral conditions on the open channel functions for

// =1, 2, ———-=, NA are specified as follows. Equation (4.11) is

*replaced by:

M * VHNA /°
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and equation (4.14a) is replaced by:

M+NA
o " R)Ax
1=\ o ¥\
= C
where the are arbitrary real constants and is also
arbitrary and chosen so as to speed up convergence 88)
8
McEachran and Fraser (Smith, McEachran and Fraser; McEachran
(23)
and Fraser ) solved the following system of equations:
©® 4.43
where g = + C
and the s include short-range exponentially decaying potentials

and integral operators.

In order to illustrate this method we will consider the case
of one open channel and one closed channel only. The boundary

conditions are: ',

Fj x=0* = 0 for I=T1 and of

i tBA  .asct8ir) 4.44
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where is the phase shift for the particular orbital anguleir
momentum ©~ and A is a constant. Using these boundary conditions

equations (4.48) can be converted into an integral equation as

follows:

T 4 45z
where =e A 4.45b
and w k<) and the Green's function & are defined by Smith

'@8)
et al.

The iterative procedure is started by evaluating K using
the free wave solution o'btained from solving

=0 . This value of is substituted into the i-X

equation (4.45a) keeping (f) fixed, to yield a new F%(" which
in turn is used to recalculate e This process is repeated
until converges. is now kept fixed and a similar process

carried out for F'If) using the t=1 equation (4.45a). The entire
procedure is repeated until both and converge simultan-
eously.

For certain energies this method was found to give very slow
convergence and sometimes no convergence at all so Kraidy and Fraser(sg)

used this same iterative procedure but imposed different asymptotic

boundary conditions. They replaced equations (4.44) by:



203

=0) =0 J
F (m - Cot:>1. o 4.46
F A @
O

Therefore equations (4.43) are replaced by:

Fj = tobil\t. wt ~

The boundary conditions specified by equations (4.46) impose a

further condition:

4.48
from which the phase shift v~ may be calculated.

The iterative process is started with F, == Ug i)+ (1-e
and E"Nr"=0 where the starting value of is obtained from
equation (4.48) and v (kr) is the irregular solution of the free

~ [ | (88)
wave equation which is defined by Smith et al. The same process

as described previously was performed except that the -1A. iterate
cao>j”  is calculated from equation (4.48).

It was found that this method produced convergence in most
domains where the previous method did not and in general speeded

up convergence.
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The following methods fall into the second antegory. A very

J
simple way of speeding up convergence was first introduced by

(22)

Burke and Smith . One reélaces the mA. iterate (r) by
a linear combination of the and iterates, FE; © @9&E®+%7
where o is some predetermined constant. This new function is
substituted into the integral terms of equations (4.45) or (4.47?)
emd the appropriate iteratio;.procedure continued. Burke and Smith(zz)
found that the choice of > | speeded up a slow, monotonically
converging seduence, ré?uced the number of iterations
required for a converging oscillatory sequence and tI<0 could
sometimes avoid monotonically diverging sequences. Of course, extra
cononiter time is required to find out which value of #* is the best
for a particular case.

(90)

Saraph and Seaton showed that in the case of the anti-
symmetric 5-wave in electron-Hydrogen scattering, all iteration
procedures gave slow convergence. This occurs because the Hydrogen
ground state wave function = Ice also satisfies the electron-
Hydrogen integro-differential equation and in a numerical calculation,
the contribution of to the iterated wave functions can become
dominant so producing a loss of significant figures. To avoid this,
an orthogonality condition can be imposed:

Fic') dc = 0 , F (¢ = Ffc)

YV —>00

Again, this does not always produce convergence and so the



equivalent orthogonality condition can he applied to each iterate

12 ) . We re-write equatlon (4.43) as follows;
L F = V OF U U9
. (4 .C¥)
Let a solution he 1i & and choose a new function J ) =P +A
where is to be orthogonal to
Therefore

Using equation (4.49) we have;

r A7) ('*0 A)

Choosing UE=-iP and using equation (4.50) we have the following:

oo
and \ 4)
00
R')
(91)
If the sequence converges then Limit A - U , John has

o
found that convergence could be obtained using this method but a

relatively large number of iterations was required.

208
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The various itération-variation methods fall into the second
category too. Sairaph and Seaton . developed such a method for
scattering problems with one open channel and Saraph (92)extended
this to allow for multi-open channels. Equation (4.43) can be
re-written in matrix form, with matrices of dimension equal to the

totaJl, number of channels , explicitly demonstrating the iterative

process as follows;

LF, = WFi 4.51
where L 1is a diagonal matrix with elements L;,; = £ - (.(6+]) +k; "
and is a column vector having elements ™ which satisfy the

following boundary conditions;

Fy ( = 0 4 .52a
Fu ' i»t (kgt—eir) for k/>o 4.52b
A c->00 3L 7 A A
- Tk1f ’
=i Ct'i Hv e for k <o 4 .52C
. . . A& . x
where K is the R-matrix obtained from the nRl iterates
(o)
The solution is the free wave solution F.. = u.k) 5~ as

defined previously.

Using the notation;
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@
Ci: -3 4.53
o ﬁ\
the stationary expression of Kohn is;
| li/ ) 4.54
k"
where * is some trial function satisfying equations (4.52) and
k. (92)
giving a trial R-matrix (C Saraph chose for these trial
functions a linear combination of the iterated wave functions F
for m =0, 1, ———,n  as follows;
4.55
It can be seen that has the correct asymptotic form if;
- I" A 7 "y 4.56
N-L -
™

where the CdQ are constants. Equation (4.55) is substituted into

equation (4.54) and equations for the constants C are found

by requiring that K — Dbe stationary with respect to the L

That is:

K, %

"R = 0 for V=1, 2, 7\

o

The

are then substituted into equation (4.54) to



obtain the stationary Kohn vajlue of the R- matrix«

It was found that this iteration-variation method speeded up
an already convergent sequencte for the elements of the R-matrix
and could produce convergence where ordinary iterative procedures
gave diverging sedquences.

(23)

McEachrein et al. developed a version of this method making
use of recursion relations in order to simplify equation (4 .74).
They showed that the tiA.Kohij. R-matrix K could be expressed
in terms of the (n-1)th. R-matrix K and the nth variational
parameters c

(89)

Kraidy and Fraser developed a simpler version of the
iteration - variation method by using trial functions that were
linear combinations of two iterates only. This trial function was
then substituted into the integral terms of equations (4.51) to
produce the next iterated solution. For example, equation (4.51)

was solved for r and < . The trial functions H were

taken as follows:

where the functions  j were taken either as r or h . The

corresponding expression for the R-matrix elements is:

208
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where B> if —

It can be seen that there is only one variational parameter

C which is determined by solving die = 0 where K is

defined in equation (4,54),
(89)
Kraidy and Fraser applied this technique to electron-atom
scattering using both the tangent and cotangent asymptotic
boundary conditions specified by equations (4.44) and (4.46). They
found that convergence was generally faster if * was chosen to
- r In some éases, taking % = f produced wrong answers
because h approached r as the sequence converged and
this caused numerical difficulties in the form of loss of significant
figures. But in the majority of cases tried, the number of iterations

required for convergence was less than that in an ordinary iteration

scheme.
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CHATTER V
|

SCATTERING RESULTS

5.1 Convergence Problems.

For all energies below threshold the iterated phase shifts
oscillated. The oscillations for the Hylleraas function are
more pronounced and less symmetrical than those produced by the
Hartree-Fock function. Table!5-1 presents the first 15 iterated
values of the phase shift " for each Helium function at an energy
of and Figure 5-1 presents the equivalent graphical form.

By inspection of Figure 5-1 it can be seen that the Hartree-
Fock phase shift has settled down to a symmetric oscillation which

(91) (93)

by the work of John and Salmona and Seaton should be averaged
to give the required solution. No such symmetry is displayed by
the HyUeraas phase shift which jumps about wildly even out as far
as 30 iterations.

An averaging procedure was incorporated into the code that,
after an assigned number of iterations 1n , would average the
emd (n-1)th solutions and parameters to produce the (n+1)th.
iterate. Figure 5-2 presents the ordinary iterates H.F.and
averaged iterates %:F. for the Hartree-Fock function at an
energy , averaged for onwards. Figure 5-3 presents

H H
the equivalent first 20 iterates (J~ * ) produced by the

H.F.
Hylleraas function. After the 11lth iteration v~ increases
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TABLE 5-1

The first 15 iterates of the phase shift for the Hartree-Fock

emd Hylleraas Helium functions at an energy %%——'AI .

V Hartree-Fock Hylleraas
1 -.3090 -.3090
2 -.2748 -.2434
3 -.2770 -.2317
4 -.2713 -.2512
5 . -.2843 -.2825
6 -.2697 -.2623
7 -.2741 -.2433
8 -.2630 -.2350
9 - 2746 -.2613
10 -.2649 -.2633
11 -.2730 -.2574
12 -.2618 —*.2387
13 -.2716 -.2494
la -.2624 ", -.2550

15 -.2719 -.2619
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H, I %
steadily whereas is still oscillating even after 50 iterations.
T H.F.
Figure shows the first 15%iterates of vin for energies

21$

k, =.36, .49;.64 and8l. It is interesting to note that the iterates

have the same profile at all energies.
Since 1N\ and ~ are still changing in the fourth
decimal place for n>20 the extrapolation procedure of Cody, Lawson,
(25) 1
Massey and Smith was incorporated into the code. The first

differences are defined as follows;

A ratio of two succeeding differences is given 'y

After a certain number of iterations T * starts to converge
to some number r* where Jjr |< \ . At this point the remaining
iterates can be considered as members of a convergent geometric
series with ratio r and the final phase shift ~ is obtained by

1

summing the infinite series to give the following:

~ = HT + Kil < >
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FIGURE S-L

Averaged phase shift iterates for the Hartree-Fock Helium
function at energies k =.36, »k9) #6L and .81 rydbergs.

number of iterations

216
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Since the code can only he relied upon to give accuracy to
4 decimal places, the addition of the extrapolation procedure will

reduce this further. The following convergence criterion was

applied to *

Let @W') and ~ 'Y'e the extrapolated phase shifts
obtained from and . 'Then if;
the extrapolated phase shift has converged and * . Thus

the final phase shifts are certainly good to three decimal places.
Table 5-2 presents the last 12 extrapolated phase shifts in comparison
to the averaged ones for the Hartree-Fock function at an energy

%, = 38" . The minimum number of iterations required was l& at an
energy convergence was obtained for ki™> 1 in both
cases. It was found sufficient to integrate out to 20 atomic.units.
At k,” .04 and .16 the phases obtained by choosing the asymptotic
distance as 30 differed in the 7th decimal place from those

with = 20.
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TABLE 5-2

Averaged and extrapolated phase shifts produced from the Hartree-

. &
Fock Helium function at an energy k"= .25 rydbergs.

Iteration Averaged phase Extrapolated phase
7 -.1329 -.1296
8 -.1281 - -.1300
9 -.1280 -.1280

10 -.1278 -.1282
11 -.1276 -.1256
12 -.1274 -.1251
13 -.1272 -.1252
Ih -.1270 -.1253
15 -.1269 -.1254
16 -.1267 -.1254
17 -.1266 -.1254

18 -.1265 -.1254
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5.2 Results.
Phase shifts and cross sections for I rydbergs were
generated using both the Hartiee-Fock and the Hylleraas Helium

function.

(@) Mean Static Field Approximation (M.S.F.).

Table 5-3 presents the tifo sets of phase shifts together with
those obtained by Kraidy(27) Using the Hylleraas function. Figure 5-5
presents a graph of the phase shifts obtained from the Hartree-Fock
function together with the Hylleraas results of Kraidy(27)when the

dipole polarization term * was added to the M.S.F. edquations.

This attractive term is sufficient to make the phase shifts positive
at low energies. Since the M.S.F. potential is repulsive the
corresponding phase shifts are negative for all energies.

(o) Virtual Positronium Formation.

It is known that polarization in any form serves to make the
atom more attractive and this is born out by the addition of virtual
Positronium formation terms which can be thought of as a short-range
polarization. Table 5-" presents the two.sets of phase shifts
obtained here together with the Hylleraas results of Kraidy(27),and
the variational results of Drachman(SO). The phase shifts are plotted
in Figure 5-6.

The three sets of elastic cross—-sections below threhold are

(50)
displayed in Table 5-5. Figure 5-7 shows Drachman's variational



220

TABLE 5-3

S-wave phase shifts for positron-Helium scattering in the Mean

Static Field Approximation.

ko. .Hartree-Fock Hylleraas Hylleraas (Kraidy)
.05 -.01984 -.01908

1 -.03961 -.03812 -.03815
.2 -.07875 -.07592 -.07593
.3 -.1170 -.1131 -.1131
.h -.1538 -.1493 -.1~93
.5 -.1890 -.1843 -.1843
.6 -.2222 -.2179 -.2180
.7 -.2534 -.2500 -.2500
.8 -.2823 -.2804 -.2803
.9 -.3090 ' -.3090 -.3089

1.0 -.3334 -.3358 -.3355
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TABLE 5-4

S-wave phase shifts for positron-Helium scattering in the M.S.F. and

virtual Positronium approximation.

function, column (h) Hylleraas Helium function

Hylleraas Helium function

variational results.

a
.05 -.00316
1 -.00762
2 ~.0240
3 . -.0513
4 -.0866
5 -.125
.6 -.164
7 -.201
.8 -.235
9 -.266
1.0 -.293

*This result had not converged after 50

is an estimated wvalue.

(Kraidy

h
.0306
.0547
.0100

.0445

-.00394

-.0599
-.115
—.166
-.212
-.252

-.287*

Column (d)

.0770
.1019
.0753
.0213
-.0407
-.102
-.158
-.208
-.251

-.288

iterations

Column (a) Hartree-Fock Helium

(this work) ;

.036
.047

.039
.020

.007

.039
.073
.107

.142

.176

and this entry

222

(€)
bo)

gives Drachman's
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FIGURE 5-6

S-v7ave phase shifts in the virtual Positronium formation
approximation.

10



TABLE 5-5

Elastic cross—-sections for positron-Eelium scattering in the M.S.F.
and virtual Positronium approkimation. Column (a) Hartree-Fock

Helium function; column (h) Hylleraas Helium function (this work) ;-

column (c) Hylleraas Helium function (Kraidy(27)).
a * i b * c

.01 .0232 % 1.20 2.369
.04 .0574 1 .489 1.03k
.09 117 .0878 .251
.16 .187 .0389 (-02) .0113
.25 .250 .0574 .0265
.36 .298 .147 .116
.49 .327 .223 .203
.64 .340 .276 .265
.81 .341 .307 .30k

1.00 .334 320+ * .323

t %e positron energy is k rydbergs.

* The numbers in parentheses give the powers of 10 by which the
corresponding entries must be multiplied to give the cross-sections
in units of TTa"

** Same remark as in Table 5-".

22h
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croBS-sectlons plotted against those of this work. If there were
an exact Helium function then Drachmanfs(SO) phase shifts would be
rigorous lower bounds and the Hartree-Fock results would be too
small for all energies below threshold/ and the Hylleraas too small
for ]<,k> .3 rydbergs.

It is evident that scattering results of this problem are
extremely sensitive to the choice of ground state Helium function.

It has been pointed out in Section 3.3. that to obtain the Hylleraas

case from the Hartree-Fock code one merely substitutes:

t=0 F o0 = J.7 and e = S'-fc'isiis.S'
As a consequence of these trivial changes, we obtain the two
very different sets of phase shifts.
The sensitivity of the scattering results to the ground state
(96)
Helium function has also been noted by Burke, Cooper and Ormonde

who considered the electron-Helium problem. They chose the ground-

state Helium function as;

4-T91
where is the U state of the Helium ion defined by equation
A _(r
(2.23b) and =) =ocJd e where ~ 1is varied to minimize the

total energy. It was found that allowing \ to be less than the

square root of the binding energy led to meaningless results.



» e

to
P

FIGURE 5-7

Elastic cross-s3ctions in the virtual Positronium

formation approximation
lower bound calculation

(this work> and a variational
(Drachman 50) )"
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Several ways of improving these results are described in Chapter VI,
The most Important of these is the addition of the 5" states of Helium
and Positronium since this will immediately introduce a large percentage
of the attractive polarization effects. Short-range correlation terms
(41)

are chosen so that the lower bound principle of Gailitis can be

applied.
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CHAPTER VI

6.1 Hl”er Partial Waves. l
Equations (2.34) define the set of coupled integro-differential
equations resulting from allowing the total angular momentum to be
t and the Helium atom, ion and Positronium to remain in the

ground state;

f
1 (¢ 1 6.la
J
(o]
S
- e(Ctl) fk; - f 6.1b
\
W U)
where K,” and EK»» are defined by equations (2.1w) and (2.52)
respectively as:
.. I
K,i wr') = (IyT S*k% k + Kj @)
iet\
6.2a

i@IMr (i+p3  XE

(@il+0*

I 1cf?£K;000) 1 (4) 6.2b
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and all quantities are defined in Sections 2.3 and 2.4.

6.2 Correlation Terms.
(@) Derivation of the radial equations.

The total wave function for I=0 is now taken as:

6.3
where ~ and ~ @are defined in Section 2.3 and is a
correlation function.' The terms of must vanish exponentially

at large distances so that they .do not contribute either to the long-

range forces or to the scattered flux. is therefore chosen as

follows:

where Pjk 1is the operator interchanging j and k and C ©* is a
variational parameter and * The total wave function now
contains terms explicitly dependent* on the electron-electron and
electron-positron coordinates. In order to define the number of
linear parameters C ~ we introduce N:
N - { +k "

tJj , k end 1 are varied for N less than or equal to some

e gpecified number which in this work will be taken as four. o6 can
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be chosen to help convergence.

(99)
Burke and Taylor have shown that the phase shifts obtained

from the wave function defined by equation (6.3) still satisfy a
minimum principle even though the correlation terms are not orthogonal
to the remaining terms. Therefore equation (6.3) is substituted into

the variational principle to give the following;

b (k [ BE-g] s (f, AfgAf At). - 0 6.5
6.6
~ H-e] 4 (£.,T,,'-p") = 0 6.7

Following the method of Appendix A equations (6.5) and (6.6)

reduce
to:
@)
A 7 tk, X JOP. 0
Jit, !
6.8

A.' vk' - “j K:L@) ~j Kl%ﬁf,,

t W AMp.) [H-e] 6.9
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Green*s Theorem can be applied to equation (6.7) to give;

\ I [W_E] (tl 29 Iff)
6.10
J /*
where » &) = 0Og.! [H-E] *6.11a
J W
<vC=) = 2fi \ [H-E ] 6.11b
JVK J
N om [H-E] 6.11c
From equation (6.10) we obtain:
M 6.12
N T @
AV
-1
where M A (N 6.12b

Substituting equation (6.12a) into equations (6.8) and (6.9) produces

the following system of integro-differential equations;

i_ +k’ ~(M = - K/j (tgr«/ )

oe

SJITT A 6.13a
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pm AOO

W Y., m 6.13b

(@) Simplification of
A superscript R will bp affixed to and to denote

which value of G 1is under consideration. In this work 2 will

take the values 0, 1 and 2. Ibus;

i = IX i (&, 6.10a
" 2. Cf.,0 6.10t)
= (p, \pr+'» .0 6.1Uc

where X () = £/ ¢

and A ("+F-kVv, 1
e
Tbe expressions for can be simplified by use of the following
formulae:
P

©6.15a
msO

%
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After much detailed calculation, expressions for

as follows:

T A

e} a I r
p"t @p) = Cp(ivT* XCtp) 3-A A
to
+ (WP.k)5 - 34 (4+,)
k1, ° ib»
+ 4-f1 (f+0- fp : f
- (3jilM V~AlLiitkiu.!
" AMva-v-v. aup'”
where  flr= ()% A T +on 1
(t.+ok) * (J+al ) *
and ii": A I
Uray N Lluy
pM (fp) = N (fcir) fp K(fp') ( 1+ t'jk) A-A A
M k»w/ V M kb)
2A fl &/~ £ 40 R (fp-1- 3

3r

Le
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6.15b

~

é
are obtained
1 3
A) ~ EV
to
?
Itg

6.16

6.17a

6.17b
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- AV O
If i
Vw
*ti
ijV4"'*A
+ VQva)! \ vwk - 4-fp (*t0 ! Y.E
.8(i'.,)', Yy E —Kj.kV. \Y grrm? 6.20

It can be seen that  is the most complicated of the three expressions

and this is on account of the factors and appearing linearly.

(b) Simplification of .
g*is more complicated than p” because of the coordinate system

which will be changed to (©, as was done for the second kernel K*.

The tliree expressions are as follows:

~fo o ox) M0 o)

(£1) " ~ TT (

e t) @Ssaystopyygra s ao

4

=< ST YD, - 1 37 Iy

. < &
—_ 6, -~/ _|.y m. 6.21

A axti



239

<&

k —
where 6.22a
L
and 6.22b
A A
where M= «".y
where is the smaller of f, and and is
\£\
T I
the greater, and are defined similarly except that and are
replaced by and , & and respectively.
I ~ / \Y
fp t (L+p~k)
) ()
0
' k * k V! 'k
U) t U G, 1 A
Wi 8 0 f0 oo  vyfo O™~ U)
00 “» k

t */*0"'cO0”%0 ex'). A & <) + i A N A
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C )iR/QA3» 14 / @3-33(p / £)* s )
Tt N ( »illl (13 ) (13t (k/, (13- «(f. (4)*,*(Ji3
A(extL ) AL A 2kfp Al (137 /iF ()
v N (al/, ¢3-kf a3 3t (Vi w-«<"%3)/, B
[ (i 03", (83
1
14
(AA,"",0-i< A"'*
- v o~ (,3 +3,1 (13 = v R/ 1B« A« I M . -
r/
| »3 . A t  dy.i 1 - I,C

(*v+i) c> (ivo
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k-X
tp Tp
% \
£ A @ + /i, )8
( 3JK43 ) i
@
C .y 3V \ (mera "3 A1/ (1))ix(>-)
v» (J.U13~»
6.23
™ <
k k
where 1 and are defined in egations (6,22),
I k k ¢ Kk
Wx C3 = @@,) = IN j f. Rs AR\ 6.21ta
5' <
A< Ak P k : 6 ot
Tv = tvKk.V = Ahll] P A Pv(%) ™1 '
6.20c
P

6.2Ud
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where X" is the smaller of and and is the greater.
sk
6 X («N[.0 - >MHx W i Kr, te-i ) FA
R =
Xt hig
XX=» XX+3
AL
c @l = ~ Ve » <N Vo N (», ) & .
(xx+0~" R o
v £f X+( ~ fc
XV A\ XXti <>
Ju
= iH\ (> ) vl oy
(XX+1
I

- [ X +  \»>

IX-I XX+t
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6 .25a

6.25b

6 .25c

6.25d



2hh

And finally:
a - dr.
= @C1*-T £, \ Ty. tp e
B @.'p ®o, \ + ®i,1i + 8 («, +yj.tt'p )®0, 0
. f 0) W + % /12" 1) ] - a-"pp (X)
b | ( k (f, u B- «6 f, AN 8: <fe (IT { -g-.-fp /i B (X)
~ 2L ¢ ) vM/ " (le'St+p M1 Mo”® - « (")
(i @ - o(./1/ 1lai) - &P >/lo C*")- u) ~
TC M™ Ay 1 MilM'* b X " (kA (SE>-0CO)  »)

3 A £-1
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— T.TI 1tg" Hece<t!

” (XX+\ ) f, &, <
~“P T( Ig.MX\O[ £ >. fri + Zzi v H<Em" ]
XX+l XX=\ XX+1 IX+i Sy
S W' [ M VI »') t M), (l).qc t Myji (»).*C 1 ~ 3 ~ 26
XX-1 XXM r> XXf) fM
where *x,x'" ~ JL M\ 0> ~ V'H i) ox' 1
kA * W * k
' 4Mx O X' @ - “RxMo*x'Cii" ~ (4 8.~ ix)

| k

, .
(*) + XALAH)E 1™ A" (vy

- (e+jx.*’)/tx" 0) A"

k-l k
+ X RAMK'* (' '» oH» t W C-I"M Mo “Xx U
< P
..
" a4 URH)VCS B
Yy

-J[. (C+X)MA''> "N' k)

4
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The various values of \ axe shown below:

10 2" 0 0 0
11 2 1 0 0

12 2 1 1 0
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0,3 Addition of the 2P states of Helium and Positronium,

The radial equations will be derived assuming that the Helium ion
remains in its ground state and the Helium atomic states considered
are the (Ijn"/ . The total wave function with angular and spin
quantum numbers L and S respectively, describing the scattering of a

positron by a Helium atom is given by:

'T oMY @ " 6.28
r
where I = and
o = © and ~ = where and = .

Thus the two electrons are labelled by angular and spin quantum
numpers and ' and the positron by , The

components of equation (6,28) are expanded as follows :

t$ e
/ 15

where and the C*s are Clebsch-Gordon coefficients,”
is the normalized single-particle spin function and is the

' (90)
Helium atomic function. Following Burke, Cooper and Ormonde we
write the wave function for the (hno6) state of Helium in the
form:

(1IN0 = 1 £ (1) 6.30a
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>rifere g M e . 6.30b
#if 7 *
and Yo is the Is radial wave jTunction of the Helium ion defined

in equation (2,23b), The radial function is determined

variationally by solving:

([ (I>"s " 6,31a
subject to : * Cpyi ~yyE 6,31b

Fdiere <X includes a summation over the spins and

= - (V, +7* ) - i -Jt + Al 6.32

The second term in equation (6,28) can be expanded as follows:

x C (18 X, X 6.33

idiere X = ~“A is defined as follows :

fx (a.o0 = Xf., O.p") ©0.34

where n is the radial Positronium function, Hi* and H, are
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defined as followsi

Hy, = 6,35a
P
Hi - A ] 6.35b
i
and = kj.t (p)
(0
Referring to equation (2,17) the general expression for is*
~s M ~ ] ORAVARG IR L)vd M1) C(IS(S M& )
I
My-£f ©E') [nE] ~ 6,203,240 <T 6.36

The following formula is used to simplify the spin expressions*

€2240:69!1

One type of spin product in equation (6,36) is*

"@)."N = AV

I
Nk

A second type of spin product is !

595t 'X Cf) 0,p) ci) "™ 4 SR »

Ke (i 7 G,"vA,p" 0

| " "MfpVsp”



Therefore equation (6,36) reduces toi

2_ A T P'»\ (\ "As.
CHBGI; My ~O0lfg & fo(u
ff viSir “»'S
* :C (PiG.,L; >
A

<where

oY »C. C'"5 > = «SH N6 (T "M ')

-1 I

=-[(xs*>y2s~+0] Hi §' s 6,38
i
; 1
where L 7 denotes a 6-j coefficient as defined hy
(97)

Rotenberg, Bivins, Metropolis and Wooten . The 6-j coefficient

can be defined in terms of the 3-j-coefficients as followsl

K’y W j
»Ln

6.39

251
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where ( ) represents a 3-j coefficient vdiich is directly

related to the Clebsch-Gordan coefficients as followsi

X /e Pi\
c I 6.40
I TeWyg
(A
is now written as followsi

o O’) " _ (A A

His 1Ifp) = Bis Cf') &= Bii (")
where (P - ° 3 [ UI.-0 ~0 \v;

c (BP'P,' u; wpL, mM C((pP;L;w.p..,MI)[H-E] [111-n'AJsR, W!

and 6.ISCIf'J= i - * ( [U (riM Bi] ) T
JoT
Cfep'Pj’ L; "p"Mu') C [PiO.L; ~ m 1 A~ Vv f 1 ¢ n L)
= LS
VS G IES) Ve, (PY) 6.42

PApplying equations (2,33) and (6,31) to (6,41) results ini

/\LS A A C/\p A A A A i_l) J ( V)



where k» = E- F

and (*) ~ A C ('L, Mu) ~(fpBL ]

5\ V ()A.p(?p) I [w(-0™V.j«p.,v=V(£')"5

Performing the angular integration over givesi
© 1S
8sCV ™ i1 -& M) Fv@p  +1 T Vvv(p"Klp
o v

The second integral S*j simplifies to the followingi

JLTT

where Ik =

6.45
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Applying Green's Theorem results ini

Yy M1)
Jwf HES' A
X
1S
-7 ¢ ,\i i
t
- P 4
+ i -Jfc
* ip.WfpAr.Ai
o0
0.46
to /A
where I
JAir ‘S ;
* 1Npp £ "i +i Wi %, ][
fp fi Al pv
0.47

Combining equations (6,45), (6.46) and omitting the superscripts

L and S we obtaini
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[ \% F
| (M = 2 F; (D
A
6.48
X
&‘/\
For the second equation we define as followsi
af 1
~4-TR) u") [ -E"
= 4 C (Pi'
N\ w
VA [HE]y C
>»
AS,SA< [ |_|_(_>Yl] +
(kP ,)2_ S-s,s;
LIAC>S T W
* (B, A a2 \aMt1

£ y ) ()

~tS ("1 M LS &L) + SIS
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" \ Yo H«,V (P ip.) MiLi' A) [H-g]

vEifT

[uC-0') tP.,e, ., ("M, "ptPe) fv"

= >1'")] C(pVH-.A'HO" (PpPsL;to"..,MO

AtV ~ [+CH) AT @) £H-E] ~ ()
Eir
WISV . ") é. \ ") Fs (fi =i;,jfpdi
8
O
Fn K~'., Cfp,T,)1ly 6,49
Ife W
kj 'A) Mu) G Mu
T
//\

JwT ) FATE"
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I(t13 \ ‘_°Iej®1) wye; . (p,) p)
AT
* fao B1A M k'it 1l i1
P '® "
LS
r,
- "3.(®i4.]) £kj () 4 JL A 6™ (<x,) 6.50
& £
wherei oV o« &, - 3\ C ( ~ J ~ L 9
L
TT
A f I'")Mu') J ~~o@)” (p) TW: £
» (9-)"( (fl) 'ytl_r IIII)
) - 3. -J_ 4 1 . 0,51
e \ ~
And finallys ~ 2 ot Mu )
"¢ (PiP,L;.,,."Mj \ V ; £A

AT
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2 M) CEB 177,10

(td\ ©. ~ &) Ce,)<t,(t)opp . )

'"1IA +-L-L-A &L - 1 ty

PP .
(")
- % y c c¢c9i'p.' L ; v . 1 VvyM1i ) c (f AL M 1)
¥ W3
x A i« '"1i) A) (fo ver -S; £ Mit "ii t
-, AU B
' fo ~ ) io") (h') "0-" "V, (fORVifiifs
W LS
() Ky ™ (g yi) 4y ©6.52
"*®rei K*y(T, yu= -liealfi v C-(Gj'¢H,'l; 'H'to,' Mu')
™
* ;oY NMLY) O\ A) ~f-o0l+1l #Ht™ec

' % ' v pwad
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6.53
Combining equations (6,49), (6,50) and (6,52) givesi
GyM. ")
@ r— .
F /1 Gy. (Ti)1"y(c,yjyT" 6.54
(a) The Direct Interactions V.
The interaction V  between the positron and the Helium atom
which is given by equation (6,43) can be written as follows *
= ~*Y ¢ cvVk; -pV, 'ML)cCCpCsL.XfV., M1)
I 1
" t-v ety (fp) ° ] (t) 5
* (f) 1 W1 M"p At,ifT
"PI
oz A C*o > 0
AN (A0 >N0) BT ( .uye, ' ;Pp) ° Q' o/; L)

CAgpV1) C (Pp'f.'Lyoo)
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~ (7o ag (* ry) fcoi)= fol | 4°15

(16p+0 C ®BLI®O)A @u{)y "o B 65

Cau\) (iE4+1iV

09)
. 2
where A (")) ™ j ™ 8wVt cat* 6,56
< reo
and J_ \ 4 f1(t"iéf) £'v 6,57
. htI
i A o'
VvV  («. fa G\-L) = (e, "A.'V; L) 6.58
where | x ( SL) = A) ! { (ae,+0(a(,'t]) (3Ltt) (ieyi)]
1iC. (?,€,"'K;000)C (C™C, "\;000) * 9 6.59

and the 6-j coefficient has already been defined in equation (6.39).

The interaction V , of the Positronium with the residual Helium
ion is given by equation (6,51). Before being able to perform the
angular integrations, the spherical harmonic functions with arguments
@) must first be expanded using a theorem by Moshinsky(gs)which

states!1

Given r=xf" them
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6,60
As was shown for the I=0 case in Appendix B the direct int-
eraction vanishes’ if only S-states of Positronium are
taken into account. In general»
!
o' ! fi
¢-i)
lpt-1
6.61
6.62a
P At)
and Jn 1~ J B 6, 62b
iitl 1
A A

where wW'=
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(o) Simplification of the Kernels,
I

In order to simplify products of Clebsch-Gordon coefficients
«

appearing in both kernelsji the following two formulachave been

used! T
c-0
f, /. v '
7 6.63
=\ (-0 M
PV N, e, v « I J,
6.04
"W /\ n

After repeated applications of equations (6.39), (6.40), (6.60),
(6.63) and (6,64) , defined by equation (6,4?) finally reduces

down toi



S,ry 1,.0 C (<Ap9/\j0f10)

#MC-( >*2*p ,L ; 00 0) C

i @,-20", (3p! (1U+ 1)

g..)llllH/ll" \ > «. T

(3 3ptl) P
. I
A (b I— ‘I ~i-A ©
Ar, T, J "
B~ A (fo >w"o) ™" 1 (Af,y
(aCt'.i) « r=¢  («,-ipti) Gpr-ap)l(3p)i,
VvV p
au\
M0 c (A p Ojso00)C(P('fj.'L; 000"
> C (J/"-p ,L; ocoo ) e.
- K > (") @y, vi)i. (3p,.1)

«' =0 Us'3p")1(3p")!JT (%, '-3p'V\)

C(O' ~ t ,'UOO)C P' A A >'000)C('ep',?s'-p', £’; 000)
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where

c (pp' £

X 2f ') (d'-3pH )(  ip'l)

‘0Go'") C

(

L p'
vV e J 1 p i pfp
~on ,£0) 2 117 1 ~1
Ro'
| (' etcetera.

£'7 ooo”

26l*

6.65



iEpAMIepit. =

p, *

npb,

“We (') ©.)

b e A 't'(Pi)

Pl"l

] (4, ') &)

2 K(V(\("p, ") E/N

J O\ 4 QrCh™y) FIL(YY)

I X1 ¢ (miorp/ (v

J— > \«.y

Ly  UOebps' B,
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6.66a

6.66b

6.6,6d

6.66e

6.66f



266

K , 1is defined by equation(6.53) and reduces tot

MY VX M PR

/[F— p:0 pIO
t"

* (a..x'cs*PiXw.Vi')

(ir +iX i+ 1) (XX 2p+)

(J xp,*eV—p-f'
i <Ax1 (Tx
ipa* o~
A L
pi'ioo00)C ((/'p'C)'" 000)
J
K J ! T L (/ e; L y
0 <«
(fP d. P'X
2 (2U01) (
! (Y K.p. (O (2p £;,0©00) c (e, V cf;o000)

(2i+1 )f irP1l)



K C (og.y 1',' 000)

e, £' i"
/ «nV p'
where H 'w =
-k
ul
£l
P.

X

t'.'ooo) I
L X r L
t e, g’ r
«toetera,
=< and S = if
and ~>-—7, if
"
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6.6?

K<<

6.68

The appropriate values of v>,vwy/<andyx can now be substituted into

equations (6,55)»(6,61), (6,65) and

sets of equations for the 2P states of Helium and Positronium.

(6.672)

to obtain the particular
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APFEITDIX A

simplification of M L and H * (<)

Substituting equations (2.3); (2.28), (2.24) and (2.26) Into

(2.28a) ve obtain the following

o)
fit (fp) = -Vp +V ~k,
o po. P>
r r ~ aj (L)
+ 2\ '-i Vo-,+it“ie'2 +2 -llka 5

where the factorof Z 1In the second integral occurs because of
the symmetry of theHamiltonian and of the wave functions of the

Integrand In thecoordinates I and ol , We change the
Independent variables from* E£V') to (£ ; the Jacoblan

of the transformation being a . Applying Green’s Theorem to

the second Integral we cbtain:

Ia

The surface integral term

of Green’s Theorem Is zero since and are bound state
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A.la
Per) = " J»' (Pn(f") A.1b
ir-1' 1
A fZ A.lc
A
Therefore (™) emay he written as follows:
A Lll( l) _ - A~ Y "M pv
A \ul (&)~ V.'iK,  (tp,2', ") Afplf, A.2
where K, (ip,3,")= +ki")+ 4-PW" VPM"'iIMu@Ehifo, ") A3
A similar procedure is followed for H © The independent
variables are changed from to ~ the Jacobian

being I also. Applying Green’s Theorem to the first integral

of and using equations (2.3), (2.23), (2.24) and (2.26) in

equation (2.28b) we obtain;



LOYw (f,) YIM (yo [ ©* <p.

Lol 0508 L tal{f, <", Alp'di;

0 0O
=) L IPAN j l/\IM @l) (@,?,|)l/\/\' <j_-@

(8.)
The second integral of L O%t) can he written as follows;

[~f.w ~(p.)f 'H._J.C ,

0o L~ £ ~ p 1 J

where & — ci"Ywio, )Vi.HCEfi) [ -£ ] (W)
Applying Green's Theorem to T we obtain;
G (") YInl®,) [ H'E J P(cide(,awlp,') wtfiWi,

Changing the independent variables from (£ to

1
the Jacobian of the transformation being & we obtain;

r >
T = -3 GG (TzY Ki(T Asvé&fi

270

)

A.O —-

where {f,u)~" K pl.l-“k+it-"1-3.+1"1 ~»,(0?P, (@)<J(£,")"J(Pi)

V. Pt B 1Jf

It can be seen that x ,a.) symmetric with respect to
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interchange of I and 3. . Therefore to preserve this.symmetry
explicitly in the form of K we take the average of K). ~
and follows:
AT 'Y = 6 +P,1) ivi -lc*ki~L-L €b. (of,Wv. (o, )w(E>»” A.7
~ P» ol §
where is the operator interchanging all coordinates 1 and
" . Referring hack to equation (A.5), it is shown in Appendix B

that if only s - states of Positronium are included then:

"o
k'Jt G =
' fp' Ps

Combining equations (A.4), (A.5), (A.6) and (A.7) we cbtain;

A

RL («e.)= -1 ~ XuM ]
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APPENDIX B
Consider the expression *

0O
& (T') s -
.lt"’k "i +l AAjflJi B.l_

Pf f, P

Using the expansion;

B.2a
where = 1< and t"=a = k if ac T B.2b

feri> ) t>= 34 if 1< <&

With reference to the ejq) ressior}:s B.1 and B.2 it can be seen that;

= A M H X *M]
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= 0 when=0 or an even integer.
Where denotes that a=<¢ , k» " emd denotes that
@& = andk =" in equations (B.2).

Considering the emgular integrations of equation (B.l) we have

the following factor;

Using the addition formula given by equation (2.4-3) this reduces to; —
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