IN NOMINE DEI NOSTRI

MAGNIFICABIMUR

COVERING PROBLEMS IN EUCLIDEAN SPACE

CAROLE HATFIELD

ProQuest Number: 10107359

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10107359
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ABSTRACT

Our purpose in these pages will be to develop a broad survey of some problems in covering which have been solved using the methods of convexity. The basic aim has been to show the flexibility of approach which is desirable, and to do this we shall discuss ten particular problems with widely differing methods of solution.

The problems to be discussed fall into three main categories: covering a single set by a single set with specified properties, covering a single set by many sets, and covering many sets by a single set.

The first chapter is a collection of some necessary preliminary definitions and theorems in convexity. In the second chapter we consider six particular problems of covering a single set by a single set: these include finding the convex covers of certain arcs in two and three dimensions, finding the smallest containing sphere of an n-dimensional set, and establishing properties of particular types of containing set.

The final chapter contains problems which fall into the other two categories outlined above, and includes finding a single set to cover an infinite class of sets, and covering one set by a finite class of sets. The last paper considered relates one set (the plane) and a given infinite class of sets it is included for the sake of completeness and because of the methods of solution involved, but in fact can be considered as a problem in covering only if the latter term is not restricted to mean complete covering by a class of sets.

A full list of references to the original papers is given at the end.

CIAPTER I

PRELTMINARY RESULIS

The purpose of this first chapter is to establish a number of results which will be used later in the work, and also to state briefly what will be taken as common ground in subsequent discussion. We deal with the latter first.

It will be assumed that the most connon terms used in set theory - for example, set union and intersection; complement; disjointness; the exterior, interior, frontier of a set; open and closed sets; discrete sets - are all known, and definitions are not given. Knowledge will be assumed of tine meaning of statements such as
a set X contains a set \mathbf{Y},
a set is symmetric in an interior point,
two sets X and Y are congruent,
a set is reflected in a point,
X circumscribes Y, or Y is inscribed in X.
We shall borrow without definition a number of terms from elementary mathematics, and in addition we shall use without proofs or definition of terms results from measure theory and elementary analysis, in particular that
(i) the uniform limit of a sequence of continuous functions is continuous,
(ii) a polygon of given perimeter length has maximum area when it is regular.

We shall make free use of set theory notation; of vector notation
where it is convenient; shall denote the left-hand side (right-hand side) of an equation or inequation by LHS (RHS); and shall use as equivalent terms the words perimeter, boundary, frontier.

Since, however, the papers to be discussed deal mainly with problems involving convex sets and their properties, we set out in detail now a number of results from convexity which will be quoted or referred to in the other chapters. [Kef.]

Euclidean space of n dimensions is denoted by E_{n}. A point is usually denoted by a snall letter, and a set by a capital letter. The frontier of a set X is denoted by $\operatorname{Fr}(X)$, its interior by X°, and its closure by $\overline{\boldsymbol{F}}$.
E_{n} is the class of all ordered sets of real numbers ($x_{1}, x_{2}, \ldots x_{n}$), denoted by x, with a metric defined between two elements x, y, where $y \equiv\left(y_{1}, y_{2}, \ldots y_{n}\right)$, of the class as

$$
|x-y|=\left[\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right]^{\frac{1}{2}}
$$

and called the distance between x and y . This is the usual n-dimensional Euclidean space. We shall, where desirable, be free to regard the elements of the space as vectors, obeying the usual laws of a vector space.

The origin in E_{n} is denoted by 0 , and the line segment joining two distinct points x, y is denoted by $x y$.

A subset of E_{n} which is the empty set is denoted by ϕ.

The distance function has the following properties:
(i) $|x-y|=|y-x|$,
(ii) $|x-(y+z)|=|(x-y)-z|$,
(iii) $|x-y| \geqslant 0$, with equality if and only if x and y are coincident,
(iv) $|a x-a y|=a|x-y|$ for $a \geqslant 0$,
(v) $|x-y|+|y-z| \geqslant|x-z|$.

A subset X of \mathbb{E}_{n} is bounded if there is a sphere of some finite radius r which contains X.

We define the distance $\rho(x, y)$ between a point x and a set y as

$$
\rho(x, y)=\inf _{y \in Y}|x-y| .
$$

A neighbourhood of a set Y is denoted by $U(Y, \delta)$ and is defined as the set of points whose distance from the set Y is less than δ.

A hyperplane P is defined as the set of points x satisfying the equation $\mathbf{f}(\mathrm{x})=0$, where $\mathbf{f}(\mathrm{x})$ is an expression of the form $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}-b$, where not all the a_{i} are zero. The inequations $f(x)>0, f(x)<0$, or $f(x) \geqslant 0, f(x) \leqslant 0$, define open or closed half-spaces respectively.

If two subsets X, Y of E_{n} are such that one of the closed half-spaces bounded by a hyperplane P contains X and the other closed half-space contains \mathbf{Y}, we say that P separates X and Y. (If the same statement is true for the open half-spaces bounded by P, we say that P separates X and Y strictly.)

A convex set X is defined as a set of points such that, whenever x_{1}, x_{2} are two points of X, the line segment containing every point of the form $\lambda x_{1}+\mu x_{2}$, where $\lambda \geqslant 0, \mu \geqslant 0$ and $\lambda+\mu=1$, is contained in X.

Theorem 1. If X is a convex set and if $x_{1}, x_{2}, \ldots, x_{k}$ are k points of X, then every point of the form

$$
x=\mu_{1} x_{1}+\mu_{2} x_{2}+\cdots+\mu_{k} x_{k}
$$

where $\mu_{i} \geqslant 0$ and $\mu_{1}+\mu_{2}+\ldots+\mu_{k}=1$, also belongs to X. Proof. For $k=2$, this is just the definition of a convex set. Assume inductively that the assertion is true for $k=m$, and consider a point x of the form

$$
x=\mu_{1} x_{1}+\cdots+\mu_{m} x_{m}+\mu_{m+1} x_{m+1}
$$

where $\mu_{1} \geqslant 0, \mu_{1}+\ldots+\mu_{m}+\mu_{m+1}=1$.
If $\mu_{m+1}=1$, then $x=x_{m+1} \in X$ and there is nothing to prove. So suppose $\mu_{m+1}<1$, in which case

$$
\mu_{1}+\cdots+\mu_{m}=1-\mu_{m+1}>0
$$

Then we may write

$$
x=\left(\mu_{1}+\ldots+\mu_{m}\right)\left(\frac{\mu_{1}}{\mu_{1}+\ldots+\mu_{m}} x_{1}+\ldots+\frac{\mu_{m}}{\mu_{1}+\ldots+\mu_{m}} x_{m}\right)+\mu_{m+1} x_{m+1}
$$

and by the inductive hypothesis we know that the point y given by

$$
y=\frac{\mu_{1}}{\mu_{1}+\ldots+\mu_{m}} x_{1}+\ldots+\frac{\mu_{m}}{\mu_{1}+\ldots+\mu_{m}} x_{m}
$$

is a point of X. Then

$$
x=\left(\mu_{1}+\cdots+\mu_{m}\right) y+\mu_{m+1} x_{m+1}
$$

and since X is convex and contains both y and x_{m+1}, it follows from the definition of a convex set that, since
$\mu_{1}+\ldots+\mu_{m}+\mu_{m+1}=1$, X must contain x also. Thus the inductive hypothesis is true for $k=m_{+1}$, and hence the theorem is proved.

A set is atriotly convex if it is convex and its frontier contains no straight line segments.

Two sets will be said to overlap if they have interior points in common (but not if they have only frontier points in common).

Theorem 2. The intersection of any number of convex sets, if it is non-empty, is convex.

Proof. Let I be an index set of elements i, and consider the family of convex sets $X_{i}, i \in I$. If x, y are two points of $\bigcap_{i \in I} X_{i}$, then x, y are points also of X_{i}. Since X_{i} is convex, this implies that the segment $x y$ is contained in X_{i}. But X_{i} is an arbitrarily chosen set, and so it follows that the segment $x y$ belongs to $\bigcap_{i \in I} X_{i}$ Thus $\bigcap_{i \in I} X_{i}$ is convex.

A hyperplene which intersects the closure of a convex set X but which does not have any point in common with an interior point of X is called a support hyperplane of X. We say that such a hyperplane
supports X at the point or points at which it meets the closure of X.

Theorem 3. Every point of the frontier of a convex aet X has at least one support hyperplane of X passing through it. Proof. If X is not n-dimensional, any hyperplane containing X is a support hyperplane of X at all points of X.

If X is n-dimensional, we can show (lema 1 - page 28) that there is a hyperplane P which separates X°, the interior of X, from a given point p of its frontier. P does not have any point in common with X^{0} since this is an open set, but since X is convex we know (lemma 2 - page 30) that p belongs to the closure of X°, and so it follows that P must contain p. Thus P is a support hyperplane of X at p.

The convex cover of a given point set X is defined as the intersection of all the convex sets which contain X, and is the smallest convex set containing X.

The diameter $d(X)$ of a set X is defined as the least upper bound of the distances between any two points of the set.

Theorem 4. The diameter of the convex cover of a set is equal to the diameter of the set.

Froof. Consider any set X. Let $d(X)$ denote its diameter, and let
$H(X)$ denote the convex cover of X. Since X is contained in $H(X)$, it follows immediately that $d(H(X)) \geqslant d(X)$.

Suppose that $d(H(X))>d(X)$, and put $\delta=d(X)$. If we take any point x_{2} of X we have then that $\left|x_{1}-x_{2}\right| \leqslant \delta$ for all $x_{1} \in X$, and it follows that the set X is contained in the (n-dimensionel) sphere $S\left(x_{2}, \delta\right)$ with centre x_{2} and radius δ. Since $S\left(x_{2}, 6\right)$ is convex, the convex cover $H(X)$ of the set X is also contained in $S\left(x_{2}, \delta\right)$.

Now let y_{1}, y_{2} be any two points of $H(X)$. In partioular, we have that y_{1} is a point of $S\left(x_{2}, \delta\right)$, and hence x_{2} is a point of $S\left(y_{1}, \delta\right)$. Since x_{2} was chosen arbitrarily, we have that the set X is contained in $S\left(y_{1}, \delta\right)$, and so, again since the sphere is convex, $H(X)$ is contained in $S\left(y_{1}, \delta\right)$. But then since y_{2} is a point of $H(X)$, we have $\left|y_{1}-y_{2}\right| \leqslant \delta$, and hence, since y_{1}, y_{2} are arbitrary, $d(H(X)) \leqslant=d(X)$. This is a contradiction with our assumption, and the theorem follows.

Theorem 5. (Helly's theorem.) Suppose that there is given in $E_{n} a$ finite class of N convex sets, with $N \geqslant n+1$, such that for every subclass which contains $(n+1)$ meabers there is a point of E_{n} whioh is comon to every member of the subclass. With these conditions holding, there is a point of E_{n} which is common to every member of the whole class of N sets.

Proof. Obviously the theorem is true when $N=n+1$, and we use this to prove the general result by induction.

Assume, then, that the theorem has been proved true for every class of ($\mathrm{N}-1$) sets, and consider the case when there are N sets, $X_{1}, X_{2}, \ldots, X_{N}$, say, in the class.

According to the induction hypothesis, if we take out the set X_{i}, then there is a point

$$
x_{i}=\left(x_{1 i}, x_{2 i}, \ldots, x_{n i}\right)
$$

which is a point of X_{j} for all $j \neq i$. Now consider the set of ($n+1$) equations given by

$$
\left\{\begin{align*}
& \mu_{1} x_{11}+\mu_{2} x_{12}+\ldots+\mu_{N} x_{1 N}=0 \tag{1}\\
& \mu_{1} x_{21}+\mu_{2} x_{22}+\ldots+\mu_{N} x_{2 N}=0 \\
& \cdots \cdots \cdot \\
& \mu_{1} x_{n 1}+\mu_{2} x_{n 2}+\ldots+\mu_{N} x_{n N}=0 \\
& \mu_{1}+\mu_{2}+\ldots+\mu_{N}==0
\end{align*}\right.
$$

in the N unknowns $\mu_{1}, \mu_{2}, \ldots, \mu_{\mathrm{N}}$. Since we have assumed $N-1 \geqslant n+1$, that is $N>n+1$, we know that there are non-trivial solutions ($\mu_{1}, \mu_{2}, \ldots, \mu_{N}$) of this set of equations. Consider one such set and denote by $\mu_{j_{1}}, \ldots, \mu_{j_{k}}$ those of the μ_{i} which are non-negative, and by $\mu_{h_{1}}, \ldots, \mu_{h_{N-k}}$ those which are strictly negative.

From these numbers define the point $y=\left(y_{1}, \ldots, y_{n}\right)$ such that

$$
y_{v}=\frac{\sum_{r=1}^{k} \mu_{j_{\mathbf{r}}} x_{v j_{r}}}{\sum_{r=1}^{k} \mu_{j_{r}}}
$$

Now $\underline{x}_{j_{r}}$ is a point of x_{j} for all $j \neq j_{r}$, and it follows that the points $\underline{x}_{j_{1}}, \underline{x}_{j_{2}}, \cdots, \underline{x}_{j_{k}}$ all belong to the set X_{j} provided that $j \neq j_{q}, \ldots, j_{k}$. Then, since the $u_{j_{r}}$ (rape 8) are all nonnegative, it follows by convexity (theorem ${ }^{1}{ }^{1}$, since X_{j} is convex) that the point y which we have defined also lies in the set $x_{j}, j \neq j_{1}, \ldots, j_{k}$. In other words, X belongs to each of the sets $X_{h_{1}}, \ldots, X_{h_{N-k}}$.

But also the equation (1) implies that the same point y can be defined by the equations

$$
y_{v}=\frac{\sum_{s=1}^{N-k}\left(-\mu_{h_{s}}\right)^{x_{v h_{s}}}}{\sum_{s=1}^{N-k}\left(-\mu_{h_{s}}\right)}
$$

where now $-\mu_{h_{s}}>0$ for each $s=1, \ldots, N-k$, and it then follows as before that the point \sum belongs also to each of the sets $X_{j_{1}}$, $\ldots, X_{j_{k}}$. Thus X is a point common to all N sets of the class, the induction hypothesis is true for N, and hence the theorem follows.

Theorem 6. (Carrtheodory's theorem, weak form.) If y is a point of

1.4

the convex cover of a set X, there is a set of s points X_{1}, \ldots, x_{s}, all belonging to X, where $s \leqslant n+1$, such that y is a point of the simplex whose vertices are x_{1}, \ldots, x_{s}.
Proof. It is shown below (lemaa 3-page 33) that for such a point y belonging to the convex cover of X, there is some finite integer k such that

$$
\begin{equation*}
y=\mu_{1} x_{1}+\cdots+\mu_{k} x_{k} \tag{2}
\end{equation*}
$$

where $x_{i} \in X, \mu_{i} \geqslant 0$ for each $i=1,2, \ldots, k$, and $\mu_{1}+\ldots+\mu_{k}=1$. We want to prove that it is possible to find such an expression for y with $k \leqslant n+1$ -

If $k>n+1$, then since we are working in space of n dimensions the points x_{1}, \ldots, x_{k} are linearly dependent and there exist numbers a_{1}, \ldots, a_{k}, not all zero, but with $a_{1}+\ldots+a_{k}=0$, such that

$$
a_{1} x_{1}+\ldots+a_{k} x_{k}=0
$$

Now consider a point y of the form

$$
y=\left(\mu_{1}+\tau a_{1}\right) x_{1}+\cdots+\left(\mu_{k}+\tau a_{k}\right) x_{k}
$$

where $\mu_{i}+\tau a_{i} \geqslant 0$ for all $i=1,2, \ldots, k$. With this restriction on the values that τ may take, we may note that the set of possible values of τ is closed (since the inequality is not strict), is non-empty (since $\tau=0$ is certainly a possible value, because of the definition of the μ_{i}), and is not the whole of the real line (because at least one of the a_{i} is not zero). Hence there is a frontier point, say τ_{0}, of the set, and so for at least one integer $i, 1 \leqslant i \leqslant k$, we must have

$$
\mu_{i}+\tau_{0} \alpha_{i}=0
$$

Thus we have, putting τ_{0} in place of τ above, an expression for y which is of the same form as (2) (since all the coefficients are non-negative and their sum is 1), but which has only ($k-1$) significant terms.

Finally, this process may be repeated until the point y is expressed as a linear combination of not more than $(n+1)$ points of X, and the proof of the theorem is completed.

Consider some closed sphere $S(R)$ centre the origin and radius K in E_{n}, and suppose that X_{1}, X_{2} are two closed sets contained in $S(\mathrm{R})$. We define the distance between X_{1} and X_{2} as

$$
\Delta\left(x_{1}, x_{2}\right)=\delta_{1}+\delta_{2}
$$

where δ_{1} is the greatest lower bound of numbers δ such that $U\left(X_{1}, \delta\right)$ contains X_{2}, and δ_{2} is the greatest lower bound of numbers δ such that $J\left(X_{2}, \delta\right)$ contains X_{1}.
$\Delta\left(x_{1}, x_{2}\right) \geqslant 0$ since it is the sum of two nonnegative numbers. If X_{1} and X_{2} represent the same set, then clearly $\Delta\left(X_{1}, X_{2}\right)=0$; conversely, if $\Delta\left(x_{1}, x_{2}\right)=0$, then δ_{1} and δ_{2} as defined above are both zero, winch implies that X_{1} is X_{2}. Clearly we have $\Delta\left(x_{1}, X_{2}\right)=\Delta\left(x_{2}, X_{1}\right)$ from the symmetry of the definition. Also, we have that

$$
\Delta\left(x_{1}, x_{2}\right)+\Delta\left(x_{2}, x_{3}\right) \geqslant \Delta\left(x_{1}, x_{3}\right)
$$

For, let $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}$ be four (nonnegative) numbers such that

$$
\begin{array}{ll}
v\left(x_{1}, \varepsilon_{1}\right) \supset x_{2} \quad, \quad U\left(x_{2}, \varepsilon_{2}\right) \supset x_{3}, \\
v\left(x_{2}, \varepsilon_{3}\right) \supset x_{1} \quad, \quad v\left(x_{3}, \varepsilon_{4}\right) \supset x_{2} .
\end{array}
$$

Then

$$
u\left(x_{1}, \varepsilon_{1}+\varepsilon_{2}\right) \supset \sigma\left(x_{2}, \varepsilon_{2}\right) \supset x_{3}
$$

and
Thus

$$
u\left(x_{3}, \varepsilon_{3}+\varepsilon_{4}\right) \supset v\left(x_{2}, \varepsilon_{3}\right) \supset x_{1}
$$

thus

$$
\Delta\left(x_{1}, x_{3}\right) \leqslant\left(\varepsilon_{1}+\varepsilon_{2}\right)+\left(\varepsilon_{3}+\varepsilon_{4}\right)
$$

and taking lower bounds of the ε_{i} gives the result.

Theorem 7. (Blaschke Selection Theoren.) jvery infinite collection of closed convex subsets of a bounded portion of B_{n} contains an infinite subsequence which converges to a closed non-empty convex subset.

Proof. Select from the collection and label an infinite sequence $\{x(i)\}$ of sets, $i=1,2, \ldots, n, \ldots$ Choose a positive number δ and define $Y(n)$ as the closure of the set $\nabla(X(n), \delta)$. Let $S(R)$ be a sphere of radius R such that $Y(n) \subset S(R)$ for each n.

We prove the theorem in two stages.
(i) There is a subsequence of $\{Y(n)\}$ such that if $Y(i), Y(j)$ are two members of the subsequence

$$
\begin{equation*}
\Delta(Y(i), Y(j)) \rightarrow 0 \quad \text { as } i, j \rightarrow \infty \tag{3}
\end{equation*}
$$

(ii) If a sequence Z_{i} of closed convex sets contained in a sphere $S(R)$ is such that

$$
\Delta\left(Z_{i}, z_{j}\right) \rightarrow 0 \text { as } i, j \rightarrow \infty,
$$

then there exists a closed non-empty convex set Z such that

$$
\Delta\left(z, z_{i}\right) \rightarrow 0 \text { as } i \quad \rightarrow \infty
$$

If we assume (i) and (ii) true, the theorem follows quickly. It is known (lemma 4-page 36) that if X_{1}, X_{2} are given closed convex sets, and \mathbf{Y}_{1}, Y_{2} respectively are defined in the same way as $Y(n)$ above, then

$$
\begin{equation*}
\Delta\left(Y_{1}, Y_{2}\right)=\Delta\left(X_{1}, X_{2}\right) \tag{4}
\end{equation*}
$$

(3) and (4) together imply that there is a subsequence of $\{x(n)\}$ such that if $X(i), X(j)$ are members of the subsequence

$$
\Delta(X(i), X(j)) \rightarrow 0 \text { as } i, j \rightarrow \infty
$$

But then (ii) applied to this subsequence gives the result.
Proof of (i) . Take a sequence p_{1}, p_{2}, \ldots of points dense in $S(R)$ and let $\left\{\varepsilon_{i}\right\}$ be a sequence of positive numbers decreasing to zero, and with $\varepsilon_{1}<\frac{1}{2} \delta$. We assume inductively that a sequence of inteffers

$$
i_{1}, i_{2}, i_{3}, \ldots
$$

has been defined for $i=0,1, \ldots, k$, such that $\left\{(i+1)_{j}\right\}$ is a subsequence of $\left\{i_{j}\right\}, i_{j}=j$ for $1=0$, and for $i>0$

$$
\Delta\left(Y\left(i_{j}\right), Y\left(i_{h}\right)\right)<\varepsilon_{i}, j, h=1,2, \ldots
$$

To continue the sequence, we want to show that it is possible to choose a subsequence $\left\{(k+1)_{j}\right\}$ of $\left\{k_{j}\right\}$ such that

$$
\Delta\left(Y\left[(k+1)_{j}\right], Y\left[(k+1)_{h}\right]\right)<\varepsilon_{k+1}
$$

Choose a large intefger N such that every point of $S(R)$ is distant less than $\frac{1}{4} \varepsilon_{k+1}$ from some point p_{j} for which $j \leqslant N$. Denote by $P(n)$ the subset of the points $p_{j}, j \leqslant N$, which is
contained in $Y(n)$. Now every point of $U\left(X(n), \Sigma-\frac{1}{4} \boldsymbol{\varepsilon}_{k+1}\right)$ is distant from one of the points $p_{j}, j \leqslant N$, by at most $\frac{1}{4} \varepsilon_{k+1}$ (since the set is contained in $S(R)$), and so each such p_{j} must be contained in $U(X(n), \delta)$, which is the interior of $Y(n)$ - Thus each such p_{j} must belong to $P(n)$. Hence

$$
ण\left(P(n), \frac{1}{4} \varepsilon_{k+1}\right) \quad U\left(X(n), \delta-\frac{1}{4} \varepsilon_{k+1}\right)
$$

(Note that it is not necessarily true by the definition of the set $P(n)$ that $\left.P(n) \supset U\left(X(n), \delta-\frac{1}{4} \varepsilon_{k+1}\right) \quad.\right)$
Thus we have

$$
U\left(P(n), \frac{1}{2} \varepsilon_{k+1}\right) \supset U(X(n), \delta)=(Y(n))^{\circ},
$$

as we noted above. But by definition $P(n) \subset Y(n)$, and so we have

$$
\begin{equation*}
\Delta(P(n), Y(n))<\frac{1}{2} \varepsilon_{k+1} \tag{5}
\end{equation*}
$$

Now there is at most a finite number of ways in which the set of points $p_{1}, p_{2}, \ldots, p_{N}$ can be arrangedinto subsets to form the sets $P(n)$, and so it follows that we cen select from the sequence $\left\{Y\left(k_{j}\right)\right\}$ an infinite subsequence $\left\{Y\left((k+1)_{j}\right)\right\}$, for each member of which the corresponding set $P\left((k+1)_{j}\right)$ is the same set. Then we have

$$
\begin{aligned}
& \Delta\left[Y\left((k+1)_{j}\right), Y\left((k+1)_{h}\right)\right] \leqslant \Delta\left[Y\left((k+1)_{j}\right)_{i} P\left((k+1)_{j}\right)\right] \\
&+\Delta\left[Y\left((k+1)_{h}\right), P\left((k+1)_{j}\right)\right] \\
&= \Delta\left[Y\left((k+1)_{j}\right), P\left((k+1)_{j}\right)\right]
\end{aligned} \begin{aligned}
& +\Delta\left[Y\left((k+1)_{h}\right), P\left((k+1)_{h}\right)\right] \\
< & \varepsilon_{k+1}
\end{aligned}
$$

This completes the next step in the inductive definition of the sequence of intefgers $\left\{i_{j}\right\}$.

Now consider the sequence

$$
1_{1}, 2_{2}, 3_{3}, \ldots, h_{h}, \ldots
$$

For $h \geqslant i, h_{h}$ is a meriber of the sequence $\left\{i_{j}\right\}$. Thus

$$
\Delta\left(Y\left(h_{h}\right), Y\left(j_{f}\right)\right) \rightarrow 0 \text { as } h, j \rightarrow \infty
$$

and this proves (i).
Proof of (ii). We put

and prove that Z is the limit of the sequence $\left\{z_{i}\right\}$.
We are given that for arbitrary $\varepsilon>0$ there is an inteffger N such that

$$
\begin{equation*}
\Delta\left(z_{i}, z_{j}\right)<\varepsilon \quad \text { for } \quad i, j \geqslant N \tag{6}
\end{equation*}
$$

Then $\bigcup_{j=1}^{\infty} z_{j} \subset U\left(z_{i}, \varepsilon\right) \quad$ for $i \geqslant N$
and so $\quad z \subset \overline{\left[\bigcup_{j=1} Z_{j}\right]} \subset U\left(Z_{i}, 2 \varepsilon\right)$, say, $i \geqslant N$.
Now let z_{0} be any point of z_{i}, and put

$$
\left.\overline{(0}\left(\varepsilon_{0}, \varepsilon\right)\right) \cap z_{j}=w_{j} \text { for } i, j \geqslant N \text {. }
$$

W_{j} is closed, and since from (6) the distance of z_{0} from z_{j} is less than ε it follows that W_{j} is nonempty for all $J \geqslant N$. Thus the set

$$
T_{N}=\bigcap_{i=N}^{\infty} \overline{\left[\bigcup_{j=1}^{\infty} W_{j}\right]}
$$

is also closed and nonempty. T_{N} is contained in $\overline{\left(V\left(s_{0}, \varepsilon\right)\right)}$ (by the definition of the W_{j}) and also in Z. (For, if t wore
a point of T_{N} not in Z we should have

$$
t \notin\left[\bigcup_{j x i}^{\infty} z_{j}\right] \quad \text { for } i=\text { some } i_{0}, \text { say }, i_{0} \geqslant 1
$$

so that also

$$
t \notin\left[\overline{\left.\bigcup_{j=i}^{\infty} z_{j}\right]} \quad \text { for } \quad i \geqslant i_{0}\right.
$$

But $v_{j} \subset z_{j}$ for each $j \geqslant N$ and so

hence

$$
t \notin\left[\overline{\left.\bigcup_{j=1}^{\infty} W_{j}\right]} \quad \text { for } \quad i \geqslant \max \left(i_{0}, N\right)\right.
$$

which in turn implies that $t \notin \mathbb{T}_{N}$, which is a contradiction.)
Thus the intersection of Z and the set $\overline{\left(J\left(z_{0}, \varepsilon\right)\right)}$ is nonempty, which is to say that to any point z_{0} of $z_{i}, i \geqslant W$, there corresponds a point of Z whose distance from z_{0} is at most ε. Hence we have

$$
\mathrm{z}_{\mathrm{i}} \subset \mathrm{U}(\mathrm{z}, 2 \varepsilon), \text { say, } i \geqslant N .
$$

This, together with (7), gives

$$
\Delta\left(z_{i}, z\right)<4 \varepsilon, 1 \geqslant N,
$$

which proves (ii).
This completes the theorem.

Let B denote the class of all convex sets contained in the sphere $S(R)$ as defined earlier. Corresponding to each member X of this class B, suppose that there is defined a real number $f(X)$. Then we say that $f(X)$ is continuous at X_{0} if for every sequence $\left\{X_{i}\right\}$
for which $X_{i} \rightarrow X_{0}$ we have also $f\left(X_{i}\right) \rightarrow f\left(X_{0}\right) \cdot\left(B y \quad X_{i} \rightarrow X_{0}\right.$ we mean tinc.t there is a meaber X_{0} of B such that $\Delta\left(X_{i}, X_{0}\right) \rightarrow 0$ as i $\rightarrow \infty$.)

If $f(X)$ is continuous for all X_{0} of D we say merely that $f(X)$ is continuous.
liaving thus defined continuity, we now define the volume $V(X)$ of a convex set X as its n-dimensional Lebesgue measure (and shall assume that it is known what is meant by tnis definition), and prove the following theoren.
heorem 3. $V(X)$ is continuous.
Proof. In other words, we need to show that if $X_{i} \rightarrow X$ as $i \rightarrow \infty$, then $V\left(X_{i}\right) \rightarrow V(X)$.

Given sone positive number ε, there is an intefeer ia such that

$$
U\left(X_{i}, \varepsilon\right) \supset X \text { and } U(X, \varepsilon) \supset X_{i} \quad \text { for all } i \geqslant M
$$

It may be shown (lemaa 5 - page 37) that if the interior of X is non-empty there is a positive number δ and a set Y similar to X but expanded in the ratio $1+\delta: 1$, such that $Y \supset U(X, \varepsilon)$, and such that $\delta \rightarrow 0$ as $\varepsilon \rightarrow 0$. Then for $i \geqslant M$ we have

$$
\begin{equation*}
V\left(X_{i}\right) \leqslant V(U(X, \varepsilon)) \leqslant V(Y)=(1+\delta)^{n} V(X) \tag{8}
\end{equation*}
$$

Now if $V(X)=0$, the set X lies in an $(n-1)$-dimensional space, and if $\Delta\left(X_{i}, X\right)<\eta_{i}, X_{i}$ must be contained in an n-dimensional cylinder of length $2 \eta_{i}$ and cross-section an ($n-1$)-dimensional sphere of radius R (since all the X_{i} lie in the sphere $S(R)$), the volume of the sphere being K, say. Thus $V\left(X_{i}\right)<2 \eta_{i} K$ and so

$$
\lim _{i \rightarrow \infty} V\left(X_{i}\right)=0
$$

If $V(X)>0$, we need a lower bound for $V\left(X_{i}\right)$ (an upper bound being established already in (8)). This involves showing that the volume of the frontier of X is zero, which we may do by considering the sets $X(\mu), X(-\mu)$ which are homothetic to X with an interior point of X as centre of similitude and with ratios of similitude $1+\mu: 1,1-\mu: 1$ respectively, $0<\mu<1$. 'ihen the frontier of X is contained in the difference of these sets and so has volume not greater than

$$
\left((1+\mu)^{n}-(1-\mu)^{n}\right) V(X)
$$

Phus, since we may choose μ as near to zero as we please, the frontier of X has zero volume.

Now suppose that we have a sequence of points $\left\{p_{i}\right\}$ dense in the interior of X. If K_{n} denotes the convex cover of the first n of these points, the sequence $\left\{K_{n}\right\}$ increases to the interior of X, so that we have, according to one of the properties of a Lebesgue measure,

$$
\lim _{n \rightarrow \infty} V\left(K_{n}\right)=V\left(X^{0}\right)=V(X)
$$

Thus given $\varepsilon>0$, there is an integer N such that

$$
V\left(K_{N}\right)>V(X) \quad \varepsilon
$$

Pinally there is an integer M such that

$$
x_{i} \supset K_{N} \quad \text { for all } i \geqslant M,
$$

for if $\delta>0$ is the smallest of the distances of points of K_{N} from
the frontier of X, and if Y is a convex set which does not contain F_{if}, then we must have $\Delta(Y, X)>\mathcal{S}$, but we know that the sets X_{i} tend to X as $i \rightarrow \infty$ so that eventually each X_{i} must contain K_{N}. hus we heve

$$
V\left(X_{i}\right) \geqslant V\left(K_{N}\right)>V(x)-\varepsilon \quad \text { for } i \geqslant M
$$

and this torether with (8) implies that

$$
V\left(X_{i}\right) \rightarrow V(X) \quad \text { as } i \rightarrow \infty
$$

If for e given set X there is a point p such thet the reflexion of X in p coincides rith X, then p is called the centre of X and X is said to be a central set.

Ierpendicular to any given direction θ, there are exactly two support hyperplanes of a bounded convex set X. The width of X in the direction θ is defined as the distance between these hyperplanes. The greatest lower bound of the widths of a set X is called the minimal width of X.

Theorem 2. The width in the direction θ of a fixed plane bounded convex set X is a continuous function of θ.

Proof. Considex two pairs of parallel support lines of X, the angle between the pairs being θ, where θ is small.

Denote by a one of the points of contact of the set X with the

$$
24
$$

(Diapram)

(Page 27.)
first pair of support lines, and draw ab , of length \boldsymbol{e}_{1} say, perpendicular to the line pair to meet the other support line in b. Through the point a, as in the diagram, draw a line cd , of length ℓ_{2} say, perpendicular to the other pair of support lines, withy cod lying on the lines, Denote by x, y the two points of intersection of the support lines which are nearest to the set X. (The points are well-defined since θ is small.) at mant fro palnta of interacollam 1yth Then from the diagram we have (see opposite page)

$$
e_{2}=e_{1} \cos \theta+b y \sin \theta+a x \sin \theta \text {. }
$$

(Different expressions may result from different sets X and this construction on them, but the type of expression and its behaviour will be the same.)
45 4. The lengths of by and ax are bounded above certainly by the diameter of X for small values of θ, and so as θ decreases to th zero, $\ell_{2} \rightarrow \ell_{1}$. Thus the width of the set varies continuously with θ.

Suppose that K is a strictly convex set. Choose a point 0 and define to be the set of points y such that

where δ is a fixed positive number, not equal to $1, x$ is a point of K^{-}, and such that y lies on the half-line through ρ and x terminating at o . We cell M a similarity transform or homothetic translate of K (see also chapter III, section 4-page 155).
(It will sonetimes be convenient to riden the definition to include cases in which if is a translation of K.)

Theorem 10. Suppose that F, M are two distinct, strictly convex sets which are similerity transforns of each otirer, and consider any plane section of them which passes through tieir centre of similitude. Then the frontiers of K and have at most two points of intersection lying in such a plare.
(he result could be made nore general, to include any plane section of the sets, but in the cases where we suall need this theorem tine restricted result is sufficient.)

Broof. Let 0 be the centre of similitude of K and in $(0$ may be at infinity), and suppose that there is a plane section through o of K and M such that their frontiers intersect in at least three points a, b, c, \ldots. . Denote the set of such points by I .

The support lines of K which meet at o (the parallel common surort lines of K and K if 0 is at infinity) in this plane section divide the frontier of K into two open arcs X, Y separated by the line joining the points of contact of the support lines with K. Neither of these points is common to the frontiers of K and fince this would contradict the strict convexity of la -

Suppose that the points a, b, c, \ldots are such that a lies in X and b in Y, and let r, s respectively be the points of
(See page 24 , diagram.) frontier of K of the lines through $o a$ and ob . $\Lambda^{\text {Then }} \mathrm{I}$ is a point of Y and s a point of X, and the points of M which coincide with a, b resectivelii are the points r. corresponding to r in K and s° correspondin ${ }_{\epsilon}$ to s in K.

But then since K and M are similar, we heve

$$
\frac{O x^{\circ}}{\text { or }}=\frac{0 S^{\circ}}{o s}
$$

Where or ${ }^{\circ}$ denotes the length of or ${ }^{\circ}$, ard so on. i'hus

$$
\frac{o a}{\text { or }}=\frac{o b}{\text { os }}
$$

But by our assumption we have or < oa and os > ob, or else or> oa $\mathbf{X Z}$ and $\mathrm{os}<\mathrm{ob}$, either of which $\mathcal{E} \in \mathrm{E}$ a contradiction.

Hence all the points of the set I lie in one of the sets X, Y. Suppose that this set is X and that X lies nearer to o than Y does. There are at least tiree menbers of I, so consider three such points of X, x, y, z, say, and suppose that the point x lies between y and z on the arc x. Since x is a frontier point of A there is a support hyperplane of n at X, and if lies on the same side of this hyperplane as 0 . But from our choice of the point x, any hyperplane through x separates at least one of y and z from o (x, y, z are not collinear because K is strictly convex), and this gives a contradiction since all the points of I are points of 1 .

If X lies further fror " 0 than Y does, define points x^{*},
y^{\prime}, z^{\prime} (again non-collinear) of the arc X in the same way as x, y, z were defined above, with x^{*} between y^{*} and z^{*}. Then a suport hyperplane of if at x separates from 0 , but again a contradiction follows, because any hyperplane through x° must have at least one of the points y^{*} and z^{*} on the same side as 0 . liance in either case there cannot be as many as three common points of the two frontiers in such a plane section, and the theorem is proved.

Lemma 1. Given an open convex set X_{1} and a convex set X_{2} which does not meet X_{1}, there exists a hyperplane p which separates X_{1} from X_{2}.

Proof. We consider first an open convex set X and a linear manifold L not meeting X. A linear manifold of dimension $r, 0 \leqslant r<n$, is the set of points x defined by

$$
x=\mu_{1} x_{1}+\cdots+\mu_{r+1} x_{r+1}
$$

where the vectors $x_{2}-x_{1}, \ldots, x_{r+1}-x_{1}$ form a linearly independent set, and $\mu_{1}, \ldots, \mu_{r+1}$ sre real numbers such that $\mu_{1}+\ldots+\mu_{r+1}=1$. We prove that there exiats \& hoperplane p Which contains I but which does not neet X.

Suppose then that P is a linear manifold of maximal dimension
s, say, which contains L and does not meet X. Let Q be the linesr subseace perpendicular to P, and project E_{n} onto Q. The dimension of Q is $(n-s)$. Ther P is projected onto a single point p and X onto an open convex subset X_{1} of Q, and p does not belong to X_{1} since the direction of the projection is parallel with P. Since we are assuming that the dimension of P is maximal, it follows that every line through p in 6 meets X_{1}. If q is one-dimensional, then p is the hyperplane that we require. So suppose that Q has dimension greater than or equal to 2 . A plane through p in $\&$ meets X_{1} in a two-dimensionel set X_{2} which is convex and open relative to the plane. The helf-lines through p meeting X_{2} and terminating at p thus form an open sector, the angle of wich is at most π since p does not belong to X_{2} and X_{2} is convex. But on the other hand, since every line through p meets X_{2} and X_{2} is open, the angle of the sector must be strictly greater than π, which is a contradiction. Hence G must be one-dimensional, and P is the hyperplane whose existence we wanted to prove.

Now il instead of L we take a convex sot X_{2} not meeting X_{1}, we consider the set $X_{1}-X_{2}$ consisting of all points x of the form

$$
x=x_{1}-x_{2} \text { where } x_{1} \in X_{1}, x_{2} \in X_{2}
$$

This set is convex and open, and the point o does not belong to the set since X_{1} and X_{2} have no point in common. Thus there is a hyperplane P which passes through 0 and does not meet $X_{1}-X_{2}$.

Supose that its equation is $\underline{a} \cdot \underline{x}=0$ (ㅡㅡ, \underline{x} beine vectors), and that the signs of the coefficients are such that $\underline{a} \cdot \underline{x}>0$ for $x \in X_{1}-X_{2}$. Wher we have

$$
\underline{a} \cdot \underline{x}_{1}>\underline{a} \cdot \underline{x}_{2} \text { for } x_{1} \in X_{1} \quad, x_{2} \in x_{2}
$$

ard so there exists a finite number μ equal to $\inf \left(\underline{a} \underline{x}, x \in X_{1}\right.$). It follows that the hyperplane defined by the equation $\underline{a} \cdot \underline{x}=\mu$ separates X_{1} from X_{2}.

Lema. 2. Given a convex set X with a non-empty interior X^{0}, the closure of x^{0} is identical $: \bar{X}$. Proof. Since $X^{\circ} \subset X$, we have imediately that $\overline{X^{0}} \subset \bar{X}$. We want to show, then, that $\overline{\mathrm{X}}<\overline{\mathrm{X}^{0}}$.

Let $x \in \bar{X}$ and take any point x_{1} of X°. If we can prove that the whole of the segment xx_{1} except possibly x is contained in X^{0}, then it follows that $\mathrm{x} \in \overline{\mathrm{X}^{0}}$, from which we have that $\overline{\mathrm{X}} \subset \overline{\mathrm{X}^{0}}$ and the lema is proved.

We show, then, that :apart from x the whole of x_{1} is contained in X°. Since $x_{1} \in X^{\circ}$, there is a spherical neighbourhood (in n dimensions) $S\left(x_{1}, \varepsilon\right)$ of x_{1} for some positive number ε, such that $S\left(x_{1}, \varepsilon\right) \subset x^{\circ}$. Consider a point y of xx_{1} which is not at either endpoint of the segment, and let z_{1} be a point other than x of x which satisfies

$$
\frac{\left|z_{1}-x\right|}{|y-x|}<\frac{\varepsilon}{\left|y-x_{1}\right|}
$$

(Diapram)

(Opposite prage.)

(Base 33.)

> (see diagram opposite)
(The design of the construction given now, which is in effect to select a different segment containing the point y, is to ensure by by that the endpoints of the segment we shall discuss lie one in X° and one in X, and not merely one in X° and one in \bar{X} as we have at present. We cannot just shorten the segment $x x_{1}$ as y must be free to coincide with any interior point of it.) the donhutstan of Further, let z_{2} be defined by

$$
z_{2}-x_{1}=-\frac{\left|y-x_{1}\right|}{|y-x|}\left(z_{1}-x\right)
$$

We note that $\left|z_{2}-x_{1}\right|<\varepsilon$ so that $z_{2} \in X^{\circ}$. With these definitions we have that

$$
y=\frac{\left|y-x_{1}\right| x+|y-x| x_{1}}{\left|y-x_{1}\right|+|y-x|} \text { since } y \text { is a point of } x x_{1}
$$

$$
\begin{aligned}
& =\frac{\left|y-x_{1}\right| z_{1}+|y-x| z_{2}}{\left|y-x_{1}\right|+|y-x|} \text { by the definition of } z_{2} \\
& t y \text { is also an interior point of the segment } z_{1} z_{2} \text {. Since } y
\end{aligned}
$$ is any interior point of $x x_{1}{ }^{2}$, it is sufficient now to show that the whole of the interior of $z_{1} z_{2}$ is contained in X°, and we shall have proved our result.

We have then that $z_{1} \in X$ and $z_{2} \in X^{\circ}$. Certainly every point of $z_{1} z_{2}$ belongs to X since X is convex; we need also to prove for at that every such point, apart from z_{1}, is an interior point of X . Whale Since $z_{2} \in x^{\circ}$, there is a positive number $\delta \delta$ such that
$S\left(z_{2}, \delta\right) \subset X^{0} \quad$ (using the same notation as before). Consider a point y of $z_{1} z_{2}$ (not necessarily the same point as before) given by

$$
y=\lambda z_{1}+\mu z_{2}
$$

where $\lambda+\mu=1, \lambda \geqslant 0, \mu>0$, so that y is not identical with z_{1}; and let z be a point of $S(y, \mu \delta)$ (which is the neighbourhood of y shown in the diagram). From the definition of y we have

$$
\left|z-\left(\lambda z_{1}+\mu z_{2}\right)\right|<\mu \delta
$$

mich implies, since $\mu>0$, that

$$
\left|\frac{z-\lambda z_{1}}{\mu}-z_{2}\right|<\delta
$$

so that the point $\frac{z-\lambda z_{1}}{\mu}$ belongs to $S\left(z_{2}, \delta\right)$ and hence to x°. But z can be written in the form

$$
z=\lambda z_{1}+\mu\left[\frac{z-\lambda z_{1}}{\mu}\right], \lambda+\mu=1, \lambda \geqslant 0, \mu>0,
$$

and X is convex, and so since $z_{1}, \frac{z-\lambda z_{1}}{\mu} \in X$ we have also that $z \in X$. Thus $S(y, \mu \delta) \subset X$ and so y and hence every point of $z_{1} z_{2}$ apart from z_{1} is an interior point of X. This proves the leman.

Lemma 3. The set K of points of E_{n} which are expressible in the form

$$
\mu_{1} x_{1}+\cdots+\mu_{k} x_{z}
$$

where k ranges over all positive integral values, x_{1}, \ldots, x_{k} are

34

any points of a set X, and μ_{1}, \ldots, μ_{k} are real numbers satisfying

$$
\mu_{1}+\ldots+\mu_{k}=1, \mu_{i} \geqslant 0, i=1,2, \ldots, k,
$$

is identics with the set of points which form the convex cover $H(X)$ of Y .
proof. Consider a particular point x of K which is expressible as, say,

$$
\mu_{1} x_{1}+\cdots+\mu_{k} x_{k}
$$

for some positive integer k and points x_{1}, \ldots, x_{k}, so that x belongs to the convex cover $H\left(x_{1}, \ldots, x_{k}\right)$ of the points x_{1}, \ldots, x_{k}. Since $x_{i} \in X$ for each $i, 1 \leqslant i \leqslant k$, it follows that $H\left(x_{1}, \ldots, x_{k}\right) \subset H(X)$, and hence $x \in E(X)$. Hut x is an arbitrary point of K, and so we have that $K \subset H(X)$.

To show the $H(X) \subset K$, we show first that the set K is convex. for given two points y, z of Y where

$$
\begin{aligned}
& y=\lambda_{1} y_{1}+\cdots+\lambda_{m} y_{m}, \\
& z=\mu_{1} z_{1}+\cdots+\mu_{n} z_{n},
\end{aligned}
$$

consider any point x of the segment $y z$,

$$
x=\nu y+(1-v) x \quad(0 \leqslant \nu \leqslant 1)
$$

Then we have

$$
x=\nu \lambda_{1} y_{1}+\cdots+\nu \lambda_{m} y_{m}+(1-\nu)_{\mu_{1} z_{1}}+\ldots+(1-\nu)_{\mu_{n}} z_{n}
$$

where $\nu \lambda_{i} \geqslant 0,(1-\nu) \mu_{j} \geqslant 0$, and

$$
\begin{aligned}
\sum_{i=1}^{m} \nu \lambda_{i}+\sum_{j=1}^{n}(1-\nu)_{\mu_{j}} & =\nu \sum_{i=1}^{m} \lambda_{i}+(1-\nu) \sum_{j=1}^{n} \mu_{j} \\
& =\nu+(1-\nu) \text { since } y, z \in \mathbb{K}
\end{aligned}
$$

(Diapram)

and so it follows that x is a member of K. Thus K is convex, Finally we note that the set X is clearly a subset of K, so that, since K is convex, the convex cover of X is also a subset of K. Thus $H(X)=K$ and this proves the lena, nestrath to X_{y} then

Lemuria, 4. If X_{1}, X_{2} are given closed, convex sets, and
$Y_{1}=\overline{\left(U\left(X_{1}, \delta\right)\right)}, \quad Y_{2}=\overline{\left(\bar{U}\left(X_{2}, \delta\right)\right)}$, point of Y_{2}

then

$$
\Delta\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}\right)=\Delta\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)
$$

Proof. Suppose that R is chosen so that Y_{1} and Y_{2} both belong to the sphere $S(R)$ of radius R centred at the origin in a given coordinate system.

We show first that if $U\left(X_{1}, \varepsilon\right) \supset X_{2}$, then $U\left(X_{1}, \varepsilon\right) \bigcirc Y_{2} \cdot \wedge$ To any point y_{2} of Y_{2} there corresponds a point X_{2} of X_{2} such that $\left|y_{2}-x_{2}\right| \leqslant \delta$. If $U\left(x_{1}, \varepsilon\right) \supset x_{2}$, it follows that there is a point x_{1} of x_{1} such that $\left|x_{1}-x_{2}\right|<\varepsilon$. Let y_{1} be the point whose position is such that the four points $x_{1}, x_{2}, x_{2}, y_{1}$ are the four vertices of a parallelogram, as shown in the diagram. Then we have

$$
\left|x_{1}-y_{1}\right|=\left|x_{2}-y_{2}\right| \leqslant \delta
$$

so that, since $x_{1} \in X_{1}, y_{1} \in Y_{1}$. Also
sooty is $\left|y_{1}-y_{2}\right|=\left|x_{1}-x_{2}\right|<\varepsilon \quad \delta$ and an and y mituliar
so that we have also $y_{2} \in U\left(Y_{1}, \varepsilon\right)$, and hence $Y_{2} \subset U\left(Y_{1}, \varepsilon\right)$.
To complete the proof, we show secondly that if $U\left(Y_{1}, \varepsilon\right) \supset Y_{2}$,
then $\overline{\left(J\left(X_{1}, \varepsilon\right)\right)} \supset X_{2}$, for then the lem follows immediately from the definition of the metric δ. (see page 35 , diagram)

If this second assertion is false, \wedge there is a point x_{2}, say, of x_{2} such that if x_{1} is the point of x_{1} nearest to x_{2} then $\left|x_{1}-x_{2}\right|>\varepsilon$. (Clearly there is such a point of x_{1}-) With x_{1} so defined, the hyperplane through x_{1} perpendicular to $x_{1} x_{2}$ is a support hyperplane , P say, of X_{1}. Now let y_{2} be a point of X_{2} such that x_{2} lies on the segment $x_{1} y_{2}$ and $\left|x_{2}-y_{2}\right|=\delta$.
Since x_{1} is the point of x_{1} nearest to x_{2}, it follows that if we define y_{1} to be the point of Y_{1} on the segment $x_{1} y_{2}$ such that

$$
\begin{equation*}
\left|x_{1}-y_{1}\right|=\delta \tag{10}
\end{equation*}
$$

then y_{1} is the point of Y_{1} which is nearest to Y_{2}. Thus since $\mathrm{U}\left(\mathrm{Y}_{1}, \varepsilon\right) \supset \mathrm{Y}_{2}$ we have $\left|\mathrm{y}_{1}-\mathrm{y}_{2}\right|<\varepsilon$, and so from

$$
\begin{equation*}
\left|x_{1}-y_{2}\right|<\delta+\varepsilon \tag{10}
\end{equation*}
$$

But our assumption is that $\left|x_{1}-x_{2}\right|>\varepsilon$, and this together with (9) gives $\left|x_{1}-y_{2}\right|>\delta+\varepsilon \quad$.

This contradiction shows the our second assertion must be true, and the leman follows.

Leman 5. Given a positive number ε and a convex set X with a nonempty interior, there is a positive number δ and a set Y similar to X but expanded in the ratio $1+\delta: 1$ such that

$$
Y(\delta) \bigcirc U(X, \varepsilon)
$$

and such that $\delta \rightarrow 0$ as $\varepsilon \rightarrow 0$.
Pros. The essence of the problem: is not chanced if we leer it slichtly to read that given X and any positive δ, there is a set $Y(\delta)$ as defined such that, for some positive $\varepsilon, Y(\delta) \supset U(X, \varepsilon)$. If we prove this, then it follows that as we let ε tend to zero, δ is free to become as small as ne please, so the this will satisfy the second requirement of the lem.

The chare e in statement of the proble, or matier the consideration of a different but equivalent problem, makes the proof of it straightionvard. For, we can select any interior point c of the Given convex set X and, taking c as the centre of similitude, expand X about c in the ratio $1+\delta: 1$ to form set $Y(\delta)$. since c is in the interior of x it follows that the frontier of the new set Y does not meet the frontier of X in any point, and hence, since each frontier is a closed set, there is a positive number ε such that

$$
|x-y| \geqslant \varepsilon
$$

for any pair of points $x \in \operatorname{Fr}(X)$ and $y \in \operatorname{Er}(X(\delta))$. Thus for ε so defined, since $U(X, \varepsilon)$ is an open set, we have that $Y(\delta) \supset U(X, \varepsilon)$ and the result follows. This, since δ tends to zero with ε, proves the lena.

A COVEIING OF A SINGLW SET BY A SINGLE SET WITH SEECIFIED PROPERTIES

We shall consider in this chapter six particular problems concerning single set covers for single sets. They are chosen partly to show the wide variety of approaches wiaich may be made in the solution of covering problems, and are as follows.
(a) To establish an upper bound for the ratio of the greatest lower bound of the measure of the projection in any direction of a set X to its linear measure, where X is a measurable plane set of finite positive linear measure.
(b) To show that, given a plane curve of unit length, the area of its convex cover does not exceed $\frac{1}{2 \pi}$.
(c) lo find the maximum volume of the convex cover of a simple arc of space-curve of given length.
(d) To show that the minimal width of a triangle circumscribing a plane bounded convex set of given frontier length ℓ is at most $\frac{\ell}{\sqrt{3}}$, and is at most $\frac{7}{2} \ell$ if the oonvex set is central.
(e) To prove that there is a unique sphere of smallest radius r which contains a given bounded subset of E_{n} of diameter d, and $r \leqslant\left[\frac{n}{2(n+1)}\right]^{\frac{1}{2}} \alpha$.
(f) To prove tat any set of diameter d may be contained in a set of constant width d.

Section 1. To establish an upper bound for the ratio of the greatest lower bound of the measure of the projection in any direction of a set X to its linear measure, where X is a measurable plane set of finite positive linear measure. [3]

$$
\begin{aligned}
& {[\text { Notation and }} \\
& \text { Definitions : page } 52]
\end{aligned}
$$

Note first that the problem is stated for a plane set only. The method of proof to be used relies heavily on results involving a single (continuous) variable, namely the direction of projection of the set X , and does not lend itself to extension into three or more dimensions.
(he need the following notation. $\Lambda(X)$ denotes the linear measure of the set X, and $\Lambda\left(X_{\theta}\right)$ the linear measure of the projection of X onto a line perpendicular to the direction θ; $\mu(X)$ denotes the greatest lower bound of $\Lambda\left(X_{\theta}\right)$ over all θ (and $\mu(x)$ exists since $\Lambda\left(x_{\theta}\right) \geqslant 0$ for all θ). Then the problem is to find the u_{i} per bound of the ratio $\frac{\mu(E)}{\Lambda(E)}$ for a measurable plane set E, with $\Lambda(E)>0$, and we shall show that $\frac{\mu(E)}{\Lambda(E)}<\frac{2}{\pi}$.

Stated in this form, the problem is too general to be regarded as a problem in covering; but if we make the stricter condition that E is a connected set, then $\mu(E)$ is equivalent to the minimal width of the convex cover of \mathbb{E}, so that the problem then becomes one of the relationship between a set and its convex cover.

By definition, $\mu(E) \leqslant \Lambda\left(E_{\theta}\right)$ for all θ, so we consider first $\frac{\Lambda\left(E_{\theta}\right)}{\Lambda(E)}$ for some value of θ.

We state here without proof a number of results necessaxy to begin the solution to the main problem; the proofs may be found in Besicovitch [1] and [2].

Any measurable plane set E is expressible as the union of a regular set $\mathrm{E}_{1} n^{\text {and an irregular set (page 54) }} \mathrm{E}_{2} \wedge^{\circ}$ Also, except for a set $E_{1}^{\prime \prime}$ of measure zero, E_{1} is a measurable subset, E_{1}^{\prime}, of the union of an enumerable infinity of rectifiable arcs. The projection of an irregular set is of zero measure in almost all directions.

With this notation, we have immediately as a property of measure that

$$
\begin{equation*}
\Lambda\left(E_{\theta}\right) \leqslant \Lambda\left(E_{1, \theta}^{\prime}\right)+\Lambda\left(E_{1, \theta}^{\prime \prime}\right)+\Lambda\left(E_{2, \theta}\right) \tag{1}
\end{equation*}
$$

Now $\Lambda\left(E_{1}^{\prime \prime}\right)=0$ by definition, and hence the measure of the projection of E_{1}^{00} is zero in every direction,
i.e.

$$
\begin{equation*}
\Lambda\left(E_{1, \theta}^{\prime \prime}\right)=0 \text { for all } \theta \tag{2}
\end{equation*}
$$

We know that $\Lambda\left(\mathrm{E}_{2, \theta}\right)=0$ for almost ail θ;
$\Lambda\left(E_{2}\right)$, however, may be zero or strictly positive. According to (1), therefore, we require an upper bound for $\Lambda\left(\mathrm{E}_{1}^{\prime}, \theta\right)$.

It is proved below (lamma 2 - page 47) that

$$
\begin{equation*}
\int_{0}^{2 \pi} \Lambda\left(E_{1, \theta}^{\prime}\right) d \theta \leqslant 4 \Lambda\left(E_{1}^{\prime}\right) \tag{4}
\end{equation*}
$$

By writing E as the union of three sets $\left(E_{1}^{*}, E_{1}^{\prime \prime}, E_{2}\right.$, which we may assume to be disjoint), we shall obtain a relation between the sum
of measures of projections of the three sets and the sum of their linear measures.

Consider first the case in which $\Lambda\left(E_{2}\right)=\lambda>0$. Given this value of λ, we have immediately from (4) that a value of θ may be chosen such that

$$
\begin{equation*}
\Lambda\left(E_{1, \theta}^{\prime}\right)<\frac{2}{\pi}\left(\Lambda\left(E_{1}^{\prime}\right)+\lambda\right) \tag{5}
\end{equation*}
$$

(For if not, the given integral is more than $4 \Lambda\left(\mathrm{E}_{1}^{\prime}\right)$ by at least $4 \lambda>0$.)

It is proved below (leman 1 - page 45) that $\Lambda\left(E_{1, \theta}^{\prime}\right)$ is a continuous function of θ. From this we may assume that (3) and (5) both hold for the same value of θ (since (3) holds for almost all θ). Then with (1) and (2) we have

$$
\begin{align*}
\Lambda\left(E_{\theta}\right) & \leqslant \Lambda\left(E_{1, \theta}^{\prime}\right)+\Lambda\left(E_{2, \theta}\right) \quad \text { for all } \theta \\
& <\frac{2}{\pi}\left(\Lambda\left(E_{1}^{\prime}\right)+\lambda\right) \text { for at least one value of } \theta \\
& =\frac{2}{\pi} \Lambda(E) \tag{6}
\end{align*}
$$

since $\Lambda(E)=\Lambda\left(E_{1}^{\prime}\right)+\Lambda\left(E_{1}^{\prime}\right)+\Lambda\left(E_{2}\right)$ (since the sets are disjoint and all measurable), that is,

$$
\Lambda(E)=\Lambda\left(E_{1}^{0}\right)+\lambda \quad \text { since } \Lambda\left(E_{1}^{00}\right)=0
$$

But $\mu(E) \leqslant \Lambda\left(E_{\theta}\right)$ for all θ
therefore (6) gives $\mu(E)<\frac{2}{\pi} \Lambda(E)$ for $\lambda\left(E_{2}\right)=\lambda>0$. Now consider the case in which $\Lambda\left(E_{2}\right)=0$. We can no longer use the strict inequality of (5), and look instead more closely at E_{1}^{p}. It is convenient to split off a special case as follows (proof under
lemma 3 - page 50). Either (a) almost all points of E_{i}^{0} are collinear, or (b) there are two R-points of E_{1}^{p}, say p_{1}, p_{2}, such that p_{2} does not lie on $t\left(p_{1}\right)$ and p_{1} does not lie on $t\left(p_{2}\right)$, where $t\left(p_{i}\right)$ denotes the tangent at p_{i}. (See page 54.) If $\Lambda\left(\mathrm{E}_{2}\right)=0$ and the special case (a) holds, then projecting parallel to the straight line containing almost all points of E_{1}^{0} we have immediately that $\mu\left(E_{1}^{0}\right)=0$ and hence $\mu(E)=0$. The result $\mu(E)<\frac{2}{\pi} \Lambda(E)$ is thus trivially true in this case.

Finally, then, we must consider the case in which $\Lambda\left(\mathrm{E}_{2}\right)=0$ and (a) above is false.

Suppose that p_{1} and p_{2} are two R-points of \mathbb{E}_{1}^{0} for which (b) holds. It is proved below (lemma 4 - page 50) that if an R-point p of E_{i}^{p} projects onto the point q of the est $E_{1, \theta}^{0}$ and the direction of projection is not parallel to $t(p)$, then $\mathbb{E}_{1, \theta}^{\prime}$ has unit
(see pages $53-54$) density at $q_{n^{\circ}}$ Suppose that the direction of the line joining p_{1} and p_{2} is ϕ. Let D_{1} be the set of points of E_{1}^{p} whose distance from p_{1} is less than, say $\frac{1}{2}\left|p_{1}-p_{2}\right|$, and D_{2} be defined by $D_{2}=E_{1}^{0}-D_{1}$. Then $p_{1} \in D_{1}$ and $p_{2} \in D_{2}$. so that by lemma 4 $D_{1, \phi}$ and $D_{2, \phi}$ have a common point of unit density (since the direction ϕ of projection is not parallel to $t\left(p_{1}\right)$ or $t\left(p_{2}\right)$ by lemme 3). Hence

$$
\Lambda\left(E_{1, \phi}^{\prime}\right)<\Lambda\left(D_{1, \phi}\right)+\Lambda\left(D_{2, \phi}\right)
$$

Applying leman 2 to D_{1} and D_{2} (and using the continuity property
established in lemma 1) we have then

$$
\int_{0}^{2 \pi} \Lambda\left(E_{1, \theta}^{\prime}\right) d \theta<4 \Lambda\left(D_{1}\right)+4 \Lambda\left(D_{2}\right)=4 \Lambda\left(E_{1}^{\prime}\right) .
$$

Hence, since $\Lambda(E)=\Lambda\left(E_{1}^{\prime}\right)$, wo have that for some θ

$$
\Lambda\left(E_{\theta}\right)<\frac{2}{\pi} \Lambda(E)
$$

which implies $\mu(E)<\frac{2}{\pi} \Lambda(E)$. Thus the inequality is proved for all ceres.

Leman 1. $\Lambda\left(E_{1, \theta}^{*}\right)$ depends continuously on θ.
Proof. Let $\left\{A_{i}\right\}$ be a sequence of rectifiable arcs of which $E_{1}{ }^{\circ}$ is a measurable subset. The method of proof is to show that we can construct a finite set of arcs whose union C is a subset of $U A_{1}$ and such that the measure of C is arbitrarily close to that of E_{1}^{0}. Then we can deduce continuity for $\quad \Lambda\left(\mathbb{E}_{1,0}{ }_{0}\right)$ from the continuity of $\Lambda\left(C_{\theta}\right)$. (This follows immediately from the continuity of the width of the convex cover of an arc. See theorem 9 - page 23.) Let $\left\{\varepsilon_{1}\right\}$ be a sequence of positive numbers decreasing strictly to zero. For each i there is a closed set $F_{i} \subset E_{i}{ }^{\circ}$ such that

$$
\begin{equation*}
\Lambda\left(F_{i}\right)>\Lambda\left(E_{1}{ }^{0}\right)-\varepsilon_{i} \tag{1}
\end{equation*}
$$

and a positive integer N_{i} such that

$$
\begin{equation*}
\Lambda\left(F_{i} \cap \bigcup_{j=1}^{N_{i}} A_{j}\right) ; \Lambda\left(F_{i}\right)-\varepsilon_{i} \tag{2}
\end{equation*}
$$

(We take F_{i} closed so that the set C we obtain will be a set of arcs.)

Since the complement in A_{j} of $A_{j} \cap F_{i}$, that is, $A_{j}-F_{i}$, is open and has finite measure, it must consist of an enumerable infinity or a finite number of open subintervals $\left\{B_{j k}\right\}$, and in either case we may arrange the $B_{j k}$ so that for some chosen integer $M_{i j}$

$$
\begin{equation*}
\Lambda\left(\bigcup_{k \geqslant M_{i j}} B_{j k}\right)<\frac{1}{N_{i}} \varepsilon_{i} \tag{3}
\end{equation*}
$$

The complement of
$\bigcup_{1 \leqslant k<i_{i j}} B_{j k}$ in A_{j}, that is,
$A_{j}-\bigcup_{1 \leqslant k<H_{i j}} B_{j k}$, consists of a finite number of arcs or points. Taking finally all the A_{j} with $1 \leqslant j \leqslant N_{i}$, let H_{i} be the set consisting of all the points and C_{i} the set of all the arcs, such that

$$
C_{i} \cup H_{i}=\bigcup_{1 \leqslant j \leqslant N_{i}}\left(A_{j}-\bigcup_{1 \leqslant k<\mathbb{M}_{i j}} B_{j k}\right)
$$

Note that

$$
\begin{equation*}
=\bigcup_{1 \leqslant j \leqslant N_{i}}\left(F_{i} \cap A_{j}\right) \tag{4}
\end{equation*}
$$

$\begin{array}{ll} & =\bigcup_{1 \leqslant j \leqslant N}\left(F_{i} \cap A_{j}\right) \\ \text { i.e. } & C_{i} \cup H_{i} \supset \mathrm{~F}_{i} \cap \bigcup^{1 \leqslant j \leqslant N_{i}} A_{j} \\ \text { and } & C_{i}-F_{i} \subset\left(C_{i} \cup H_{i}\right)-F_{i}\end{array}$

$$
\begin{gathered}
=\bigcup_{1 \leqslant j \leqslant N_{i}}\left[\left(A_{j}-F_{i}\right)-\bigcup_{1 \leqslant k<M_{i j}} B_{j k}\right] \\
\text { since } F_{i} \cap B_{j k} \text { is empty by definition }
\end{gathered}
$$

$$
C_{i} \cup H_{i} \supset \bigcup_{1 \leqslant j \leqslant N_{i}}\left(A_{j}-\bigcup_{\text {all } k}^{B_{j k}}\right)
$$

ie.

$$
\begin{equation*}
C_{i}-F_{i} \subset \bigcup_{1 \leqslant j \leqslant N_{i}} \bigcup_{k \geqslant M_{i j}}^{B_{j k}} \tag{5}
\end{equation*}
$$

C_{i} is the subset of $U_{A_{j}}$ which we wanted. It is not necessarily a subset of $\mathrm{E}_{1}{ }^{\circ}$, nor does it necessarily contain $\mathrm{E}_{1}{ }^{\circ}$. Thus to determine how close its measure is to that of $\mathrm{E}_{1}{ }^{\prime}$ we need an inequality for $\Lambda\left(\mathrm{E}_{1}{ }^{\bullet}-\mathrm{C}\right)+\Lambda\left(\mathrm{C}-\mathrm{E}_{1}{ }^{\circ}\right)$. Nov we have

$$
\Lambda\left(E_{1}^{*}-C_{i}\right)+\Lambda\left(C_{i}-E_{1}^{\prime}\right)
$$

$$
=\Lambda\left(E_{i}^{\prime}\right)-\Lambda\left(E_{i}^{\prime} \cap c_{i}\right)+\Lambda\left(c_{i}-F_{i}\right)-\Lambda\left(c_{i} \cap\left(E_{i}^{\prime}-F_{i}\right)\right)
$$

$$
\text { since } F_{i} \subset E_{1}^{\prime}
$$

$\leqslant \Lambda\left(E_{1}^{\prime}\right)+\Lambda\left(c_{i}-F_{i}\right)-\Lambda\left(c_{i} \cap P_{i}\right)$
$\leqslant \Lambda\left(E_{i}^{\prime}\right)+\Lambda\left(C_{i}-F_{i}\right)-\Lambda\left(\left(P_{i} \cap \bigcup_{1 \leqslant j \leqslant N_{i}} A_{j}\right) \cap F_{i}\right)$
by (4), since $\Lambda\left(H_{i}\right)=0$
$=\Lambda\left(B_{i}^{\prime}\right)+\Lambda\left(C_{i}-F_{i}\right)-\Lambda\left(F_{i} \cap \bigcup_{1 \leqslant j \leqslant N_{i}} A_{j}\right)$
$<\Lambda\left(E_{i}^{\prime}\right)+\Lambda\left(c_{i}-F_{i}\right)-\Lambda\left(F_{i}\right)+\varepsilon_{i}^{1 \leqslant j \leqslant N_{i}}$
by (2)
$<2 \varepsilon_{i}+\Lambda\left(c_{i}-F_{i}\right)$
by (1)
$<3 \varepsilon_{i}$
by (5) and (3).
It follows that
$\left|\Lambda\left(E_{1, \theta}^{\prime}\right)-\Lambda\left(c_{i, \theta}\right)\right| \leqslant \Lambda\left(E_{1}^{\prime}-c_{i}\right)+\Lambda\left(c_{i}-i_{1}^{\prime}\right) \leqslant 3 \varepsilon_{i}$ so that, since $\Lambda\left(c_{i, \theta}\right)$ is continuously dependent on $\theta, \Lambda\left(\mathrm{E}_{1, \theta},\right)$ is the uniform limit (ε_{i} is independent of θ) of a sequence of continuous functions. Thus $\Lambda\left(E_{1, \theta}\right)$ depends continuously on θ.

Lemma 2. $\quad \int_{0}^{2 \pi} \Lambda\left(E_{1, \theta}^{\prime}\right) \mathrm{d} \theta \leqslant 4 \Lambda\left(E_{1}^{\prime}\right)$.

Proof. The proof comes easily from a seriea of simplifications of the initial problen. First of all we note that the result is true for any E_{1}. if, by the construction used in lema 1 , it is true for a union C_{i} of a finite number of rectifiable arcs, since we established above theit $\Lambda\left(C_{i, \theta}\right)$ tends uniformiy in θ to $\Lambda\left(E_{1, \theta}\right)$ and $\Lambda\left(C_{i}\right)$ tends to $\Lambda\left(Z_{1}{ }^{\circ}\right)$. Also it is clear that the result follows for such a set C_{i} if it is established for a single arc.

We may approximate to an arc A by a polygonal line I so that for an arbitrary positive ε no point of A is more than $\frac{1}{2} \varepsilon$ from some point of L, and for which $\Lambda(L) \leqslant \Lambda(A)$. Ihen for any θ, $\Lambda\left(L_{\theta}\right) \geqslant \Lambda\left(A_{\theta}\right)-\varepsilon$. Hence we need only to prove the inequality when E_{y} is a polygonal line, and therefore only when it is a single straight segment.

But in this last case, we may suppose without loss of generality that the direction $\theta=0$ is chosen so that $\Lambda\left(E_{1, \theta}\right)=\Lambda\left(E_{1}{ }^{\circ}\right)|\sin \theta|$,时有 , in wich case

$$
\int_{0}^{2 \pi} \Lambda\left(E_{1, \theta}^{\prime}\right) d \theta=2 \Lambda\left(E_{1}^{\prime}\right) \int_{0}^{\pi} \sin \theta d \theta=4 \Lambda\left(E_{1}^{\prime}\right)
$$

Thus the result is true for a single segment, and so the lemma is proved. (ilquality does not of course always hold, because of the approximations described in the proof, but at the same time we cannot improve on the general inequality because we must include the case when E and hence E_{1} - are single gegments.)

$$
49
$$

(Diapram)

(0,posite pape.)

Lemma 3. Bither (a) almost all points of $\mathrm{E}_{1} \cdot$ lie on one straight line, or

Padify (b) there are two R-points of $\mathrm{E}_{1}{ }^{\circ}$, say $\mathrm{p}_{1}, \mathrm{p}_{2}$, such that p_{2} does not lie on $t\left(p_{1}\right)$ and p_{1} does not lie on $t\left(p_{2}\right)$. Proof. If (a) is false, there are two R-points q_{1}, q_{2} of E_{1} for which q_{2}, say, does not lie on $t\left(q_{1}\right)$. If q_{1} does not lie on $t\left(q_{2}\right)$ then condition (b) of the lemma is satisfied. so suppose q_{1} does lie on $t\left(q_{2}\right)$. (See diagram opposite.)

Choose, if possible, a third R-point q_{3} of E_{1} * which does not lie on eithex of $t\left(q_{1}\right)$, $t\left(q_{2}\right)$. Then $t\left(q_{3}\right)$ cannot contain both of q_{1}, q_{2}, for this would imply that q_{3} lies on the line $q_{1} q_{2}$, which is $t\left(q_{2}\right)$ by our assumption. So one of the pairs $\left(q_{1}, q_{3}\right)$, $\left(q_{2}, q_{3}\right)$ must satisfy condition (b) of the lemma,

If it is not possible to choose such a q_{3}, almost all points of E_{1} ' must lie on the union of $t\left(q_{1}\right)$ and $t\left(q_{2}\right)$. Since there must be R-points of \mathbb{E}_{1} other than q_{1}, q_{2} on each of these lines, we can choose a point q_{4}, say, on $t\left(q_{1}\right)$ distinct from q_{1}. Then $t\left(q_{4}\right)$ is the same line as $t\left(q_{1}\right)$, so that q_{2} does not lie on $t\left(q_{4}\right)$ (by assumption) and q_{4} does not lie on $t\left(q_{2}\right)$ (by construction). So the points q_{2}, q_{4} satisfy condition (b) of the lemma, and the lemna is proved.
libo so oca flad
P(A) +0$)$ (i) $T(1, y, y)$
Lemrna 4. If an R-point p of $\mathrm{E}_{1}{ }^{\prime}$ projects onto the point q of
$E_{1, \theta}$ and the direction of projection is not parallel to $t(p)$, then the set $\mathrm{E}_{1, \theta}$ has unit density at q.
Proof. For convenience, we make a change of notation so that for X_{θ} we shall write $P(X, \theta)$.

With the notation used in defining the density of a set at a point (see page 54), and because p is a point of uni th density of A_{i}, say, and of $E_{1} \cap A_{i}$, then given $\varepsilon>0$ there is a positive number δ_{0} such that
and $\left.\quad \begin{array}{rl}\wedge\left(E_{1}^{\prime} \cap A_{i} \cap c(p, \delta)\right) & >(1-\varepsilon) 2 \delta \\ \wedge\left(A_{i} \cap c(p, \delta)\right) & <(1+\varepsilon) 2 \delta\end{array}\right\} \quad$ for all $\begin{aligned} & \delta<\delta_{0} . \\ & \end{aligned} \quad \begin{aligned} & \text { (1) }\end{aligned}$
Put $A_{i}^{*}=A_{i} \cap o(p, \delta)$, and let $I(q, \delta)$ denote the closed linear interval perpendicular to θ whose midpoint is q and whose length is 2δ. Then since Λ is a measure,

$$
N\left[P\left(A_{i}^{*}, \theta\right) \cap I(q, \delta)\right]
$$

$$
\leqslant \quad \Lambda\left[P\left(A_{i}^{*}-E_{1}^{\prime}, \theta\right) \cap I(a, \delta)\right]+\Lambda\left[P\left(A_{i}^{*} \cap E_{1}^{\prime}, \theta\right) \cap I(q, \delta)\right]_{(2)} .
$$

$$
\Lambda\left[P\left(A_{i}^{*}-E_{1}^{\prime}, \theta\right) \cap I(q, \delta)\right] \leqslant \Lambda\left[\left(A_{i}^{*}-E_{1}^{\prime}\right) \cap c(p, \delta)\right]
$$

$$
=\Lambda\left[A_{1}^{*} \cap c(p, \delta)\right]-\Lambda\left[A_{1}^{*} \cap E_{1}^{\prime} \cap c(p, \delta)\right]
$$

$$
\text { since } \quad\left(A_{i}^{*} \cap E_{1}^{\prime}\right) \cap\left(A_{i}^{*}-E_{1}^{\prime}\right)=\phi
$$

$$
\equiv N\left[A_{i} \cap c(p ; \delta)-N\left[A_{i} \cap E_{i}^{\prime} \cap c(p, \delta)\right]\right.
$$

$$
\begin{equation*}
<4 \varepsilon \delta \text { for ell } \delta<\delta_{0} \text { by (1). } \tag{3}
\end{equation*}
$$

Also we can find a δ_{1} such that if $\delta<\delta_{1}$

$$
\begin{equation*}
P\left(A_{i}^{*}, \theta\right)=I(q, \delta) \tag{4}
\end{equation*}
$$

The ratio we must consider in order to prove the lemma is

$$
\frac{\Lambda\left[P\left(E_{1}^{\prime} \cap A_{i}, \theta\right) \cap I(q, \delta)\right]}{2 \delta}=\frac{\Lambda\left[P\left(E_{1}^{\prime} \cap A_{i}^{*}, \theta\right) \cap I(q, \delta)\right]}{2 \delta}
$$

(equality of the two expressions following because $P(c(p, \delta), \theta)=I(q, \delta)$).
But from (2), (3) and (4),

$$
\begin{aligned}
\Lambda\left[P\left(E_{1}^{\prime} \cap A_{i}^{*}, \theta\right) \cap I(G, \delta)\right] & >2 \delta-4 \varepsilon \delta \\
& =(1-2 \varepsilon) 2 \delta
\end{aligned}
$$

for all $\delta<\min \left(\delta_{0}, \delta_{1}\right)$, and it is immediate that

$$
\Lambda\left[P\left(E_{i}^{\prime} \cap A_{i}^{*}, \theta\right) \cap I(q, \delta)\right] \leqslant 2 \delta
$$

Thus it follows from the identity given above that q is a point of unit density of $P\left(E_{1}{ }^{\circ}, \theta\right)$, and the lema is proved.

Section 1-Notation and Definitions.

(The page number refers either to the first page on which a given notation is used, and therefore explained, or to the page on which a given term is defined in full.)

| X_{θ} or | $P(X, \theta)$ | $:$ | page |
| :--- | :--- | :--- | :--- |$\quad 41$

To define the terms left undefined in the main part of the section, it is convenient to use the following notation [1]. We are working in E_{2}.

$c(a, r)$	$:$ a closed circle with centre $c, ~ r a d i u s ~$
$D(E)$	$: ~ d i a m e t e r ~ o f ~ a ~ p o i n t ~ s e t ~$
U	$:$
U	a convex area, including or excluding its

A

- a finite or enumerably infinite set of convex areas U.

$A(\rho):$	a aet A for which every member U
	$D(U) \leqslant \rho \quad$.
$A(E), A(E) \rho)$	a set $A, A(\rho)$ respectively which
	contains E.

With this notation, the linear measure $\Lambda(\mathbb{I})$ of a plane set E is given by the equation

$$
\Lambda(E)=\lim _{\rho \rightarrow 0} \inf _{A(E, \rho)} D(U)
$$

The lower density and upper density respectively of a set E at a point a (which may or may not be in E) are defined by

$$
\begin{aligned}
& d_{*}(a, E)=\lim _{x \rightarrow 0} \frac{\Lambda(E \cap c(a, x))}{2 x} \\
& d^{*}(a, E)=\quad \lim _{x \rightarrow 0} \frac{\Lambda(E \cap o(a, r))}{2 x}
\end{aligned}
$$

If $d_{*}(a, E)=d^{*}(a, E)$, then $\lim \underline{\Lambda(E \cap c(a, r))}$ exists and is

$$
r \rightarrow 0 \quad 2 r
$$

called the density $\alpha(a, E)$ of E at a.
A point of E at which the density exists and is equal to 1 is called a regular point of E [2]; any other point of E is called an irregular point. If almost all points of B (that is, all except for a set of zero linear measure) are regular, E is called a regular set. If almost all points of E are irregular, E is called an irregular set.
$\mathrm{E}_{1}{ }^{\text {b }}$ is a measurable subset of the union of an enumerable infinity of rectifiable arcs. Select one such set of arcs A_{1}, A_{2}, \ldots, and let p be a point of E_{i} lying on an arc A_{i} of this set. (If p belongs to more than one arc A_{i} we may just choose one of these A_{i} and associate it with p throughout.) It is known ($[1]$ pp. 303-4) that the density of A_{i} at almost all points p of A_{i} and the density of $E_{1}{ }^{\circ} \cap A_{i}$ at almost all points p of $E_{1}^{\prime} \cap A_{i}$ both exist and are equal to 1 . Also A_{i} is rectifiable, so there is a tangent to the arc at almost all points of it.

Thus at almost all points p of $E_{1}{ }^{\prime}$, the densities of A_{i} and $E_{1} \cap A_{i}$ are equal to 1 and the tangent to A_{i} exists. Any point with these three properties is called an k-point $[3]$.

Section 2. To show that, given a plane curve of unit length, the area of its convex cover K does not exceed $\frac{1}{2 \pi}$. [4]

$$
\begin{aligned}
& {[\text { Notation and }} \\
& \text { Definitions : rage 64.] }
\end{aligned}
$$

(This section and section 3 following it are, of course, essentially the same problem, the one in two and the other in three dimensions. Although the proofs given are very dissimilar, it may be noted that the extrenal curves obtained in the two results have, as would be expected, exactly parallel properties with regard to the curvature of the curve and the distance between the endpoints.)

Note first that the convex cover of a semi-circle of unit length has area $\frac{1}{2 \pi}$, so this result is the best possible.

The length of a curve may be defined as the least upper bound of the length of inscribed polygonal lines. The intuitive way of approximating to this least upper bound is by choosing a polygonal line whose longest straight segment is arbitrarily short. In this way we can choose a polygonal line such that the area of its convex cover differs from the area of K by as little as we please. In other words, it is sufficient to consider only polygonal lines (of unit length). Let $P_{0} P_{1} \ldots P_{n}$ be one such line, where the $P_{i-1} P_{1}$ are straight segments. It is convenient to call the P_{i} vertices, but three successive vertices may be collinear.

We associate with each such rolyson a $2 n$-tuple ($\ell_{1}, \ldots, \ell_{n}, \theta_{q}, \ldots, \theta_{n}$) where $\ell_{i}=L\left(P_{i-1} P_{i}\right)$, the length of $P_{i-1} P_{i}$, and θ_{i} is the angle it makes with some fixed directed line. For convenience we allow $\ell_{i}=0$ for some of the i and we regard $\theta=0$ and $\theta=2 \pi$ as distinct, so that we have a closed, bounded set S of points $\left(\ell_{1}, \ldots, \varepsilon_{n}, \theta_{1}, \ldots, \theta_{n}\right)$ satisfying $\ell_{i} \geqslant 0,0 \leqslant \theta_{i} \leqslant 2 \pi$ and $\ell_{1}+\ldots+\ell_{n}=1 \quad$.

Associate with each point of the polygonal line a continuously increasing parameter s such that $s=0$ at P_{0} and $s=1$ at P_{n}, and such that the parameters a, b of two points P, Q on the line satisfy $a<b$ if $L\left(P_{0} P_{1} \ldots P\right)$ is strictly less than $L\left(P_{0} P_{1} \ldots Q\right)$. Hote that a point of the line may have two or more distinct parameters associated with it. We define a portion $[a, b]$ of the line as the set of those points of the line for which $a \leqslant s \leqslant b \quad(0 \leqslant a<b \leqslant 1)$. Two portions $[a, b],[c, d], b<c$, may have one or more portions in common, called double portions. (Generally, a multiple portion is a portion of the line whicn is comson to two or more portions.) Jf two such portions have a point but not a portion in common and are such that the portion $[c, d]$ has points on each side of $[a, b]$ in a neighbourhood of the common point and vice versa, then we eay that there is a crossover on the line.

Thus the most general polygonal line may contain both crossovers and multiple portions, and we show first that in fact these are
(Diapram)

(Tase 63.)
complications of the problein which can be eliminated.
First, then, consider an n-sided polygonal line L which crosses itself but has no multiple portions. We may note immediately that it is sufficient to consider only those cases in which the crossover occurs at single points and where there are no points of the plane common to more than two portions of the curve, for any other cases can be approximated to by lines satisfying these conditions. Such a line can be replaced as follows by a polygonal line L° without crossovers but having the sane length as L.

Suppose that, tracing the line in order from P_{0}, we reach the first crossover at I_{1}. If we continue to trace the line in order from I_{1}, we shall later come back to I_{1}, having traversed a portion $[a, b]$, say of the line. \wedge Instead, then, from I_{1} continue to trace the line along the portion from b towards a (identifying the parameter with the point of the line), and finally from I_{1} to P_{n}, and redefine the line as ordered in this way. This eliminates the crossover at I_{1} (although it is still a double point), without introducing any new crossovers. Now repeat this operation at the first crossover on the newly-defined line. As there can be only a finite number of crossovers on the line, this process will eventually yield a line L. of the same length as L and having no crossovers. (We may have introduced new vertices, of course, and also double points.) The area of K is unaltered.

59

So the result will be proved if it is shown to be true for a
 polygonal line of any number of sides which does not cross itself.符 Consider now the set of all such lines with a fixed number n of sides;
 these lines may have double or multiple points or lines. Since we are
 excluding lines which have crossovers, we can order the portions of a double or multiple segment in the following way. If, for example, ${ }^{P_{1}} P_{2}$ is wholly or partly coincident with $P_{0} P_{1}$, we may suppose it to lie on one side or the other of $P_{0} P_{1}$, and may choose our placing of it so that a crossover does not occur because of our choice. By
 ordering the line in this way, we axe in effect able to think of
 coincident lines as if they were actually distinct but lying next to one another, as the diagram indicates. another, as the diagram indicates.

Where the sqall circles represent single points. As each line is now
 fully ordered in this way, we may associate with each a new parametric P(b) representation where the parameter increases steadily as the line is traced in order from P_{0} to P_{n}.

$$
\text { The set } S \text {. of the } 2 \text {-tuples }\left(\ell_{1}, \ldots, \ell_{n}, \theta_{1}, \ldots, \theta_{n}\right) \text { corresponding }
$$

to such lines (without crossovers) is closed and bounded. (It is
bounded because $S^{\circ} C S$ and S is bounded; it is closed in S and hence closed because the set of lines with (non-degenerate) crossovers is clearly open, and S^{\bullet} is the complement of this set in $\left.S_{0}\right)\left({ }_{N}\right)$ Therefore there is at least one line corresponding to a $2 n-t u p l e$ in S° for which the (finite) upper bound of the area of K is attained. Consider then a line $P_{0} P_{1} \ldots P_{n}$ for which this is true, and rownh suppose that it is fully ordered as we have described, so that there is a parametric representation $s, 0 \leqslant s \leqslant 1$, and corresponding points $P(s)$ of the line so that $P(s)$ and $P(t)$ are regarded as distinct points whenever $s \neq t$, although they may represent coincident points on the line $P_{0} P_{1} \ldots P_{n}$. The convex cover K of $P_{0} P_{1} \ldots P_{n}$ has a in frontier $P(K)$, a convex polygon, which may be regarded, in the same sense as the ordering process employed above, as having the whole of the line $P_{0} P_{1} \ldots P_{n}$ lying to one side of it when it is traced in a particular direction. The point $f(s)$ of the line $P(0) P\left(s_{1}\right) \ldots P\left(s_{n-1}\right) P(1)$ will be said to touch $F(K)$ if the corresponding point P of $P_{0} P_{1} \ldots P_{n}$ lies on $F(K)$ and there is a portion $P\left(s_{i}\right) P\left(s_{j}\right)$ of the line, $s_{i}<s<s_{j}$, such that the part of $P(K)$ in some neighbourhood of $P(s)$ lies on the opposite side of $P\left(s_{i}\right) P\left(s_{j}\right)$ to any other points of the line in that neighbourhood. \quad ba reduogd withoat introducting amy

We now establish several properties of this line. (a) $P(0), P(1)$ (corresponding to P_{0}, P_{n}) touch $F(K)$.

If not, suppose that the first vertex to touch $F(\mathbb{K})$ is $P\left(s_{i}\right)$. Then we can remove the portion $P(0) \ldots P\left(s_{i}\right)$ without altering K, and so the same upper bound for $A(K)$ is attained with a line of less than unit length. Since this is by definition impossible, $P(0)$ must touch $F(K)$, and so must $P(1)$ by similar reasoning.
(b) P_{0}, P_{n} are distinct points (of the non-ordered line).

Suppose the they are not. There must be at least one other vertex of $P(0) P\left(s_{1}\right) \ldots P\left(s_{n-1}\right) P(1)$ which touches $F(K)$ (since K is the convex cover of the line). If $P\left(s_{i}\right)$ is the first such vertex in order from P_{0}, then again we can remove the portion $P(0) \ldots P\left(s_{i}\right)$ without altering K. Hence as in (a), it follows that P_{0}, P_{n} are distinct points, and therefore the frontier of K consists of two distinct polygonal lines between P_{0} and P_{n}. Call these a and β (c) $P\left(s_{1}\right), P\left(s_{n-1}\right)$ touch $P(K)$.

If not, supose $P\left(s_{i}\right), i \neq 1$, is the first vertex in order from $P(0)$ which does touch $F(K)$. Then the portion $P(0) \ldots P\left(s_{i}\right)$ can be replaced with the straight segment $P(0) P\left(s_{i}\right)$, which is in fact part of $F(K)$, and thus $L\left(P_{0} P_{1} \ldots P_{n}\right)$ can be reduced without introducing any crossovers and without reducing $A(K)$. Since this contradicts the definition of $K, P\left(s_{1}\right)$ must touch $F(K)$, and in the same way so must $P\left(s_{n-1}\right)$.

62

(d) If all the vertices do not lie in order on α or β, $P(0) P\left(s_{1}\right) \ldots P\left(s_{n_{-1}}\right) P(1)$政过 lie in order on a (touching $F(K)), P\left(s_{j}\right), P\left(s_{j+1}\right), \ldots$, $\mathrm{P}\left(\mathrm{s}_{\mathrm{k}}\right)$ lie in order on β (touching $\mathrm{P}(\mathrm{K})$), $\mathrm{P}\left(\mathrm{s}_{1}\right), \mathrm{P}\left(\mathrm{s}_{1+1}\right), \ldots$, $P\left(s_{m}\right)$ lie on a, and so on, where $1 \leqslant h<j<\cdots \leqslant n-1$. Sup;ose that all the vertices up to $P\left(s_{h}\right)$ touch $P(K)$ and lie on a, but that $P\left(s_{h+1}\right)$ does not. we do not yet know that every vertex has to touch $F(K)$, so let $P\left(s_{j}\right), j \geqslant h+2$, be the first vertex in order from $P\left(s_{h_{+1}}\right)$ to touch $F(K)$ on one of α and β ($P\left(s_{n-1}\right)$ will do so, so $P\left(s_{j}\right)$ exists). By definition $P\left(s_{j}\right)$ cannot touch $P(K)$ on the rart of a between $P(0)$ and $P\left(s_{h}\right)$, since we are assuming that all these vertices touch $F(K)$ and this mould imply the existence of a crossover. If it touches $F(K)$ on the remaining part of a, then the straight line $P\left(s_{h}\right) P\left(s_{j}\right)$ must be part of $P(K)$ and replacing $P\left(s_{h}\right) P\left(s_{h+1}\right) \ldots P\left(s_{j}\right)$ with the straight segment $P\left(s_{h}\right) P\left(s_{j}\right)$ reduces $L\left(P_{0} P_{1} \ldots P_{n}\right)$ without introducing any crossovers and without reducing $A(K)$, which contradicts the extremal property of the polygonal line with K. Thus for some $j>h+1, P\left(s_{j}\right)$ must lie on β if $P\left(s_{h+1}\right)$ does not touch $\Gamma(K)$. This proves (d).
(e) $P\left(s_{h}\right) \ldots P\left(s_{j}\right), P\left(s_{k}\right) \ldots P\left(s_{1}\right), \ldots$ must be straight lines.

These are the polygonal lines between α and β in the
arrangement of the vertices $P(0), P\left(s_{1}\right), \ldots, P\left(s_{n-1}\right), P(1)$ given in (d) above. If they are not straight, we can replace them
simultaneously with straight segments without introducing any crossovers, but reducing $L\left(P_{0} P_{1} \ldots P_{n}\right)$ without reducing $A(K)$. Since again this is not so, the lines must be straight.

Winth this result, we can assume that there are no vertices of $P(0) P\left(s_{1}\right) \ldots P\left(s_{n-1}\right) P(1)$ which do not touch $F(K)$ (thus regarding $p\left(s_{h}\right) \ldots P\left(s_{j}\right)$ etc. as single segments). With this established, we can drop the ordering notation as it is no longer useful, and return to the original notation $P_{0} P_{1} \ldots P_{n}$ for the line. (f) If P_{1} lies on a, all the vertices lie on a (See page 57 , diagram.) If not, suppose P_{i+1} is the first vertex which lies on β. \wedge ($i+1 \neq n$.) Then the line $P_{0} P_{i+1}$ is part of $F(K)$ and the area of triangle $P_{0} P_{i} P_{i+1}$ contributes to $A(K)$. Since K is maximal by definition, this means that $A\left(P_{0} P_{i} P_{i+1}\right)$ must be as large as possible, keeping $L\left(P_{0} P_{i}\right)$ and $L\left(P_{i} P_{i+1}\right)$ constant, and this so when the angle between $P_{0} P_{i}$ and $P_{i} P_{i+1}$ is $\frac{1}{2} \pi$.

Hence $J_{J}\left(P_{0} P_{i+1}\right)>L\left(P_{i} P_{i+1}\right)$ so that we can now make the following constraction. Suposing that $P_{k} P_{i}(k>\{)$ is on $F(K)$, extend it to $Q\left(P_{i}\right.$ lying between Q and $\left.P_{k}\right)$ so that

$$
L\left(P_{i+1} Q\right)=L\left(P_{i+1} P_{0}\right)>L\left(P_{i} P_{i+1}\right)
$$

Now reflect $P_{0} P_{1} \ldots P_{i+1}$ in $P_{0} P_{i+1}$ and rotate $P_{0} P_{i+1}$ rigidly about P_{i+1} until P_{0} is coincident with Q. We have not altered the length of the polygonal line, but by putting the vertioes P_{1}, \ldots, P_{i} on the same polygonal arc from P_{0} to P_{n} as P_{i+1} we have increased $A(K)$ by an amount equal to $A\left(Q P_{i} P_{i+1}\right)$. (Here it is assumed that
the change in position of $P_{0} P_{1} \ldots P_{i+1}$ leaves P_{i+1} still on the frontier of the new convex cover. If it does not, then the area of the convex cover is increased still further, but we know from property (e) that this is itself not maximal, since not all the vertices of the polygonal line then lie on its frontier.)

Thus we have finally the the area of the convex cover is greatest when all the vertices P_{1}, \ldots, P_{n-1} of the polyconal line lie on one aide of the straight segment $P_{0} P_{n}$. Seflecting $P_{0} P_{1} \ldots P_{n}$ in $P_{0} P_{n}$, we obtain a 2 n-sided polygon (not necessarily convex) of perimeter 2 , and a polygon of given perimeter length has maximum area when it is regular. Hence the convex cover of $P_{0} P_{1} \ldots P_{n}$ hes, by elementery trigonometry, maximum aree

$$
\begin{aligned}
A_{n} & =\frac{1}{2}\left(\frac{1}{2 n}\right) \cot \frac{\pi}{2 n} \\
& =\frac{1}{2 \pi}\left(\frac{\pi / 2 n}{\tan \pi / 2 n}\right)<\frac{1}{2 \pi}
\end{aligned}
$$

and as n increases $A_{n} \rightarrow 1 / 2 \pi \quad$. This proves the result.

Section 2-Notation and Definitions.

(The page number refers either to the first page on which a given notation is used, and therefore explained, or to the page on which a given tera is defined in full.)

K	$:$	page	55
$H^{\prime}(K)$	$:$	page	60
r_{i}	$:$	page	55
$L(P(R \ldots)$	$:$	page	56
$A(X Y Z \ldots)$	$:$	page	63
$A(K)$	$:$	page	58
a, β	$:$	page	61
i	$:$	page	56

Vertex	$:$	page	55
Portion	$:$	page	56
Double (or multiple) portion	$:$	page	56

Gection 3. Lo find the maximum volume of the convex cover of a simple arc of space-curve of given length. [5]

$$
\begin{aligned}
\cdots \cdots \cdots \cdots \cdots \cdots & {[\text { Notation and }} \\
& \text { Definitions : page 80. }]
\end{aligned}
$$

A bounded convex point set may be defined as a set which is identical to the set of its chords (using this term in its usual sense). Thus if $\omega(S)$ denotes the set of all those points contained in at least one chord of S, S is convex if and only if $\omega(S)=S$. With this definition of ω, it follows by Carathéddory's theorem (theorem 6-page 13) that the convex cover $\Omega(S)$ of a bounded point set S in E_{3} is given by $\Omega(S)=\omega(\omega(S))$. For, $\Omega(S) \supset \omega(\omega(S))$ trivially since $\Omega(S)$ is convex and contains S. On the other hand if a point $x \in \Omega(S)$, then by Carathéodory's theorem x is a point of a simplex with vertices x_{1}, \ldots, x_{4}, (in E_{3}), $x_{1} \in X$ for each i. The set $\omega\left(x_{1}, \ldots, x_{4}\right)$ defines the edges and interior diagonals of this simplex, and thus $\omega\left(\omega\left(x_{1}, \ldots, x_{4}\right)\right)$ defines the whole simplex. So $x \in \omega\left(\omega\left(x_{1}, \ldots, x_{4}\right)\right)$. But since the set of the points x_{1}, \ldots, x_{4} is contained in S, we have $\omega\left(\omega\left(x_{1}, \ldots, x_{4}\right)\right) \subset \omega(\omega(s))$, and so $x \in \omega(\omega(s))$. Thus finally $\quad \Omega(S)=\omega(\omega(S)) . \quad(\Omega(S)=\omega(S)$ is generally not true, as for example when S is a set of four non-collinear points in E_{3} 。)

Let $K(r)$ denote a class of spaoe-curves (in E_{3}) with the properties

$$
67
$$

(Diapram)

(Pare $^{2} 72$.)

(I) $\Omega(r)=\omega(r)$,
(II) every interior point of $\Omega(r)$ is contained in one and only one chord of r.
A simple arc γ^{*} of space-curve is defined as an arc which $h_{a} s$ no four points coplanar. The problem is to determine the maximum volume of the convex cover of all arcs of such space-curves γ^{*} which have a given length L, and we prove that the required maximum volume is $L^{3} /(18 \sqrt{3} \pi)$, and that it is obtained only for an arc of a helix given by the equations $x=\frac{L}{\sqrt{6} \pi} \cos t, y=\frac{L}{\sqrt{6} \pi} \sin t$, $z=\frac{L}{2 \sqrt{3} \pi} t$, where $0 \leqslant t \leqslant 2 \pi$.

We prove first an ancillary result which in effect enables us to use in the main proof two equivalent definitions for the class $K\left(r^{*}\right)$.

A connexion between the classes $K\left(\gamma^{*}\right)$ and $K(r)$ described above is imnediately clear, since any arc which has four coplanar points cannot belong to the class $K(r)$ because property (II) is contradicted. We show here that any simple arc γ^{*} is a member of the class $K(\gamma)$ and hence it will follow that $K\left(\gamma^{*}\right)$ and $K(\gamma)$ are in fact identical.

Suppose that γ^{*} is a simple arc with endpoints A and B. Consider the cone which projects γ^{*} from a point C which is them collinear with A and B and is separeted from A by B (or from B by A). (See diagram oprosite.)
(i) The cone is closed, in the sense that its intersection with a
sphere centred at C is a closed curve. This is clear since the projecting lines of A and B are coincident, and the arc must cut every other senerator of the oone once and once only. For if it out any generator more than once, the two points of intersection would be coplanar with A and B, which is a contradiction of the definition of r^{-*}; and so since A and B share the same generator r^{*} nust reet every other generator exactly once.
(ii) The generator passing through A and B is the only multiple generator. As we have already noted in (i), any other double generator (for example) would contain two points of γ^{*} and these points would then (since any two generators meet in C) be coplanar with A and B.
(iii) The cone is convex in the sense that if its intersection with a plane is a bounded curve then that curve is convex. For if it were not, we should be able to find four coplanar generators, which would imply four ooplanar points of the arc. For, suppose there is a plane which outs the cone in a bounded non-convex ourve Γ. Ihen Γ has at least four collinear points, as follows.

Since the set X enclosed by Γ is non-convex, there are two points x, y of X such that at least one point z, say, of the segment $x y$ lies in the exterior of the olosure of X (that is, in the exterior of the union of X and Γ). Now consider the line through x, y and z. Since x is interior to X and z is exterior to X,
there must be a point q not coincident with x or z on the segment $x z$ such that q lies on the curve, and similarly there must be a point x of the curve on the segment $z y, r$ not coincident with z or y. Finally, since the curve is bounded, there must be tro points p, s of the curve which lie on $x y$, with x between p and y, y between x and s, Ihus p, q, r, s are four collinear points of the curve. It follows that the generators of the cone through these four points are coplanar, and this in turn implies that there must be four coplanar points of the arc r^{*}, which is a contradiction with its definition. Hence must be convex. (iv) The cone is convex in the usual sense. For if it were not, we should be able to find two points x, y of the cone such that at least one point z, say, of the segment $x y$ is not contained in the cone. If there is a plane through $x y$ which cuts the cone in a bounded curve, then we have an immediate contradiction with (iii). If on the other hand every plane throurh $x y$ cuts the cone in an unbounded curve, we may note the followine. There is a plane π through the endpoint B say of the arc γ^{*} guch that γ^{*} lies entirely within one of the closed half-spaces bounded by π, and therefore there is a parallel plane π_{1} through the vertex C of the cone such that except for C the cone lies entirely in one of the open half-spaces bounded by π_{1}. Any plane parallel to π_{1} which meets the cone meets it in a bounded curve since otherwise this would contradict the definition of π_{1}. Project
the points x, y, z from C onto points x, y_{1}, z_{1} say of a plane π_{2} through x parallel to π_{1}. Then by our assumption z_{1} lies between x and y_{1} and does not belong to the cone, whereas x and y_{1} do belong to the cone. But by its construction π_{2} meets the cone in a bounded curve, and this curve is convex (by property (iii)). It follows that z_{1} must belong to the cone, and we have a contradiction. Hence the cone is convex in the usual sense. By a similar argument it follows also that the projecting cylinder of r^{*} which has its generators parallel to $A B$ is a closed convex cylinder.

The cones which project the arc from its endpoints A and B may be defined as follows. the cone which has A as vertex, say, consists of (i) all the lines joining A to interior points of r^{*} and (ii) the plane sector which lies in the angle between the line $A B$ and the tangent to r^{*} at A. As before this cone and the one at B are closed and convex, and in fact are the support cones of γ^{*} at A and B . (The definition of a support cone is, as its name implies, (see page 9.) analogous to that of a support hyperplane, Let the point set which is the intersection of these two support cones be denoted by $I\left(r^{*}\right)$. We now prove that $I\left(r^{*}\right)$ is the convex cover of r^{*}, i.e. that $I\left(r^{*}\right)=\Omega\left(r^{*}\right)$. If $I\left(r^{*}\right)=\omega\left(r^{*}\right)$, the result follows easily. We know that $I\left(r^{*}\right)$ is convex (see theorem 2-page 9), so that
$\omega\left(I\left(r^{*}\right)\right)=I\left(r^{*}\right)$. But if $\omega\left(r^{*}\right)=I\left(r^{*}\right)$, then

$$
\begin{equation*}
\Omega\left(r^{*}\right)=\omega\left(\omega\left(r^{*}\right)\right)=\omega\left(I\left(r^{*}\right)\right)=I\left(r^{*}\right) . \tag{1}
\end{equation*}
$$

To prove $I\left(r^{*}\right)=\omega\left(r^{*}\right)$, consider any point Q in the (See page 67, diagram.)
interior of $I\left(r^{*}\right)$ - Λ The plane QAB cuts r^{*} in a single point \bar{Q} (since no four points of r^{*} are coplanar). Denote by λ the line through Q whica is parallel to $A B$, and suppose that the plane $\overline{W_{A B}}$ is roteted about λ through 180°. Call this rotating plane π - As π rotates, it has two well-defined points of intersection, say X and Y, with γ^{*}, so that in its initial position X is at A and Y at \bar{Q}, and in its final position X is at \bar{Q} and Y at B. This is easy to see as follows. The support cylinder of the arc Y^{*} has only one double generator, through A and B. Otherwise any generator contains a single point of r^{*}. The plane π is rotating about a line in the interior of this cylinder parallel to the cylinder, and so since we have seen already that the cylinder is convex π cuts the surface of the cylinder in two generators, and hence π cuts r^{*} in just two points X, Y (one on each generator), except in the case when one of the generators is $A B$, which occurs at the beginning of the rotation and then not again until the end of the rotation (when π has turned through 180°). Note also that from their construction the points X and Y move continuously along r^{*}.

Now the chord $X Y$ and the line λ lie in the same plane π
and so have a point of intersection R, unless they are parallel. But they can never be parallel because if $X Y$ is ever parallel to λ then it is elso parallel to $A B$, which implies that X, Y, A, B are four coplanar points of r^{*}, thus contradicting the definition of r^{*}. Thus R always exists. Since X and Y move continuously along r^{*}, it follows that the point R moves continuously along λ. At the beginning of the rotation R is the point of intersection of the segment $A \bar{Q}$ and λ, and at the end of the rotation R is the point of intersection of $\overline{\alpha B}$ and λ. But the segments $A \bar{Q}$ and $\overline{W B}$ lie oompletely in the frontier of $I\left(\gamma^{x}\right)$, and thus H starts and finishes on the frontier of $I\left(r^{*}\right)$: Therefore since R moves continuously along λ it follows that during the rotation R passes through every point of λ which is interior to $I\left(r^{*}\right)$. Thus there is a position of the chord $X Y$ auch that it passes through the aritrary point Q. Furthermore this is the only chord which passes through Q, since if there were two such chords, say $X_{1} X_{1}$ and $X_{2} Y_{2}$, the four points $X_{1}, X_{2}, Y_{1}, Y_{2}$ of r^{-} would be coplanar.

We have proved, then, that through an arbitrary point of the interior of $I\left(\gamma^{*}\right)$ there passes one and only one chord of γ^{*}, so that the arc γ^{*} possesses property (II) of the class $K(\gamma)$. Also, since this has proved that $I\left(\gamma^{*}\right)=\omega\left(\gamma^{*}\right)$, according to the definition of ω, we have

$$
\Omega\left(r^{*}\right)=I\left(r^{*}\right)=\omega\left(r^{*}\right)
$$

from (1)
which is property (I) of the class $K(\gamma)$. Thus every simple arc γ^{*} is a member of the class $K(\gamma)$, and hence, since we have already seen at the beginning of this section that an arc which is not simple is not a member of $K(\gamma)$, the two classes are identical.

Returning to the main problem, suppose then that r is a simple arc of length $L \equiv \sqrt{3} \ell(\ell>0)$, the volume of whose convex cover is maximal. (If such an arc is not simple, we can construct and consider instead a simple arc, still of length L, for which the convex cover differs in volume by an arbitrarily small amount from the maximum value that we want.) We may now restrict attention to those curves at each of whose points P there is a tangent which varies continuously with P . For, given a curve without this property, it would be possible to define a "smoothing" process for the arc which would increase the volume of the convex cover without increasing the length of the arc. Grape 77)
In the lema proved below, it is shown that the volume \boldsymbol{V} of the convex cover of a simple arc is given by

$$
\nabla=\frac{z(b)-z(a)}{6} \int_{a}^{b}[x(t) \dot{y}(t)-y(t) \dot{x}(t)] d t
$$

where the functions $x(t), y(t), z(t)$ have continuous first order derivatives, and where $x=x(t), y=y(t), z=z(t), a \leqslant t \leqslant b$, are the equations of the aro in a given rectangular system of coordinates, chosen so that the zeaxis lies along the chord $A B$ joining
the endpoints of the arc, such that $x(a)=x(b)=y(a)=y(b)=0$, and $z(a)<z(b)$.

This formula implies

$$
V=\frac{q T}{3}
$$

where q is the length of the chord joining the endpoints A, B of the arc $(=z(b)-z(a)) ; T$ is the area bounded by the projections of points of γ along lines parallel to the chord $A B$ onto a plane perpendicular to $A B$. For the equations of the closed projected curve are $x=x(t), y=y(t)$ as above, and the area T enclosed by this curve is given by $\int_{a}^{b} x(t) \dot{y}(t) d t$, integrating over strips parallel to the x-axis, or by $-\int_{a}^{b} y(t) \dot{x}(t) d t$ if the strips are taken parallel to the y-axis. (Signs depend, of course, on the orientation of the arc, and will be opposite to the ones given above it T would otherwise be negetive.) Thus it follows trivially that T is also equal to the average of these two integrals, as in the formula for V. We may obtain the largest value of V by considering the following inequalities.
(i) If p is the length of circumference of the cross-section of the projecting cylinder of r projected parallel to $A B$, then since of all closed curves of given circumference the circle has lardest area,

$$
T \leqslant \pi\left(\frac{p}{2 \pi}\right)^{2}=\frac{p_{2}^{2}}{4 \pi}
$$

(ii) If the projecting cylinder of r parallel to $A B$ is developed into a plane, then, since the endpoints of an arc of given length are furthest apart when the arc is a straight line, we have by Pythagoras' theorem that

$$
\begin{equation*}
p^{2}+q^{2} \leqslant 3 \ell^{2} \tag{iii}
\end{equation*}
$$

If $\ell>0, q>0$, then $\left(3 \ell^{2}-q^{2}\right) q \leqslant 2 e^{3}$.
We have from (ii) that $p^{2}+q^{2} \leqslant 3 \ell^{2}$ and we are trying to obtain an inequality for $p^{2} q$ in order to reach a maximal value for V. If we put $p=\alpha \ell, q=\beta \ell$, we have $\alpha^{2}+\beta^{2}=3$ in the extremal case, and $p^{2} q=\alpha^{2} \beta \ell^{3}$. By ordinary differentiation of $\alpha^{2} \beta$ with respect to β, say, we see that the maximum value of $p^{2} q$ occurs when $\beta=1$, so that $q=\ell$ and $\left(3 \ell^{2}-q^{2}\right) q=2 \ell^{3}$. Thus in general $\left(3 \ell^{2}-q^{2}\right) q \leqslant 2 \ell^{3}$.

$$
\text { Hence } V \text { satisfies the inequalities }
$$

$$
V=\frac{q T}{3} \leqslant \frac{p^{2} q}{12 \pi} \leqslant \frac{\left(3 \ell^{2}-q^{2}\right) q}{12 \pi} \leqslant \frac{e^{3}}{6 \pi}=\frac{L^{3}}{2 \cdot 3^{5 / 2} \pi}
$$

and these are valid if and only if the projecting cylinder has circular cross-section (from (i)), γ is transformed into a straight line when the projecting cylinder is developed into a plane (from (ii)), and the length q of the chord $A B$ is equal to $\ell \equiv \frac{L}{\sqrt{3}} \quad$ (from (iii)). Thus the maximum value of V which we required is $L^{3} /(18 \sqrt{3} \pi)$ and the only space-curve satisfying the conditions for it is an arc of a helix (because of (ii)) traced on a circular cylinder (because of (i))
of radius $L /(\sqrt{6} \pi)$ (because of (iii)), and corresponding to a rotation 2π (because the projecting cylinder is closed) and a translation $L / \sqrt{3}$ (being the length of $A B$).

Lemia. A simple axe r in E_{3} is defined in a given rectangular system of coordinates by the equations

$$
x=x(t), y=y(t), \quad z=z(t), \quad a \leqslant t \leqslant b
$$

where $x(t), y(t), z(t)$ have continuous first order derivatives with respect to t, and also

$$
\begin{equation*}
x(a)=x(b)=y(a)=y(b)=0, \quad z(a)<z(b) \tag{1}
\end{equation*}
$$

(The effect of these last restrictions is to make the line joining the endpoints of the arc coincident with the maxis.) Then the volume V of the convex cover of r is given by

$$
V=\frac{z(b)-z(a)}{6} \int_{a}^{b}[x(t) f(t)-y(t) z(t)] d t .
$$

proof. As we have shown in the main part of the section, a simple arc γ has the property that every interior point of its convex cover is contained in exactly one chord of r. Consider two points of r with parametric representations t_{1}, t_{2}. Any point of the chord
joining these may be given by the equations

$$
\left.\begin{array}{rl}
x & =\frac{1+t_{3}}{2} x\left(t_{1}\right)+\frac{1+t_{3}}{2} x\left(t_{2}\right) \tag{2}\\
y & =\frac{1+t_{3}}{2} y\left(t_{1}\right)+\frac{1-t_{3}}{2} y\left(t_{2}\right) \\
& =\frac{1+t_{3}}{2} z\left(t_{1}\right)+\frac{1-t_{3}}{2} z\left(t_{2}\right)
\end{array}\right\}
$$

where t_{3} is variable, $-1 \leqslant t_{3} \leqslant 1$; and if we specify that $a \leqslant t_{1}<t_{2} \leqslant b$, there is then a one-one correspondence between the points represented by the equations (2) and the interior and frontier points of $\Omega(\gamma)$, tine convex cover of γ.

Hence it follows that the volume of $\Omega(\gamma)$ is given by

$$
V=\iiint_{\mathcal{N}(\gamma)} d x d y d z=\frac{1}{2} \int_{-1}^{1} \int_{a}^{b} \int_{a}^{b} \frac{\partial\left(x_{2}, y_{2} z\right)}{\partial\left(t_{1}, t_{2}, t_{3}\right)} d t_{1} d t_{2} d t_{3}
$$

where the factor $\frac{1}{2}$ arises because of the stipulation that $t_{1}<t_{2}$. From (2), we have

$$
\begin{aligned}
& \frac{\partial\left(x_{1}, y_{1} z\right)}{\partial\left(t_{1}, t_{2}, t_{3}\right)}=\left|\begin{array}{lll}
\frac{1+t_{3}}{2} i\left(t_{1}\right) & \frac{1-t_{3}}{2} \pm\left(t_{2}\right) & \frac{1}{2} x\left(t_{1}\right)-\frac{1}{2} x\left(t_{2}\right) \\
\frac{1+t_{3}}{2} y\left(t_{1}\right) & \frac{1-t_{3}}{2} \frac{y}{y}\left(t_{2}\right) & \frac{1}{8} y\left(t_{1}\right)-\frac{1}{2} y\left(t_{2}\right) \\
\frac{1+t_{3}}{2} z\left(t_{1}\right) & \frac{1-t_{3}}{2} i\left(t_{2}\right) & \frac{1}{2} s\left(t_{1}\right)-\frac{1}{2} s\left(t_{2}\right)
\end{array}\right| \\
& =\frac{\left(1+t_{3}\right)\left(1-t_{3}\right)}{8}\left|\begin{array}{lll}
i\left(t_{1}\right) & i\left(t_{2}\right) & x\left(t_{1}\right)-x\left(t_{2}\right) \\
f\left(t_{1}\right) & f\left(t_{2}\right) & y\left(t_{1}\right)-y\left(t_{2}\right) \\
z\left(t_{1}\right) & z\left(t_{2}\right) & z\left(t_{1}\right)-z\left(t_{2}\right)
\end{array}\right| \\
& \equiv \frac{\left(1+t_{3}\right)\left(1-t_{3}\right)}{8}\left(\Delta\left(t_{1}\right)-\Delta\left(t_{2}\right)\right) \quad \text {,soy. }
\end{aligned}
$$

Thus $V=\frac{1}{16} \int_{a}^{b} \int_{a}^{b}\left(\Delta\left(t_{1}\right)-\Delta\left(t_{2}\right)\right) d t_{1} d t_{2} \cdot \int_{-1}^{1}\left(1+t_{3}\right)\left(1-t_{3}\right) d t_{3}$

$$
=\frac{4}{3} \cdot \frac{1}{16} \int_{a}^{b} \int_{a}^{b}\left(\Delta\left(t_{1}\right)-\Delta\left(t_{2}\right)\right) d t_{1} d t_{2}
$$

$$
=\frac{1}{12} \int_{a}^{b} \int_{a}^{b}\left|\begin{array}{lll}
\dot{x}\left(t_{1}\right) & \dot{x}\left(t_{2}\right) & x\left(t_{1}\right) \\
\dot{y}\left(t_{1}\right) & \dot{y}\left(t_{2}\right) & y\left(t_{1}\right) \\
\dot{z}\left(t_{1}\right) & \dot{(}\left(t_{2}\right) & z\left(t_{1}\right)
\end{array}\right| d t_{1} d t_{2}
$$

$$
-\frac{1}{12} \int_{a}^{b} \int_{a}^{b}\left|\begin{array}{lll}
\dot{z}\left(t_{1}\right) & \dot{y}\left(t_{2}\right) & y\left(t_{2}\right) \\
\dot{y}\left(t_{1}\right) & \dot{y}\left(t_{2}\right) & y\left(t_{2}\right) \\
\dot{z}\left(t_{1}\right) & z\left(t_{2}\right) & z\left(t_{2}\right)
\end{array}\right| d t_{1} d t_{2} \quad .
$$

As our choice to have $t_{1}<t_{2}$ was arbitrary, we are free to interchange t_{1} and t_{2} in the second term, say, which gives

$$
\begin{aligned}
& v= \frac{1}{6} \int_{a}^{b} \int_{a}^{b}\left|\begin{array}{lll}
\dot{z}\left(t_{1}\right) & \dot{z}\left(t_{2}\right) & x\left(t_{1}\right) \\
\dot{f}\left(t_{1}\right) & f\left(t_{2}\right) & y\left(t_{1}\right) \\
z\left(t_{1}\right) & z\left(t_{2}\right) & z\left(t_{1}\right)
\end{array}\right| d t_{1} d t_{2} \\
&=-\frac{1}{6} \int_{a}^{b} z\left(t_{2}\right) d t_{2} \int_{a}^{b}\left|\begin{array}{ll}
\dot{y}\left(t_{1}\right) & y\left(t_{1}\right) \\
z\left(t_{1}\right) & z\left(t_{1}\right)
\end{array}\right| d t_{1} \\
&+\frac{1}{6} \int_{a}^{b} \dot{y}\left(t_{2}\right) d t_{2} \int_{a}^{b}\left|\begin{array}{ll}
z\left(t_{1}\right) & x\left(t_{1}\right) \\
z\left(t_{1}\right) & z\left(t_{1}\right)
\end{array}\right| d t_{1} \\
&-\frac{1}{6} \int_{a}^{b} \dot{z}\left(t_{2}\right) d t_{2} \int_{a}^{b}\left|\begin{array}{ll}
\dot{x}\left(t_{1}\right) & x\left(t_{1}\right) \\
\dot{y}\left(t_{1}\right) & y\left(t_{1}\right)
\end{array}\right| d t_{1}
\end{aligned}
$$

Of these three terms, the first two go to zero because of (1), and so we have finally

$$
V=\frac{1}{6}(z(b)-z(a)) \int_{a}^{b}\left|\begin{array}{ll}
x(t) & \dot{x}(t) \\
y(t) & \dot{y}(t)
\end{array}\right| d t
$$

which is the required formula.

Section 3- Hotation and Definitions.

(The page number refers either to the first page on which a given notation is used, and therefore explained, or to the page on which a given term is defined in full.)

$\omega(S)$	$:$	page	66
$\Omega(S)$	$:$	page	66
$K(r)$	$:$	page	66
A, B	$:$	page	68
$I\left(r^{*}\right)$	$:$	page	71

Spacencurve : a curve of linear measure in E_{3}.
Simple aro : page 68
Support cone : page 71

Section 4. To show that the minimal width of a triangle ciroumscribing a plane bounded convex set of given frontier length ℓ is at most $\frac{\ell}{\sqrt{3}}$, and is at most $\frac{1}{3} \ell$ if the convex set is central. [6] $\cdots \cdots-\cdots-\cdots-\ldots$ [Notation : page 89.$]$
Γ denotes a plane bounded convex get whose frontier is of length ℓ, and $A B C$ denotes a triangle which circumscribes Γ. One of the vertices of $A B C$ may be at infinity, so that "triangles" with two eides parallel can be included. First note that if Γ is an equilateral triangle and $A B C$ is a circumscribing equilateral triangle with sides parallel to those of Γ but oriented in the opposite sense, then the minimal width of ABC is $\frac{\ell}{\sqrt{3}}$.

There is one convex set Γ and one oircumscribing triangle ABC for which the ratio of the minimal width of $A B C$ to the frontier length of Γ attains the largest possible value. For, given any triangle $A^{\circ} B^{\circ} C^{\prime}$ we can inacribe in $A^{\prime} B^{\circ} C^{\prime}$ an infinity of convex sets of different frontier lengthe, and from these sets it is always possible to piok an infinite sequence in whioh the frontier length either decreases striotly or becones constant., and in either case by the Blaschke selection theorem (theorem 7 - page 16) (since the closures of the convex sets are a.] contained in $A^{*} B^{\circ} C^{*}$) there is a convex set Γ^{\prime} insaribed in $A^{\circ} B^{\circ} C^{\circ}$ whose frontier length is at least as amall as that of any other inscribed convex set. Denote the ratio of the minimal
width of $A^{\prime} B^{\circ} C^{\prime}$ to the frontier length of Γ^{\prime} by $\lambda^{\prime} \cdot \lambda^{\prime}$ must be non-negative, and is certainly less than 2 , say. (Every convex set of frontier length ℓ can be contained in a square of side length $\frac{1}{2} \ell$ (trivially), and the largest minimal width of a triangle which circumscribes such a square is itself less than ℓ - see [9].) The values of λ^{\prime} thus form an infinite bounded set and so an infinite sequence of increasing values of λ^{\prime} selected from this set must converge to some value λ, which is the ratio corresponding to some actual convex set Γ and a triangle $A B C$ circumscribing Γ. Sence we may prove the main result of this section by a discussion of the extremal case, since we know that such a case exists.

Suppose then that the frontier length of Γ is ℓ. We begin by establishing that Γ must have interior points. For if it does not, that is, if it is a straight segment, its frontier length is twice the length of the segment, and thus the circumscribing triangle has minimal width at most $\frac{1}{2} \ell$. But this is impossible because we have already noted a case in which the minimal width of the circunscribing triangle is $\frac{l}{\sqrt{3}}$. Hence Γ has interior points.

Further, we may assume that $A B C$ either (i) has two sides parallel (one of the vertices being taken as at infinity), or (ii) is isosceles with the two equal sides at least as long as the third side. If (ii) is not true, suppose that the triangle is scalene with $A B>A C \geqslant B C$, so that the minimal width of $A B C$ is equal to the

$$
83
$$

(Diapram)

(Tage 86.)

84

perpendicular length from C to $A B$. If there is a point of Γ other than at C on $B C$ we can construct a second circunscribing triangle of Γ which has minimal width greater than that of ABC * \wedge. \wedge 保.) For, let C^{\prime} bela point near C on $A C$ produced (so that C lies between A and C^{\bullet}), and let $C^{\circ} B^{\circ}$ be a support line of Γ meeting $A B$ in B^{\prime}. Since C is not the only point of Γ on $B C, B^{\text {e }}$ tends to B as $C^{\text {e }}$ tends to C, so that in this case there ista C° near enough to C for which the minimal width of $A B^{\circ} C^{\circ}$ is greater than that of $A B C$. But by the definition of $A B C$ this is . impossible, and so if ABC is scalene the only point of Γ on BC is C. But in this case we can replace $B C$ by the line through C parallel to $A B$, to obtain a circumscribed triangle whose minimal width is not less than that of ABC, which enables us to include it in (i) above. Thus our original assumption is valid. (i) Consider then the case in which ABC has two sides parallel. Then the minimal width of $A B C$ is not more than the diameter of Γ, and this is less than $\frac{1}{2} \ell$ since Γ is not a segment. This case cannot therefore be extremal because we have already noted a case for which the minimal width of the triangle is $\frac{l}{\sqrt{3}}$
(ii) So $A B C$ is isosceles with, say, $A B=A C \geqslant B C$. Having established this much about the circunscribing triangle, we can go on to specify Γ in greater detail. Pirst, there is an interior point of each side of $A B C$ which is a point of Γ. For if, for instance,

C is the only point of Γ on $B C$, and Γ_{0} is a point of Γ on $A B$, then the length of the perimeter of Γ is at least twice the length of CN , which is greater than or equal to the minimal width of ABC . This again cannot be an extremal case as we require, because of the case already noted for which the minimal width of the triangle is $\frac{\ell}{\sqrt{3}}$, whereas the minimal width in the present case is less than $\frac{1}{2} \ell$. Thus we can ignore the cases in which Γ does not pass through an this interior point of one (or more) of the sides of ABC . So let I, M, N be points of Γ which are interior to $B C$, $C A, A B$ respectively. Then Γ is in fact the triangle, LiN, since otherwise $A B C$ circumscribes a convex set whose perimeter length is strictly less than ℓ, and this is impossible by the extremal property of Γ with $A B C$. Also, for the same reason, it follows that L, M, N are those points of $B C, C A, A B$ for which the lengths of the broken lines NLM LMN , LNM respectively are least. This gives us some information about the geometry of Γ and ABC, because some elementary trigonometrical and algebraic manipulation shows that
 $\hat{A} M=\hat{B N L}, \quad \hat{A M N}=\hat{C M L}, \quad \hat{B N N}=\hat{C M}$

Since ABC is isosceles it follows that triangles BLN and CLM are
equiangular, so that $\hat{B N L}=\hat{C M L}$, and thus we have that $A M=A N$ because triangle AMN is isosceles. Hence $B N=M C$ so that BLN and CLM are in fact congruent, and BL = LC . Also we have $\hat{M C}=\hat{A M}$ and since triangles $A \mathbb{N}$ and $A B C$ are proved equiangular $\hat{A M N}=\hat{L C O}$, and so $L C=L M$. thus $B L=L C=M$, and this implies that there is a circle centred at L which passes through the points B, C, M, and it follows, since $B C$ is then a diameter of this circle, that the angle BMC is a right angle. Thus B is perpendicular to AC.

Now suppose that ABC is not an equilateral triangle, so that $A B=A C>B C$. Then we can change the shape of $A B C$ slightly by (See page 83, diagram.)
reducing the width $A L$ of it. A Take a point P near A on $A L$ (so that P is between A and L) and construct the circumscribing triangle of Γ with P as vertex by producing $P N$ and $P M$ to points \& , K respectively of the line containing BC . Then PQR is also a circumscribing triangle of Γ. If $A P$ is sufficiently small, the minimal width of PQR is equal to the length of the perpendicular $\mathrm{U}_{\mathrm{M}}{ }^{*}$, say, from Q to $P R$. In the figure, $B L i$ is perpendicular to $A C$ and $Q M^{*}$ is perpendicular to $P R$. Thus the angle between $B M$ and $Q M^{*}$ is equal to the angle between $A C$ and $P R$, so that we have

$$
\begin{aligned}
Q M^{\circ} & =B M \cos P \hat{P A A}+Q B \cos M \hat{Q B} \\
& =B M \cos P \hat{M A}+Q B \sin P \hat{P Q} \quad \text { (from triangle } M^{\circ} R Q \text {) } \\
& =(\alpha+\beta)+\gamma \text {, say, }
\end{aligned}
$$

where $a=B M, \beta=O\left(P A^{2}\right)$ and is non-positive, and $\gamma=O(G B)$ and is positive. Then since $P A=O(Q B)$, if $P A$ is sufficiently small, $(\beta+\gamma)$ is positive, and so the minimal width of $\quad Q R R$ is Ereater than that of $A B C$. But this contradicts the definition of ABC .
lence the triangle $A B C$ must be equilateral, with minimal width equel to $A T$, and $A L=L M \sqrt{3}$ which is the same as $\frac{(I M+M N+N L)}{\sqrt{3}}$, since $L M N$ is equilateral. But $I M+M H+N L=\ell$, the frontier length of Γ, and so the theoren is complete.

To establish the corresponding result for the case in which Γ is a central set, we note first that if Γ is a regular hexagon (which is of course central) of frontier length ℓ, and ABC is an equilateral triangle such that a vertex of Γ is at the midpoint of each side of $A B C$, then the minimal width of $A B C$ is $\frac{1}{3} \ell$.

As in the previous discussion we may suppose that there is a convex set Γ for which the minimal width of a circunscribing triangle ABC takes the largest possible value, and it may be proved just as above that this case occurs either when $A B C$ has two parallel sides or when $A B C$ is isosceles with the two equal sides at least as long as the third side. In the first case, since we know that Γ is again not a straight segment, the minimal width of ABC must always be etrictly less then $\frac{1}{2} e$, so we need to consider only the second case.

In the second case, then, suppose again that Γ meets $B C, C A$,
$A B$ in interior points L, M, N respectively. Denoting by 0 the centre of Γ, let $L^{\circ}, M^{\circ}, \mathbb{N}^{\circ}$ be the points of Γ which are the reflexions in 0 of L, M, N respectively. As Γ is not a straight segment, 0 must be an interior point of $A B C$.

We find now an expression for the length of the frontier of Γ, which in the extremal case is the polygon $M N^{*} M{ }^{\circ} M M^{\prime}$. Suppose that X is the point of intersection of a line through A parallel to $L N^{*}$ and a line through L parallel to $N^{\prime} M$. Then $X H=L N N^{\prime}=L^{\prime} N$ and $X L=N^{\circ} M=M L^{\prime}$, and, since $X M L{ }^{\circ} N$ and $X N M{ }^{\circ} L$ are therefore parallelograms, $X N=L M^{\circ}=L^{\circ} M$. So the length ℓ of the frontier of Γ is twice the sum of the lengths $\mathrm{XL}_{\mathrm{L}}, \mathrm{XM}, \mathrm{XN}$.

Consider then the expression $X I+X M+X N=\frac{1}{2} \ell$. When X is fixed, the sum is, since L, M, N lie on the sides of ABC, clearly least when $\mathrm{XL}, \mathrm{XM}, \mathrm{XN}$ are respectively perpendicular to $B C$, $C A, A B$. Fixing the
 perpendicularity and considering different positions of X we see that the sum is least when X is on $B C$. For, if the length of $X L$ is denoted by h, and we put $B C=a$ and $A \hat{A B C}=\widehat{A C B}=a$, it follows by elementary trigonometry that

$$
X L+X M+X N=h(1-2 \cos a)+a \sin a \equiv f(h) \text {, say. }
$$

We know that $B C \leqslant A B$ so that $\cos a \leqslant \frac{1}{2}$, and so $f(h)$ increases with h. It follows that the minimum value of $f(h)$ occurs when $h=0$, which means that X lies on $B C$.

But if X is on $B C, X L+X M+X N=X M+X N$, which is equal to the length of the perpendicular from B to $A C$, say, and this, since $A B C$ is isosceles, is the minimal width of $A B C$. Hence in this case the minimal width of $A B C$ is equal to $\frac{1}{2} \ell$, and so we have proved for all cases that the minimal width of the circunscribing triangle of a central convex set is not more than half the boundary length of the set.

Section 4-Notation.

(The page number refers to the first page on which a given notation is used, and therefore explained.)

Γ	$:$	page	81
ℓ	$:$	page	81
$A B C$	$:$	page	81

Section 5. To prove that there is a unique sphere of smallest radius r which contains a given bounded subset of E_{n} of diameter d, and $x \leqslant\left[\frac{n}{2(n+1)}\right]^{\frac{1}{2}} d .[7]$

$$
\ldots \ldots-\ldots[\text { Notation : page 100.] }
$$

A sphere will be regarded in either of two ways, as having its position fixed, so that it is completely specified in any discussion, or as being free, so that the size of the sphere can be discussed without its position being fixed. In the latter case, such a sphere will be denoted by S_{r}, a sphere of radius r in E_{n} if it is fixed, it will be denoted by S_{r}^{*}. Similar notation is used for the surfaces C_{r} and ${S_{r}^{*}}^{*}$ of such spheres.

We have in essence two problems to solve: that of establishing the given inequality between r and d, and that of proving that there is a unique smallest sphere as defined. We consider the inequality first, and note that we can simplify this part of the problem immediately because it is sufficient to consider only those subsets M of H_{n} which consist of $(n+1)$ points. For, suppose that each set of ($n+1$) points of a set A is containable by a sphere S_{r} of given radius I, and consider the family of spheres of radius r whose centres are at points of il Then it follows immediately that every $(n+1)$ of these spheres have a point in common, and hence we know from

Helly's theorem (theorem j-page ll) that there is a point p, say, comnon to all the menbers of the family of spheres. As the centres of these spheres are at the points of 11 , we have in fact shown the the distance between p and any point of n is not nore than r. Hence if each set of $(n+1)$ points of in is containable by S_{r}, then In is itself containable by S_{r}, and we need consider only sets in of $(n+1)$ points.

We note now thet if $P=\left(p_{1}, p_{2}, \ldots, p_{n+1}\right)$ is a set of $(n+1)$ points of b_{n} with diameter $d>0$, thece is a positive number r such that P is containable by S_{I}^{*} (whose position is now regarded as fixed), but is not containable by S_{r}. for any $r^{*}<r$. For since the class $X_{I_{0}}$ of all the S_{R}^{*} with radius $R \leqslant R_{0}$ for some R_{0}, say, is a class of closed sets all of which contain P, then by the Heschice selection theorem (theorem 7-juge 16) (since the S_{R}^{*} are certainly subsets of some sphere of radius $2 R_{0}$) every infinite subclass of $K_{R_{0}}$ contains a convergent sequence, and hence $K_{R_{0}}$ is compact. Thus it follows that there is an S_{r}^{*} as defined.

Before we begin to establish the inequality between r and d, it is necessary to prove that this result for sets P of ($n+1$) points is also, as in the first part of our discussion, true for general subsets M of E_{n}. We sssert, then, that there is a smallest sphere S_{I}^{*} containing a bounded subset M of E_{n}. The assertion
is clearly valid for $n=1$, the required "sphere" being the shortest closed single seppent (winch certainly exists) containing M - Suppose that it is valid for every positive integer k less than n, and consider the case in n dimensions.

The set in may be a subset of E_{n} and not of any E_{k} with $k<n$, or it may be a subset of $E_{k}, 1 \leqslant k<n$, In the latter case, there is by the induction hypothesis a smallest k-dimensional sphere containing M, and it follows at once that the n-dimensional sphere of the same radius, whose centre colncides with that of the k-dimensional sphere containing M, satisfies the conditions of the assertion.

In the former case, there is a non-empty class K_{P} consisting of all the sets P of $(n+1)$ points of M, and for any one such set P we have already seen above that there is a positive number $r(p)$, say, such that the (n-dimensional, fixed) sphere $S_{r(P)}^{*}$ contains P and no sphere of smaller radius than $r(P)$ contains P. Define r as the last upper bound of these numbers $r(P)$ over the whole class K_{P}. The number I is positive and finite since $0<r(P)<d$ for all $P \in K_{P}$. Then we know that each set of $(n+1)$ points of M is containable by a sphose S_{I} (not ragarded as fixed). If M is containable by a sphere S_{r}, where $r^{\prime}<I$, then by the definition of x there is a set P of $(n+1)$ points of M with $r \geqslant r(P)>r^{\circ}$, so that P is not containable by S_{I}, winich leads at once to a
contradiction. Hence S_{r} is the sphere of shallest radius containing里。

Having established, then, that the results which we need to be true for sets of $(n+1)$ points are true also for general subsets of E_{n}, we can confine our attention to $a \operatorname{set} P=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ of $(n+1)$ points of E_{n}, and the smallest sphere S_{r}^{*} containing it. It is convenient here to note two properties of the centre o of this sphere, their proofs being given in lemnas 1 and 2 at the end of (rages 98, 99)
this section. Firstly, c is a point of the simplex whose vertices are the points of P. Secondly, if a point P_{j} of P is not on C_{r}^{*} (the surface of the sphere $\mathrm{S}_{\mathrm{r}}^{*}$), then c lies in the face of the simplex opposite p_{j}.

We assume inductively that $x \leqslant\left[\frac{k}{2(k+1)}\right]^{\frac{1}{2}} d$ for all positive integers $k<n$ (the inequality being obviously true for $n=1$, when $r=\frac{1}{2} d$, and prove it true for n.

Helabelling the points of P if necessary, choose p_{n+1} so that the centre c of S_{I}^{*} does not lie in the face opposite p_{n+1}. Ihen by the second property of c that we noted, p_{n+1} is a point of C_{r}^{*}. Taking p_{n+1} as the origin, choose a coordinate system so that p_{1}, $g_{2}, \ldots, p_{n}, \underline{0}$ are vectors corresponding to the points of P, and c is tie vector corresponding to the centre c of S_{r}^{*}. Then the first property of c implies that there exist nonnegative constants $k_{1}, k_{2}, \ldots, k_{n}$, with $\sum_{k=1}^{n+1} k_{i}=1$, such that

$$
\underline{c}=\sum_{i=1}^{n+1} k_{i} p_{i} \quad \text { where } \quad p_{n+1}=\underline{0}
$$

We may assume that all the points of P lie on C_{r}^{*}; for if, say, ($n-k$) such points do not, then there is a k-dimensional subset of P which is containable by a k-dimensional sphere of tine same radius as S_{r}^{*} (but by no smaller sphere), in winch case by the induction hypothesis we have that

$$
\mathbf{r} \leqslant\left[\frac{k}{2(k+1)}\right]^{\frac{1}{2}} d<\left[\frac{n}{2(n+1)}\right]^{\frac{1}{2}} d \quad \text { for } k<n,
$$

so that the result is true for the case in which some of the points of P do not lie on C_{r}^{*}. Thus we may ignore the cases in with, by the second property of c, some of the k_{i} are zero.

Assume, then, that $k_{i}>0$ for all i, so that all tine points p_{i} lie on C_{r}^{*}. Now $|\underline{c}|$ is the radius of S_{r}^{*} and we can obtain an expression for ce by considering the scalar product $\sum_{1} .[$ for each 1 . We note that the point represented by the vector 2 c is diametrically opposite the origin on C_{r}^{*}, and hence it follows that the vector $2 \underline{q}-p_{i}$ is perpendicular to \underline{p}_{i} for each i. Thus

$$
k_{i} p_{i} \cdot\left(2 \underline{c}-p_{i}\right)=0 \quad \text { for each } i
$$

and summing for $i=1,2, \ldots, n$ we have

$$
\sum_{i=1}^{n}\left(k_{i} p_{i}\right) \cdot \underline{c}=\frac{1}{2} \sum_{i=1}^{n} k_{i} p_{i} \cdot p_{i}=\frac{1}{2} \sum_{i=1}^{n} k_{i}\left|p_{i}\right|^{2} .
$$

Since $p_{n+1}=\underline{0}, \sum_{i=1}^{n} k_{i} p_{i}=\sum_{i=1}^{n+1} k_{i} p_{i}=\underline{c}$, and since $\left|n_{i}\right| \leqslant d$ for each i, this implies $|c|^{2} \leqslant \frac{1}{2} d^{2} \sum_{i=1}^{n} k_{i}$.
But $\sum_{i=1}^{n} k_{i}=1-k_{n+1}$, and the inequality will therefore be best if we choose the labelling of the points p_{i} so that k_{n+1} takes the largest of the values of the k_{i}, that is, so that $k_{n+1} \geqslant k_{i}$ for $i=1, \ldots, n$. Assuming this to have been done, then, we have that $k_{n+1}>\frac{1}{n_{i=1}^{n}} k_{i}$, so that finally $\sum_{i=1}^{n} k_{i} \leqslant \frac{n}{n+1}$, and hence

$$
r^{2}=|c|^{2} \leqslant \frac{n}{2(n+1)} d^{2}, \text { that is } \quad r \leqslant\left[\frac{n}{2(n+1)}\right]^{\frac{1}{2}} d .
$$

Thus the required inequality is proved true for all n. To complete the proof we need finally to establish the uniqueness of the smallest sphere S_{r}^{*} that we have obtained for a given subset M of i_{n}. Suppose that it is not unique, so that there are two spheres $S_{r(p)}^{*}$ and $S_{r(q)}^{*}$ both of radius r but with centres at the points p, q respectively, and which both contain M. Then M is also contained in the common part of these two spheres and hence is contained in the smallest sphere containing their intersection. Unless p and q are coincident, this sphere has radius smaller than r, which contradicts the minimal property of r for M. Hence both the radius
and the centre of the containing sphere of are fixed, and uniquensss is established. Thie completes the proof of the main result.

We may note thit the inequality between r and d is the best possible, aince equality accurs for the n-dimensional sphere of smallest radius containing an equilateral simplex of edge d. This is easy to prove by an inductive process. For $n=1$, it is obvious that $r=\frac{1}{2} d=\left[\frac{n}{2(n+1)}\right]^{\frac{1}{2}} d$. . $n s$ ume then that for a simplex of ($n-1$) vertices the radius of the circunscribing sphere satisfies the equality

$$
r_{n-1}=\left(\frac{n-1}{2 n}\right)^{\frac{2}{2}} \mathrm{~d}
$$

How consider an n-dimensional equilateral simplex of edge d, Its faces are equivalent to the simplex of $(n-1)$ vertices, and the radius of its circunsoribing sphere is $\frac{n}{n+1}$ of the distance between any such face and the opposite vertex. But this distance is given by

$$
\left[x_{n-1}^{2}-\frac{x_{n-1}^{2}}{n^{2}}\right]^{\frac{1}{2}}
$$

Where x_{n-1} setiefies the relation $r_{n-1}=\frac{n-1}{n} x_{n-1}$ (that is, x_{n-1} is the distance between a face of the simplex of $(n-1)$ vertices and the opposite vertex). 'hus we have

$$
r_{n}=\frac{n}{n+1} \sqrt{\frac{n^{2}-1}{n^{2}}} \cdot \frac{n}{n-1}\left(\frac{n-1}{2 n}\right)^{\frac{1}{2}} d=\left[\frac{n}{2(n+1)}\right]^{\frac{1}{2}} d
$$

and equality is proved for all n when $i s$ an equileteral simplex of edge d .

Throughout this proof it will have been noted that, although we have been discussing the problem for a containing sphere only, we have used results which are true for more general convex sets also. In fact it may be seen that, as far as the point where we begin to establish the inequality between r and d, it is possible to obtain the same properties for closed central convex sets $K(r)$ of "radius" r, which are homothetic translates of one another, as we have obtained for apheres S_{r}. (See chapter III beginning of section 4_{λ} for a possible definition of the number r. Ve could equally well use the diameter of the set K, as we need it only to distinguish sets of different sizes.) Thus we may deduce immediately from the previous discussion that there is a smallest set $K(r)$, for some "radius" r, the homothetic translate of a given closed central convex set K, which contains any given bounded subset in of E_{n}.

If the set K is closed, central and strictly convex, then we may show further that there is a unique smallest homothetic translate $K(r)$ of K containing M. For, suppose that K_{1}, K_{2} are two such sets which contain M, K_{2} being a translation of K_{1} through a distance a, say. Then M is contained also in the intersection $K_{1} \cap K_{2}$. For convenience, assume that a vector system has been defined in E_{n}, write $K_{2}=K_{1}+\underline{a}$, and consider any point \underline{x} of $K_{1} \cap K_{2}$. Then we have $\underline{x} \in K_{1}$ and $\underline{x} \in K_{2}$, which is equivalent to
saying that

$$
\underline{x} \in K_{1} \quad \text { and } \quad \underline{x}-\underline{a} \in K_{1}
$$

Since K_{1} is strictly convex, it follows that r - belongs to K_{1}°, the interior of K_{1}. Thus

$$
\underline{x} \in K_{1}^{\circ}+\frac{1}{2}
$$

and so, since \underline{x} is any point of $K_{1} \cap K_{2}$,

$$
K_{1} \cap K_{2} \subset K_{1}^{0}+\frac{1}{2}
$$

The set $K_{1} \cap K_{2}$ is closed, and so the distance between the frontiers of $K_{1} \cap K_{2}$ and $K_{1}^{0}+\frac{1}{2}$ is strictly positive. Uhus it follows that ther is a set concentric with $K_{1}^{\circ}+\frac{1}{2}$ which is homothetic to and smaller than $K_{1}\left(K_{1}^{0}+\right.$ and K_{1} being of equal size) and which contains $K_{1} \cap K_{2}$ (and hence M). But this contradicts the definition of K_{1} as a smallest set containing is . ithus K_{1} must be unique.

The question of finding a relationship between the radius of K and the diameter of M becomes inappropriate when we consider a more general set than a sphere.

Lemma 1. The centre c of the sphere S_{r}^{*} of smallest radius r containing P is a point of the simplex whose vertices are the points of P.

Proof. If not, there is a hyperplane which separates o from the
simplex (e.g. one of the support hyperplanes of the simplex!, and it follows imilediately that the sphere S_{r}^{*}, passing throurg the intersection of S_{r}^{*} with the hyperplane and heving its centre in the hyperplanc, contains P and has radius $r^{\prime}<r$. This contradicts the definition of S_{Σ}^{*}, and the lemma follows.

Leman 2. If a point p_{j} of P is not on C_{r}^{*}, the surface of the sphere S_{r}^{*}, then c lies in the face of the simplex opposite p_{j}. Proof. Assume that c does not lie in the face of the simplex opposite \mathbf{p}_{j}. Choose a rectangular coordinate system so that the (n-1)-dimensional hyperplane containing all the points of P except p_{j} has equation $x_{n}=0$ and so that $x_{n}^{(j)}$, the n-th coordinate of P_{j}, is strictly positive. Then by lemma $1, c_{n}$, the noth coordinate of c, which by our assumption is not zero, is atrictly positive. Let the equation of C_{r}^{*} be $f_{r}(x)=0$. Consider the spherical surface C_{s}^{*} which contains the intersection of C_{x}^{*} with $x_{n}=0$ and has equation

$$
\begin{equation*}
f_{r}(x)+2 t x_{n}=0 \tag{1}
\end{equation*}
$$

say, for a positive value of t which will be chosen later. Now for each of the points $p_{i} i \neq j, f_{r}\left(p_{i}\right)=0$ since S_{I}^{*} is the smallest sphere which contains all the points p_{i}, and $x_{n}^{(1)}=0$, so that each of these points is contained in C_{s}^{*}. For p_{j}, choose
t so that

$$
\begin{aligned}
f_{r}\left(p_{j}\right)+2 t x_{n}^{(j)} & <f_{I}\left(p_{j}\right)+\left|f_{r}\left(p_{j}\right)\right| \\
& =0
\end{aligned}
$$

since by hypothesis p_{j} is not on C_{r}^{*}, implying that $f_{r}\left(p_{j}\right)<0$ (since p_{j} is certainly in S_{r}^{*}). Hence, for

$$
t<\frac{\left|f_{r}\left(p_{j}\right)\right|}{2 x_{n}(j)}=t_{0}
$$

all the points of P belong to S_{B}^{*}. But if we choose $t<\min \left(t_{0}, c_{n}\right)$, then the centre of S_{s}^{*}, which is given by $\left(c_{1}, c_{2}, \ldots, c_{n-1}, c_{n}-t\right)$, (from equation (1)), is nearer the plane $x_{n}=0$ than is c. Hence $s<r$ which contradicts the minimal property of r. It follows that our original assumption was false, and the lemma is proved.

Section 5 -Notation.
(The page number refers to the first page on which a given notation is used, and therefore explained.)

M	page 90		
d	$:$	page	90

P	page	91
S_{r}, S_{r}^{*}	- page	90
$\frac{x}{\pi x}$	\square	
c	1 page	93
\boldsymbol{r}	- page	91
$\mathrm{C}_{r}, \mathrm{C}_{r}^{*}$: page	90
(2)	$7 \square$	

Section 6. To prove that any set of diameter d may be contained in a set of constant width d. [8$]$

$$
\begin{aligned}
& \text { Sefinition: pare 109.] }
\end{aligned}
$$

A set of constant width is a bounded closed convex set for which every two parallel support hyperplanes are the same distance apart. Adopting again a method of proof used earlier in this chapter, we shall define a new class of sets which will be shown to be the same as the class of sets of constant width, and shall prove the main result using the new definition.

So we make first the following definitions a set X is complete if and only if, for any set Y containing X, either Y is equal to X or the diameter of Y is strictly greater than the diameter of X. In other words, the addition of any point to a complete set increases the diameter of the set.

With the diven definitions of complete sets and sets of constant width, we may now show that the statements
(1) X is a set of constant width d,
(ii) X is a complete set of diameter a are equivalent.

To prove that (i) implies (ii), note first that, since X is of constant width d, X has diameter d. For, there are two
points $x, y \in X$ for which $|x-y|=D(X)$, where $D(X)$ denotes the diameter of X, and by the definition of the diameter of a set the hyperplanes through x, y perpendicular to the line $x y$ are support hyperplanes of X. But the distance apart of any two parallel support hyperplanes of X is d, and so $D(X)=d$. Now let z be a point exterior to X and let x_{1} be the point of X which is nearest to z. Then the hyperplane through x_{1} perpendicular to $x_{1} z$ is a support hyperplane of X, and there is a parallel support hyperplane of X which meets X in at least one point x_{2}, bay. We may assume that x_{1}, x_{2} and z lie in a straight line because if x_{2} is not on $z x_{1}$ produced we have $D(x) \geqslant\left|x_{1}-x_{2}\right|>d$, since d is the perpendicular distence between the hyperplanes. So since x_{1}, x_{2} and z are collinear we have immediately

$$
\left|z-x_{2}\right|>\left|x_{1}-x_{2}\right|=d
$$

so that the addition of z to X increases its diameter. Thus X is a complete set, of diameter d.

To show that (ii) implies (i) we assume instead that it does not, so that there is a set X of diameter d which is complete but which has minimal width W < d There are two parallel support hyperplanes of X, say P_{1} and P_{2}, distance wart. We assert that there are points x_{1} and x_{2} of X such that x_{1} lies on P_{1}, x_{2} lies on P_{2}, and $x_{1} x_{2}$ is perpendicular to P_{1} and P_{2}. For if this is not so, suppose that x_{1} and x_{2} are two points of X such

$$
\begin{gathered}
104 \\
\text { (Diapram) }
\end{gathered}
$$

(0yposite page.)
that x_{1} lies on P_{1}, x_{2} lies on P_{2}, and the distance between x_{1} and x_{2} is smaller than the distance between any other such pair. 1001 Construct an infinite hexagonal prism as follows, such that it contains the set X, and has two of its faces, A, B say, lying in the hyperplanes P_{1}, P_{2} (See diagram opyosite,) lie in support hyperplanes of X, say $Q_{1}, Q_{2}, R_{1}, R_{2}$, where the Q_{i} are parallel to each other and the R_{i}^{1} are parallel to each other. The points x_{i} lie each in one of the faces A and B of the prism, and by our definition of these points it is possible to construct the prism in such'a way that, in the plane containing the points x_{i} and perpendicular to the hyperplanes P_{i}, there is no line perpendicular to the P_{i} which contains points of both A and B. (For if every suoh prism yielded such a line, with points y_{1} in A and y_{2} in B, say, it would follow that y_{1} and y_{2} must belong to the set x, which is a contradiction with the definition of ' x_{1} and x_{2}.) 8 Since the prism is constructed from support hyperplanes of X, its minimal width is the perpendicular distance between the faces A and B (i.e. between the hyperplanes P_{1} and P_{2}). Consider any perpendicular cross-section of the prism, and denote by y the point of A nearest to B and by Z the point of B nearest to A. Tren we may alter the prism slightly by rotating P_{1} and P_{2} through the same (directed) angle about y, z respectively, to obtain a new prism lying in the hyperplanes $\hat{b}_{i}, R_{i}, P_{i}^{\prime}$ say, which still contains
the set X, the rotation being such that the acute angle between $y z$ and the rotating plane is decreasing. But the minimal width of this new prism, provided that the rotation of the p_{i} is sufficiently small, is the perpendioular distance between the P_{i}^{\prime}, which may be verified to be snaller than the minimal width of the original priam. This is a contradiction since it implies that the minimal width of a set containing X is smaller than the minimal width of X itself. It follows that we cannot define two points x_{1}, x_{2} as above unless the line joining them is perpendicular to P_{1} and P_{2}, and this is what we wanted to establish.

Thus our assertion is true that there are two points x_{1}, x_{2} of X such that X_{1} is on P_{1}, x_{2} is on P_{2}, and $\left|x_{1}-x_{2}\right|=w$, the perpendioular distance between P_{1} and P_{2}. Also there is a point $y \quad x$ such that $\left|y-x_{1}\right|=d$, because if $\left|y-x_{1}\right| \leqslant d_{1}$, say, for all $y \in X, d_{1}<d$, then the set Y, whioh is the union of x and the points x for which $\left|x-x_{1}\right| \leqslant\left|d-d_{1}\right|$, properly contains X but is not of larger diameter than X, whioh is a contradiotion since X is complete.

How either of the minor ciroular arcs which are of radius d and have endpoints x_{2} and y must be contained entirely in x. In fact it may be seen that, if $S(X)$ denotes the intersection of all spheres of radius d which oontain X, then $S(X)=X$, and from this it follows easily that a minor circular are of radius d whioh joins
two points of X must itself lie in X. To show that $S(X)=X$, note first $S(X) \supset X$, trivially. If we do not have $X D S(X)$, then there is a point s of $S(X)$ which is not in X. But by the definition of $S(X)$ we have that for each $\pi \in X,|s \in X| \leqslant d$. so the set formed by the union of s with X is still of diameter d. So X is not complete, which is a contradiction, and so we must have $X D S(X) \quad$. Thus $S(X)=X$.

Now there is a minor circular arc of radius d joining x_{2} and y which crosses the hyperplane P_{2}, for if it only touches P_{2} the centre of the arc must lie alone $x_{1} x_{2}$ (since this is perpendioular to P_{2}), and since we know that $\left|y-x_{1}\right|=d$, the centre must be at x_{1}. But this is imposaible since $\left|x_{1}-x_{2}\right| \neq d$, so the arc, which is contained in X, must cross P_{2}. But P_{2} is a support hyperplane of X, and so we have a contradiction. Hence our original assumption, that there is a complete set X of minimal width $w<d$, is false, and (ii) implies (i).

This proves that the oless of complete sets of diameter d and the class of sets of constant widh d are identical. We are now able to prove our required result, that any set of diameter d may be contained in a set of constant width d.

Suppose that X is a set of diameter d. We may assume without loss of generaility that X is closed and convex, since we know (see thoorem 4 - page 10) that the convex cover of the closure of a set
has the same diameter as the set itself. If X is of constant Width, there is nothing to prove since it is containable by itself. If X is not of constant width, then it is not complete, and we shall prove our result by constructing a complete set which contains X, as follows.

Consider the set $Q(X)$ of all those points X for which the diameter of the union of x with $X, D(x \cup X)$, is equal to $D(X)$. Clearly there is at least one subset of $\ell(X)$ which contains X and is complete. Select from $Q(X)$ one point x_{1} whose distance from the set X is a maximum in $Q(X) \quad(Q(X)$ is closed and bounded, so x_{1} certainly exists), and denote by Y_{1} the set which is the convex cover of X_{1} and X. Define a sequence of sets $Y_{i}, i=1$, 2, inductively as follows: when Y_{1} has been defined, consider the set $A\left(Y_{i}\right)$ as above, select X_{i+1} from $1 t$, and define Y_{i+1} as the convex cover of x_{i+1} and Y_{i}.

Now we have defined an infinite sequence of sets Y_{i} for whioh $Y_{i} \subset Y_{i+1}$ and $Y_{i} \subset Q(X)$ for all i. Thus the sequence $\left\{Y_{i}\right\}$ converges to a set Y, saj. The closure of Y, \bar{Y}, is convex, by its construotion, and $B(\bar{Y})=D(X)$, since $\bar{Y} \subset Q(X)$ and $\bar{I} \subset X$. We want to show that $\overline{\mathrm{Y}}$ is complete. Suppose that it is not complete, and let y be a point not in \bar{Y} such that $D(y, \bar{Y})=D(\bar{Y})$. In other words, with the notation used above, $y \in G(\bar{Y})$ and, since $Y_{i} \subset \bar{Y}$ for any $1, D\left(y \cup Y_{i}\right) \leqslant D(y \cup \bar{Y})=D(\bar{Y})=D(X) \quad$.

But $D\left(y \cup Y_{i}\right) \geqslant D\left(Y_{i}\right)=D(X)$, so that we have $D\left(y \cup Y_{i}\right)=D(X)$ duX) and hence $y \in\left\{\left(Y_{i}\right)\right.$, that is (see page 7),

$$
\begin{array}{r}
\rho\left(y, Y_{i}\right) \leqslant \rho\left(x_{i+1}, Y_{i}\right) \text { by the definition of } x_{i+1}, \\
\text { for any } i
\end{array}
$$

Since y is not in \bar{Y}, denote by δ the distance between the point and the set, where δ is strictly positive.

Now take two points $\mathbf{x}_{\mathbf{i}}, \mathrm{x}_{\mathbf{j}}, \mathbf{j}>\mathbf{i}$, using the same notation as above. $X_{i} \in Y_{i}$ and $Y_{i} \subset Y_{j-1}$, so that we have

$$
\left|x_{j}-x_{i}\right| \geqslant \rho\left(x_{j}, Y_{i}\right) \geqslant \rho\left(x_{j}, Y_{j-1}\right)
$$

But we have noted that, in particular, $\rho\left({\underset{x}{j}}^{j}, Y_{j-1}\right) \geqslant \rho\left(y, Y_{j-1}\right)$, and $\quad \rho\left(y, Y_{j-1}\right) \geqslant \rho(y, \bar{Y})$ since $Y_{j-1} \subset \bar{Y} \quad$. So we have $\left|x_{j}-x_{i}\right| \geqslant \rho(y, \bar{Y})=\delta>0$.
But $\left\{x_{i}\right\}$ is an infinite sequence of points and all the x_{i} lie in $Q(X)$ which is bounded, and thus it is impossible for every two of them to be at a distance at least δ apart.

Hence \bar{Y} is complete, and this establishes the required result.

Section 6 - Notation and Definition.
(The page number refers either to the first page on which the notation is used, or to the page on which the given term is defined in full.)

P_{1}, P_{2}	$:$	page	103
Complete set	$:$	page	102

CLAFPER III

In the previous cha ${ }_{i}$ ter we considered some particular problens concerning the covering of a single set b_{y} a single set. In this second selection of papers we are to give consideration to finite or infinite classes of sets, and shall discuss foux particular problems. The first one is that of finding a aingle set to cover an infinite class of sets, erid the second and third involve coverine one set by a finite class of sets. The fourth paper to be discussed relates one set (the plane) and a given infinite class of sets: it is included for the sake of completeness and because of the methods of solution involved, but in fact can be considered as a problen in covering only if the latter term is not restricted to mean complete covering by a class of sets. The statecients of the problens are as follows.
(a) To prove that the diameter of any mininal universal cover of plane sets of unit constant vidth is less than 3 , and to find such a minimal cover. To show that in three or more dimensions there is a compact minimal universal cover, of sets of unit constant width, whose diameter exceeds any specified length.
(b) To prove that, if K is a convex body oi minimal width $\&$ in i_{n}, and K is contained in the union of r parallel strips of widths
$h_{1}, h_{2}, \ldots, h_{r}$, then $h_{1}+h_{2}+\ldots+h_{r} \geqslant \ell$. (Tarski's plank problem.)
(c) To show that a small-circle of a unit sphere, of angular radius ρ, can be covered by a finite number of lunes only if the sum of their width is at least 2ρ, and, if the sum is exactly 2ρ, only when they all share the same vertices. (d) To show that, for all maximal K-packings of positive minimal radius, the greatest lower bound of their lower densities is $\frac{\pi}{6 \sqrt{3}}$, and is strictly less than $\frac{\pi}{6 \sqrt{3}}$ if K~packings of ellipses are excluded.

Section 1. To prove that the diameter of any minimal universal cover of plane sets of unit constant width is less than 3 , and to find such a minimal cover. To show thet in three or more dimensions there is a compact minimal universal cover, of sets of unit constant width, whose diameter exceeds any gpecified length. [10]

He denote by K_{n} the class of subsets of W_{n} which have unit constant width. A set $C \subset E_{n}$ is called a universal cover if it is closed, convex and such that for every set $A \subset \mathbb{E}_{\mathrm{n}}$ with diameter $d(A) \leqslant 1$ me can find a set $B \subset C$ such that B and A are congruent. We know from a result proved in the previous chapter (see page 102) that every such set A is contained in a member of K_{n}, and so it is sufficient in showing that a set C is a universal cover to show that for each $A \in K_{n}$ there is a coneruent set $B \subset C$. A minimal universal cover is a universal cover of which no proper subset is a universal cover.

With these definitions we can ask the following question (see [11]): is there a finite upper bound, depending on n only, of the diameters of compact minimal universal covers in E_{n} ? In the following discussion of this question we show that in the plane the diameter of any minimal cover is less than 3 and we show also that a

$$
114
$$

(Diapram)

(Tage 118 , bottom.)
certain plane set, which will be defined, is a universal cover; however, in three or more dimensions we show that there is a compact minimal universal cover in E_{n} whose diameter exceeds any specified length.

The diameter of any minimal cover in the plane is less than 3 .

Suppose that we are given a plane universal cover C of sets of unit constant width whose diameter is at least equal to 3 . We shall show that such a cover is not minimal.
a mgun contains two points x, y say for which $x y=3$ (where xy denotes the length of $x y$), and there are subsets X, Y of C of unit constant width such that $x \in X, Y \in Y ., \begin{aligned} & \text { Let } p q, ~ r s\end{aligned}$ be the exterior common support lines of X and Y, meeting the frontiers of the sets in points $p, r \in X$ and $q, s \in Y$. The subset $p q s x$ of G is a rectangle since X, X are of constant width, $p r=q s=1$, and and both pr and qs are pexpendicular to pq (and ms) Now construct points x^{*}, y^{*} such that x^{\prime} is distant 1 from p and x and not interior to C, and y° is distant 1 from q and s and again not interior to C. Then $x y^{\prime \prime}$ is parallel to the comon support lines of X, Y, meeting $p r$ and qs at m, n, say. the Now since x^{*}, y^{*} are not interior to C, we have $x^{\prime} y^{\prime} \geqslant 3$. For, the set X is contained in the intersection of the discs centred at the points p, r of X and having radius 1 , and so the point ivnulesgh traiamel
x (of X), and similarly the point y, lie within a figure which is bounded by the segments $p q$, $r s$, and arcs (of radius 1) $p x^{*}$, $x^{\prime \prime} r, q y^{*}, y^{\prime} s$. It is clear that the diameter of this figure is the length of $x^{\circ} y^{*}$, and hence, since x and y are both contained by it, the length of $x^{\prime} y^{\prime \prime}$ must be at least equal to the length of $x y$, which by hypothesis is equal to 3 .

Also $x^{\circ} m<1$ and $n y^{\circ}<1$, so that $m n>1$. Thus $p q>1$, and hence C contains as a proper subset a square of side 1 . But a square of side 1 is a universal cover for plane sets of constant width 1 . Thus C is not a minimal universal cover.
lience any minimal cover in the plane must have diameter less
than 3 .
A minimal universal cover in the plane.

We define Y to be the set which is the union of a circular diec and a Reuleaux triangle, both of constant width 1 , the triangle being placed so that two of its vertices are at opposite ends of a diameter of the disc. (A disc is the union of a circle with its interior; a Keuleaux polygon of width 1 is the set bounded by a number of circular arcs, each of radius 1 , the centre of each arc being the vertex of the polygon opposite thet arc.)

If Y is a universal cover, it follows at once that it must be minimal since no proper subset of Y can contain both a disc and a Reuleaux triangle each of unit width. To prove that Y is a universal
cover we note the following, which allows the problem to be discussed from an alternative standpoint.

In a loose sense it may be said that the "difficult" part of the set Y is the semi-circular part of its frontier, since this is of radius $\frac{t}{2}$ whereas a set of constant width 1 has its frontier consistine of circular aros of radius 1 . To take this into consideration, we assume (and siall then prove) the following property (P) of plane sets of unit constant wiath: if X is such a set, then on the frontier of X there are two points s, t sa, at unit distance apart, such that of the two semi-ciroular aros of radius $\frac{1}{2}$ which pass through both s and t, at least one does not neet the interior of X. How with this property assumed, it follows that, since each point of X is at a distance at most 1 from s and t, X nust lie entirely within a figure bounded by the semi-circular arc just described together with two aros each of radius 1 centred at s and t ress:ectively. But this figure is congruent to Y, and hence X is congruent to a subset of Y. But X is any set of unit constant width, and so it follows from our earlier remark that Y is a universal cover.

We now prove the property (i) wich we assuned above, noting at the outset that it is sufficient to prove it when X is a Reuleaux polygon Z, say, because any other set X can be approximated to by means of oircular arcs (which form the arcs of the frontiers of

Reuleaux polygons). We meke the following definitions: (i) two vertices a, b of Z ane opposite if and only if their distance apart is 1 , (ii) the line $a b$ is defined to have a positive and a negative side, wnere the positive side is that on which the two circular arcs lie whose centres are a, b respectively. (these arcs cannot lie on oposite sicies of ab, because then the distance between an interior point of one of the arcs and an interior point of the other would be greater than ab, which is equal to 1 , thus contradicting the definition of Z.

Let $r_{a b}$ denote the circuncircle (considered as a disc) of the (See pape 114 , diagram.) iart of Z on the negative side of $a b$, and $r_{a b}$ its radius. λ $r_{a b} \geqslant \frac{1}{2}$ since any circumcircle $r_{a b}$ contains a chord (ab) of unit length. We assume, then, that there are no opposite vertices a, b for which $r_{a b}=\frac{1}{2}$, and show thet this leads to a contradiction.

Let p, q be any two vertices on the frontier of Z. They divide the frontier into two parts, and if p, q are not opposite pointe one of the two parts contains no points opposite to p or q. (Otherwise suppose thet x is a point on one of the parts of the (See page 114 , diapram.) frontiex, opposite to p, say * $\Lambda^{\text {then }}$ if y is a point on the other part, y cannot be opposite to p since there is only one circular arc corresponding to each vertex of the polygon. But if y is opposite to q, the distance between \mathbf{x} and \mathbf{y} is greater then the distance

119

between q and y, which again contradicts the definition of z.) She vertices of z which lie on such an arc, containine no points opposite to p or q, are defined to lie between p and q. If p and q are opposite, the vertices defined to lic between p and q are those which lie on the negative side of $p q$.
lie are assuming tiat, for any pair of oposite vertices p, q, $r_{p q}>\frac{1}{2}$. Then there nust be at least one vertex betwean p and q which lies on $r_{p q}$ (because othervise $r_{p q}$ would just be the semicircle on pq , so that $r_{\mathrm{pq}} \nmid \frac{1}{2}$). Suppose then tivat $v, \mathrm{v}_{\mathrm{a}}$ are vertices lying on $r_{p q}$ such that there are no other vertices lyinc on $r_{p q}$ betreen p and v or between q and v. (v, w need not of course be distinct vertices.) Let $V(p), V(a)$ be the numbers of vertices lying betveen i, v and q, w res ectively, and let

$$
V(p, q)=\min (V(p), V(q)) \quad \text { and } \quad \tau=\frac{\min V(p, q)}{p, q} .
$$

How choose opjosite vertices a, b such that $\tau=V(a, b)$ and suppose for definiteness that $V(a, b)=V(a)$. Let b_{1} be the vertex opposite a adjacent to b and a_{1} be the vertex opposite b_{1} adjacent to a. (Note that a_{1} and b both lie to the same side of $a b_{1}$ since we have already seen that the circular arcs centres a and b_{1} must lie on the same side of $a b_{1}$.)

Consider first the case in wiich $\tau=0$, so that a_{1} lies on (the frontier of) $r_{a b} \cdot b_{1}$ lies outside $r_{a b}$ since $b_{1} \neq b$

120 (Diagram)

(Opposite page, (ii).)

(so that ab_{1} is distinct from but the same length as the diameter ab of $r_{a b}$), and hence $r_{a b}$ cuts the segment $a_{1} b_{1}$ in two points, a_{1} and $c^{\text {(say) }} \Lambda$ Since a and a_{1} lie on $r_{a b}$ the line joining b_{1} to the centre of $r_{a b}$ bisects internally the angle $a b_{1} a 1$ and so the centre of $r_{a b}$ lies on the positive side of $a_{1} b_{1}$ (being the side on which the arc aa, lies). Thus except for a_{1} the part of $\gamma_{a b}$ on the negative side of $\mathrm{a}_{1} \mathrm{~b}_{1}$ lies interior to ${r_{a}, b_{1}}$, which implies that no vertex of Z on the negative side of $a_{1} b_{1}$ lies on $r_{a_{1} b_{1}}$. But this would mean that $r_{a_{1} b_{1}}=\frac{2}{2}$, which by our assumption is impossible.

So we are left with the alternative that $\tau>0$. In this case let c be the vertex of Z between a and b on $\gamma_{a b}$ which is nearest to a. See diagram (ii) opposite.) $\quad \tau>0, b$ must be an interior point is nearest to a. \wedge Because $\tau>0, b$ must be an interior point of $r_{a_{1}} b_{1}$. (since b, b_{1} are adjacent); and because of the extremal property of a, b and c with respect to τ, c and all the vertices of Z (if any) between a_{1} and c must be interior points of $r_{a_{1} b_{1}}$. Since the frontier of $r_{a_{1} b_{1}}$ contains a_{1} and a_{1} is interior to $r_{a b}$, and since b, c are on the frontier of $r_{a b}$ and are interior to $r_{a_{1} b_{1}}$, it follows (since two distinct, circles intersect in at most two points) that the part of $\gamma_{a b}$ between b and c must lie interior to $r_{a_{1} b_{1}}$. Thus all the vertices of Z between b and c are interior to $r_{a_{1}} b_{1}$. But then all the

vertices of Z between b_{1} and a_{1} are interior to $r_{a_{1}} b_{1}$, which is impossible by our assumption.

Hence our assuaption is wrong, and there do exist two opposite vertices a, b for whici $r_{a b}=\frac{1}{2}$. This completes the proof that Y is a universal cover.

It may be conjectured here, although no method of proof is suggested, that the cover Y which has been described is in fact the ininimal universal cover of largest diameter in the plane.

A minimal universal cover of large diameter in $E_{n}, n \geqslant 3$.
ive shall suow that such a cover exists by constructing one of dianeter at least equal to sone given number D, however large. We begin with an obvious universal cover P, the semi-infinite prism $\left|x_{i}\right| \leqslant \frac{1}{2}, i=1,2, \ldots, n-1, x_{n} \geqslant 0 ;$ and our minimal cover will be a subset of P.
sow let X_{0} denote the perpendicular projection of any set X in X_{n} onto $x_{n}=0$. If $Y \in K_{n}$ and $Y \subset P$, we have $Y_{0} \in K_{n-1}$ and $Y_{0} \subset P_{0}$, where P_{0} is the ($n-1$)-dinensional cube whose faces lie in the intersections of the hyperplanes $x_{i}= \pm \frac{1}{2}, 1=1,2, \ldots$, $n-1$, with $x_{n}=0$. Denote by $F\left(p_{0}\right)$ the face of this cube which lies in $x_{1}=\frac{1}{e} \cdot Y_{0}$ must meet $F\left(P_{0}\right)$ in just one point since P_{0} is a unit cube and Y_{0} has unit constant width. Denote this point by $f\left(Y_{0}\right)$. Now consider the class Y of sets congruent to Y which
lie in P and are obtainable from Y by a combination of any rotetion and/or reflexion together with a translation perpendicular to the x_{n} axis (so thet the n set is contained in P again) Let $F(Y)$ or F be the set of points $f(Y)$ for all $Y \in Y$, and let $F^{*} \subset F$ be tie set of points most distant from the centre $\left(\frac{1}{2}, 0, \ldots, 0\right)$ of $F\left(P_{0}\right)$ (the cube is symmetrical about $x_{i}=0$ for each 1 , so all the coordinates except x_{1} of the centre of $F\left(P_{0}\right)$ zo to zero). If ($\left(\begin{array}{l}a \\ ,\end{array} x_{2}, x_{3}, \ldots, x_{n-1}, 0\right) \in F$, then because of the reflexion and rotation referred to above, F contains all the 2^{n-2} points ($\left.\frac{3}{2}, \pm x_{2}, \pm x_{3}, \ldots, \pm x_{n-1}, 0\right)$ and olearly they are all at the same distance from ($\frac{1}{3}, 0, \ldots, 0$) . It follows thet there is a point of F^{\prime}, say $\left(\frac{1}{2}, x_{2}^{0}, x_{3}^{0}, \ldots, x_{n-1}^{\prime}, 0\right.$, for which $x_{i}^{\prime} \geqslant 0$ $X X X$ for all i. Choose one such point and let $Y^{\bullet} \in Y$ be the set (or one of the sets) for which $f\left(Y^{0}\right)=\left(\frac{1}{i}, x_{2}^{0}, x_{j}^{0}, \ldots, x_{n-1}^{0}, 0\right)$. If $f\left(Y^{0}\right)=\left(\frac{1}{2}, 0, \ldots, 0\right)$, then every set belonging to Y has $f(Y)=\left(\frac{1}{3}, 0, \ldots, 0\right) \quad$ (since $f\left(Y^{*}\right)$ is most distant from ($1,0, \ldots, 0$)). SXXXXXXXX Yow construction of the class \mathcal{Y} ensures that the original set Y can be moved so thet any given frontier point of Y_{0} is a point of $P\left(P_{0}\right)$, so it is equivalent to say thet if $f(x)$ $f(Y)=0, \ldots, 0)$, then every face (because of the rotation property) of any ($n-1$)-dimensional unft cube containing Y_{0} neets the frontier of Y_{0} only at the centre of the face. Alternatively, if we take any two-dimensional section of Y_{0} which is of unit constant
width, then every square circumscribing it has its sides bisected by
(page 128) points of Y_{0}. Then it may be proved (lemail 1) that every such section of Y_{0} is a disc. Thus Y_{0} is an ($n-1$)-dimensional ball (solid closed sphere), and hence so is the projection of Y in any direction (by the construction of \mathcal{Y}). It follows, then, that if $f\left(Y^{*}\right)=\left(\frac{1}{2}, 0, \ldots, 0\right), Y$ is a ball. (fape 132)
It may be shown (corollary to lemma 2) that there is at least one member of K_{n} such that the circumradius of its projection in any direction is strictly greater than 1 . Let Z denote that member for which the greatest lower bound of such circumradii has the largest possible value, and let this value be R. Now choose a large positive number M which satisfies the inequality ($2 \mathrm{R}-1$) $\mathrm{M}>\mathrm{D}$. The reason for our choice will become clear at the end of the construction. Let P_{M} be the intersection with P of the cone defined by

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n-1}^{2} \leqslant \frac{\left(x_{n}+M\right)^{2}}{(2 M+1)^{2}-1} \tag{1}
\end{equation*}
$$

where this is chosen so that P_{M} just contains the n-dimensional unit ball B whose centre is at ($0, \ldots, 0, \frac{1}{2}$). (It may easily be verified that $B \subset P_{M}$ and that the frontiers touch at the points with $X_{n}=\frac{M}{M}$.) Also the cone intersects $x_{n}=k$ in the ($(n-1)^{(2 M+1)}$-dimensional) bell centre $(0, \ldots, 0, k)$ and radius $r_{k}=\frac{(k+M)}{\sqrt{\left((2 M+1)^{2}-1\right)}}$ - Since r_{k} is large for large
values of k it follows that P_{M} is a universal cover (as the construction of $P_{\text {pif }}$ involves removing only a finite volume from the prism P).

Now for each set $Y \in K_{n}, Y \subset P$, take the corresponding set Y^{0} as defined above, and translate Y^{0} until it lies inside P_{M} but as near to $X_{n}=0$ as possible. Let this new set be denoted by Y^{*}. Let Q be the union of all such sets Y^{*}, and let S be the convex cover of the closure of $Q . Q$ is bounded, and therefore so is S. S is contained in P_{M} and meets the hyperplane $x_{n}=0$ (since $Q \supset B$). Also, by considering the set Z^{*} corresponding to Z, we can see that S meets the hyperplane $x_{n}=D$. For if Z lies in $x_{n}<D$ then $R \leqslant r_{D}$ since R is the smallest value of the circumradii of S, and if $K>r_{D} Z$ would have to lie at least partly in $X_{n} \geqslant D$ for it still to be contained in the cone. Then

$$
\begin{aligned}
R \leqslant \frac{D+M}{\left((2 M+1)^{2}-1\right)^{\frac{1}{2}}} & =\frac{D+M}{2 M}\left(1+\frac{1}{M}\right)^{-\frac{1}{2}} \\
& \leqslant \frac{D+M}{2 M} \quad \text { aince } H>0
\end{aligned}
$$

and hence ($2 R-1$) $M \leqslant D$ which contradicts our choice of M. So Z^{*} and hence S must lie at least partly in $x_{n} \geqslant D$. Thus, since S also meets $x_{n}=0$, the diameter of S is at least D.
S is a universal oover by its construction from each $Y \in K_{n}$,
and is compact since any closed bounded subset of E_{n} is compact. Let $T \subset S$ be a minimal compact universal cover. By the same argument as above T contains points in $x_{n} \geqslant D$. We want to show that it contains a point in $x_{n}=0$.

The line L defined by the equations

$$
x_{1}=\frac{1}{2}, \quad x_{2}=x_{3}=\cdots=x_{n-1}=0
$$

meets Q in the point $q=\left(\frac{1}{2}, 0, \ldots, 0, \frac{1}{2}\right)$, since $B \subset Q$, How q is the only point on L of the closure of Q. For, suppose that this is not so, so that there is a point p of \bar{q} on $L, p \neq q$. Then there is a sequence of points $p_{j} \in Q$ (not in general on L) such that $p_{j} \rightarrow p$ as $j \rightarrow \infty$. Then p_{j} (near p) belongs to one, say Y_{j}^{*}, of the sets whose union is $4 . Y_{j}^{*}$ meets $X_{1}=\frac{1}{2}$ in a single point (since Y_{j}^{*} is a set of constant width), say y_{j}^{*}
(See pape 120 , diapram.)
 wholly inside an n-dimensional ball of radius 1 which touches $x_{1}=\frac{1}{2}$ at y_{j}^{*}. Call the centre of this ball c and denote the angle poy_{j}^{*} by θ_{j}. Then $\mathrm{cy}_{j}^{*}=1$ and so $\mathrm{py}_{j}^{*}=\tan \theta_{j}$. We know that $p_{j} \rightarrow p$ as $j \rightarrow \infty$, and $p_{j} \in Y_{j}$. Thus p_{j} belonge to the ball containing $Y_{j}{ }^{*}$, and so $\mathrm{pp}_{j} \geqslant \mathrm{px}$ (with the notation of the diagram), where pxc is a straight line. Hence $p p_{j} \geqslant \sec \theta_{j}-1$ But $p_{j} \rightarrow p$ as $j \rightarrow \infty$, which means that $\theta_{j} \rightarrow 0$ and so $\mathrm{py}_{j}^{*} \rightarrow 0$ as $j \rightarrow \infty$. Thus if
$y_{j}^{*} \equiv\left(y_{1}^{(j)}, y_{2}^{(j)}, \ldots, y_{n}^{(j)}\right)$, we must have $y_{i}^{(j)} \rightarrow 0$, $i=2,3, \ldots, n-1$, since $p \in L$ and L has $x_{2}=x_{3}=\ldots=x_{n-1}=0$. XXXXXXXXXXXXX Now of the sets $Y_{j} \in X_{n}$ corresponding to the Y_{j}^{*}, there is a subsequence $Y_{j i}$, convergint to a set W, say, $W \in K_{n}$, and $f\left(W^{\circ}\right)=\left(\frac{1}{3}, 0 \ldots, 0\right)$ (since the first and last coordinates of $f\left(W^{\circ}\right)$ are fixed by the construction of f anyway). Then aince the $Y_{j} \begin{gathered}\text { and hence } \\ \text { (nape 128) }\end{gathered}$ again to establish that W must be an n-dimensional ball. Thus H is congruent to B. But $Y_{j i}^{*}$ is one of the sets whose union is Q and so it lies as near to $x_{n}=0$ as possible while still being contained in P_{M}. If $Y_{j i}^{*}$ touches $X_{n}=0$, then so does 7 if not, then $Y_{j i}^{*}$ touches the cone and hence so does W. Thus in either case W is in fact B, in which case $Y_{j 1}^{*}$ converges to B. Hence $\left\{y_{j i}^{*}\right\}$ converges to q and $p=q$. Thus we have a contrediction, and so the line L meets \bar{Q} in the single point $q=\left(\frac{1}{2}, 0, \ldots, 0, \frac{1}{2}\right)$.

Now S is the convex cover of \bar{Q} (by definition) and \bar{Q} meets L in the single point $q=\left(\frac{B}{B}, 0, \ldots, 0, \frac{1}{2}\right)$, so it follows trat S cannot meet L in any other point than q. But $S \supset \bar{Q}$ and so $q \in S$. T is aniversal cover and hence contains an n-dimensional ball of madius $\frac{1}{2}$, and any n-dimensional ball of radius $\frac{1}{2}$ in P must touch the line L Thus T must contain the point
q, and the ball containing this point is B by our definition of B. Thus T contains B (since this is then the only such ball T can contain), and thus T contains the point $(0, \ldots, 0) \in B$. Hence T has points in both $x_{n}=D$ and $x_{n}=0$, and so the diameter of T is at least D. This establishes the required result.

Lemas 1. If $Z \in K_{2}$ and every square circumscribing Z has its sides bisected by the points of contact with Z then Z is a disc. Proof. We require first the property that any menber Z of K_{2} contains a semi-circle of radius and this may be deduced from the discussion of the two-dimensional result proved in the first part of this section. For, we may, as before, take Z to be a Reuleaux polygon, and if, with the previous notation, $r_{a b}=\frac{1}{2}$, then all those vertices of Z on the negative side of $a b$ lie within $\gamma_{a b}$. Then the frontier of Z on the positive side of $a b$ must lie outside or on the frontier of $\quad r_{a b}$, since it consists of arcs of radius 1 centred at the vertices on the negative side of $a b$. Thus one of the senicircles forming the frontier of $\gamma_{a b}$ lies inside Z (allowing that frontier points of Z may lie on the frontier of $\gamma_{a b}$). So now let a, b be two opposite points of Z such that the
(See pape 120, diagram.)
semicircle $t_{a b}$ joining $a b$ lies in $Z . \Lambda$ Let p denote the centre of the semicircle, arid let q be a point of Z furthest from p, so thet it follows that the line through q perpendicular to $p q$ is a support line of Z, because otherwise there would be a point of Z further from p than q. There are two support lines of Z parallel to pq . and since $\mathrm{Z} \in \mathrm{K}_{2}$ the distance between them is 1 , and hence by the condition of the lemma they must touch, in points p_{1}, p_{2} say, the circle of which $t_{a b}$ is a part. Let the support line of z through p_{i} meet the support line of z through q (perpendicular to pq) in the point q_{i}. Then the two support lines through p_{1}, p_{2} and the line $q_{1} q_{2}$ form three sides of a square of side 1 oircumsoribing z. But by hypothesis every such square has its sides bisected by the poiate of contact with 2 , so that the segments $p_{1} q_{1}, p_{2} q_{2}$ are each of length $\frac{1}{2}$. Thus the length of $p q$ must also be equal to $\frac{1}{2}$, and so, since q is a furthest point from p, the whole of Z is contained in a circle centre p and radius ${ }^{2}$. Hence, since $Z \in K_{2}, Z$ must be the cirole itself.

Lemma 2. There is a member ' W of $K_{n}, n \geqslant 3$, whose projection in eny direction is not an ($n-1$)-dimensional ball.

Expof. We prove the lemma by constructing a particular set W and showing that it satisfies the conditions of the lemva.

Let B_{0} (in n dimensions) denote the ball of radius $\frac{1}{2}$ and
with ocntre at $(0, \ldots, 0)$. Let B_{i} denote the ball of radius 1 and with centre at the point p_{i} where the ioth coordinate of p_{i} is k, say (to be chosen later), and every other coordinate is zero. Consider the intersection of B_{0} with the $n \quad B_{i}$, and let V denote the union of the resulting set and the points p_{i}. When let $\$$ be a member of K_{n} whioh contains V. For this to be possible, we must have that the distance between any pair of most distant points of V, which is given by $k \sqrt{2}$, is at most 1 .

W denotes the projeotion of \because in the direction θ. Now we can choose V so that there is a point f on the frontier of W_{θ} which is the projection of a point on the frontier of W that lies interior to B_{0} and on the frontier of one of the B_{i}. For, this is equivalent to saying that every great-circle on B_{0} (that is, every section of B_{0} by a hyperplane through the centre of B_{0}) cuts properly - that, in a set X, say, where the interior of X is nonempty - the intersection of B_{0} with one of the B_{i} for then the projection of W in a direction perpendicular to such a great-oirole must contain the projection (in the same direction) of X, and except for this restriction we are free to choose W so that its frontier coincides with the frontier of B_{i} at a point of $X=\operatorname{Fr}\left(B_{0}\right)$, that is, at a point interior to B_{0}. To show thet it is possible to choose k so that eyery great-circle on B_{0} outs $B_{0} \cap B_{i}$ properly, we note the following.

Consider the sets which are the intersections of $\operatorname{lr}\left(B_{0}\right)$ and $\operatorname{Fr}\left(B_{i}\right), i=1,2, \ldots, n$. We know that, since $n \geqslant 3$, there are more than two of these sets, let q_{i} be a point of $\operatorname{Fr}\left(B_{0}\right) \cap \operatorname{Fr}\left(B_{i}\right)$, (See page 120, diagram.)噱双, and 0 the centre of $B_{0} \cdot \lambda$ The distance $p_{i} q_{i}$ is then, with the notation of the diagram, given by

$$
p_{i} q_{i}^{2}=\frac{1}{4}+k^{2}+k \cos \phi
$$

where ϕ varies with the position of p_{i}. As we have not yet fixed the distance $o p_{i}(=k)$, choose ϕ to be $\frac{\pi}{4}$. Then it can be seen immediately, from the remarks at the beginning of this paragraph, that every great-circle on B_{0} must cut at least one of the $B_{0} \cap B_{i}$ properly, as required.

Then we have

$$
p_{i} q_{i}^{2}=\frac{1}{4}+k^{2}+\frac{1}{2} \sqrt{2 k}
$$

and since q_{i} is on $\operatorname{Pr}\left(B_{i}\right), p_{i} q_{i}=1$. So we have

$$
4 k^{2}+2 \sqrt{2 k}-3=0,
$$

which gives $k=\frac{\sqrt{7}-1}{2 \sqrt{2}}$, Note also that $k \sqrt{2}=\frac{\sqrt{7}-1}{2}$, which is, as required, not bigger than 1 .

This completes consistently the construction of \because, and we have noted above that there is then a point f on the frontier of W_{θ} which is the projection of a point on the frontier of W that lies interior to B_{0} and on the frontier of one of the B_{i}. But this means that sufficiently near f the frontier of W_{θ} coincides with
the frontier of an ($n-1$)-dimensional ball of radius 1 (i.e. B_{i}). Thus ive is not an ($n-1$)-dimensional ball of radius $\frac{1}{2}$. It follows, since W_{θ} has constant width 1 (trivially), that ${ }^{W}{ }_{\theta}$ is not an ($n-1$)-dimensional bell. Corollary. There is a meraber W of K_{n} such that the greatest lower bound of the circumradii of projections of w in all directions is greater than $\frac{1}{2}$.

Proof. Suppose that there is no such meraber of K_{n}. Then for every $W \in K_{n}$, the greatest lower bound of the circumradii of projections of in all directions is a But then by compactness it follows that there is a projection of w, for every W, for which the circumradius is equal to $\frac{1}{2}$, which contradicts the lemua. Hence the corollary follows.

Section 1-Notation and Definitions.
(The page number refers either to the first page on which a given notation is used, and therefore explained, or to the page on which a given term is defined in full.)

$$
\begin{array}{llll}
\mathrm{K}_{\mathrm{n}} & : \text { page } & 113 \\
\mathrm{Y}, \mathrm{X} & : \text { page } & 116,117
\end{array}
$$

2 : page 1	117			
$r_{a b}, r_{a b} \quad 1$ page 118	118			
(2nd part) D	1	page	122	
X_{0}, p, Y, P_{0}	1	page	122	
$\mathrm{F}\left(\mathrm{P}_{0}\right)$:	page	122	
$f\left(Y_{0}\right)$		page	122	
F°	:	page	123	
$\mathrm{Y}^{*}, \mathrm{f}\left(\mathrm{Y}^{\circ}\right)$		page	123	
B	:	page	124	
S , ${ }^{\text {P }}$		page	125,	126
Universal cover		8	page	113
Minimal universal cover		$:$	page	113
Disc , Reuleaux triangle ((polygon)	:	page	116
Positive and negative sides	of ab	:	page	118

Section 2. To prove that, if K is a convex body of minimal width ℓ in E_{n}, and K is contained in the union of r parallel strips of widths $h_{1}, h_{2}, \ldots, h_{r}$, then $h_{1}+h_{2}+\ldots+h_{r} \geqslant \ell$. (Tarski's plank problem. [12]) [13]

A parallel strip of width h is defined as bein: that closed subset of E_{n} which lies between two parallel ($n-1$)-dimensional hyperplanes whose distance part is h. (Note that the term "parallel strip" does not mean that the strips are parallel to one another.) Suppose that there is a system of vectors already defined in E_{n} with respect to some given origin and initial line. Then to a given parallel strip of width h there corresponds a pair ($\underline{u}, \mathrm{c}$), where \underline{u} is a vector with $|\underline{\underline{u}}|>0$ and c is a constant, such that the equations of the hyperplanes enclosing the strip are given by $\underline{\underline{r}} \underline{u}+c= \pm \underline{u}^{2}$. If we call the hyperplane whose equation is $\underline{\underline{r}} \cdot \underline{\underline{\underline{n}}}+\mathbf{c}=+\underline{u}^{2}$ the positive hyperplane, and the other the nogative hyperplane, note that the vector \underline{u} is perpendicular to these planes and directed from negative to positive; and put $2|\underline{\underline{u}}|=h$. The constant c is then given by the equation $c+(\lambda+1) \underline{u}^{2}=0$, where $|\lambda \underline{u}|$ is the distance of tie nugative hyperplane from the origin of vectors. If positive and negative are interchanged so that
the direotion of the strip is changed, the corresponding pair becomes ($-\underline{u},-\mathbf{c}$).

Thus we can identify a parallel strip by its corresponding pair ($u, 0)$ Consider, then, r parallel strips $\left(\underline{u}_{1}, o_{1}\right),\left(\underline{u}_{2}, o_{2}\right)$, ..., (u_{r}, c_{r}) . The part of E_{n} which is not contained in the union of these strips consists of (finite or infinite) polyhedra which may be denoted by $P_{\varepsilon_{1}}, \ldots, \varepsilon_{r} \quad$ where ε_{i} is equal to +1 or -1 according as the polyhadron is on the positive or negative side respectively of the $\operatorname{strip}\left(\underline{u}_{i}, c_{i}\right)$. For convenience of notation, we shall write ε for the sequence $\varepsilon_{1}, \ldots, \varepsilon_{r}$, and shall understand ε usually to run through all possible sequences formed by the numbers ± 1, even if some of these 2^{x} sequences do not correspond to actual polyhedra P_{ε}. The sequence ε may thus be used in the same way as an r-dimensional vector in the discussion that follows. Now suppose that we are given r parallel strips $\quad\left(\underline{u}_{1}, c_{1}\right)$, $\left(\underline{u}_{2}, c_{2}\right), \ldots,\left(\underline{u}_{r}, o_{r}\right)$ whose widths are denoted by $h_{i}=2\left|\underline{u}_{i}\right|$, $i=1, \ldots . r^{2}$, and suppose that the h_{i} are such that their sum is less than ℓ, where ℓ is the minimal width of the convex body K we are consideringe le want to prove that in this case K is not entirely contained in the union of the strips.

The part of K outside the union of the strips consists of the domains. $K \cap P_{\varepsilon}$, which are all separated from one another by the strips. If we give to each $K \cap P_{\varepsilon}$ a translation $-\varepsilon \underline{u}$, where
$\varepsilon \underline{u}$ denotes the sum $\varepsilon_{1} \underline{u}_{1}+\varepsilon_{2} \underline{u}_{2}+\cdots:+\varepsilon_{\underline{1}} \underline{u}_{r}$, we are in effect eliminating these separations. The translations may cause overlapping, but this makes no difference to the method of proof we are using, The total part of the space filled by these $K \cap P_{\varepsilon}$ after translation is

$$
\bigcup_{\varepsilon}\left[(K-\varepsilon \underline{u}) \cap\left(P_{\varepsilon}-\varepsilon \underline{u}\right)\right]
$$

Now the geometrical significance of $K-\varepsilon \underline{u}$ is merely that K is in a different position corresponding to a translation - -u for one given ε; if then we consider the intersection of the sets $K-\varepsilon^{\prime} \underline{u}$ where ε^{\prime} ranges over all possible values of ε, this intersection must be contained in $K-\varepsilon \underline{u}$. Hence

$$
\begin{aligned}
\bigcup_{\varepsilon}\left[(K-\varepsilon \underline{u}) \cap\left(P_{\varepsilon}-\varepsilon \underline{u}\right)\right] & \supset \bigcup_{\varepsilon}\left[\left\{\bigcap_{\xi^{\prime}}\left(K-\varepsilon^{\prime} \underline{u}\right)\right\} \cap\left(P_{\varepsilon}-\varepsilon \underline{u}\right)\right] \\
= & \left\{\bigcap_{\varepsilon^{\prime}}\left(K-\varepsilon^{\prime} \underline{u}\right)\right\} \cap\left[\bigcup_{\varepsilon}^{U}\left(P_{\varepsilon}-\varepsilon \underline{u}\right)\right]
\end{aligned},(1)
$$

for ε^{\prime} ranges over all possible ε so that the union over all ε of
$\bigcap_{\varepsilon^{\prime}}\left(\mathrm{K}-\varepsilon^{\prime} \underline{\mathbf{u}}\right)$ leaves it the same.
Now we can sow that in fact $\bigcup_{\varepsilon}\left(P_{\varepsilon}-\varepsilon \underline{u}\right)$ is the whole space E_{n}, as follows. For a particular $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{r}\right)$, put
$\delta^{(i)}=\left(0, \ldots, \varepsilon_{i}, 0, \ldots\right)$, where every tern of the sequence except ε_{i} is zero. For a given sequence $\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{r}\right)$, let H_{δ} denote the set of points \underline{r} which satisfy $\underline{\underline{r}_{0}}(\delta \underline{u})+\delta \mathrm{c} \geqslant(\delta \underline{u})^{2}$, X(xXXX) , where as above we have $\delta_{\underline{u}}=\delta_{1} \underline{u}_{1}+\ldots+\delta_{r} \underline{u} r$, and $\delta 0=\delta_{1} c_{1}+\cdots+\delta_{r} c_{r} ;$ then for $|\delta \underline{u}|>0$, H_{δ} is the halfspace lying on the positive side of the strip ($\delta \underline{u}, \delta_{c}$). Then with
this notation we see that P_{ε} is given by the equation

$$
p_{\varepsilon}=\bigcap_{i} H_{\delta(i)}
$$

Now define Q_{ε} by $Q_{\varepsilon}=\bigcap_{\varepsilon^{\prime}} H_{\left(\varepsilon-\varepsilon^{\prime}\right)} / 2$, where ε denotes one particular sequence of numbers ± 1, and ε^{\prime} ranges over all possible such sequences. If we set ε^{\prime} such that $\epsilon_{i}^{\prime}=-\varepsilon_{i}$ and $\varepsilon_{j}^{\prime}=\varepsilon_{j}$ for all $j \neq i$, it is clear that each $\delta^{(i)}$ can be put in the form $\left(\varepsilon-\varepsilon^{\prime}\right) / 2$. Hence $Q_{\varepsilon} \subset P_{\varepsilon}$, and we can now show that in fact $\bigcup_{\varepsilon}\left(Q_{\varepsilon}-\varepsilon \underline{u}\right)$ is the whole space.

Consider any point x of E_{n}. \underline{x} lies in ${ }_{\left(\varepsilon-\varepsilon^{\prime}\right) / 2-\varepsilon \underline{u}}$ If end only if $\underline{\underline{r}}+\varepsilon \underline{\underline{u}}$ satisfies the inequation for $H_{\left(\varepsilon-\varepsilon^{\prime}\right) / 2}$, that is,

$$
(\underline{x}+\varepsilon \underline{u}) \cdot\left(\frac{\varepsilon-\varepsilon^{\prime}}{2} \underline{u}\right)+\frac{\varepsilon-\varepsilon^{\prime}}{2} c \geqslant\left(\frac{\varepsilon-\varepsilon^{\prime}}{2} \underline{u}\right)^{2}
$$

which gives

$$
2 \underline{\underline{r}} \cdot(\varepsilon \underline{u})+2 \varepsilon c+(\varepsilon \underline{u})^{2} \geqslant 2 \underline{\underline{r}}\left(\varepsilon^{\prime} \underline{\mu}\right)+2 \varepsilon^{\prime} c+\left(\varepsilon^{\prime} \underline{u}\right)^{2}
$$

where again ε is fixed and ε^{\prime} is any sequence of the numbers ± 1. Then \underline{x} lies in $\varepsilon_{\varepsilon}-\varepsilon \underline{u}$ when this inequality is satisfied for all ε^{\prime}. This is true automatically for a value of ε (there may be more than one) which makes the left-hand side of the inequality maximal (since LHS and RHS have exactly the same form). Hence every point I lies in one of the ${ }^{Q} \varepsilon-\varepsilon \underline{u}$, and this proves that
$\therefore \quad E_{n}=\bigcup_{\varepsilon}\left(Q_{\varepsilon}-\varepsilon \underline{\mathbf{u}}\right) \subset \bigcup_{\varepsilon}\left(P_{\varepsilon}-\underline{\underline{u}}\right)$
and hence

$$
\bigcup_{\varepsilon}\left(P_{\varepsilon}-\varepsilon \underline{u}\right)=E_{n} .
$$

Thus we have from (1) that

$$
\begin{align*}
\bigcup_{\varepsilon}\left[(K-\varepsilon \underline{u}) \cap\left(P_{\varepsilon}-\varepsilon \underline{u}\right)\right] & \supset \bigcap_{\varepsilon^{\prime}}(K-\varepsilon \underline{u}) \\
& =\bigcap\left(K \pm \underline{u}_{1} \pm \underline{u}_{2} \pm \ldots \pm \underline{u}_{r}\right) \tag{2}
\end{align*}
$$

where, by the definition of the ε^{\prime}, the last intersection ranges over all possible combinations of signs. To prove our result, we want to prove that this intersection is not enpty.

It is sufficient to prove that for a convex body M of minimal width m, and \underline{v} a vector whose length is $|\underline{v}|=\frac{1}{2} h$ where $h<m$, the intersection $\cap(M \pm \underline{V} \equiv(M-\underline{v}) \cap(M+\underline{v})$, which is convex, is not empty and has minimal width not less than $(m-h)$. Ihen successive applications of this to (2) will establish the mein result.

M has at least one chord (lying between parallel support hyperplance at its endpoints), of length k, say, $k \geqslant m$, in the direction of the vector \mathbf{Y}. A length $\mathbf{k}-2|\mathbf{y}|=\mathbf{k}-\mathbf{h}>0$ of this chord is contained in $\cap(M \pm V)$. Denote the endpoints of this length by A, on the boundary of $M+\mathbb{Y}$, and B, on the boundary of $M=Y$. Now jf we take A as the centre of similitude of the ratio $\frac{k-h}{k}$, whioh is lass than 1 , the set $M+I$ may oe oarried into a subset M° of itself, and the minimal width of this subset is given by $m\left(\frac{k-h}{k}\right)$, which, since $h<k$, is not less than $(m-h)$. Similarly, if we take B as the centre of similitude of the same ratio, the set $M-I$ is carried into exactly the same set M°, which is therefore also a subset of $M-\boldsymbol{F}$. Henoe $M^{\circ} \subset \cap(\mathbb{M} \pm \mathbf{V}$, and
we have already seen that the minimal width of n° is not less than (m-h).

Applying this result, then, to the intersection in (2), we have that $\bigcap\left(K \pm \underline{u}_{1} \pm \ldots \pm \underline{u}_{r}\right)$ is not empty and in fact contains a convex set whose minimal width is not less then $\ell-h_{1}-\ldots-h_{r}$. Thus if $h_{1}+\ldots+h_{r}<\ell, K$ is not entirely contained in the union of the strips, and so we have finally that if K is contained by such a union, the sum of the widths of the strips must be at least e .

It may be noted, to conclude this section, that a much shorter and simpler proof of the same result is possible when K is a circle. Gu pose that K is a given circle of diameter ℓ which is Covered by r parallel strips of widths $h_{1}, h_{2}, \ldots, h_{r}$. Consider the hemispherical surface H erected on K as its base, and denote by $H_{1}, H_{2}, \ldots, H_{r}$ the zones on H which are bounded by planes perpendicular to K through the edges of the parallel strips covering K, so that the strips which cover K are the profections of the H_{i} perpendicular to K onto K. There is a one-one correspondence between the points of H and the points of K, so that it follows that H must also be completely covered by the zones $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{r}}$.

We may now make use of the property thet the surface area of the
zone of a sphere is a function only of the width of the zone (so long as both parallel edges of the zone meet the surface of the sphere) and not of its position relative to any fixed point or line. Thus we may replace any of the zones H_{i} with a zone Z_{i}, say, whose projection on K perpendicular to K is still of width h_{1}, and whose surface area (on the hemisphere) is equal to that of H_{i}. Choose, then, a set $Z_{1}, Z_{2}, \ldots, Z_{r}$ of such zones, such that they all lie parallel to one another on H and still cover H. (We know that this is possible because we have kept the same total area of the zones, and if by lying parallel to one another and not overlapping they do not cover H then there is no position of them for which H would be completely covered.)

Then, finally, the projections of the zones $Z_{1}, Z_{2}, \ldots, Z_{r}$ on K form a set of parallel strips, parallel to one another, of widths $h_{1}, h_{2}, \ldots h_{r}$, which cover K since the Z_{i} cover H. Since K is covered, therefore, the sum of the widths of the strips in this position nust be at least equal to the diameter of K, and thus in general, from the above argument, we have $h_{1}+h_{2}+\cdots+h_{r} \geqslant \ell \cdot$

Section 2 - Notation and Definition.
(The page number refers either to the first page on which a given notation is used, and therefore explained, or to the page on which the given term is defined in full.)

$(\underline{u}, \mathrm{c})$	$:$	page	134
$h=2\|\underline{u}\|$	$:$	page	134
$P_{\varepsilon_{1}}, \ldots, \varepsilon_{r}, P_{\varepsilon}$	$:$	page	135
\mathbf{K}	$:$	page	134
$\delta^{(i)}, \delta, H_{\delta}$	$:$	page	136

Parallel strip of width $h \quad$ page 134

Section 3. To show that a small-circle of a unit sphere, of angular radius ρ, can be covered by a finite number of lunes only if the sum of their widths is at least 2ρ, and if the sum is exactly ρ, only when they all share the same vertices. (14]

Consider the class of all great-circles of a unit suere. Then it is a well-known problen to find the shortest possible curve, with various restrictions on the definition of "curve", which cuts every member of the class at least once. If the curve must be continuous, the extremal is a semi-cirole (of length π).

A variation of the problem is to find the shortest possible curve on a unit sphere which outs every great-circle making an ancle less than some fixed ip with the equatorlal plane, and we discuss this now. What we are considering in faot is not the problem as it stands, but an equivalent atatement of it which is analogous to the "plank problem" of T. Bang.

In place of the zone of the sphere between two circles of latitude ρ we take the largest spherical oap which can be contained by such a zone; this has the advantage, as will be seen by the way the problem is treated, of having circular symetry. Our equivalent problem is then to cover this cap by a set of lunes and to determine the least sum of the widths of the lunes fox which such a covering is posible.
(A lune is that part of the surface of a sphere which is bounded by the arcs of two intersecting circles on the surface of the sphere.) We consider here covering by a finite number of lunes.

We need first some definitions. A stiall-circle Γ of a sphere is any circle whose centre does not coincide with the centre of the sphere. Denote by D the interior (on the sphere) and the frontier of Γ, and let C be the centre (on the sphere) of D. We define a gliver as a lune of small triickness δ (at its widest jart) bounded by two great-semicircles; this will erable us to consider a large number of slivers in place of a sualler number of lunes covering D - Such a sliver is said to be centrally situated with respect to D if the great-circle joining its centre to C is perpendicular to the sliver. (If we call the points of intersection of the bounding semi-circles of the sliver its poles, the centre of the sliver is the point, of the sliver, which lies midway between these two poles and equally distant from both the bounding semi-circles.)

Now in moving to what we have noted is an equivalent problem, as it is set out at the head of this section, we have in fact moved from a statement involving linear measures to a problem whose solution demands the use of area, We want therefore to make sure that in considering the new probler we are not introducing more than the original problem contained. In order to do this, we show that we can attach at each point of D a "weight function" f such thet the "waighted area"
of the intersection with D of a centrally situated sliver S, that is, the integral of f over such a recion, is proportional to the thickness of S and does not depend on the relative positions of S and D, provided that both edges of S actually intersect D. Also, since we are workine with a car of a sphere, we shall require that the function f has circular symetry on D, that is, that it is a function only of tho ancular distance t from any given point to the centre C, on the sphere, of Γ - Lema ${ }_{1}$ proves the existence of such a weicht function, and also establishes certain snoothness properties with we need.

We have, then, a weight function f with a secific property related to centrally situated slivers, as we have described. We shall need to know something about the integral of f over the intersection with D of a sliver S which is not centrally situated, and it may be shown (lema 2 ${ }_{N}$) that such an integral increases as S is slid, in the direction of $i t s$ own length, towards a centrally situated position, and that the maximum value of the integral occurs only when S is centrelly situated. With these properties established, it is easy to prove the main result.

As there is no restriction (except that we do not consider infinite numbers) on the number of lunes taken, we mey take a large number n of alivers S_{i}, and consider the integral of the woight function f over the intersection with D of the union of the
slivers. It follows that, using a condensed notation,

$$
\int_{D_{n}\left(U S_{i}\right)} i \leqslant \sum_{i=1}^{n} \int_{D_{n} S_{i}} i
$$

with strict inequality unless no two of the slivers overlap (although they may of course have frontier points in comnon). Let S_{i}^{p} denote the sliver s_{i} when it is slid into the centrally situated position; then by lemua 2

$$
\int_{D_{n} S_{i}} f \leqslant \int_{D_{n} S_{i}^{*}} f
$$

and the inequality is strict unless $S_{i}=S_{i}$. Finally since f has circular symetry, we may replace S_{i} by ${S_{i}}_{i}$, where S_{i} and $S_{i}^{\prime \prime}$ are both the same distance from the centre C of D but all the 3_{i}° share the same vertices. Then wo have
 if the sum of the widths of the s_{i} : is less then or equal to ${ }^{2} p$. Equality in all three inequations occurs only if the lunes do not overlap, are centrally situated, share the same vertices, and the sum of their widths is equal to 2ρ. If Γ can be covered by the Iunes s_{i}, we know that $\int_{D_{n}\left(U S_{i}\right)} f=\int_{D} f$, and tnus we have from above that the sum of the widthe of the S_{i} must be at least ${ }^{2} \rho$

If their sum is exactly 2ρ, then equality must hold in 0.11 the inequations above, so thet the lunes do not overlap, are centrally situated, and share the same vertices (which in fact implies the centrally situated property).
(From this follows the corresponding neasure theory result for sets of great-circles, which we mentioned at the beginning of the section: the shortest continuous curve on the unit sphere which cuts every great-circle, making an angle of less than ρ vith the equatorial plane, is part, of length ρ and bisected at the equator, of some circle of longitude.)

Leman 1. Whe angalar distance of a point P of D from the centre c is denoted by t. Let the angular radius of Γ (the frontier of D) be a. A function f is to have the followine properties: (i) f exists for every point P of D,
(ii) f has circular somatry, i.e. it is a function of t only, (iii) the integral of f over the intersection with D of a centrally situated sliver ξ of thickness δ, is independent, for fixed δ, of the relative positions of I and S, i.e. it is rroportional to δ, provided thst both edges of S actually intersect 1 . Then the (jositive) weight function

$$
f(t)=\frac{2 c}{\pi}\left\{\cos ^{-1}\left(\frac{\cos a}{\cos t}\right)+\frac{2 \cos a}{\left.\sqrt{\left(\cos ^{2} t-\cos ^{2} \alpha\right.}\right)}\right\},
$$

where c is any positive constant, satisfies these requirements.
Proof. t is the angular
distance from C of a
small element of width
d ϕ of the centrally
situated sliver S, the angular distance of the
 element from the centre of the sliver being ϕ. θ denotes the angular distance from C of the centre of the sliver.

$$
\text { If } \mathrm{CPX} \text { in the diagram }
$$

represents the same spherical triangle, with sides of length θ, ϕ, t, and 0 denotes the centre of the sphere of which D is a cap (so that $O X=O P=O C=1$), then $X Y$ and $X Z$, the tangents to the triangle's sides at X, are perpendicular to each other and to $0 X$, and we have

and | YZ^{2} | $=Y X^{2}+X Z^{2}=\tan ^{2} \theta+\tan ^{2} \phi$ |
| ---: | :--- |
| YZ^{2} | $=0 \mathrm{Y}^{2}+0 Z^{2}-2 \cdot 0 \mathrm{Y} \cdot 0 \mathrm{Z} \cdot \cos \mathrm{YOZ}$ |
| | $=\sec ^{2} \theta+\sec ^{2} \phi-2 \sec \theta \sec \phi \cos t$ |
| which gives | $\cos t=\cos \theta \cos \phi \quad$. |

The area of the small slice of S to the first order is $\delta \cos \phi d \phi$. Then the property (iii) that we want for f is seen to be equivalent to saying that the integral

$$
\begin{equation*}
\delta \int_{-\lambda}^{\lambda} f(t) \cos \phi d \phi \equiv 2 \delta \int_{0}^{\lambda} f(t) \cos \phi d \phi \tag{1}
\end{equation*}
$$

where $\cos t=\cos \theta \cos \phi, \theta \leqslant t \leqslant a, \cos a=\cos \theta \cos \lambda$, must be independent of θ in the range $0 \leqslant \theta \leqslant a-\delta$ (to satisfy the condition that both edges of S should intersect D). Since D has circular aymetry, any function f depending only on the angular distence t of a point from the centre of D automatically satisfies (ii), so that we need only to prove thet a function $f(t)$ exists such that the integral (1) is independent of $\theta, 0 \leqslant \theta \leqslant a-\delta$. Using $\cos \phi=\cos t / \cos \theta$ we see that we require

$$
\int_{t=\theta}^{a} f(t) \frac{\cos t}{\cos \theta} \cdot \frac{\sin t d t}{\cos \theta \sqrt{\left[1-\left(\cos ^{2} t / \cos ^{2} \theta\right)\right]}}
$$

to be constant; that, putting $F(x)=f(t), \cos ^{2} t=x, \cos ^{2} \theta=y$, $\cos ^{2} \alpha=k$, we require

$$
\frac{1}{2} \int_{k}^{y} \frac{F(x) d x}{\sqrt{(y(y-x)}}=0
$$

where c is constant.
This, put in the form

$$
\int_{k}^{y} \frac{F(x) d x}{\sqrt{(y-x)}}=20 \sqrt{y} \equiv g(y)
$$

is a standard Abel type of integral equation, from which we want a solution for $F(x)$ - (See ref. [15].) $G(y)$ is continuous in the closed interval $[k, y]$, and

$$
\begin{aligned}
\int_{k}^{y} \frac{g(\xi) d \xi}{\sqrt{(y-\xi})} & =\int_{k}^{y} \frac{2 c \sqrt{ }(d \xi}{\sqrt{(y-\xi)}} \\
& =2 c y \int_{\xi=k}^{y} 2 \sin ^{2} q d q \quad \text { putting } \xi=y \sin ^{2} q \\
& =\left.2 \operatorname{cyy}\left(q-\frac{1}{2} \sin 2 q\right)\right|_{q=\sin ^{-1}\left(\frac{k}{y}\right)} ^{q=\frac{1}{2} \pi}
\end{aligned}
$$

has derivative with respect to \mathbf{y} equal to

$$
\begin{aligned}
& 2 c\left[\frac{\pi}{2}-\sin ^{-1} \sqrt{\left(\frac{k}{y}\right)}-\frac{y}{\sqrt{(1-k / y})} \cdot \frac{\left(-\frac{1}{2}\right) \sqrt{k}}{y^{3 / 2}}+\frac{\frac{1}{3} \sqrt{k}}{\sqrt{(y-k)}}\right] \\
& =2 c\left[\cos ^{-1} \sqrt{\left(\frac{k}{y}\right)}+\frac{\sqrt{k}}{\sqrt{(y-k})}\right]
\end{aligned}
$$

which is continuous in the half-open interval ($k, y]$, but $g(k)=2 a \sqrt{k} \neq 0$ since $\sqrt{k}=\cos a$ and $a \neq \frac{\pi}{2}$ since D is strictly less than a hemisphere (Γ was defined not to be a great-airale).

Hence the unique solution for $F(x)$ is given by

$$
\begin{aligned}
F(x) & =\frac{\sin \frac{1}{d} \pi}{\pi} \frac{g(k)}{\sqrt{(x-k)}}+\frac{\sin \frac{1}{2} \pi}{\pi} \frac{d}{d x} \int_{k}^{x} \frac{g(\xi) d \xi}{\sqrt{(x-\xi)}} \\
& =\frac{20 \sqrt{k}}{\pi \sqrt{(x-k)}}+\frac{20}{\pi}\left[\cos ^{-1} \sqrt{ }\left(\frac{k}{\frac{k}{x}}\right)+\frac{\sqrt{k}}{\sqrt{(x-k})}\right]
\end{aligned}
$$

$$
=\frac{2 c}{\pi}\left[\cos ^{-1} \sqrt{\left(\frac{k}{x}\right)}+\frac{2 \sqrt{k}}{\sqrt{(x-k)}}\right]
$$

i.e. $\quad f(t)=\frac{2 c}{\pi}\left[\cos ^{-1}\left(\frac{\cos a}{\cos t}\right)+\frac{2 \cos a}{\left.\sqrt{\left(\cos ^{2} t-\cos ^{2} a\right.}\right)}\right]$,
as in the statement of the lemma.
We may take $c=\frac{1}{2} \pi$ since it is arbitrary. We shall be concerned with integrals of f with t taking any value between 0 and 9 , and we need to know that these integrals will exist and converge throughout. It may easily be calculated that

$$
\begin{aligned}
f^{\circ}(t) & =\frac{\tan t \cos a\left(\cos ^{2} t+\cos ^{2} a\right)}{\left(\cos ^{2} t-\cos ^{2} a\right)^{3} / 2} \quad 0 \leqslant \theta \leqslant t<a \\
& >0 \text { for all } t \text { in the given range }
\end{aligned}
$$

and therefore $f(t)$ increases monotonically, $\theta \leqslant t<a$. Since $f(0)=a+2 \cos a>0, f(t)>0$ for all t in the range we are considering. Also we have

$$
f(a+h)=\cos ^{-1}\left(\frac{\cos a}{\cos (a+h)}\right)+\frac{2 \cos a}{\left.\sqrt{\left(\cos ^{2}(a+h)-\cos ^{2} a\right.}\right)}
$$

Then for h negative and sufficiently small,

$$
\cos ^{-1}\left(\frac{\cos a}{\cos (a+h)}\right) \rightarrow 0 \quad \text { as } h \rightarrow 0
$$

and $\frac{2 \cos a}{\sqrt{\left(\cos ^{2}(a+h)-\cos ^{2} a\right)}}=2 \cos a\left(h^{2} \sin ^{2} a-2 h \sin a \cos a\right)^{-\frac{1}{2}}$ neglecting higher powers of h under the root sign

$$
\begin{aligned}
& \quad=(-h)^{-\frac{1}{2}} 2 \cos a(\sin 2 a+0(h))^{-\frac{1}{2}} \\
& \quad \rightarrow \quad \text { in the same way as } \\
& (2 \text { oot } a)^{\frac{1}{2}}(a-t)^{-\frac{1}{2}} \text { as } t \rightarrow a
\end{aligned}
$$

and the integral of $(a-t)^{-\frac{1}{2}}$ with respect to t converges over any range $[a, b]$ for which $0 \leqslant a \leqslant b \leqslant$. From these last considerations it will be seen that all the integrals to be considered do converge.

Leruia 2. If a sliver S is not centrally situated, then the integral of f over $S \cap D$ increases as S is slid, in the firection of its own length, towards a centrally situated position, and the maximum value of the integral occurs only when S is centrally situated. Proof. We can ignore the case when $S \cap D=\phi$. Otherwise there are three possible cases to consider:
(i) S cuts Γ twice ;
(ii) S cuts Γ only once but cuts the perpendicular great-circle from C to S;
(iii) S cuts Γ only once and does not cut the perpendicular great-circle from C to S.

Suppose that S is displaced from its centrally situated position through an angular distance η, and put $\lambda=\cos ^{-1}(\cos \cos \theta)$ as in lema 1 . Then the integrals over $S \cap D$ for the three cases
are seen to be as follows:
(i)

$$
\begin{array}{r}
\int_{0}^{\lambda} f \cos (\phi+\eta) d \phi+\int_{0}^{\lambda} f \cos (\phi-\eta) d \phi \equiv I_{1} \\
\text { and } 0 \leqslant \eta \leqslant \frac{\pi}{2}-\lambda
\end{array}
$$

$$
\text { (ii) } \int_{0}^{\lambda} f \cos (\phi-\eta) d \phi+\int_{0}^{\frac{1}{2} \pi \eta} f \cos (\phi+\eta) d \phi \equiv I_{2},
$$

$$
\text { and } \quad \frac{\pi}{2}-\lambda \leqslant \eta<\frac{\pi}{2}
$$

(iii) $\int_{\eta-\frac{1}{2} \pi}^{\lambda} f \cos (\phi-\eta) d \phi \equiv I_{3}$, and $\frac{\pi}{2} \leqslant \eta \leqslant \frac{\pi}{2}+\lambda \quad$.
In these integrals ϕ denotes the angular distance of the element from the perpendicular great-circle from C to $\mathrm{S} ; \psi$, if we denote the integrand by $f \cos \psi$ in each case, is the angular distance of the element from the centre of the sliver; the integrals are thus seen to be of the same form as the integral $\int_{0}^{\lambda} f(t) \cos \phi d \phi$ of lemma 1 .

To prove the increasing property of the integral of f as stated in the lems, we need to show that each of tire integrals I_{1}, I_{2}, I_{3} increases as the value of η decreases. The two integrals whose sum is I_{1} have the same range of integration, which is independent of η; so we need only note that the sum of the integrands is $2 X$ $2 f \cos \phi \cos \eta$, which certainly increases as η decreases. Hence so does I_{1}. In passing from (i) to (ii), note that $I_{1}=I_{2}$
for $\quad \eta=\frac{\pi}{2}-\lambda$. The range of integration of the first integral contributing to I_{2} is independent of η, anc the integrand is $f \cos (\phi-\eta)$ where $\eta-\phi>0$ so that $f \cos (\phi-\eta)$ increases as η decreases; in the second integral both the integrand and the range of integration increase as η decreases. Hence so does I_{2}. Note again that $I_{2}=I_{3}$ for $\eta=\frac{\pi}{2}$. Pinally $\eta-\phi>0$ again for I_{3}, so that the integrand, the range of integration, and thus I_{3}, all increase as η decreases.

This proves the first assertion of the lenua. For the second we need only to note that, throughout the range of values for which the integral I_{1} holds, the integrand $2 f \cos \phi \cos \eta$ is in fact increasing strictly, so that the maximum value of I_{1} occurs onl: at $\eta=0$ in this range, and since the values of I_{2} and I_{3} do not, from the first part of the lemaz, ever exceed any value of I_{1}, the lema is proved completely.

Section 3-Notation and Definitions.
(The page number refers either to the first page on which a given notation is used, and therefore explained, or to the page on which a given term is defined in full.)

Γ, ρ	$:$	page	143,142
D	$:$	page	143
C, δ	$:$	page	143
f	$:$	page	143
S	$:$	page	144
t	$:$	page	146
ϕ, θ	$:$	page	147

Small-aircle	$:$	page	143
Sliver	$:$	page	143
Centrally situated sliver	$:$	page	143
Centre of a sliver	$:$	page	143
Circular symmetry	$:$	page	144

Section 4. To show that, for all maximal K-packings of positive minimal radius, the greatest lower bound of their lower densities is $\frac{\pi}{6 \sqrt{3}}$, and is strictiy less than $\frac{\pi}{6 \sqrt{3}}$ if K-packings of ellipees are excluded. [16]

The definitions of the terms of the problem are stated first. E_{2} is the Euclidean plane with a prescribed cartesian systen, with origin 0 . A convex body in E_{2} is defined as a closed bounded strictly convex eet of points of E_{2} which is symmetric in an interior point of the set. Let K be a convex body which is gymmetric in 0 . Associate with K the unique distance function $F(x)$, defined and continuous for all $x \in E_{2}$, such that
(ii) $F(x)>0$ for all x other than 0 .
(iii) $F(x+y) \leqslant F(x)+F(y)$ for all x, y, with equality only if x, y are collinear with 0 ,
(iv) K is the set of points x for which $F(x) \leqslant 1$. Given $z \in E_{2}$ and R a positive real number, we denote by $K(z, r)$ the set of points x for which $F(x-z) \leqslant x$ the set $K(z, x)$ is known as the homothetic translate of K with centre g and radius x. We define maximal K-packing of minimal radius r to be a collection 14 of homothetio translates of K, of possibly different
rediii but all at least r, such that
(a) no two distinct members of have an interior point in common,
(i) any homethetic translate of K with radius r which is not in M has at least one interior point in common with a member of in . Now given a K-collection N of bodies, let $V(N, k)$ denote the area of the point set union of the intersection of menbers of N with the ciroular diso centred at 0 and with radius $k>0$. We define the lower dengity of N to be the number $\lim _{k \rightarrow \infty} \frac{V\left(N_{0} k\right)}{\pi k^{2}}$. Let $\mathbf{k}^{*}=\mathbf{k}^{*}(\mathrm{~K})$ denote the greatest lower bound of the lower densities of all K-collections of sets of minimal radius $r>0$. (The general definitions are given, although in practice most of what follows will refer to particular K-collections M which are maximal K-packings.) It was conjectured by Fejes Toth $([17])$ that if K is a circle, there is a maximal K-packing of lower density k^{*}, every member of which is a circle of radius r. The conjecture was in fact made also for saturated systems of circles which may not form a packing. While not establishing this completely, we shall prove here a modification of it, which is the analogous result for packings when K is any strictly convex domain with a centre - it is obtained on the lines of the corresponding proof by Eggleston ([18]) for K a circle. The authors of the paper to be discussed have also ([19]) extended Eggleston's result to the case when the circles form a uniform saturated set, the method of proof following very similar lines to those
which we shall be considering here.
(A set of closed circular discs of radii r_{1}, r_{2}, \ldots in the plane is a uniform saturated set if it has the properties:
(i) $r=\inf r_{i}>0$,
(ii) any circle of radius I has at least one point in common with a member of the set.)

The main result to be proved is stated as follows.
Theorem A. There is a maximal K-packing of minimal radius r whose lower density is $k^{*}=k^{*}(K)$ and every nember of which has radius r. If $t(K)$ denotes the area of the largest triangle contained in K, then

$$
k^{*}(K)=\frac{V(K)}{8 t(K)}
$$

Its proof is a consequence of the following theorems 1 and 2 . Theorem 1. Given a maximal k-packing it of minimal radius r, there is a triangulation of the plane with the properties that (i) each vertex of each triangle is the centre of a member of M, (ii) if abc is any one of the triangles and $K(a), K(b), K(c)$, are those members of M with centres a, b, c respectively, then there is a point p such that the homothetic translate of X with centre p and radius r has a point in common with each of $K(a)$, $K(b), K(c)$.

Theorem 2. Let $K(a), K(b), K(c)$ be non-overlapping homothetic translates of K, with oentres at the vertices a, b, c of a
non-degenerate triangle, each of radius at least r, and each having a point in common with a homothetic translate of K of radius r. Then

$$
\frac{V[a b c \cap(K(a) \cup K(b) \cup K(c))]}{V(a b c)} \geqslant \frac{V(K)}{8 t(K)}
$$

where abc denotes the convex cover of the points $\mathrm{a}, \mathrm{b}, \mathrm{c}$.
It is known (and is stated without full proof in, for example, Bambah and Rogers [20]) that $\frac{V(K)}{2 t(K)} \leqslant \frac{2 \pi}{3 \sqrt{3}}$, with equality needed only for ellipses. Thus we have finally, using theorem A, the following result.

Theorem 3. $k^{*}(K)=\frac{V(K)}{8 t(K)} \leqslant \frac{\pi}{6 \sqrt{3}}$, with equality only when K is an ellipse.
proof of theorem 1.
Let id be a maximal K-packing of minimal radius r. In order to begin the construction of a suitable triangulation of the plane, we make the following definitions.

Given $K(a, R(a)) \in M$ and an arbitrary point x of the plane, put

$$
d_{a}(x)=F(x-a)-R(a)
$$

and denote by $S(a)$ the set of all those points x of the plane which have the property $d_{a}(x) \leqslant d_{b}(x)$ for all $K(b, H(b)) \in M$. We note that $d_{a}(x)$ can be negative and that therefore $s(a)$
always includes $K(a, R(a))$ itself. Also $d_{a}(x) \leqslant I$ for all a and $x \in S(a)$ since H is a maximal packing. We state here also three properties of the sets $\mathrm{S}(\mathrm{a})$ which will be used later in the proof of this theorem; the proofs are given in lemmas 2,3 and 4 . (See page 193.)
$S(i)$ If $x \in S(a)$, then every point except possibly x of the line segment ax is an interior point of $S(a)$.

S (ii) If a, b are distinct centres of members of \mathbb{M}, then $S(a) \subset K(a, F(b-a)) \quad$.

S (iii) If $\mathrm{a}, \mathrm{b}, \mathrm{o}$ are non-collinear centres of members of M then $S(a) \cap S(b)$ cannot have any point in common with the closed set

$$
H\left(a, c, b^{-}\right) \cap H\left(b, c, a^{-}\right)
$$

(nor, similarly, $s(b) \cap S(a)$ in $H\left(b, a, c^{-}\right) \cap H\left(c, a, b^{-}\right)$, $S(c) \cap S(a)$ in $\left.H\left(c, b, a^{-}\right) \cap H\left(a, b, c^{-}\right)\right)$, where $H\left(x, y, z^{+}\right)$denotes the closed half-plane, containing the point z, whose frontier passes through the points $x, y ;$ and $H\left(x, y, z^{-}\right)$denotes the clesed half-plane, not containing the point z , whose frontier passes through the points x, y. Now we define a crosspoint of M to be a point v of the plane which lies in at least three distinct sets $S(a), S(b)$, $S(c)$ where a, b, c are centres of distinct members of M. We say that a, b, c belong to V. Again we state three properties

160

of the crosspoints of M which will be used laters their proofs are in lemmas $5,6,7$ (page 197) of this section.

G(i) Any three centres belong to at most one crosepoint.
C (ii) The crosspoints of H form a discrete set.
C (iii) At most a finite number of centres of $i f$ belong to one crosspoint.

For each crosepoint v we denote by $p(v)$ the convex cover of :ill the centres of M which belong to v. Since 19 are attempting to construct a triangulation of the whole planc, we prove first that crosspoints exist in the plane and that the sets $P(v)$, which by property $C(i \xi+)$ are polygons, cover the whole plane.

By their definition the sets $S(a)$ cover the plane without overlapping (although of course as they ere closed they may have frontier points in common). Each $S(a)$ is by its definition bounded and because of property $S(i)$ a star body (that is; a body such that a segment which joins the point a to any point of the frontier is entirely contained in the body). Thus ite frontier is a simple closed curve, and every point of the frontier belongs to at least one other such set $S(b)$. $S(a)$ must meet at least two such sets, because if its whole frontier belonged to $S(b)$, for example, $S(b)$ would not be a s tar body (since no interior points of $S(a)$ belong to $S(b)$). (pape 191) But we know (lema 1_{N}) that only finitely many members of M intersect any fixed disc in the plane, and hence $S(a)$ can meet only
finitely many sets $S(b)$. So the frontier of $S(a)$ can be represented as the union of a finite number of (and at least two) closed sets each belonging to a set $S(b)$ different from $S(a)$. Hence there nust be a point v of $s(a)$ which is contained in at least two other such sets $S(b)$ (since all the sets are closed), and so v is a croespoint of M. This proves the existence of a crosspoint in the plane.

Low consider any crosspoint V and the polycon $P(v)$ which is the convex cover of all the centres belonging to v. Let a, b be two centres belonging to \mathbf{v} such that ab is a proper edge of $\mathrm{P}(\mathbf{v})$. $P(v)$ has an interior since any three centres belonging to v cannot be collinear. (See the beginning of the proof of lema 5, page 197.) In order to show that the $P(v)$ cover the plane, we need to show that there is a crosspoint w of 11 different from v such that the set $P(w) \cup P(v)$ contains the segment $a b$ as an interior diagonal. For then we may complete the proof as follows. The union of all the $P(v)$ is closed, so that its complement is open. If this is not empty, it has a frontier which must consist of line segments each being on the frontier of a polygon $P(v)$. But if the existence of podygons $P(v)$ and $P(w)$ on either side of an arbitrary line segment ab joining centres of members of M has been proved, this is a contradiction and we shall have shown that the polygons $P(v)$ cover the whole plane. We want, then, the existence of satisfying the conditions

$$
162
$$

(Diapram)

given above. We must obtain it for each of two cases, since we do not know if v and $P(v)$ are on the sume side or opposite sides of $a b$, (See diagram opposite.) so suppose first that they are on the same side of ab. " Denote by v " the point of the frontier of $S(a)$ which lies on the ray ba produced past a, and let $B(a)$ denote that part of the frontier of $S(a)$ which has endpoints v, v^{*} and which passes, at least in part, through the side of $a b$ opposite to that containing $P(V)$. Fach point of $B(a)$ lies as we have seen in at least one set $S(c)$, say, other than $S(a)$. We assert now that there is a neighbourhood of V such that except for v the part of $B(a)$ lying in the neighbourhood belongs to $S(a)$ and $S(b)$ but to no other such set.
P(4) For if not, there is a set $\mathrm{S}(\mathrm{c})$, different from $\mathrm{S}(\mathrm{a})$ and $\mathrm{S}(\mathrm{b})$, which has points other than v on $B(a)$ and arbitrarily close to v. It follows that v itself belongs to $S(c)$ since by definition $S(c)$ is closed, and so c is a centre belonging to v . Now consider the possible positions of the point c. Since a, b, c are all centres belonging to v, c cannot be collineas and with a and b, and since c is a point of the polygon $P(v)$ it must lie on the same side of ab as $\mathrm{P}(\mathrm{v})$. Also c cannot lie in the triangle abv . For, $v \in S(a) \cap S(b)$ so that we have $x \geqslant d_{a}(v)=F(v-a)-R(a)$ and $x \geqslant d_{\mathrm{b}}(\mathrm{v})=T(\mathrm{v}-\mathrm{b})-\mathrm{R}(\mathrm{b})$; hence the triangle abv, except possibly for the point v, lies completely in the interior of the union of the sets $K(a, R(a)+x), K(b, R(b)+x)$, and thus no centre a of M

164

can lie in abv since $R(c) \geqslant r$ for all $K(c, R(c)) \in M$. If we take any point d distinct from ∇ in the set $B(a) \cap S(c)$, we know by rroperty $g(i)$ thet the segment $c d$ consists except for d of interior points of $S(c)$. This implies thet cd cannot cross either av (which except for ∇ is interior to $S(a)$) or bv (which except for \mathbf{v} is interior to $\mathrm{S}(\mathrm{b})$), since by definition no two sets $S(a), S(b)$ can have interior points in common, and we have already specified that d is distinct from $v . s o c o n ~ o n l y$ lie collinear with d and v, with v lying between d and c. Thus v is an interior point of $S(c)$, since both c and d belone to $S(c)$, which is a contradiction since v is a crosspoint of H. Hence if v and $\mathrm{P}(\mathrm{v})$ are on the same side of ab , there is a neighbourhood of v such that except for v the part of $B(a)$ lying in the neighbourhood belongs to $S(a)$ and $S(b)$ but to no other such set.

If, on the other hand, v and $P(v)$ are on opposite sides of
(See fape 162 diagram.) $a b$, let $B(a)$ be defined exactiy as before. \wedge We make the same assertion and again assume the contrary to obtain a contradiction. Again we have a set $S(c)$ as above and $v \in S(c)$ so that c is a centre belonging to v. The point c cannot be collinear with a and b, and again it must lie on the same side of $a b$ as $P(v)$. If we consider a point d of $B(a) \cap S(0)$ as before, then d can be chosen as close to v as we please. Now the segment ad cannot oross $a v, b v, o r a b$ (since all points except one of $a b$ are interior
to one of $S(a), S(b)$ and d is variable so we cannot ensure that od always passes through this one particular point), and so it follows that c is confined to one of the regions

$$
\begin{aligned}
& H\left(a, b, v^{-}\right) \cap H\left(a, v, b^{-}\right), \\
& H\left(a, b, v^{-}\right) \cap H\left(b, v, a^{-}\right)
\end{aligned}
$$

But then v lies in one of the regions

$$
\begin{aligned}
& H\left(a, c, b^{-}\right) \cap H\left(a, b, c^{-}\right) \\
& H\left(b, c, a^{-}\right) \cap H\left(a, b, c^{-}\right)
\end{aligned}
$$

Bither of these is a contradiction with property S (iii), aince $v \in S(b) \cap S(c)$ and $v \in S(a) \cap S(c)$.

Thus in either case our original assertion is true, that there is a neighbourhood of v such that except for v the part of $B(a)$ in the neighbourhood belones to $S(a)$ and $S(b)$ but to no other such sot. How the endpoint v^{*} of $B(a)$ does not lie in $S(b)$ since the segment bv" lies partly in $S(a)$, thus contradicting property $S(i)$. Hence there is a first point, which will be seen to be the point w that we want, of $B(E)$ other than v which lies in some $S(c)$, say, other than $S(a)$ and $S(b)$ Then is a crosspoint of M different from v and a,b, are centres belonging to w. Since this is so, we have agein that a, b, c cannot be collinear, and since c is a point of the polygon $P(w)$ it must lie on the seme side of $a b$ as $P(w)$. If c also lies on the same side of $a b$ as $P(v)$, then this is the same as was true in each case above and leads to the same
contradiction with the properties of v. Thus c qust lie on the opposite side of $a b$ to $P(v)$, which implies that $P(v), P(w)$ lie on opposite sides of $a b$ and so contain $a b$ as an interior diagonal (since each polygon $P(v)$ has an interior, in other words, is not degenerate).

Hence, as we have already seen, ve may deduce from the existence of the crosspoint w that the polyons $P(v)$ cover the whole plane. We require finally that no two such polygons overlap, that is, heve interior points in comon, for then it is straightforward to divide each $P(v)$ up into triangles having their vertices at the vertices of $P(v)$, and so to triangulate the whole plane according to the conditions of theorem 1.

So suppose that we are given distinct crosspoints v, w such that the centres s, b, c of N belone to v and centres d, e, f to w. By property $C(i)$ at least one of the centres d, e, f is distinct from a, b, c. If we can establish that the triangles abc and def do not overlap, then this is sufficient since each is an arbitrary triangle formed by vertices of the polygon $P(v)$ or $P(w)$ and so it follows imediately that the olygons themselves do not overlap.

Suppose instead that abc and def do have interior points in common. By its definition the point v is common to the three sete $K(a, K(a)+r), K(b, R(b)+r), K(c, R(c)+r)$, and since the sets are

strictly convex and a, b, c are their centres it follows, because of the packing properties of M, that apart from v (possibly) the triangle abc is contained in the union of their interiors; thus, $a b c$ and similarly def can contain no centre except at their vertices.
 Then $a b c$ and def must overlap in such a way that at least one edge
 - abc interseots an edge or der in a point whion is interior to
 both edges. Suppose these edges are denoted by xy , zt respectively,
 $a^{\text {and }}$ let $C(x, y)$ denote the path consisting of the two line segments XV and $v y$, and $C(z, t)$ the path consisting of the segments $z w$ and wt . Except for the point v the path $C(x, y)$ lies in the union of the interiors of $S(x)$ and $S(y)$ (by property $S(i)$), whereas except for w $C(z, t)$ lies in the union of the interiors of $S(z)$ and $S(t)$. Also $v \neq w$, so $C(x, y)$ and $C(z, t)$ have no point in
 comon (by the definition of the sets $S(x)$). But, according to the property $S(i i i), w$ cannot lie in the region $H\left(x, z, t^{-}\right) \cap H\left(x, t, z^{-}\right)$
W(x) (rizy) (x, z, t being non-collinear), or in the region $H\left(y, z, t^{-}\right) \cap H\left(y, t, z^{-}\right) \quad(y, z, t$ being non-collineer). Hence
 $C(z, t)$ cannot intersect either of these regions and so it must
 intersect the segment. xy in an interior point (since the regions
 defined above are closed). Similarly $C(x, y)$ must intersect $z t$ in an interior point. Hence $C(x, y)$ and $C(y, t)$ must have a point in
 common; but we have already shown that this is impossible. Thus the triangles abc and def cannot overlap.

With this result esteblished, theorem 1 follows, as we have seen, at once, because the plane can nov be triangulated as required.

Proof of theorem 2.

In accordance with the conditions of the theorem, suppose that we are given a triangle abc and bodies $K(a, R(a)), K(b, R(b))$, $K(c, R(c))$, no two of which overlap, but such that $K(a, R(a)+r)$, $K(b, R(b)+r), K(c, R(c)+r)$ have a point in common. If we put
$A=\frac{V[a b c \cap\{K(a, H(a)) \cup K(b, R(b)) \cup K(c, K(c))\}]}{V(a b c)}$,
the theorem will follow, as will be seen later, if we show that inf A is obtained when $R(a)=R(b)=R(c)=\mathbf{r}$. Our method of proof of this subsidiary theorem is to begin by making a reduction of the problem and then to prove the result for a restricted class of configurations. The reduction is as follows. Let N be the set of all non-negative numbers n for which

$$
K(a, R(a)+r-n) \cap K(b, R(b)+x-n) \cap K(c, H(c)+x-n) \neq \phi .
$$

N is non-empty, since by hypothesis $0 \in \mathbb{N}$, and is bounded above by r, also by hypothesis, and so there is a least upper bound m which belongs to N since the homothetic translates of K are all closed. Since K is strictly convex, the set

$$
K(a, H(a)+x-m) \cap K(b, R(b)+x-m) \cap K(c, N(c)+r-m)
$$

consists of a single point t, say.
We shall need to know that t is a point of abc. For

170
convenience of notation we write K_{a} for $K(\alpha, R(\alpha)+r-m), a=a, b, c$ expuxubxfuxe respectively. Since the K_{α} are strictly convex, at least one pair, say K_{a}, K_{b}, overlap (with interior points in common). The set $K_{a} \cap K_{b}$ is convex (see ch. 1 , theoren 2 , page 9) with two "vertices" at the points of intersection of the frontiars of K_{a}, K_{b}, and K_{c} is tangential to this set at the point t. (That there are just trio points of intersection of the frontiers of K_{a} and K_{b} is proved in theorem 10 of ch. 1 -see page 26). If t is not at one of the vertices, then K_{c} is tengential to K_{a}, say, ano in this case it follows that t is an interior point of the line segment ac (since ac must pass through the point of contact of K_{a} and K_{c}). Thus $\begin{gathered}t \\ \text { (See belonge re to } 167 \text { diaram. } \text {.) }\end{gathered}$ On the other hand, suppose that t is at a vertex of $K_{a} \cap X_{b}$. A Denote by S the region $H\left(a, t, b^{-}\right) \cap H\left(b, t, a^{*}\right)$. If c lies in S it follows at once that t belongs to abc. If c does not lie in S, then suppose it does not lie in $H\left(a, t, b^{-}\right)$. Let u denote the point of the frontier of K_{a} which lies in the segment ac. Then since the K_{α} have a point in common, u must belong to K_{c} (for If it did not, no point of K_{a} would belong to K_{c}) so that either the major arc ut or the minor are ut must lie in K_{c} since t is in K_{c}. But the major arc cannot lie in K_{c} since then we should have the point a in K_{c} wich is impossible. Thus the minor arc ut lies in K_{c}, and therefore K_{c} must overlap $K_{a} \cap K_{b}$, which
is again impossible by the construction of the number a (by which the K_{a} are defined). We hive therefore a contradiction, and so the point 0 must lic in $H\left(a, t, b^{\circ}\right)$. Similarly c must lie in $H\left(b, t, a^{-}\right)$and therefore in S, and so it is proved that t is a point of the triangle abc.

How take coordinates so that t is at the origin 0 . If we put $s=r-m \geqslant 0$ we have $s \neq 0$ since we have seen that at least two of the K_{α} must overlap. If o is an interior point of abc, it follows at once that the bodies $K(a, l(a)), K(b, R(b))$, $K(c, R(c))$ all touch $K(0, s)$ externally (and of course do not overlap, by hypothesis); for if $K(a, H(a))$, say, meets $K(0, s)$ in interior points, then there is a body $K\left(0^{\circ}, \infty^{\circ}\right)$ with $s^{\circ}<\varepsilon$ which touches all three bodies $K(a, H(a)) \quad K(b, R(b)), K(0, H(c))$ externally, which in turn implies that the bodies $K\left(a, K(\alpha) s^{\circ}\right), a=a, b, c$, have a common point of intersection 0°, and since $s^{*}<s$ this is in contradiction with the definition of the number s. If 0 is not an interior point of abc, then it cannot be at a vertex since $s>0$ implies that 0 is extexior to each of the bodies $K(\alpha, R(\alpha))$. If, then, o is an interior point of one of the sides of abc, say $a b$, we must have firgt thet $K(0, s)$ tonches each of $K(a, R(a))$, $\mathrm{K}(\mathrm{b}, \mathrm{H}(\mathrm{b}))$ externally, for if it meets either in interior points the minimal property of the number s is again contradicted. If it also touches $K(c, R(c))$ externally, then the reduction is complete.
if not, then $K(o, s)$ and $K(c, h(c))$ have interior points in common. In this case wo raduce $f(c)$ until one of two tuings happens, either (i) $H(c)$ is reduced to r, the minimal redius of the packinc, or (ii) $\mathrm{H}(0)$ is reduced to $\mathrm{K}^{\bullet}(\mathrm{c}) \geqslant \mathrm{r}$ and $\mathrm{K}\left(\mathrm{c}, \mathrm{R}^{\circ}(\mathrm{c})\right)$ touches $\mathrm{K}(0, s)$ externally. If (ii) nolds, then again the reduction is oomplete. If (i) holds, then vary abc slightly by moving c perpendicularly away from $a b$ to a point 0° through a distanoe small enough for $K\left(c^{\circ}, r\right)$ still to meet $K(0, s)$. Denote by X the set of points of abc minch do not lie in

$$
K(a, H(a)) \quad \in K(b, K(b)) \quad K(c, r)
$$

and by X " the set of points of abc which do not lie in

$$
K(a, R(a)) \cup K(b, R(b)) \sim K\left(c^{0}, r\right)
$$

Let $\delta>1$ be the ratio of the length of $o c^{*}$ to the length of $o c$. Then a line perpendicular to ab whioh meets X in a segment of length ℓ meets X^{*} in a segment of length ℓ^{\prime} where $\ell^{\prime} \geqslant \delta \ell$ always and $\ell^{\prime}>\delta \ell$ for some segments. Thus we have

$$
V\left(X^{*}\right)>\delta \nabla(X)
$$

Then since $\quad V\left(a b c^{\circ}\right)=\delta \nabla(a b c)$
we have $\frac{\nabla\left(a b d^{*}\right)-V\left(X^{\circ}\right)}{V\left(a b c^{\circ}\right)}<\frac{\nabla(a b c)-V(X)}{V(a b c)}$,
and 30 it is seen that the value of A (defined at the beginning of (page 169)
theoren 2_{N}) is reduced by altering abc slightly in this way. Since we want the velue of inf A, we can continue this process until
$K\left(c^{\prime}, r\right)$ just touches $K(0, s)$. This completes the reduction.
Now we chance the class of configurations under discussion. Let -
I denote the class of triangles xyz such that the vertex x lies on the segment $0 a, x$ not being at 0 , the vertex y lies not at - on the segment $o b$, and the vertex z lies not at o on the segment oc. Define K_{x}, K_{y}, K_{z} now to be the bodies $K(x, H(x)), K(y, H(y)), K(z, R(z))$ respectively, were $H(x), R(y)$, $h(z)$ are such that K_{x}, K_{y}, K_{z}, touch $K(0, s)$ externally which we car do because of the reduction described above. Then theorem 2 will follow as shown below if we can prove the statement of theorem 4 . Theorem 4. The infimum of the ratio

$$
\frac{V\left[x y z \cap\left(\bar{K}_{x} \cup K_{y} \cup K_{z}\right)\right]}{\nabla(x y z)}
$$

extended over all members of the subclass I_{0} of I for which $R(x) \geqslant s$,
XXXXX $R(y) \geqslant s, R(z) \geqslant s$ and no two of K_{x}, K_{y}, K_{z} overlap
is attrined by a member of I_{0} for which $R(x)=\mu(y)=R(z)$. proof. Put $v(x(x y z))=V\left[x y z \cap\left(K_{x} \cup K_{y} \cup K_{z}\right)\right]$ - Among the members of I_{0} there is a sequence of triangles $x_{n} y_{n} z_{n}, n=1,2, \ldots$, $2 \times 8 \times 8 \times 8$ such that

$$
\frac{V\left(x\left(x_{n} y_{n} z_{n}\right)\right)}{V\left(x_{n} y_{n} z_{n}\right)} \rightarrow \inf _{x y z \in I_{0}} \frac{V(x(x y z))}{V(x y z)}
$$

We have $F\left(x_{n}\right) \leqslant F(a)$ by the construction of the class I, and

174
$F\left(x_{n}\right)=R\left(x_{n}\right)+s \geqslant 2 s>0$, and similarly $0<2 s \leqslant F\left(y_{n}\right) \leqslant \mathbb{P}(b), 0<2 s \leqslant F\left(z_{n}\right) \leqslant F(c)$ - Thus by compactness the sequence $\left\{\mathrm{x}_{\mathrm{n}} \mathrm{y}_{\mathrm{n}} \mathrm{z}_{\mathrm{n}}\right\}$ contains a convergent subsequence, so thet there le a triangle uvw in the class I_{0} for which

$$
\frac{V(x(u v w))}{V(u v w)}=\inf _{x y z \in I_{0}} \frac{v(X(x y z))}{V(x y z)}
$$

We may assune without loss of generality that $F(u) \geqslant F(v) \geqslant F(w) \cdot$ Theoren 4 will follow if we can prove $F(u)=2 s$, and to do this we assume that $\mathrm{F}(u)>2 \mathrm{~s}$ and shetll show that this leads to a contradiction.
riov put $\left.X\left(u v v^{\prime}\right)=u v\right)^{n}\left(K_{u} \cup K_{v} \cup K_{w}\right)$,
$\mathrm{Y}(\mathrm{uvv})=u v w-X(u v w)$,
$Z(u v w)=Y(u v v) \cap(u v \vee u w)$.
Also define \mathbb{y} (uvw) to be the part of uvw which lies on lines parallel to ou through points of $Z(u v w)$. We write as $Y_{v}(u v w)$, " ${ }_{v}$ (uvw) those parts of Y and $:$ which lie on the same side of ou as V, and as $Y_{w}(u v w)$, $W_{w}(u v w)$ those parts which lie on the same side as w -

The essence of the proof is to show that

$$
V(\mathbb{V}(u v w))<v(Y(u v w)) \text {, }
$$

and clearly it is sufficient to show that $V\left(w_{v}\right) \leqslant V\left(Y_{v}\right)$ and $V\left(W_{w}\right) \leqslant V\left(Y_{w}\right)$ with strict inequality in at least one of these

$$
\begin{gathered}
175 \\
(\text { Diagram })
\end{gathered}
$$

cases. The proofs are parallel and we shall in fact show that $\mathbf{x (u x)}$ $V\left(W_{W}\right) \leqslant V\left(Y_{W}\right)$ with strict inequality provided that op is not on the line segment uv .

If $V\left(w_{w}(u v w)\right)=0$, we have from the strict convexity of K that $\dot{v}\left(Y_{v}(u v w)\right) \neq 0$, and so in this qase the result is clear. So (See diagram opposite.)
in what follows we assume that $V\left(v_{w}\right)-\neq 0$. Λ Now let K_{u} meet $u w$ and ou in points e, f respectively, and let K_{w} meet $u w$ in e°.
Let f^{\prime} be the point such that ffe is equal to $e e^{\circ}$ and the direction of $f=$ to f^{\prime} is the same as that of e to e^{\prime}. Denote by P the ourvilinear perallelogram eff ${ }^{\prime} e^{\prime}$ bounded by the segments ee ${ }^{\circ}$, ff ${ }^{\circ}$, the arc of of the frontier K_{u} which lies in uvw, and the translation $e^{\circ} f^{\prime}$ of this arc.

Produce the line segment uo to a point v_{1} such that o is the midpoint of $u v_{1}$, and let the line through $u v_{1}$ meet the segment ww in p. Then $P(u)=P\left(v_{1}\right)$, and $P(w) \leqslant F(u)$ by hypothesis, so that w is contained in the body $\left.K(o)_{F} F(u)\right)$. Also $F(v) \leqslant F(u)$, again by hypothesis, and so since P is on the line segment vw it follows that $\mathbb{P}(p) \leqslant F(u)$. Hence $P(p) \leqslant F\left(v_{1}\right)$, X $($ wix $x)$, which implies that v_{1} "is either outside uvv or on its frontier.

We may assume that a is not on the segnent uw or W_{W} (uvw) would be the expty set which is contrary to our hypothesis. \mathbb{V}_{w} (uvv) by its construction is bounded by two lines parallel to ou . of
these let the one through e meet wv \mathcal{F}_{1} in j, and draw a line through j parallel to un to aet $u v_{1}$ in the point q. We shall need to know something about the position of the point q. The triangle $u w_{1}$ is similar to $q j v_{1}$ with centre of similitude v - Hence

$$
H\left(q_{1}-u\right) F\left(w-v_{1}\right)=F(\cdot j-w) F\left(v_{1}-u\right)
$$

Also uv ${ }_{1}$ is similar to ewj with centre of similitude w, so that we have

$$
\begin{align*}
& F(j-w) F(u-w)=P(e-w) F\left(v_{1}-w\right) \quad . \\
& \text { thus } \\
& P(q-u)=P(e-w) \cdot F\left(v_{1}-u\right) \tag{1}
\end{align*}
$$

$$
\text { ie have } \begin{align*}
H\left(v_{1}-u\right) & =2 F(u) \quad \text { by the construction of } v_{1} \\
& =2(s+F(u-f)) \\
& =2(s+F(u-e)) . \tag{2}
\end{align*}
$$

Thus

$$
\begin{aligned}
& I(e-w) F\left(v_{1}-u\right)=F(e-v) \cdot 2(s+P(u-e)) \\
& =F(e-w) F(u-e)+F(e-w)(2 s+F(u-e)) . \\
& F(e-w) F(u-e)=(F(u-w)-F(u-e)) F(u-e) \\
& \text { and } \\
& F(u-w)<F(u)+F(w) \text { since } 0 \text { is not on ow } \\
& \leqslant 2 \mathrm{~F}(\mathrm{u}) \quad \text { by hypothesis } \\
& =F\left(u-v_{1}\right) \text { by the construction of } v_{1}
\end{aligned}
$$

so that

$$
\begin{align*}
F(e-w) F(u-e) & <\left(F\left(u-v_{1}\right)-F(u-e)\right) F(u-e) \\
& =(2 s+F(u-e)) P(u-e) \tag{2}
\end{align*}
$$

and hence by (3)

$$
\begin{aligned}
F(e-w) F\left(v_{1}-u\right) & <(2 s+F(u-e))(F(u-e)+F(e-w)) \\
& =(2 s+F(u-e)) F(u-w)
\end{aligned}
$$

Thus from (1) we have

$$
F(q-u)<2 s+F(u-e)
$$

If then q is on the line segment ov ${ }_{1}$ we have

$$
2 s+F(u-e)>F(q-u)=F(q)+F(u)=F(q)+s+F(u-e)
$$

so that $F(q)<s$ and hence q is contained in $K(0, s)$. If q is not on the line segment $o v_{1}$, then either q lies on the segment fo and so is in $K(0, s)$, or q lies on the segment uf . We deal separately with the cases
(i) q lies in $K(0, s)$,
(ii) q lies on the segment uf.
(i) See the figure (i) λ_{i} Lage the line through ff°, meet $v_{1}{ }^{\prime \prime}$ in m, and let the line through q parallel to $v_{1} w$ meet fim in n. The triangle fqn is similar to $u v_{1} w$, and $F(f) \geqslant F(q)$ since q lies in $K(0, s)$ and f lies on its frombler. $1 f$ we were to take a triangle $f q^{\prime \prime} n$, also similar to $u v_{1}$ but such that 0 is the midpoint of $f q^{\circ}$ (as it is of $u v_{1}$), then we should have

$$
\frac{F\left(n^{0}\right)}{F(w)}=\frac{F(f)}{F(u)}
$$

But since such a triangle would be larger than fqn (since $F(q) \leqslant F(f)=F\left(q^{\prime}\right)$) we should have also $F\left(n^{\circ}\right) \geqslant F(n)$. Thus it follows that $\frac{F(n)}{F(w)} \leqslant \frac{F(f)}{F(u)}$ and so, since $F(w) \leqslant F(u)$ by hypothesis, $F(n) \leqslant F(f)$. Thus the points f, q, n are all in $K(0, s)$ and hence immediately by convexity the triangle fqn is contained in $K(0, s)$.

Now let $e j$, fm meet $v w$ in k, t respectively. If the whole of the segment ft lies between up and ek, we have the same situation arising as will hold in case (ii), in which q lies on the segment uf, and the completion of the proof in this case is therefore given under (ii) below. If, on the other hand, ft intersects ek in a point z lying in $u v w$, we proceed as follows. The triangles fqn and zjm are congruent so that fqn may be translated to cover zjm. The whole of fqn but not the whole of $z j$ m is contained in Uvw , and it follows that the part of X_{w} (uvw) not lying between fim and uw has strictiy greater area than the part of W_{W} (uvw) which is not between $f m$ and $u w$. The other property that we can eatablish to complete the proof is that the area of the part of $P \cap u v w$ which lies in Y_{w} (uvw), where P is the curvilinear parallelogram defined previously and P may be proved (lemma B_{A}) to lie entirely within
(Diapram)

(ii) (opposite page.)
$Y_{w}(u v w)$, is at least as great as the part of W_{w} (uvw) which lies between fm and uw . This property will be used again in case (ii), and the proof is given there. With these two results established, we have at once that
$V\left(W_{W}(u v w)\right)$ (opposite) $V\left(Y_{w}(u v w)\right)$
(ii) See the figure (ii) $\wedge^{\text {• }}$ It is proved in lemma 8 of this section (page 200) that the curvilinear parallelogram P is contained in $Y_{w}(u v w)$. It is possible to map P into a set which contains $W_{W}(u v w)$, by the following transformation wich preserves its area. Consider P as the collection of line segments parallel to ee". Take any such line segment and map it onto the line segment collinear with it and with endpoints lying on ej and $e^{\prime \prime} j$ ", where $j^{\text {. }}$ is the point of intersection with $v_{1} w$ of a line through é parallel to ej. If the direction of translation of an individual segment is from u towards w, then any point of the image which lies in uvw must have a preimage which also lies in uvw . But we do not know at once that the direction of translation is from u towards w. If for any segment it were from w towards u, the arc $e^{\text {e }} \mathrm{f}$ " in the frontier of P must cross the ray $e^{\prime} j$ " in a point k,
 show that this is in fact impossible, it is sufficient to prove that the part of $e^{\prime} j$. which lies in the triangle ouw lies also in K_{w}, in which case no point of $e^{\prime} j^{\prime}$ can lie in the arc $e^{\prime} f^{\prime}$, because according to lemma 8 no point of P (except e^{\prime}) lies in K_{w}. We need only to consider the part of $e^{\prime} j^{\prime}$ inside ouw because
again from lemar 8 we know that P is wholly contained within the triangle oum and a defined sector of $K(0, s)$, and by convexity no point of the segment $e^{*} j^{*}$ outside ouw can lie in $K(0, s)$. Let m_{1} be the point of intersection of $e^{\prime} j^{\prime}$ and ow. To prove that the segment $e^{\circ} m_{1}$ lies in K_{W}, we note that by hypothesis

$$
\begin{aligned}
F\left(e^{\bullet}-u\right) \geqslant F(e-u) & =F(f-u) \\
& =F(u)-F(f) \\
& \geqslant F(w)-F(f) \\
& =F(w)-F(g)
\end{aligned}
$$

where g is the point of the frontier of K_{w} which lies on Ow

$$
=F(g-w)=F\left(e^{\bullet}-w\right)
$$

since e^{*}, g are both on the frontier of K_{w}. Then since $e^{\prime \prime} m_{1}$ and uo are parallel it follows that

$$
F\left(m_{1}\right) \geqslant F\left(m_{1}-w\right)
$$

If m_{1} lies in K_{W} there is nothing to prove, so suppose that it does not. In this cese m_{1} must lie in $K(0, s)$ (for since the two bodies $K(0 ; s)$ and K_{w} touch and m_{1} lies on the line of centres, it must lie in one or the other), in which case $F\left(m_{1}\right) \leqslant s$. Then $F\left(m_{1}-w\right) \leqslant s \leqslant R(w)$ so that m_{1} does lie in K_{w}, which is a contradiction. Thus the part of $e^{\prime \prime} j$ " which lies in ouw lies also in K_{W}. Hence the map we have described is an area-preserving map whose image contains $W_{W}(u v w)$ (because of the fact that in this
case qj lies between $f f^{\circ}$ and $e e^{\circ}$) and such that any point of "W (uvw) has a preimage lying in $P \cap u v w$, and by lemma $B \quad P \cap u v w$ is contained in $Y_{w}(u v w)$. Hence $V\left(W_{W}\right.$ (uvw) $\leqslant V\left(Y_{w}(u v w)\right)$. Finally let ej, el j^{\prime} meet $v w$ in k, k° respectively. The trapezium $k k^{\circ} j^{\prime} j$ does not belong to W_{W} (uvw) but is in the image of the above map, and at least a part, with positive area, of this trapezium must have a preimage lying in $P \cap u v w$, so that in fact the inequality is strict.

In all cases, then, $V\left(W_{W}\left(U_{W}\right)\right)<V\left(Y_{W}(u v w)\right)$ - We may now complete the proof of theorem 4 . Vary the triangle $u v w$ by taking u_{1} close to u on the segment ou so that ou $>u_{1} 0>2 s$. Then $u_{1} v w$ is a member of the class I_{0} defined in the theorem. put uvv $=T_{0}, u_{1} v w=T_{1}, \quad W(u v w)=W_{0}, W\left(u_{1} w w\right)=W_{1}, \quad Y(u v w)=Y_{0}$,
 $Y_{w}(u v w)=Y_{0}^{(W)}$, and $Y_{w}\left(u_{1} v w\right)=Y_{1}^{(w)}$. Let the ratio of the distance up to tine distance $u_{1} p$ be $\delta(>1)$. Then

$$
\begin{equation*}
V\left(T_{0}\right)=\delta V\left(T_{1}\right) \tag{4}
\end{equation*}
$$

We have shown above that

$$
\begin{equation*}
\nabla\left(W_{0}\right)<V\left(Y_{0}\right) \tag{5}
\end{equation*}
$$

Thus $\frac{V\left(Y_{0}\right)}{V\left(T_{0}\right)} \cdot \frac{\nabla\left(Y_{1}\right)}{\nabla\left(T_{1}\right)}=\frac{\nabla\left(Y_{0}\right)-\delta \nabla\left(Y_{1}\right)}{V\left(T_{0}\right)}$ from (4).
We now find an expression for $V\left(Y_{0}\right)$ in terms of $V\left(Y_{1}\right)$ and $V\left(W_{1}\right)$ •
(Diagam)

$\left(0, p p^{\text {sive }}\right.$ p. pe-)
(The original paper contains an error here.)
Consider $\mathrm{V}\left(\mathrm{Y}_{0}^{(\mathrm{w})}\right)$ - Disregarding all previous notation for points in the configuration we are discussing, except for the points (See diagram opposite.) $0, u, u_{1}, v, w$, define points as follows. \wedge Let a be the point of intexsection of $u_{1} m$ wi.th the frontier of $K_{u_{1}}$. Let b, c respectively be the points of intersection of uw $u_{1} u^{w}$ with the frontier of K_{u}. Let d, e respectively be the points of intersection of $u v=, u_{1} w$ with the frontier of K_{w}. If a° is the point of VW such that aa° is parallel to no, let f be the point of intersection, between a and a°, of $a a^{\prime}$ with the frontier of K_{u}, and let g be the point of intersection of $a^{\prime} a$ (produced) with $u w$. Let h be the point of u_{1} vi (such that bh is parallel to uo, and let j be the point of uw such that je is parallel to uo . Finally let k be the comnon point on uo of the frontiers of K_{u} and $K_{u_{1}}$

Curves denoted by ka, kf, fo, cb, de always represent the arcs of the frontiers of the bodies $K_{u}, K_{u_{1}}, K_{w}$ (as appropriate), and all others should be taken to denote line segments. Keeping this in mind, let A, C, D, E respectively denote the areas of the curvilinear triangles boh, dej, afk, acf, B the area of the trapezium bhej, and F the area of the curvilinear quadrilateral acbg

186

Then we have

$$
V\left(Y_{0}^{(W)}\right)=V\left(Y_{1}^{(W)}\right)+A+B+C-(D+E)
$$

and $\quad \delta V\left(\mathbb{W} \mathbb{W}_{1}^{(\mathbb{T})}\right)-V\left(\mathbb{W}_{1}^{(\mathbb{W})}\right)=A+B+F$
so that $\quad V\left(Y_{0}^{(W)}\right)=\nabla\left(Y_{1}^{(W)}\right)+(\delta-1) V\left(W_{1}^{(W)}\right)+C-(D+E+F) \quad$.
It can easily be seen that because of their relative shapes and
positions in the sector between wu and wu ${ }_{1}$, tile areas C and F $[F$ is larger than a triangle which is an enlargement in ratio ga: je
satisfy the inequality $C<F$. Thus C.

$$
\beta \equiv D+E+F-C>0,
$$

and hence $V\left(Y_{0}\right)=V\left(Y_{1}\right)+(\delta-1) V\left(W_{1}\right)-r$ where $r>0$. putting this expression in (6), we have

$$
\begin{aligned}
\frac{\nabla\left(Y_{0}\right)}{\nabla\left(T_{0}\right)}-\frac{V\left(Y_{1}\right)}{V\left(T_{1}\right)} & =\frac{(\delta-1)\left(V\left(W_{1}\right)-V\left(Y_{1}\right)\right)-r}{V\left(T_{0}\right)} \\
& <\frac{(\delta-1)\left(V\left(W_{1}\right)-V\left(Y_{1}\right)\right)}{V\left(T_{0}\right)} .
\end{aligned}
$$

Now $\delta>1$, and as $\delta \rightarrow 1+$, we have $V\left(W_{1}\right) \rightarrow V\left(W_{0}\right)$, $V\left(Y_{1}\right) \rightarrow \nabla\left(Y_{0}\right)$, so that for δ sufficiently near 1 , it follows from the inequality (5) that

$$
\frac{V\left(Y_{0}\right)}{V\left(T_{0}\right)}-\frac{V\left(Y_{1}\right)}{V\left(T_{1}\right)}<0
$$

Hence

$$
\frac{v\left(x_{0}\right)}{\nabla\left(T_{0}\right)}-\frac{v\left(x_{1}\right)}{v\left(T_{1}\right)}>0
$$

(carrying through the same notation). Whis is a contradiotion because T_{0} was defined as a minimal configuration, and with this contradiction theorem 4 is proved.

To show hov theorem 2 follows from this result, we note thet an equivalent statement of the result is that the vertices of T_{0} lie on the frontier of $K(0,2 s)$. Also $V\left(X_{0}\right)=\frac{7}{3} V(K(0, s))$, since K_{u}, K_{v}, K_{w} all have the same radius s and so the parts of them that lie in T_{O} have in sum an area equal to half of that of $K(0, s)$, since K is symmetric. Then we have

$$
\begin{aligned}
& \qquad \frac{V\left(X_{0}\right)}{V\left(T_{0}\right)} \geqslant \frac{\frac{1}{3} V(K(0, s))}{t(K(0,2 s))}=\frac{V(K(0, s))}{8 t(K(0, s))}=\frac{V(K)}{8 t(K)} \\
& \text { where as before } t(K) \text { denotes the area of the largeat triangle } \\
& \text { contained in } K \text {. Thus theorem } 2 \text { is proved. }
\end{aligned}
$$

Proof of theorem A.

Let H be a maximal K-packing of minimal radius r. It may be proved (lemma 9 - see page 204) that we can in fact replace M by a maximal packing M^{*} for which no body $K(a, R(a))$ has radiue greater than some finite constant N. It follows that we can find a constant $N^{\text {. }}$, depending only on N, K and T, with the property thet given any aircle C with centre o and radius k, the union of those triangles of the configuretion described in theorem 1 which lie completely in C contains a concentric oircle of radius ($k=N^{*}$).

Then we have

$$
\begin{aligned}
& \frac{V\left(M^{*}, K\right)}{\pi K^{2}} \geqslant \frac{\bigcup_{a b c} V[a b c \cap(K(a) \cup K(b) \cup K(c))]}{\pi K^{2}} \\
& \text { where the union is taken over all triangles } \\
& \text { abc contained completely in } C \\
& \geqslant \frac{V(k)}{8 t(k)} \cdot \frac{\bigcup_{a b c} V(a b c)}{\pi k^{2}} \quad \text { by theorem } 2 \\
& \geqslant \frac{V(K)}{8 t(K)} \cdot \frac{\pi\left(k-N^{2}\right)^{2}}{\pi k^{2}}
\end{aligned}
$$

by the definition of the number $\left(k-N^{*}\right)$ above. Taking lower limits on both sides as $k \rightarrow \infty$ we have then that the lower density of M^{*}, and thus, by lema 9 , of H , is not less than $\frac{V(K)}{8 t(K)}$. Hence the greatest lower bound $\mathbf{k}^{*}(K)$ of lower densities satisfies

$$
k^{*}(k) \geqslant \frac{V(K)}{8 t(K)}
$$

To establish equality, it is sufficient to produce a maximal K-packing whose members all have radius r and which has lower density $V(K) /(8 t(K))$. (It is known that such a lattice paoking is a maximal packing.) Consider then a body $K(0,2 r)$ and let abc be the triangle of largest area contained in it. We can establish certain properties of this triangle abc which we shall need to form the packing. It
(Siapram)
*) (For if this encore is taken as the base of the triangle, the new triangle has a base of the same length tut further from the opposite vertex than before.)

(opposite page.)
contains the point 0 , because if it did not we could obtain a larger than abce by replacing an edse of abe nearest to 0 by its image in 0 . triangle \wedge (\because opposite page). Also, the lengths of the sides, $F(a-b), F(b-c), F(c-a)$, are all at least equal to 2r. For, if say $P(a-b)<2 r$, then both of the points $a-b$, boa lie in the interior of $K(0,2 r)$, and, if we consider the triangle in $\mathrm{K}(0,2 x)$ with vertices $\mathrm{a}-\mathrm{b}$, b-a and the point a , we see that since 0 is inside abc the length of the side opposite to c is $2(a-b)$ and \wedge the height of the triangle from c to the side opposite is at least half of the height of abc, so that the area of this triangle is at least equal to (See diagram opposite.) that of abc . $\lambda^{\text {But two of } i t s ~ v e r t i c e s ~ a r e ~ i n t e r i o r ~ p o i n t s ~ o f ~} \mathrm{~K}(0,2 r)$, so that $K(0,2 r)$ contains larger triangles - which by the definition of abc is impossible.

Thus $K(a, r), K(b, r), K(c, r)$ do not overlap, and each touches $K(o, r)$ externally. As $K(a, r)$, for example, cannot cross the broken segrent boc, none of the bodies centred at $\mathrm{a}, \mathrm{b}, \mathrm{o}$ can intersect the side of abc opposite to the centre of the body. The sides of abc can thus be used to generate a lattice (by means of a series of reflexions in the sides) such that the bodies K of radius r centred at the points of this lattice give a maximal k-packing of bodies all with radius r, whose lower density is, from theorem 2 , equal to $\mathrm{V}(\mathrm{K}) /(8 t(\mathrm{~K}))$. This completes the proof.

Lemma 1. Given a meximal K-packing il of minimal radius r, and any fixed disc C in E_{2}, there are at nost finitely many members of 1 whici intersect C.

Proof. We assume that infinitely many members of meet some C, and shall obtain a contradiction. Let $K(a, R(a)) \in M$ intersect C. If it meets C only in interior points of $K(a, R(a))$, then C is completely contained in the interior of $K(a, R(a))$. Then no other nember of M can meet C since this would be inconsistent with the packing property (a) (given in main section). So suppose that the frontier of $K(a, R(a))$ meets C in a point x, so that $P(x-a)=R(a)$. Our method of proof is to construct bodies $K(p, r)$ for points p to be defined, each of which is contained in one of the $K(a, K(a))$ which meet C. We note the following:

$$
\begin{aligned}
F\left[\left(1-r R^{-1}(a)\right)(x-a)\right]= & {\left[1-r R^{-1}(a)\right] R(a) } \\
& \text { (since } \left.1-r R^{-1}(a) \geqslant 0\right) \\
= & R(a)-r \quad,
\end{aligned}
$$

and so, if we put $p \equiv\left(1-\operatorname{rR}^{-1}(a)\right)(x-a)+a$, any point y of $K(p, r)$, which automatically satisfies the inequation

$$
F(y-p) \leqslant r
$$

satisfies also $F(y-p) \geqslant F(y-a)-F\left[\left(1-x R^{-1}(a)\right)(x-a)\right]$
by the definition of p
which implies $F(y-a) \leqslant R(a)$ -
Thus $K(p, r) \subset K(a, R(a))$, and also

192
(Diapram)

193

$$
\begin{aligned}
F(x-p) & =P\left[r R^{-1}(a)(x-a)\right] \\
& =r R^{-1}(a) F(x-a) \\
& =r r \text { since } x \text { is on the frontier } \\
& \text { of } K(a, R(a))
\end{aligned}
$$

so that x is a point of $K(p, r)$. If we now make the same construction for each $K(a, R(a))$ which meets C we obtain infinitely many bodies $K(p, r)$ all having radius r and all intersecting C in such a way that no two overlap since $K(p, r) \subset K(a, R(a))$ and the $K(a, R(a))$ do not have interior points in common. So if the diameter of $K(p, r)$ is D we have constructed infinitely many $K(p, r)$ packed in the disc whose centre is the centre of C and whose radius is D plus the radius of C, a construction which is clearly impossible. Thus the lemma is proved.

Lemina 2. If $x \in S(a)$, then every point except possibly x of the line segment $a x$ is an interior point of $S(a)$.

Proof. Let $z \neq x$ be a point of $a x$, and consider any body $K(b, R(b)) \in \mathbb{M}$ with $a \neq b$. We show first that z belongs to $S(a)$, and prove that in fact $d_{a}(z)<d_{b}(z)$, and then prove that it is an interior point of $S(a)$. There are two cases.

If a, b, z are non-collinear, then we have since $z \neq x$, $P(z-x)+F(z-b)>F(x-b) \quad$.

Thus we have

$$
F(x-a)-[F(z-x)+P(z-b)]<F(x-a)-F(x-b)
$$

which implies, since $F(x-a)-F(z-x)=F(z-a)$, that

$$
F(z-a)-F(z-b)<F(x-a)-F(x-b) \text {. }
$$

Thus, by definition, $d_{a}(z)-d_{b}(z)<d_{a}(x)-d_{b}(x)$, and we know that $d_{a}(x) \leqslant d_{b}(x)$ since $x \in S(a)$, and so $d_{a}(z)<d_{b}(z)$. If $\mathrm{a}, \mathrm{b}, \mathrm{z}$ are collinear, then we have

$$
\begin{align*}
d_{a}(z) & =d_{a}(x)-F(x-z) \tag{Thee}\\
& \leqslant d_{b}(x)-F(x-z) \quad \text { since } x \in S(a) \\
& \leqslant d_{b}(z) .
\end{align*}
$$ and a voctrouce of bo us $d_{b}(z)$.

Now for equality to hold, we must have in particular

$$
d_{b}(x)-F(x-z)=d_{b}(z)
$$

that is, $\quad F(x-b)-F(x-z)=F(z-b)$
which implies that z must lie between x and b. But z is by hypothesis a point of ax , and so is not a point of the segment ab . If, then, z is outside the segment $a b$ and on the side of a opposite to b, we have

$$
F(z-b)=F(z-a)+F(a-b)
$$

$$
\geqslant F(z-a)+R(a)+R(b)
$$

since the members of M do not meet in interior points, and so
 for say b + Tass the lewis ie proved completely.

195푸랄

$$
\begin{aligned}
d_{b}(z)=F(z-b)-H(b) & \geqslant F(z-a)+R(a) \\
& =d_{a}(z)+2 R(a) \\
& >d_{a}(z)
\end{aligned}
$$

and so equality cannot hold. A similar argument holds if z is on the side of b opposite to a, and hence in all cases we have $d_{a}(z)<d_{b}(z)$.

To prove the remaining part of the lemma, we assume that z is not an interior point of $S(a)$ and shall obtain a contradiction. Then there is a sequence of points $\left\{z_{n}\right\}$, having z as the limit point, and a sequence of bodies $\quad K\left(b_{n}, R\left(b_{i n}\right)\right.$ in M, all different from $K(a, R(a))$ and such that $z_{n} \in S\left(b_{n}\right)$ for each n. since M is maximal, we have $\mathrm{G}\left(\mathrm{b}_{\mathrm{n}}\right) \subset \mathrm{K}\left(\mathrm{b}_{\mathrm{n}}, \mathrm{R}\left(\mathrm{b}_{\mathrm{n}}\right)+\mathrm{r}\right)$. We may order the b_{n} so that b_{1} is furthest from the origin 0 , and if we then take a fixed disc C centred at 0 which contains $K\left(b_{1}, R\left(b_{1}\right)+r\right)$, it follows that all the bodies $K\left(b_{n}, R\left(b_{n}\right)+r\right)$ intersect C. Hence all the bodies $K\left(b_{n}, R\left(b_{n}\right)\right)$ intersect some fixed disc centred at 0 , and it follows from lemma 1 that there are at most finitely many distinct b_{n}, which implies that there is a subsequence $\left\{b_{n \mathbb{R}}\right\}$ of centres which are all equal to some c. Now $d_{b_{n}}\left(z_{n}\right) \leqslant d_{a}\left(z_{n}\right)$ for each n since $z_{n} \in S\left(b_{n}\right)$, and so $d_{d}\left(z_{n}\right) \leqslant d_{a}\left(z_{n}\right)$, and since F is a continuous function it follows that $d_{0}(z) \leqslant d_{a}(z)$. This is a contradiction, since we have already proved that $d_{a}(z)<d_{b}(z)$ for any b. Thus the lewa is proved completely.

Lemma 3. If a, b are distinct centres of members of M, then

$$
S(a) \subset K(a ; F(b-a))
$$

Proof. Since a, b are distinct, $K(a, R(a))$ and $K(b, R(b))$ do not overlap, and so it follows that $F(b-a) \geqslant r+H(a)$ since $F(b) \geqslant r$ for all $K(b, R(b)) \in \ln$. Now if $x \in S(a)$ then $r \geqslant d_{a}(x)$ ($b y$ the maximal property of M), so that

$$
\mathbf{r} \geqslant P(x-a)-R(a)
$$

which implies thet $F(x-a) \leqslant r+H(a) \leqslant F(b-a)$ -
Thus $x \in K(a, F(b-a))$ and the lena follows at once.

Lemma 4. If a, b, c are non-collinear centres of members of in, then $S(a) \cap S(b)$ cannot have any point in common with the closed set

$$
H\left(a, c, b^{-}\right) \cap H\left(b, c, a^{-}\right),
$$

nor, similarly,

$$
\begin{aligned}
& S(b) \cap S(c) \quad \text { in } \quad H\left(b, a, c^{-}\right) \cap H\left(c, a, b^{-}\right), \\
& S(c) \cap S(a) \quad \text { in } \quad H\left(c, b, a^{-}\right) \cap H\left(a, b, c^{-}\right)
\end{aligned}
$$

Proof. We assune the contrary, that there is a point x of $S(a) \cap S(b)$ in $H\left(a, c, b^{-}\right) \cap H\left(b, c, a^{-}\right)$, and shall obtain a contrediction. The point c satisfies $d_{c}(c)=-H(c)<0$ and so since no two members of M overlap we have that c is an interior point of $S(c)$. Thus $x \neq 0$ since $x \in S(a) \sim S(b)$ and sets of the form $S(a)$ can by definition only have frontier points in comnon. So c is a point of the triangle $a b x$ and is not a vertex of the triangie.

By lemma 3 we have $S(a) \subset K(a, F(b-a))$ and $S(b) \subset K(b, F(a-b))$, and so since $x \in S(a) \cap S(b)$ it follows that any point except possibly x of $a b x$ is in the interior (since K is strictly convex) of either $K(a, F(x-a))$ or $K(b, F(x-b))$. Hence either $\mathrm{F}(\mathrm{c}-\mathrm{a})<\mathrm{F}(\mathrm{x}-\mathrm{a})$ or $\mathrm{F}(\mathrm{c}-\mathrm{b})<\mathrm{F}(\mathrm{x}-\mathrm{b})$.

In the first case,

$$
F(c-a)<F(x-a)=d_{a}(x)+R(a) \leqslant r+R(a) \text { since } x \in S(a) \text {. }
$$ But this means that the distance between the centres of $K(a, R(a))$ and $K(c, H(c))$ is less than the sum of their radii, which implies that the bodies have interior points in common. This is impossible since M is a packing, and so we must have $F(c-b)<F(x-b)$. But this leads in the same way to a contradiction in making $K(c, R(c))$ and $K(b, R(b))$ overlap. Thus our first assumption was wrong, and the lemna is proved.

Lemma 5. Any three centres belong to at most one crosspoint. Proof. Suppose that v and w are distinct crosspoints common to $S(a), G(b), S(c)$. By lemma 3 , if a, b, c are collinear, with b, say, between a and c, then $S(a) \subset K(a, F(b-a))$ and $S(c) \subset K(c, F(b-c))$ and by strict convexity the only peint common to $K(a, F(b-a))$ and $K(c, F(b-c))$ is the point b. But $\mathrm{b} \notin \mathrm{S}(\mathrm{a})$ or $\mathrm{S}(\mathrm{c})$ and so $\mathrm{S}(\mathrm{a})$ and $\mathrm{S}(\mathrm{c})$ have no point in common. This is a contradiction, and so a , b , c cannot be collinear.

198

Then by lemma 4 neither v nor w can lie in the closed regions

$$
\begin{aligned}
& H\left(a, c, b^{-}\right) \cap H\left(b, c, a^{-}\right), H\left(b, a, c^{-}\right) \cap H\left(c, a, b^{-}\right), \\
& H\left(c, b, a^{-}\right) \cap H\left(a, b, c^{-}\right) \quad . \quad \text { (See rape } 192 \text { diagram.) }
\end{aligned}
$$

We note the following restrictions on the position of. $\boldsymbol{\sim}$
(i) Except for v, the line segments va, $v b$, vc lie in the interiors of $S(a), S(b), S(c)$ respectively (lemma 2), so cannot lie on any of these line segments since by definition it is a point of the frontiers of the $S(a)$.
(ii) Except for w, every point of the segment wo lies in the interior of $S(c)$, and 80 , since va and $v b$ except for v lie in the interiors of $S(a)$ and $S(b)$ respectively, and since no two sets of the form $S(a)$ have interior points in common (by definition), we cannot cross va or vb .

Similarly wa cannot cross vb or vc, and wb cannot cross va or vc.

But with (i) and (ii) both holding, if w is distinct from v it is impossible for w to lie anywhere in the plane. Thus we must have $w=v$ and the lemma is proved.

Lemma 6. The crosspoints of M form a discrete set. Proof. If not, then there is a limit point x gay of cross From lemma 5 it follows that there must be an infinite number of the sets $S(a)$ which intersect the disc with centre x and radius 1 , say.

199 훟
(Diapram)

(opposite pase.)

200 需

Then there must also be an infinite number of members of M which intersect the disc with centre x and radius $(1+x)$, which conk to (rase 191) contradicts lemna ${ }^{1} \wedge^{\circ}$ Thus the lemma is proved.

Lemma 7. At most a finite nuaber of centres of M belong to one crosspoint.

Proof. Again, assume the contraxy. Then there is a crosspoint v such that infinitely many centres of M belong to V. Then there are infinitely many members of M which intersect the disc with centre v and radius r, and this again contradicts lemna 1 . The lema follows.

Lemna 8. The curvilinear parallelogram P derined in the main part of this section (page 176) does not overlap any one of the bodies K_{u},
 Proof. We use the same notation as before, so that K_{u} meets uw and ou in e, f respectively, K_{w} meets $u w$ in e^{\prime}, and f^{\prime} is the point such that $f f^{\prime}$ is equal and parallel (in the same (See diagram opposite.) direction) to $e e^{\circ} \wedge^{P}$ is the curvilinear parallelogram eff. e " bounded by the segments ee', ff' and the axcs ef, e'f' where e'f" is a translation of the arc of of the frontier of K_{u}. this Two of the cases of the lemma are easily dealt with. By its construction P cannot overlap K_{u}. Also since K is centrally
symmetric and strictly convex the arc $e^{\prime} f$ " meets K_{W} only in the point e^{*}, so that P does not overlap K_{W}. Thus we have only to show that P does not overla $\mathrm{i}_{\mathrm{j}} K_{v}$.

Let g be the point common to the frontier of K_{w} and the line segment ow . The frontier of $K(0, s)$ meets ou in the points f, -f (using ordinary vector notation), and meets ow in the point g (since ow is the line of centres of the two bodies and thus g is their unique point of contact). qaking -fg to denote the arc of the frontier of $K(0, s)$ which has endpoints $-f, g$ and which lies in the sector $H\left(0, u, g^{+}\right) \cap H\left(0, W, f^{-}\right)$, let N denote the region bounded by the arc - fg and the segments - fu , uw, wg . We ahall show that N does not overlap K_{V} and that P is contained in N, thus provinc the lemna.

Firstly, then, we assert that N does not overlap K_{v}. The sector bounded by -fo, og and the arc -fg, which together with the triangle ouw comprises N, lies entirely in $K(0, s)$ and so cannot overlap K_{v}. But also the segments ou, ow lie, except for the points f, G, in the interior of $K_{u} \sim K_{v} \sim K(0, s)$, and so K_{V} cannot cross these segments. Hence K_{v} cannot overlap the triangle ouw , and thus K_{v} does not overlap N.

Secondly, we assert that p is contained in N, and to prove this we assume the contrary and shall obtain a contradiction. K_{u} cannot cross ow, ard so the arc ef and the segment ee* both lie
in N. If f^{\prime} lies in N then it lies either in the triangle ouw, in which case $f f^{\circ}$ is in H, or in $K(0, s)$ and again $f f^{\circ}$ is in N by the convexity of K. Nu: we are assuming that P does not lie in N, so that if f° lies in N the arc $e^{\circ} f^{\infty}$ is not contained in if. Similerly if f^{\prime} does not lie in N, this implies that $e^{\prime} f$ " is not contained in N. Thus in either case it follows that e $e^{\prime \prime}$ must cross the segment ow at least once. Let h be the point of ow such that the part of the arc e f " with endpoints e^{*} and h lies in the triangle oum . since K is strictly convex, the whole except for the point g of the segment og, and hence the point h, must lie in the interior of $K(0, s)$. Thus since e^{*} is exterior to $K(0, s)$, the arc $e^{*} f$ " must cross the frontier of $K(0, s)$ in a point x say, lying in the triangle ouw . Now e"f" does not lie entirely in N, so it crosses the frontier of $K(0, s)$ also in a point $y \neq x$ (not shown in the diagram) which lies outside the triangle ouv . The points x and y satisfy $F(x)=F(y)$ since they both lie on the frontier of $K(o, s)$. But the translation which takes e to e° maps u onto a point u° on the segment uw for which the arc $e^{\circ} f$ is part of the frontier of $K\left(u^{\circ}, R(u)\right)$, the translation of K_{u}, so that we have aiso $F\left(x-u^{\bullet}\right)=F\left(y-u^{\bullet}\right) \quad$.

But u° is not o since
we have eliminated this case (that is, in which $V\left(V_{W}(u v v)\right)=0$, and u^{\prime} lies in the region $H\left(0, x, y^{-}\right) \cap H\left(0, y, x^{+}\right)$. Given this, u^{\prime} lies also either in $H\left(x, y, 0^{+}\right)$, or in $H\left(x, y, 0^{-}\right)$.
If $u^{\prime} \in H\left(x, y, o^{+}\right)$, the segments $u^{\prime} y$, ox meet in the point d say, so that $F\left(u^{0}-y\right)=F\left(u^{\circ}-d\right)+F(d-y)$. By convexity, $F\left(u^{0}-x\right) \leqslant F\left(u^{0}-d\right)+F(d-x)$ and $F(y)=F(0-y)<F(0-d)+F(d-y)$ insect in (with strict inequality since u^{\prime} is not 0). Adding, we have

$$
F\left(u^{\prime}-x\right)+F(y)<F\left(u^{\prime}-y\right)+F(x)
$$

so that, since $F(x)=F(y)$, as we noted above,

$$
F\left(u^{\prime}-x\right)<F\left(u^{\prime}-y\right), \quad \text { poppostion }
$$

which is a contradiction with (1).
If, then, $u^{\prime} \in H\left(x, y, 0^{-}\right)$,
the segment u 'y meets ox produced in the point d say, such that

$$
\begin{aligned}
F\left(u^{\prime}\right. & -y) \\
& =F\left(u^{\prime}-d\right)+F(d-y)
\end{aligned}
$$

204

By convexity,
$F\left(u^{\circ}-x\right)$
$\leqslant \quad F^{\prime}\left(u^{\bullet}-d\right)+F(d-x)$
and $F(d)<F(y)+F(d-y)$,
with strict inequality since x, y are distinct, and because y cannot by its construction lie on the segment od since x, y are both frontier points of a strictly convex body centred at o.

Adding, we have $F\left(u^{\bullet}-x\right)+F(d)<F\left(u^{\bullet}-y\right)+F(d-x)+F(y)$, that is, $\quad F\left(u^{\bullet}-x\right)+F(x)<F\left(u^{\bullet}-y\right)+F(y)$, which again gives a contradiotion with (1) •

Thus our original assumption, that the arc e f " crosses the segment ou at least once, is false, and hence P is contained in N. Mhis proves the lerma.

Lemme 9. Given a maximal K-packing if of minimal radius r, there exists a positive constant N such that there is a second maximal K-packing M^{*}, of minimal radius r, with the properties (i) the lower density of $:^{*}$ does not exceed the lower density of M, (ii) if $K(a, R(a)) \in M^{*}$ then $R(a)<N$.

Proof. Let L denote a densest lattice packing (that is, in which the radii of the bodies are all equal) of the plane by bodies $K(x, r)$. Given $k>0$, let L_{k} denote the point set union of those elements of L which are completely contained in $K(0, k)$ (0 being the origin),
and let $V\left(I_{k}\right)$ denote the area of L_{k}. Since K is strictly convex we know that

Then we may choose a number t° such that $t<t^{\circ}<1$ and a number N_{1} such that

$$
\begin{equation*}
\frac{V\left(L_{k}\right)}{V(K(0, k))} \leqslant \quad t^{\cdot} \quad \text { for } k \geqslant N_{1} \tag{1}
\end{equation*}
$$

In what follows, we shall refer to a number f which we do not define at present but which we shall restrict through the proof so that it satisfies the requirements of the lemma. If M does not contain a body with radius at least F , there is nothing to prove, so we assume that there is a member $K(a, R)$ of M with $R \geqslant N$. If we remove this member from M we can restore the packing property by putting in its place all the bodies $K(x, r)$ which make up L_{R}, each translated by a - Thus we may form a packing P given by

$$
P=(M-\{K(a, R)\}) \omega\left(L_{R}+a\right)
$$

(Using L_{R} here we are considering it as the collection of the $K(x, r)$ in $K(0, R)$ rather than as their point set union.) By its construction P has minimal radius r. It may not be a maximal packing, but we can complete it to a maximal packing M_{1}, saif, by adding as many $K(x, r)$ as we can while still retaining the packing property. If we consider
any one of these $k(x, r)$ in $M_{1}-P$, we know that it cannot overlap any member of P, so that the point x is confined to the band $K(a, K+r)=K(a, R-3 r)$ - For, if x lies outside $K(a, K+r)$, then $K(x, r)$ lies completely outside $K(a, R)$, which implies that M is not maximal: and if x lies inside $K(a, R-3 r)$, then $K(x, r)$ is completely contained in $K(a, K-2 r)$, which implies that L is not maximal, again a contradiction since it is known that a lattice packing is at maximal packing. Thus the gets $K(x, r)$ of $m_{1}-P$ can over at most the band $K(a, R+2 r)=K(a, R-4 r)$. Now outside $K(a, F+2 r)$ the packing U and M_{1} agree. Inside $a(a, R+2 r)$, the packing M covers a set whose area is at least $V(K(a, R))=F^{2} V(K)$ (by the definition of K). M_{1}, on the other hand, covers a set inside $K(a, R+2 r)$ whose area is at most

$$
\begin{aligned}
& A=V[K(a, R+2 r) \geq K(a, R-4 r)]+V\left(L_{R}\right) \\
& \leqslant V(K(a, R+2 r))-V(K(a, K-4 r))+t^{\circ} V(K(0, R)) \\
& \text { by (1) if } R \geqslant N_{1}, \\
&=\left[(R+2 r)^{2}-(K-4 r)^{2}+t^{\prime} R^{2}\right] V(K) .
\end{aligned}
$$

Now

$$
\lim _{R \rightarrow \infty} \frac{(R+2 x)^{2}-(R-4 r)^{2}}{R^{2}}=0
$$

and so we may choose a number N_{2} such that

$$
\frac{(R+2 r)^{2}-(R-4 r)^{2}}{R^{2}} \leqslant 1-t \text { for } R \geqslant N_{2} \text {. }
$$

Then $A \leqslant R^{2} V(K)$ for $k \geqslant \max \left(N_{1}, N_{2}\right)$－ At this point define the number N with which we begen as iv $=$ max $\left(N_{1}, N_{2}\right)$ ．Then since we have already made the condition that $\mathrm{F} \geqslant \mathrm{N}$ ，it follows from the areas covered by the packings inside $K(a, I+2 r)$ that the lower density of M_{1} does not exceed that of M ． This construction，then，has riven us ε means of obtaining a new packing by removing a body $K(a, R(a))$ for which $R(a) \geqslant \mathbb{N}$ ．If ． contains only finitely many such bodies，then clearly ne can repeat the construction for each of them in turn until we obtain a maximal packing Si^{*} which satisfies the conditions of the lemme．If，finally， contains infinitely many such bodies，we choose $K(a, R) \in \cdots, R \geqslant N *$ to be a body for which the distance between a and 0 is smallest， and construct H_{1} as above．Repeating this process we obtain a sequence of makings $H_{1}, M_{2} \ldots$, all of which are maximal with （page 191） minimal radius r ，and have the property，following from lemma ${ }^{1}{ }^{\prime}$ ， that given any disc D centred at 0 there corresponds a suffix n_{0} such that for $⿴ 囗 十 ⺝ 刂 n_{0}$ the members of H_{m} which intersect D are precisely the members of In_{n} which intersect D ．Minus there is a limiting collection M^{*} which satisfies the conditions of the lemma． This completes the proof．

WWFETELCE

CHALHER I
[Ref.] H. G. Eggleston. Convexity. CUP (1958).

CHAPTER II
[1] A. S. Besicovitch. On the fundamental geometrical properties of linearly measurable plane sets of points, 1 . wathe Ann. 115 (1938), 296-329.
[2] A. S. Besicovitch. On the fundamental geometrical properties of linearly measurable plane sets of points. IIL. Sath. Anin. 116 (1938-9), 349-57.
[3] i. G. Hggleston. On the projection of a plane set of finite linear measure. Acta Wath. Vol. 99 (1958), 53-91.
[4] F.A. P. .orene on a problem of se Ulaia. J. Lond. ,iath. Soc. 21 (1946), 175-9.
[5] E. Hgervary. Ca the smallest convex covex of a simple arc of space-curve. Puol. iuath. Debreoen Vol. I (1949), 65-70.
[6] II. G. Eggleston. un triangles circumscribing plane convex sets. J. Lond. inath. Soc. 28 (1953). 36-46.
[7] L. M. Blumenthal and G. E. Wahlin. On the spherical surface of smallest radius enclosing a bounded subset of n-dimensional Euclidean space. Bull. Amer. Math. Soc. 47 (1941), 771-7.
[8] H. G. Eggleston. Convexity. CUP (1958), 122-6.
[9] H. G. Eggleston. Squares contained in plane convex sets. Quart. Jour. Math. Oxford, Vol. 10 No. 40, Dec. 1959.

CHAFTER III

[1] H. G. Eggleston. Minimal universal covers in E_{n}. Israel Jour. Math. Vol. I No. 3, Sept. 1963.
[2] B. Grilinbaum. Borsuk's problem and related questions. 1963 Proc. Symp. Pure Math. 7 (Convexity) (271-84), 274.
[3] Problem first posed by Tarski int Uwagi o stopniu równowaznosci wielokatów. Parametr Vol. 2 (1932).
[4] T. Bang. A solution of the plank problem. Proc. Amer. Math. Soc. 2 (1951), 990-3.
[5] H. T. Croft. Curves intersecting certain sets of great-circles on the sphere. (Ref. unknown.)
[6] H. Bocher. Introduction to the study of integral equations. Cambridge Iract 10 (CUP 1913), 8-11.
[7] R. P. Bambah and A. C. Woods. On the minimal density of maximal packing of the plane by convex bodies. Acta Math. Acad. Sci. Hungar. 19 (1968), 103-16.
[8] Fejes TSth. Lagerungen in der Ebene, auf der Kugel und in Raum. Grundl. Jath. Wiss. (ispringer, Berlin, 1953).
[9] H. G. Eggleston. A minimal density plane covering problem. Mathematika 12 (1965), 226-34.
[10] K. P. Bambeh and A. C. Woods. On minimal density of plane coverings by circles. (Ref. unknown.)
[11] K. P. Bambah and C. A. Rogers. Covering the plane with convex sets. Jour. Lond. Math. Soc. 27 (1952), 304-14.

