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ABSTRACT
Our purpose in these pages will be to develop a broad survey of 

some problems in covering which have been solved using the methods of 

convexity. The basic aim has been to show the flexibility of approach 

which is desirable, and to do this we shall discuss ten particular 

problems with widely differing methods of solution.
The problems to be discussed fall into three main categoriesi 

covering a single set by a single set with specified properties, covering 

a single set by many sets, and covering many sets by a single setw
The first chapter is a collection of some necessary preliminary 

definitions and theorems in convexity. In the second chapter we consider 
six particular problems of covering a single set by a single set: these

include finding the convex covers of certain arcs in two and three 
dimensions, finding the smallest containing sphere of an n-dimensional 

set, and establishing properties of particular types of containing set.

The final chapter contains problems which fall into the other two 

categories outlined above, and includes finding a single set to cover 

an infinite class of sets, and covering one set by a finite class of 

sets. The last paper considered relates one set (the plane) and a given 
infinite class of sets# it is included for the sake of completeness and 

because of the methods of solution involved, but in fact can be 
considered as a problem in covering only if the latter term is not 

restricted to mean complete covering by a class of sets.

A full list of references to the original papers is given at 
the end.

R.H.C
UBRART



CilAPTER I

PRELIMINARY RESULTS

The purpose of this first chapter is to establish a number of 
results which will be used later in the work, and also to state briefly 

what will be taken as common ground in subsequent discussion. We deal

with the latter first.
It will be assumed that the most common terms used in set theory 

- for example, set union and intersection; complement; disjointness; 

the exterior, interior, frontier of a set; open and closed sets; 

discrete sets - are all known, and definitions are not given. Knowledge 
will be assumed of the meaning of statements such as 

a set X contains a set Y , 
a set is symmetric in an interior point, 
two sets X and Y are congruent, 

a set is reflected in a point,
X circumscribes Y , or Y is inscribed in X .

We shall borrow without definition a number of terms from 
elementary mathematics, and in addition we shall use without proofs or 

definition of terms results from measure theory and elementary 

analysis, in particular that
(i) the uniform limit of a sequence of continuous functions is continuous,

(ii) a polygon of given perimeter length has maximum area when it is 

regular.

We shall make free use of set theory notation; of vector notation



where it is convenient; shall denote the left-hand side (right-hand side) 

of an equation or inequation by LHS (RHS); and shall use as equivalent 

terms the words perimeter, boundary, frontier.
Since, however, the papers to be discussed deal mainly with 

problems involving convex sets and their properties, we set out in detail 

nov; a number of results from convexity which will be quoted or referred 

to in the other chapters.

Euclidean space of n dimensions is denoted by E^. A point is
usually denoted by a small letter, and a set by a capital letter. The

frontier of a set X is denoted by Fr(X) , its interior by X° , and
its closure by X ,

E^ is the class of all ordered sets of real numbers (x ,x ,...x ), n 1 2 ^
denoted by x , with a metric defined between two elements x , y , where

y = (y ,y ,...y„) , of the class as 
1 2 i

9

and called the distance between x and y • This is the usual 

n-dimensional Euclidean si)aoe. We shall, where desirable, be free to 

regard the elements of the space as vectors, obeying the usual laws of 
a vector space.

The ori^n in is denoted by o , and the line segment 

joining two distinct points x , y is denoted by xy •

A subset of E^ which is the empty set is denoted by ^  .



The distance function has the following properties#

(i) |x - y| = |y - x| ,
(ii) |x - (y + z )| = |(x - y) - z j ,
(iii) |x - y| ^ 0 , with equality if and only if x and y are

coincident,
(iv) I ax - ayj = ajx - y| for a ,

(v) /x - yj + fy - z/ > |x - z| .
A subset X of is bounded if there is a sphere of some

finite radius r which contains X •

We define the distance ̂(x.Y) between a point x and a set Y
as (x,Y) = inf |x - M .

'  y^Y '

A neighbourhood of a set Y is denoted by U(Y, &) and is defined
as the set of points whose distance from the set Y is less than 6 ,

A hyperplane P is defined as the set of points x satisfying
the equation f(x) * 0 , where f(x) is an expression of the form
a^x^ + SgXg + •••4a^x^ - b , where not all the â  ̂are zero. The
inequations f(x) > 0 , f(x) < 0 , or f(x) ^ 0 , f(x) ^ 0 ,

define open or closed half-spaces respectively.
If two subsets X , Y of are such that one of the closed

half-8paces bounded by a hyperplane P contains X and the other
closed half-space contains Y , we say that P separates X and Y ,

(if the same statement is true for the open half-si)aces bounded by P ,
we say that P Bei)arates X and Y strictly. )
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A convex set X is defined as a set of points stioh that, whenever 
, Xg are two points of X , the line segment containing every point 

of the form + fxxg , where X). 0 , p  ̂0 and X + P = 1 »
is contained in X «
Theorem 1. If X is a convex set and if x^ , Xg , x^ are k

points of X , then every point of the form

X = -f ^2*2 ■*■••• ^ * k  *
where ^ and p ^ + p g  + ..,+ pĵ  = 1 , also belongs to X .

Proof. For k = 2 , this is just the definition of a convex set.
Assume inductively that the assertion is true for k = m , and consider

a point X of the form

X = + ••• + + ha+l\+1
where > 0 , = 1 .

If = 1 , then X = x^^^ € X and there is nothing to prove.
So suppose < 1  , in which case

+ ... , = 1 - ^m+1 > 0 •
Then we may write

+ M ü - r b i r = = i'*̂1 m
... + ---------  X + P .X .p^+...+p^ my ^m+1 m+1

and by the inductive hypothesis we know that the point y given by

X . + ... +

is a point of X • Then

X = (̂ 1 + ... + M*)? + Mm+1=m+1



and since X is convex and contains both y and , it follows

from the definition of a convex set that, since

u. + ... + u + u . = 1 , X must contain x also. Thus the^m+1
inductive hypothesis is true for k = m+1 , and hence the theorem is

proved.

A set is strictly convex if it is convex and its frontier contains 

no straint line segments.
Two sets will be said to overlap if they have interior points in 

common (but not if they have only frontier points in common).

Theorem 2» The intersection of any number of convex sets, if it is 
non-empty, is convex.

Proof, Let I be an index set of elements i , and consider the family 
of convex sets X^ , i €  I • If x , y are two points of X^ ,

then X , y are points also of X^ , Since is convex, this implies

that the segment xy is contained in X̂  ̂ • But X^ is an arbitrarily 
chosen set, and so it follows that the segment xy belongs to X^
Thus X^ is convex.

A hyperplane which intersects the closure of a convex set X but 

which does not have any point in common with an interior point of X is 

called a support hyperplane of X , We say that such a hyperplane
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supports X at the point or points at which it meets the closure of X .

Theorem 5. Every point of the frontier of a convex set X has at 
least one support hyperplane of X passing through it.

Proof. If X is not n-dimensional, any hyperplane containing' X is 

a support hyperplane of X at all points of X *
If X is n-dimensional, we can show (lemiiia 1 - page ) that

there is a hyperplane P which separates X® , the interior of X , 

from a given point p of its frontier. P does not have any point in 
common with X® since this is an open set, but since X is convex we 
know (lemma 2 - page ) that p belongs to the closure of X® , and 

so it follows that P must contain p « Thus P is a support 

hyperplane of X at p •

The convex cover of a given point set X is defined as the 
intersection of all the convex sets which contain X , and is the 

smallest convex set containing X •

The diameter d(X) of a set X is defined as the least upper 

bound of the distances between any two points of the set.

Theorem 4. The diameter of the convex cover of a set is equal to the 
diameter of the set.

Proof, Consider any set X • Let d(x) denote its diameter, and let
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H(X) denote the convex cover of X • Since X is contained in
H(X) , it follows immediately that d(H(X)) > d(X) •

Suppose that d(H(X)) > d(X) , and put S = d(X) • If we

take any point x^ of X we have then that jx^ - x^j ^ ^  for 

all x^ G X , and it follows that the set X is contained in the 
(n-dimensional) sphere ^(xg,&) with centre Xg and radius S  ,
Since S(xg, 6 ) is convex, the convex cover H(X) of the set X is

also contained in s(xg, & ) #
Now let y^ , yg he any two points of H(X) » In particular,

we have that y^ is a point of S(Xg, S) , and hence Xg is a point of

S(y^j f) # Since Xg was chosen arbitrarily, we have that the set X
is contained in S(y^, S) , and so, again since the sphere is convex,

H(x) is contained in S(y^, S ) • But then since y g is a point of

H(X) , we have | y.j “ Yg I & > and hence, since y^ , yg are
arbitrary, d(H(X)) ^ S  = d(X) * This is a contradiction with
our assumption, and the theorem follows.

Theorem 5, (Helly*s theorem.) Suppose that there is given in a
finite class of N convex sets, with N ^ n+1 , such that for every
subclass which contains (n+1 ) members there is a point of which

is common to every member of the subclass. With these conditions

holding, there is a point of which is common to every member of 
the whole class of N sets.
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Proof# Obviously the theorem is true when N = n+1 , and we use this 

to prove the general result by induction#

Assume, then, that the theorem has been proved true for every 

class of (N-1 ) sets, and consider the case when there are N sets, 

, Xg , .##, Xjj , say, in the class#
According to the induction hypothesis, if we take out the set 

, then there is a point

Which is a point of X^ for all j ^ i . Now consider the set of 

( n + 1  ) equations given by
À

^1^11 *̂ 2̂ 12 * + V l N  “

^1*21 ^2^22 * * V 2 N  *

+ ^2=h2 + + »VnIl 0
0 (1) 
Since we have assumedin the N unknowns p^

N-1 ^ n+1 , that is N > n+1 , we know that there are non-trivial

solutions ( p^ , pg, ..., pĵ  ) of this set of equations# Consider one
such set and denote by p . , . p.

-"1 •’k
non-negative, and by p^ , p ^

negative#

those of the which are

those which are strictly



From these numbers define the point 2 = (y,# "*## 7 ) such
k  ̂ "

that 2__ Pi *vi

Now X is a point of X. for all j ^ j , and it follows that theJj, 3 / r
points X , X. , X, all belong to the set X. provided that

““J2 k
j i j.,..,, j, . Then, since the u. are all non-negative, it

' ’ •‘r
follows by convexity (treorem 1̂ , since Xj is convex) that the point

2 which we have defined also lies in the set X^ , j ^ '"** ^k '
In other words, %  belongs to each of the sets X^ , X ^  .

But also the equation ( 1 ) implies that the same point y  can
be defined by the equations

N-k

v N-k '

where now > 0 for each s = 1  , . N-k , and it then follows
8

as before triat the point 2 belongs also to each of the sets X. ,
•’i

•••, X, • Thus 2 is a point common to all N sets of the class,

the induction hypothesis is true for N , and hence the theorem follows.

Theorem 6. (Carath^odory*s theorem, weak form») If y is a point of



the convex cover of a set X , there is a set of s points x^,

«««I Xg , all belonging to X , where s n + 1 , such that y is
a point of the simplex whose vertices are x^, x^ .
Proof. It is shown below (lemraa 3 - page "S’3) that for such a point 

y belonging to the convex cover of X , there is some finite integer 

k such that

y = (2)
where x^ ë X , ^ 0 for each i = 1 , 2, ..., k , and

p̂  + ... + p^ = 1 • We want to prove that it is possible to find
such an expression for y with k n+1 .

If k > n+1 , then since we are working in space of n dimensions
the points x^, are linearly dependent and there exist numbers

^1* * "* \  ’ not all zero, but with a ^ + , * . + o ^  » 0 , such that
a^x^ + ... + « 0 .

Now consider a point y of the form 

y « (m  ̂ +rap*^ + ... ♦
where p̂  ̂+ ^ 0 for all i = 1, 2, ..., k . With this restriction
on the values that tr may take, we may note that the set of possible

values of tr is closed (since the inequality is not strict), is

non-empty (since iT = 0 is certainly a possible value, because of the
definition of the p^ ), and is not the whole of the real line (because
at least one of the is not zero). Hence there is a frontier point, 

say T q , of the set, and so for at least one integer i , 1 ^ i ^ k ,
we must have p^ + = 0 #



K

Thus we have, putting in place of T  above, an expression 

for y which is of the same form as (2) (since all the coefficients

are non-hegative and their sum is 1 ), but which has only (k- 1 )
significant terms.

Finally, this process may be repeated until the point y is 

expressed as a linear combination of not more than (n + 1) points of

X , and the proof of the theorem is completed.

Consider some closed sphere S(ll) centre the origin and radius 
K in , and suppose tliat X^ , Xg are two closed sets contained in
S(r ) • V/e define the distance between X^ and Xg as

«here o is the greatest lower bound of numbers i suoh that 1
ïï(X^,S) contains Xg , and Sg is the greatest lower bound of
numbers S such that U(X«, S ) contains X *1

A(X^,Xg) ) 0 since it is the sum of two non-negative numbers.

If X^ and Xg represent the same set, then clearly a(X^,Xg) u 0 
conversely, if A(X^,Xg) a 0 , then and as defined

above are both zero, which implies that X^ is Xg . Clearly we have 
^(X^,Xg) a A(Xg,X^) from the symmetry of the definition# Also, we 

have that

A(X^»Xg) + A(Xg,X^) ^  A(X^,Xp 

For, let €y be four (non-negative) numbers suoh that
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Then

0(X^.cp 3 , U(lg,fg) o Ij
UCXg.fj) O  3  Xg

=> 0(Xg,^) 13 Xj
and U(Xj,€j.€^) O  U(Xg,f^) 3  X^
Thus
and taking lower ‘bounds of the gives the result.

Theorem 7, (Blasotike Selection Theorem.) Every infinite collection 

of closed convex subsets of a bounded portion of contains an

infinite subsequence which converges to a closed non-empty eonvéx 

subset.
Proof, Select from the collection and label an infinite sequence 

{x(i)J of sets, i = 1, 2, •«., n, ... , Choose a positive number  ̂
and define Y(n) as the closure of the set U(X(n), S ) . Let S(R) 

be a sphere of radius R such that Y(n) CZ 8(R) for each n •
We prove the theorem in two stages.

(i) There is a subsequence of •[Y(n)J suoh that if Y(i) , Y(j) 
are two members of the subsequence

A(Y(i),Y(j)) 0 as l,j * td, . (5)
(ii) If a sequence of closed convex sets contained in a sphere
S(R) Is such that

A(Z^,Zj) -» 0 as i, j ,
then there exists a closed non-empty convex set Z such that
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a (Z,2^) 0 as i -* o û

If we assume .(i) and (ii) true, the theorem follows quickly.

It is known (lemma 4 - page 36 ) that if , Xg are given closed

convex sets, and , Yg respectively are defined in the same way as 

Y(n) above, then

A(Y^,Yg) = A(X^,Xg) . (4)
(3) and (4) together imply that there is a subsequence of |'x(n)^

such that if X(i) , X(j) are members of the subsequence

A(X(i),X(j)) 0 as i,j cO .
But then (ii) applied to this subsequence gives the result*
Proof of (i) . Take a sequence p^, Pg, ... of points dense in S(r )

and let ^ be a sequence of positive numbers decreasing to zero, and
with . We assume inductively tiiat a sequence of Inte^gers

^2* ^3* ***
has been defined for i = 0, 1, •«., k , such that {^(i+l)^^ is a

subsequence of { , 1  ̂ = j for 1 = 0 , and for i > 0
A(Y(ij),Y(l^)) < , j,h = 1, 2, ... .

To continue the sequence, we want to show that it is possible to choose
a subsequence j"(k+ 1 ) ̂ ̂  of f s u c h  that

4YRk+1)j], Yr(k+1)J) < .
Choose a large intsj^ger N such that every point of S(r) is 

distant less than ^^0® some point for which j ^ N .
Denote by P(n) the subset of the points , j ̂  N , which is
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contained in Y(n) . Now every point of U(X(n), c ) is

distant from one of the points , j ^ N , by at most

(since the set is contained in S(E) ), and so each such must
be contained in tJ(X(n),S) , which is the interior of Y(n) • Thus 

each such must belong to P(n) * Hence

U(P(n),i£^^ ) U(X(n), S - ) .
(Note that it is not necessarily true by the definition of the set

P(n) that P(n) 3  U(X(n), S -  ) .)
Thus we have

U(p(n),i£^^,) U(X(n),g) =  (Y(n))° ,
as we noted above* But by definition P(n) CT Y(n) , and so we have 

A(p(n),Y(n)) < . (5)
Now there is at most a finite number of ways in which the set of points 

» Pg* **## Pjf can be arrangeât into subsets to the sets P/n) ,
and so it follows that we can select from the sequence 'fY(kj)} an 
infinite subsequence *jY((k+l)^)j , for each member of which the

corresponding set P((k+l)p is the same set* Then we have 
A§((U+l)p,Y{(k+l)^)] ^ A[Y((k+l)p,J((k+l)p]

+ A|Y((k+l)j^),P((k+l)p]

— ApY((k+ 1)j);P((k+l)j)]+ A p ( ( k + 1 )j^)fP((k+1 
< E k +1 from (5) .

This completes the next step in the inductive definition of the 

sequence of integers ji^^ .
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Thus

Now consider the sequence

1̂* 2g, 3^» ' ##
For h ^ i , h^ is a member of the sequence 

A(Y(h^),Y(jg)) ^ 0 as h,j ^ 00 
and this proves (i)«

Proof of (ii). We put

2 . n lu J  ,
i=1 Lj=i

and prove that Z is the limit of the sequence ^Z^^ .
We are given that for arbitrary g > 0 there is an inte^ger N 

such that

a(Z.,zJ < e for i,j > N . (6)
V

Then Q  Z . CZ 0(Z,,e) for i > N 
J=4 •> ^

and so Z C  T ̂  Z^J C  0(Z^,2g) , say, i > N . (7)

Now let Zq be any point of Z^ , and put
(U(Sg,g;>n 2j = W. for i,j i. K

Wj is closed, and since from (6) the distance of z^ from Z^ is 

less than C  it follows that is non-empty for all j ^ N .
Thus the set

n [u .1
iwN Lj»i

is also closed and non*empty* is contained in (u(*g,e))

(by the definition of the Wj ) and also in Z . (For, if t were
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a point of not in Z we should have

j*i
so that also

t I u  2^1 for i * Bome i^ , say, i^ ^ 1

But W. d  Z. for each j ) N and sod J --------  _ g —

hence
t

for i > N

^  f j i  i > max (Iq̂ N)
which in turn implies tiiat t(p , which is a contradiction. )

Thus the intersection of Z and the set (O'(zQfl) J is non-empty, 

which is to say that to any point Zq of , i , there
corresponds a point of Z whose distance from is at most £* •
Hence we have

Z^ d  U(Z,2g: ) , say, i ^ N .

This, together with (?), gives

a(z.,z) < 4e f i > N ,
which proves (ii).

This completes the theorem.

Let B denote the class of all convex sets contained in the

sphere S(R) as defined earlier. Corresponding to each member X of 

this class B , suppose that there is defined a real number f(X) «

Then we say that f(X) is continuous at X^ if for every sequence {x^^
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for which -+ we have also f(X^) -► f(Xq) , (By X^ -♦ X q we 
mean tht̂ t there is a member X^ of B suoh that a (X .̂,Xq) -+ 0 as 

i
If f(X) is continuous for all X^ of B vie say merely that 

f(X) is continuous.

having thus defined continuity, vie now define the volume Y(X) 

of a convex set X as its n-dimensional Lebesgue measure (and shall 

assume that it is known what is meant by tnis definition), and prove the 
following theorem.

theorem 8. V(X) is continuous.
Proof. In other words, we need to show tiî it if -► X as i -» od>, 
then V(X^) V(X) •

Given some positive number £I , there is an intej/ger U such that 

U(X^, c ) 3> X and U(X, r) X^ for all i ̂  M , 

it may be shown (lemma 5 * page ) that if the interior of X is
non-empty there io a positive number S and a set Y similar to X
but expanded in the ratio 1+ S  : 1 , such tlmt Y O  U(X, £i) , and

such that S -* 0 as €-*-0. Then for i ^ M we have

V(X̂ ) ^ T(U(X,£ )) < T(Y) = (1 + S )'V(X) . (8)
Now if V(X) = 0 , the set X lies in an (n- 1 )-dimensional space, and 

if a (X^,X) < must be contained in an n-dimensional cylinder of
length 2y^ and cross-section an (n-l)-dimensional sphere of radius R 

(since all the X^ lie in the sphere S(R) ), the volume of the sphere 
being K , say. Thus V(X^) < and so
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lim V(X.) = 0 ♦

If V(X) > 0 , we need a lower bound for V(X^) ( an upper bound

being established already in (8) ). This involves showing that the 
volume of the frontier of X is zero, which we may do by considering 
the sets X( |a ) , X(-p ) which are homothetic to X with an 
interior point of X as centre of similitude and with ratios of 

similitude 1+p ; 1 , 1-p ; 1 respectively, 0 < pi < 1 • Then 
the frontier of X is contained in the difference of these sets and 
so has volume not greater than

(d + |i)“ - (1 - n)")v(x) .
Thus, since we may choose pi as near to zero as we please, the frontier 
of X has zero volume.

Now suppose that we have a sequence of points ^p^^ dense in the 

interior of X . If denotes the convex cover of the first n of 
these points, the sequence increases to the interior of X , so
that we have, according to one of the properties of a Lebesgue measure, 

lim V(K ) = V(X* ) = V(X) .
n-̂ oo

Thus given C > 0 , there is an integer N such that 
V(Kjj) > 7(X) - S .

Finally there is an integer M such that

X^ ^  Kjj for all 1 M ,

for if S’ > 0 is the smallest of the distances of points of from



tliG frontier of X , and if Y is a convex set which does not contain 
, then we must have a(Y,X) > S , but we know tiiat the sets X^ tend 

to X as i -* oO so that eventually each X^ must contain •
\hu8 we have

> V(K^) > V(x) - E  for i  ̂M
and tills together with (8) implies tliat

V(X.) V-(X) as i gC .

If for a given set X there, is a point p such tiiat the reflexion

of X in p coincides with X , then p is called the centre of X
and X is said to be a central set.

Perpendicular to arçy given direction 0 , there are exactly two

support hyperplanes of a bounded convex set X , The width of X in 
the direction 6 is defined as the distance between these hyperplanes#

The greatest lower bound of the widths of a set X is called the
minimal width of X ,

Theorem 9* The width in the direction 6 of a fixed plane bounded 
convex set X is a continuous function of 0 .
Proof. Consider two pairs of parallel support lines of X , the angle
between the pairs being 0 , where 6 is small,

Denote by a one of the points of contact of the set X with the
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firüt pair of support lines, and draw ab , of length 6  ̂ say, 
perpendicular to the line pair to meet the other support line in b • 
Through tiie point a , as in the diagram, draw a line cd , of length 

say, perpendicular to the other pair of support lines, with c , d 
lying on the lines* Denote by x , y the two points of intersection
of the support lines which are nearest to the set X • (The points
are well-defined since 6 is small*)

Then from the diagram we have
^2 ~ ^1^08 6 + by sin 0 + ax sin 6 *

(Different expressions may result from different sets X and this 
construction on them, but the type of expression and its beliaviour will 
be the same*)

The lengths of by and ax are bounded above certainly by the 
diameter of X • for small values of 9 , and so as Ô decreases to
zero, -6g ^ 6  ̂ . Thus the width of the set varies continuously witji 0

Suppose that K is a strictly convex set. Choose a point o and
define M to be the set of points y such tiiat

|o - yj = Ç/o - x|
where S is a fixed positive number, not equal to 1 , x is a point
of K , and such tiiat y lies on the half-line tlirough o and x

cv
terminating at o * We call M tkhx similarity transform or
homothetio translate of K (see also chapter III, section 4 - pâ ê ^̂ V")*
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(it will sometimes be convenient to widen the definition to include 

cases in which M is a translation of K •)

Theorem 10« Suppose that K , K are two distinct, strictly convex 
sets which are similarity transforms of each other, and consider any 

plane section of them which passes through their centre of similitude. 

Then the frontiers of K and M have at most two points of intersection 

lying in such a plane,
(The result could be made more general, to include any plane 

section of the sets, but in the cases where we snail need this theorem 

the restricted result is sufficient.)

Proof. Let o be the centre of similitude of K and M ( o may be 

at infinity), and suppose that there is a plane section through o of 
K and M such that their frontiers intersect in at least three points 
a , b , c , ... . Denote the set of such points by I •

The support lines of K which meet at o (the parallel common 
support lines of K and M if o is at infinity) in this plane section 

divide tlio frontier of K into two open arcs X , Y separated by the 
line joining the points of contact of the support lines with K « 
heither of these points is common to the frontiers of K and U since 

this would contradict the strict convexity of M •

Suppose that the points a , b , c , ... are such tliat a 1 lies

in X and b in Y , and let r , s respectively be the points of
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intersection with the frontier of K of the lines through oa and ob •
yUdgg . j

Then r is a point of Y and s a point of X , and the points of MA
which coincide with a , b respectively are the points x*

corresponding to r in K and s' corresponding to s in K *
But then since K and M are similar, we have

or* _ os' 
or os

where or' denotes the length of or' , and so on* Thus
oa ob
or os

But by our assumption we have or < oa and os > ob , or else or> ©a
M  and os < ob , either of which gives a contradiction*

Hence all the points of the set I lie in one of the sets X , Y •

Suppose ttiat this set is X and that X lies nearer to o than Y 
does* There are at least three members of I , bo consider three such 
points of X , X , y , 2 , say, and suppose t'nat the point x lies

between y and z on the arc X . Since x is a frontier point of

M there is a support hyperplane of M at x , and il lies on the same
side of this hyperplane as 0 « But from our choice of the point x ,

any hyperplane through x separates at least one of y and z from

0 ( X , y , z are not collinear because K is strictly convex),
and this gives a contradiction since all the points of I are points
of M .

If X lies farther from 0 than Y does, define points x*,



y' , z' (again non-collinear) of tne arc X in the same way as x ,
y , 2 were defined above, with x' between y* and s' . Then a 
sujj; ort hyperplane of K at x' separates M from o , but again a 

contradiction follows, because any hyperplane through x' must have at 
least one of the points y ' and z' on the same side as o .

Lienee in either case there cannot be as many as three common 

points of the two frontiers in such a plane section, and the theorem is 
proved.

Lemma 1 . Given an open convex set X^ and a convex set X^ which 

does not meet X^ , there exists a hyperplane P which separates X^ 
from Xg .

"-’roof, We consider first an open convex set X and a linear manifold 
L not meeting X , A linear manifold of dimension r , 0 < r < n ,
is the set of points x defined by

X = + ... + tij.+i*r+1
where the vectors x^-x^ , x^^^ -x^ form a linearly

independent set, and are real numbers such that

+ ... + = 1 . We prove that there exists a h^Terplane P
which contains L but which does not meet X •

Suppose then that P is a linear manifold of maximal dimension



s I say, which contains L and does not meet X • Let Q, be the 
linear subsjace perpendicular to P , and project onto Q, , The
dimension of Q, is (n-s). Then P is projected onto a single point
p and X onto an open convex subset X^ of Q, , and p does not 
belong: to X-) since the direction of the projection is parallel with P . 

Since we are assuming that the dimension of P is maximal, it follows 
tlrjat every line throu^ p in Q meets X.j • If Q is one-dimensional, 
then P is the hyx>erplane that we require. Go suppose tiiat Q, has
dimension greater tlian or equal to 2 , A plane tlirough p in ü 
meets in a tv/o-dimensionei set X^ which is convex and open

relative to the plane. The half-lines through p meeting X^ and 
terminating at p thus form an open sector, the angle of which is at 
most ir since p does not belong to Xg and Xg is convex. But on

tne other hand, since every line through p meets X^ and Xg is open,
the angle of the sector must be strictly greater than ir , which is a 

contradiction. Hence Q must be one-dimensional, and P is the 
hyperplane whose existence we wanted to prove.

Now if instead of L we take a convex sot X^ not meeting X^ ,
we consider the set X^-X^ consisting of all points x of the form

X = - %2 where 3̂  a 3̂  , Xg 2 Xg ,
This set is convex and open, and the point o does not belong to the
set since X.̂ and X^ have no point in common. Thus there is a

hyperplane P which passes through o and does not meet X^-Xg ,
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Suppose the.t its equation is a.x = 0 (a, x being vectors), and that
the signs of the coefficients are such that a.x > 0 for xeX^-Xg • 

Then we have
a.x. > a.Xq for x. X. , x^ ^ X_—  — 1 —  — 1 1 c id

and GO there exists a finite number |jl equal to inf (a.x, x é ) •
It follows tiiat the hyperplane defined by the equation a.x = p
separates from X^ .

Lemna 2. Given a convex set X with a non-empty interior X® , the
closure of X® is identical with X .

Proof. iince X® cZ X , v/e liave immediately that X® X . V/e want
to show, then, that X X® ,

Let X 6 X and take any point x^ of X® . If we can prove
that the whole of the segment xx^ except possibly x is contained in 
X® 5 then it follows that x 6 X® , from which we have that X CT X®
and the lemiiia is proved.

Te show, then, tiiat apart from x the whole of xx^ is contained
in X® • Gince ^ X® , there is a spherical neighbourhood (in n 
dimensions) S(x^,t) of x^ for some positive number C  , such that

CT X® . Consider a point y of xx^ which is not at either 
endpoint of the segment, and let be a point other than x of X
which satisfies

l“i - 'I ^ g
|y - x) |y - %,!



ZI





3 ^

(The design of the construction given now, which is in effect to
A

select a different segment containing the point y , is to ensure 
that the endpoints of the segment we shall discuss lie one in X® and one 
in X ; and not merely one in X® and one in X as we have at 
present. We cannot just shorten the segment xx^ as- y must be 
free to coincide with any interior point of it.) 
further, let be defined by

|y -
- ■> ■

We note that | j  < r so that ẑ  G X® . With these 
definitions we have tiiat

|y - X I X + /y - xjx 
y = ------------ ;--------  since y is a point of xx

/y - j  + |y -
k  - + |y - *1 by the definition of ẑ|y - •+ 1 y - * I

SO that y is also an interior point of the segment z^Zg • Since y 
is any interior point of xx^ , it is sufficient now to show that the
whole of the interior of z^z^ is contained in X® , and we shall
have proved our result.

We have then that ẑ  6 X and Zg&X® . Certainly every point 
of ZyZg belongs to X since X is convex; we need also to prove 
that every such point, apart from ẑ  , is an interior point of X .

 ̂Since Zr, ^ X® , there is a positive number S such that
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^ ) a: X® (using the same notation as before)* Consider a
point y of , (not necessarily the same point as before) given by

y = + fiZg
where \ = 1 , X ^ O ,  M > 0 ,so that y is not identical

with z 5 and let z be a point of S(y, p^) (which is the
(ÇtfC

neighbourhood of y shown in the diagram^• From the definition of
y we have

I 2 - (Xz^ ♦ lOZg}) <

wnlch implies, since ji > 0 , t'iat 

* - ^*1 - «.

so that the point z - Az^ belongs to S(zg, Y) and hence to X‘

But z can be written in the form
- X*= 1 X<fjA«i p X ) 0 , *1 > 0 , 

z - Xz
and X is convex, and so since z^ , 1 ^ X we have also that

z ^  X • Thus S(y, ji$) C. X and so y and hence every point of

z^s^ 8,part from is an interior point of X .
This proves the lemna.

Lemma 3« The set K of points of which are expressible in the form
+ ... + ,

where k ranges over all positive integral values, x^, ,**, x^ are
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any points of a set X , and » - • • > are real numbers satisfying
+ • • • + ™ 1 ; Pj|^0 > i ^ 1 * 2, k;

is identical with tho set of points which form the convex cover H(X) 
of X .

Proof. Consider a particular point x of K which is expressible as,

say,

for some positive integer k and points x^, , so that %
belongs to the convex cover H(x^, ..., x^) of the points x^, •••, x̂ ^
oince & X for each i , 1 ^ i ̂  k  ̂ it follows that

H(x^, x^) CT H(x ) , and hence x H(X) . But x is an
arbitrary point of K , and so we have tliat K CZ H(X) .

To show that K(X) <2 K , we show first that the set K is convex.

For given two points y , 2 of K where

y = V i  + V m
2 = iX̂ Ẑ  + ... + ,

consider any point x of the segment yz ,
X s n? 7 + (1 - 1))% l) .

Then we have
X = V>^y^ + ... + ••• ♦

where -vX^ > 0 , (l -'^h, > 0 , uid
m n m n

+ 2 Z  (i » ' ^ Z r A .  + (i
i*1 j»1  ̂ i»1 ^ j=1 J

= a) + (1 -*v) since y , * ^  K
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and so it follows that x Is a member of K * Thus K is convex. 
Finally we note th^t the set X is clearly a subset of K , so that,
since K ' is convex, the convex cover of X is also a subset of K .
Thus n(X) = K and this proves the lemuja.

Lemma 4* If , Xg are given closed, convex sets, and

Ï1 = \  = Tü^jÇTsyy
**

then A(Y^,Yg) = A(X^,Xg) .
Proof. Suppose that R is chosen so that Y^ and Yg both belong to
the sphere S(R) of radius R centred at the origin in a given
coordinate system. ^

(Sfe ô iosite. j
We show first that if Iî(X̂ , g) C? Xg , then U(Y^, £.) *z:> Y^ . ^

f !
To any point y^ of Yg there corresponds a point x^ of X^ such 
that I ̂2 “ ^2 I ^ U(X^, P) C) Xg , it follows that there is a
point x̂  of . X^ such that )x̂  - Xg| < C . Let y^ be the point
whose position is such that the four points x , x , y .  are the fourli., 1 2  2 1
vertices of a parallelogram, as shown in the diagram. Then we havej. I •

- y j  = K  - ^
80 that, since x^ G X^ , y^ 6 Y^ . Also

1^1 - ygl = - xgl < c
80 that we have also y^ é U(Y^, £: ) , and hence Y^ (CU(Y^, ,

To complete the proof, we show secondly that if U(Y^, £) ZD Yg ,



then (U(x|, £ ) ) O  Xg , for then the lemm follows inmediately from 
the definition of the metric S  . ^

If this second assertion is false,^there is a point Xg , say, of 
Xg such tliat if is the point of X^ nearest to Xg then

jx̂  - Xgj > £*• (Clearly there is such a point of X^ •) With x^
so defined, the hyperplane through x^ perpendicular to x^Xg is a 
support hyijerplane , P say, of X^ • Now let y^ be a point of Yg

such that Xg lies on the segment x^yg and )%2 " ^2! “ ^ * (9)
Since x^ is the point of X^ nearest to Xg , it follows that if we
define y^ to be the point of Y^ on the segment x^yg such that

= S (10)
then y^ is the point of Y^ which is nearest to Yg . Thus since 

U(Y^, r) 3 Y g  we have ~ ̂2 * and so from (10)
|x̂  - yg I < ? + e

But our assumption is that [x̂  - Xg | > £ , and this together with (9)
gives I - yg ) > + C

This : contradiction shows thi t our second assertion must be true, 
and the lemma follows*

Lemma Given a positive number C and a convex set X with a non
empty interior, there is a positive number S  and a set Y similar
to X but expanded in the ratio 1 + Ç  i 1 such that

Y(S ) O  U(X , e)
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and such that S' -♦ 0 as C 0
Proof. 'The essence of the probler. is not changed if we alter it

slightly to read that given X and any positive S , there is a set

y( S  ) as defined such that, for some positive C , y(^)o U(X, 2 ).
If we prove this, then it follows tiiat as we let c tend to zero, i 

is free to become as snail as we please, so that this will satisfy the 
second requirement of the lemr.a*

The change in statement of the proble :, or ratiier tlie consideration 
of a different but equivalent problem, makes the proof of it 
straightforward. T'or, we can select any interior point c of the 

given convex set X and, taking c as the centre of similitude,

expand X about c in the ratio 1 + ; 1 to form a set Y(^) .
Since c is in the interior of X it follows that the frontier of the 
now set Y does not meet the frontier of X in an,y point, and hence, 
since each frontier is a closed set, there is a positive number £ such 
that

)x - y I ^  C 

for any pair of points x Êr Fr(X) and y £ Fr(Y(S) ) .
Thus for € so defined, since U(X, 5 ) is on open set, we have that 
Y(t ) ID U(X, c) and the result follows. This, since i tends to 
zero with & , proves the lemf.a.



GIIAPT'ËR II

A COVERING ÜF A SINGLE SET BY A SINGLE SET VaTH SPECIFIED PROPERTIES

We shall consider in this chapter six particular problems 
concerning single set covers for single sets* They are chosen partly 
to show the wide variety of approaches which may be made in the 
solution of coverir^ problems, and are as follows*

(a) To establish an upper bound for the ratio of the greatest lower 

bound of the measure of the projection in any direction of a set X to 
its linear measure, where X is a measuiable plane set of finite 
positive linear measure.

(b) To show that, given a plane curve of unit length, the area of its 

convex cover does not exceed •

(c) To find the maximum volume of the convex cover of a simple arc 
of spaoe-ourve of given length.

(d) To show that the minimal width of a triangle circumscribing a plane
bounded convex set of given frontier length -6 is at most ^  , and
is at most it if the convex set is central.

(e) To prove that there is a unique sphere of smallest radius r which
contains a given bounded subset of E of diameter d , and

.  ftr - i-
L2(n ♦ 1)
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(f) To prove t at any set of diameter d may be contained in a set 
of constant width d •
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Section 1 # To establish an upper bound for the ratio of the

greatest lower bound of the measure of the projection in any direction
of a set X to its linear measure, where X is a measurable plane 
set of finite positive linear measure*

Note first that the problem is stated for a plane set only# The 

method of proof to be used relies heavily on results involving a single 

(continuous) variable, namely the direction of projection of the set 
X , and does not lend itself to extension into three or more 
dimensions.

We need the following notation. A(X) denotes the linear 

measure of the set X , and A(Xq ) the linear measure of the 
projection of X onto a line perpendicular to the direction 6 ; 
p(X) denotes the greatest lower bound of A(^q ) over all e (and
|i(X) exists since A(Xq ) ^ 0 for all 6 ). Then the problem is
to find the upper bound of the ratio for a measurable plane

set E , with A ( e ) >  0 , and we shall show that < S ,A(E)
stated in this form, the problem is too general to be regarded as 

a problem in covering; but if we make the stricter condition that E 
is a connected set, then |i(e ) is equivalent to the minimal width of 

the convex cover of E , so that the problem then becomes one of the 
relationship between a set and its convex cover*



By definition, |a(e ) ^ A(^e ) all ® , so we consider
first ^^^8 ) for some value of 6 •

m l r
We state here without proof a number of results necessary to begin 

the solution to the main problem; the proofs may be found in 
Besioovitch and «

Any measurable plane set E is expressible as the union of a 

regular set E^ ^ and an irregular set Eg^* Also, except for a set
E'' of measure zero, E^ is a measurable subset, E^ , of the union
of an enumerable infinity of rectifiable arcs. The projection of an 
irregular set is of zero measure in almost all directions.

With this notation, we have immediately as a property of measure
that

/KE@) f ♦ A(E2,e) • ( D
Now = 0 by definition, and hence the measure of the
projection of E ^  is zero in every direction,
i.e. A(E/|g) » 0 for all ô . (2)
We know that A^^2,e^ “ ° all ® ; (3)
A(Eg) , however, may be zero or strictly positive* According to (1 ),
therefore, we require an upper bound for A(®4^a)1,0

It is proved below (lemma 2 - page ÇJ) that 
rZir
Jo A(E/,g)d9 4 A(e / )  . (4)

By writing E as the union of three sets ( E|, E*', Eg , which we 
may assume to be disjoint), we shall obtain a relation between the sum



of ineasureB of projections of the three sets and the sum of their 
linear measures*

Consider first the case in which = X > 0 * Given

this value of X , we have immediately from (4) that a value of 0
may be chosen such that

< |(A( eT ) + »  • (5)
(For if not, the given integral is more than 4 A(®!j) by at least 
4> > 0 .)

It is proved below (lemma 1 - page 4^) tiiat A(^.^ 0 ) is a 
continuous function of 6 * From this we may assume that (3) and 
(5) both hold for the same value of 6 (since (3) holds for almost 
all 0 )* Then with (1) and (2) we have

A  (Eg) << A(V,0^ + A(Eg^g) for all 6
< A(Ey ) + X) Yor at least one value of 0
*» “ A(E) (6)

since A ( e ) A(B^) + + A  (Eg) (since the sets are
disjoint and all measurable), that is,

A(E) = A(B() + > since A(B") = 0.
But n(E) ̂  A(Eg) for all e
therefore (6) gives (i(E) < ^A(E) for A(Bg) = > 0 .

Now consider the case in which A^®2^ «* 0 * We can no longer
use the strict inequality of (ÿ) , and look instead more closely at 
It is convenient to split off a special case as follows (proof under
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lemma 3 - page Either (a) almost all points of E' are
collinear, or (b) there are two R-points of E' , say , pg *
such that Pg does not lie on t(p^) and p^ does not lie on 
t(pg) , where t(p^) denotes the tangent at p^ • (See page .)

If A(Eg) —  0 and the special case (a) holds, then
projecting parallel to the straight line containing almost all points
of Sj we have immediately that p(E]|) = 0 and hence p(E) = 0 •

PThe result jj(e ) < ^/\(E) is thus trivially true in this case.
Finally, then, we must consider the case in which A (Eg) = 0 

and (a) above is false*

Suppose that p^ and Pg are two R-points of E' for which 
(b) holds* It is proved below (lemma 4 - page ̂ )  that if an

R-point p of Ê J projects onto the point q of the set E^ ̂ and the
direction of projection is not parallel to t(p) , then E'  ̂ has unit
density at q . Suppose that the direction of the line joining p^ and------  n •

Pg is ^  . Let be the set of points of whose distance

from p̂  is less than, say J-|p̂  - P2I $ and Dg be defined by 
Dg = E' - * Then p^él^ and PgA Pg so that by lemma 4
D and Dp ^ have a common point of unit density (since the
direction ^  of projection is not parallel to t(p^) or t(pg) by 

lemma 3)* Hence

Applying lemrra 2 to and Dg (and using the continuity property
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established in lemma 1 ) we have then
^  A(E/^e)d6 < 4 A(E,) + ^ACDg) - 4A(B^) .

Hence, since A(^) = A(E^) , we have tiiat for some 6
A(Eg) < |A(E) ,

2
which implies p(E) < ^A(B) # Thus the inequality is proved for
all Oases#

j:

Lemma 1 , A( e !.^) depends continuously on 6 •1 ,D
Proof# Let he a sequence of rectifiable arcs of which is
a measurable subset. The method of proof is to show that we can

construct a finite set of arcs whose union C is a subset of

and such tiiat the measure of 0 is aarbitrarily close to tliat of E' •

Then we can deduce continuity for A(B#^a) Trom the continuity of1
A(Cq ) # (This follows immediately from the continuity of the width 

of the convex cover of an arc. See theorem $ - page #?!#)
Let be a sequence of positive numbers decreasing strictly to

zero. For each i there is a closed set F^ such that

A(F^) > A(E/) - q  (1 )
and a positive integer such that

/\( h  "  .l) Aj ) > A ( q ) -  £i . (2)
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(We take closed so that the set C we obtain will be a set of

arcs.)
Since the complement in A. of A. r>F. , that is, A. - F, , isJ J — J 3.

open and has finite measure, it must consist of an enumerable infinity 
or a finite number of open subintervals ^ j , and in either case 
we may arrange the B^^ so that for some chosen integer

^jk )  ̂ N. ^i "
The complement of  ̂ B., in A, , that is,

^  ij ^  J
A. - . , - B,, , consists of a finite number of arcs or points,j jk
Taking finally all the Aj with 1 < j ^  , let be the set
consisting of all the points and the set of all the arcs, such 
that C, y H, = U { A. ~ i) B, ).

Note that C. u ^   ̂ - U  )
all k

= (V ( F, r, Aj )
i.e. C V H, F A ,  U  A (4)

^ 1SfeN j
and (: (

= U  f (  A - Fj ) - Ü
L  ̂ ^ J

since F^ B^^ is empty by definition 

i.e. C, - F <3 L/ U  B,. , (5)
kjM.j ^
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C. is the subset of U a . which we wanted. It is not1 j

necessarily a subset of , nor does it necessarily contain ' .
Thus to determine how close its measure is to tĥ ,t of ' we need an

inequality for A(®< ' - C) + /\(C - E ') . Now we have

A ( E /  - C^) + A(Ci - E/)
« A(e / ) - A(E/n C.) + A(Ci - Ej) - A(Ci n (Ej' - f?))

since E. C  E. '1 1

V

« A(e/) + A(Ci - Ej) - /|(Ci 1
( A(E ') ♦ A(c - P ) - A((E. o U  A,)/>F.)

by (4) > since f\(Z^ 

A(e/ ) + A(C. - P.) - A(E, r. U  A )

< A(a( ) ♦ A(C. - Ei) - A(Ei> * Cl 1 by (2)
< 2 Cj ♦ A(C^ - Pĵ ) by (1)
< 3 by (5) and (3) .

It follows that

]A(E/^ej - I < A(i/ - ĉ ) * A(Ci - < iĉ
SO that, since /\(Cĵ  q) is continuously dependent on 6 , /\(E^^q )
is the uniform limit ( is independent of 0 } of a sequence of

continuous functions* Thus /\(E^ ) depends continuously on 6 *

Ztr
Lemma 2.

'o

r2w
A(E/^g)de 4/\(E/ )

J Q



Proof. The proof comes easily from a series of simplifications of the 
initial problem. First of all we note that the result is true for any 

' if, by the construction used in lemma 1 , it is true for a union 
of a finite number of rectifiable arcs, since we established above 

that 0) tends uniformly in 0 to (̂ 1 Je ) înd A(C^) tends
to ') . Also it is clear that the result follows for such a

set if it is established for a single arc.
We may a%)proximate to an arc A by a polygonal line L so that

for an arbitrary positive C no point of A is more than j^C from 

some point of L , and for which A(I*) ^ A(^) • Then for any e $

A  (1̂0) ^ A(A0) - C • Hence we need only to prove the inequality
when ELj ' is a polygonal line, and therefore only when it is a single 
straight segment.

But in this last case, we may suppose without loss of generality 

that the direction 0 = 0 is chosen so tliat ) = A(^-|^)|sin dj ,
, in which case 

' 2ir rw
A(E^'g)d9 = 2A ( e / )  .in e de .

0 Jo
Thus the result is true for a single segment, and so the lemma is proved. 

(Equality does not of course always hold, because of the approximations 
described in the proof, but at the same time we cannot improve on the 
general inequality because we must include the case when E and hence 

' are single segments.)







Lemma 3* Either (a) almost all points of ' lie on one straight 
line, or

(b) there are two R-points of , say p̂  , Pg ,
such that Pg does not lie on t(p^) and p̂  does not lie on t(pg) .
Proof# If (a) is false, there are two R-points , qg of E^' for
wliich qg , say, does not lie on t(q̂  ) . If q̂  does not lie on
t(qg) then condition (b) of the lemma is satisfied. So suppose
q̂  does lie on t(qg) «

Choose, if possible, a third R-point q^ of Ê  * v/hioh does not
lie on either of t(q^) , t(qg) • Then t(q^) cannot contain both of
q̂  , qg , for this would imply that q^ lies on the line q^qg , which
is t(qg) by.our assumption# So one of the pairs (q̂  , q^ ) ,
(qg , q^ ) must satisfy condition (b) of the lemma.

If it is not possible to choose such a q^ , almost all points of
E  ̂must lie on the union of t(q ) and t(q«) . Since there must be

1 1 ^
R-points of E^' other than q̂  , qg on each of these lines, we can
choose a point * q^ , say, on t(q^) distinct from q̂  • Then
t(q^) is the same line as t(q^) , so that qg does not lie on t(q^)
(by assumption) and q^ does not lie on t(qg) (by construction)#
So the points qg , q^ satisfy condition (b) of the lemma, and the 
lemma is proved#

Lemma 4# If an R-point p of Ê  ̂ projects onto the point q of



E ' and the direction of projection is not parallel to t(p) , then 
1,0

the set E . has unit density at q •1,0
Proof. For convenience, we make a change of notation so that for X q 

we shall write P(X,@) •

With the notation used in defining the density of a set at a point 

(see page and because p is a point of unitjf density of , say, 
and of , then given g > 0 there is a positive number S ̂
such that

/> c(p,6)) > (l - c)2"h 1
and A(A^/n c(p,S)) < (1 + c)2S j for all S <

Put o(p, S ) f and let l(q,S) denote the closed
linear interval perpendicular to 6 whose midpoint is q and whose 
length is 2̂  • Then since A  is a measure,
A[*P(A^ ,0) n

^ A[p(A^ - E/,6) n l(q,S)l 4- n E(,G) o .

A(^(A^- e/,0) n I(q,6)] ^ ) A o(p,6)]
* A|A^oe(p*S)3 - A|a ^ n r> c(p,S)^

since (A^ n ^ (A^ - ^

—  n c(p,S) - A^Aj^ r, Ê / c(p,S)~|
< 4 fS for all So < 1>Q by (l) .

Also we can find a such tiiat if % < 5^
P(A^,e) . lCq,S) . (4)



The ratio we must consider in order to prove the lemma is 

^ *1'*) ^ A|?(e/ o  a ̂  ,6) ̂  l(q,S)]—-- -—  .... . ■ ■ — ■■ .. ---  as ....................
2è  2;

(equality of the two expressions following because P(c(p,S),6) = l(q,&) )• 
But from (2) , (3) and (4) ,

^ ,0) m > 2^ - 4fS

= (1 - 2f)2^
for all %  < mln( Sq,^ , and it is immediate that

A C H ^ /  ̂  A^,9) ̂  l(q,S)3 ^ 26
Thus it follows from the identity given above that q is a point of
unit density of P(E^ ',5) , and the lemia is proved*

Section 1 - Notation and Definitions*

(The page number refers either to the first page on which a 
given notation is used, and therefore explained, or to the page on

I a given term is defined in full*)

Xg or P(X, 6 ) * page

A(x) s page 4-1
p(X) t page

■* page

t(p) 1 page 4-V



To define the terms left undefined in the main part of the 
section, it is convenient to use the following notation •

We are working in Eg *
c(a,r) # a closed circle with centre c , radius r

D(E) : diameter of a point set K »
U * a convex area, including or excluding its

frontier#
A I a finite or enumerably infinite set of

convex areas I) •

A(y» ) t a  set A for which every member U has

B(U) ^  .
A(E) , A(E,a ) I a set A , a(^) respectively which

contains E ,

V.ith this notation, the linear measure A ( e ) of a plane set E 
is given by the equation

A(E) = lim inf 5 D(U)
p -¥ 0 ^---
' A(Eyf )

The lower density and upper density respectively of a set E at a 
point a (which may or may not be in E ) are defined by

lim inf/\(E/^ o(a,r))
d (a,E) =-

r -& 0 2r
^  lim sup/\(E ̂  c(a,r))
d (a,£) =

^ -̂ 0 2r



If ^(a,E) = d  (a,E) , then lim \{E n c(a,r)) exists and la7̂  ■ -

r-»0 2r
called the density d(a,E) of E at a .

A point of E at which the density exists and is equal to 1
is called a regular point of E [Q; any other point of E is
called an irregular point. If almost all points of E (that is, all

except for a set of zero linear measure) are regular, E is called a
regular set. If almost all points of E are irregular, E is called
an irregular set.

E^' is a measurable subset of the union of an enumerablg. infinity 

of rectifiable arcs. Select one such set of arcs , Ag , and
let p be a point of ' lying on an arc A^ of this set. (if p
belongs to more than one arc A^ we may just choose one of these A^

and associate it with p throughout.) It is known ( f O  pp. 305-4 ) 
that the density of A^ at almost all points p of A^ and the 

density of n A^ at almost all points p of ^ A^ both 
exist and are equal to 1 . Also A^ is rectifiable, so there is a
tangent to the arc at almost all points of it.

Thus at almost all points p of E^ ' , the densities of A^ and

n A^ are equal to 1 and the tangent to A^ exists. Any point
with these three properties is called an K-point Ĵ 5^  «



Section 2. To show that, given a plane curve of unit length, the 
area of its convex cover K does not exceed ^  .

[4]
L.Ou>\ vy-M

(This section and section 5 following it are, of course, 
essentially the same problem, the one in two and the other in three 
dimensions. Although the proofs given are very dissimilar, it may be 
noted that the extremal curves obtained in the two results have, as would 
be expected, exactly parallel properties with regard to the curvature of 

the curve and the distance between the endpoints.)
Note first that the convex cover of a semi-circle of unit length

4has area tt" , so this result is the best possible.
The length of a curve may be defined as the leas#; upper bound of 

the length of inscribed polygonal lines. The intuitive way of 
approximating to this leaat upper bound is by choosing a polygonal line 

whose longest straight segment is arbitrarily short. In this way we 
can choose a polygonal line such that the area of its convex cover 

differs from the area of K by as little as we please. In other words, 
it is sufficient to consider only polygonal lines (of unit length). Let 
PqP^...P^ be one such line, where the P^_^P^ are straight segments.

It is convenient to call the P^ vertices, but three successive 

vertices may be oollinear.



We associate with each such polygon a 2n-tuple (4^,...,4^,0^,.#,8 )̂ 

where = L(P^_^P^) , the length of , and 6̂  is the angle

it makes with some fixed directed line. For convenience we allow 
= 0 for some of the i and we regard 8 = 0  and 6 = 2ir 

as distinct, so that we have a closed, hounded set S of points 

(^^,...,e^,8^,...,e^) satisfying 4^ ^ 0 , 0 ̂  0̂  ̂  2̂  and

■8  ̂ + • • • + — 1 •
Associate with each point of the polygonal line a continuously 

increasing parameter s such timt s = 0 at P^ and s = 1 at P^ ,
and such that the parameters a , b of two points P , Q on the line

satisfy a < b if L(PqP^...P) is strictly less tiian L(PQP^...%) .
Ilote that a point of the line may have two or more distinct parameters 

associated with it. We define a portion |fa,b^ of the line as the 
set of those points of the line for which a ^ s ^ b  (0^ a < b ^  1 ) .
Two portions fa,b] , |^o,d^ , b < c , may have one or more

portions in common, called double portions. (Generally, a multiple 
portion is a portion of the line which is common to two or more portions.)
If two such portions have a point but not a portion in common and are

such tliat the portion j^o,d] has points on each side of î^a,b^ in
a neighbourhood of the common point and vice versa, then we say that

there is a crossover on the line.
Thus the most general polygonal line may contain both crossovers 

and multiple portions, and we snow first that in fact these are
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complications of the problem which can be eliminated.
First, then, consider an n-sided polygonal line L wliich crosses 

itself but has no multiple portions. We may note immediately that it 
is sufficient to consider only those cases in which the crossover 
occurs at single points and where there are no points of the plane common
to more than two portions of the curve, for any other cases can be

rapproximated to by lines satisfying these conditions. Such a line can 
be replaced as follows by a polygonal line L' without crossovers but 
liaving the same length as L •

SupTjose that, tracing the line in order from , we reach the
first crossover at • If we continue to trace the line in order from
I , we shall later come back to I , having traversed a portion 
fa,b^ , say of the line, ^ Instead, then, from 1̂  continue to trace 
the line along the portion from b towards a (identifying the 
parameter with the point of the line), and finally from to ,
and redefine the line as ordered in this way. This eliminates the 
crossover at (although it is still a double point), without
introducing any new crossovers. Now repeat this operation at the first 
crossover on the newly-defined line. As there can be only a finite 
number of crossovers on the line, this process will eventually yield a 
line L ' of the same length as L and having no crossovers. (We 
may have introduced new vertices, of course, and also double points.)
The area of K is unaltered.



üo the result will be proved if it is shown to be true for a 
polygonal line of any number of sides which does not cross itself* 
Consider now the set of all such lines with a fixed number n of sides;
these lines may have double or multiple points or lines* Since we are 
excluding lines which have crossovers, we can order the portions of a 
double or multiple segment in the following way. If, for example,

ii: ' ' i.:. j' : ' . V  . . t r i i p ;  j&ZKl

P.P. is wholly or partly coincident with P.? , we may suppose it to
. - ;.'r <o tiiRf th'3'l?e fü

lie on one side or the other of P.P. , and may choose our placing of •?'Cr:or-- ’'tr.rL- ^ yclr
it so that a crossover does not occur because of our choice. By'  ̂ . s;
ordering the line in this way, we are in effect able to think of
coincident lines as if they were actually distinct but lying next to one 
another, as the diagram indicates*

%

can be
thought of as

V W : .

where the small circles represent single points. As each line is now 
fully ordered in this way, we may associate with each a new parametric 
representation where the parameter increases steadily as the line is
: i y '' r--•f.

traced in order from to .P^ *
The set S* of the 2n-tuples (6^,*.*,4^,8^,..*,8̂ ) corresponding 

to such lines (without crossovers) is closed and bounded. (it is
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bounded because S'crS and S is bounded; it is closed in S and 
hence closed because the set of lines with (non-degenerate) crossovers 
is clearly open, and is the complement of this set in S .)
Therefore there is at least one line corresponding to a 2n-tuple in 
for which the (finite) upper bound of ,the area of K is attained.

Consider then a line PqP^...P^ for which this is true, and
suppose that it is fully ordered as we liave described, so that there is
a parametric representation s , 0 ̂  s ̂  1 , and corresponding points
p(s) of the line so that l^s) and P(t) are regarded as distinct
points whenever s ^ t , although they may represent coincident points
on the line PqP^...P^ • The convex cover K of Pq P̂ ..'.P̂  has a
frontier P(K) , a convex polygon, which may be regarded, in the same
sense as the ordering process employed above, as having the whole of the
line PqP^...P^ lying to one side of it when it is traced in a particular
direction. The point $(s) of the line P(0)p(s^)...P(s^^^)P( 1 ) will
be said to touch P(k ) if the corresponding point P of PqP^...P^
lies on P(k ) and there is a portion P(s.)p(s.) of the line,\  ̂ J
8̂  < 8 < 8j , such tiiat the part of F(K) in some neighbourhood of 
P(s) lies on the opposite side of p(s^)p(s^) to any other points of 
the line in the,t neighbourhood.
________________  F(f^ a < b < c < d •

P(a) , P(b) both touch P(k ) , 
but P(c) does not.



V/e now establish several properties of this line.

(a) P(0) , P(1) (corresponding to Pq , P^ ) touch f (k ) #
If not, suppose that the first vertex to touch F(k ) is P^s^^ .

Then we can remove the portion P(0),..P(s^) without altering K , and 
30 the same upper bound for A(k ) is attained with a line of less than 

unit length. Since this is by definition impossible, P(0) must touch 

F(k ) , and so must P(1) by similar reasoning.
(b) Pq , are distinct points (of the non-ordered line).

Suppose thrt they are not. There must be at least one other

vertex of P(0)?(s^)...P(s^^^)p(l) which touches F(k ) (since K is 
the convex cover of the line). If is the first such vertex in

order from , then again we can remove the portion P(0)...P(s^)

without altering K . Hence as in (a) , it follows that Pq , P^ are 
distinct points, and therefore the frontier of K consists of two 

distinct polygonal lines between Pq and P^ . Call these a and 3

(c) P(s^) , P(s^^^) touch F(k ) .
If not, sup, ose p(Sj; ) , i ^ 1 , is the first vertex in order from

P(0) which does touch F(k ) . Then the portion P(0)...P(s^) can be
replaced with the straight segment p(0)P(s^) , which is in fact part of 

F(k ) , and thus L(PgP^...P^) can be reduced without introducing any 

crossovers and without reducing A(k ) . Since this contradicts the

definition of K , P(s^) must touch F(k ) , and in the same way so

must P(s_ .) .
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(d) If ail the vertices do not lie in order on a- or P ,
P(0)P(s )...P(s )P(1)

have the following form; P(s^) , pfsg) ,.,#,P(s^)
lie in order on a (touching F(k ) ), P(Sj) , p(Sj^^) ,

P(s^) lie in order on P (touching F(k ) ), ?(s^) , P(s^^^) ,

P(s^) lie on a , and so on, where h <  j < n-1 •

Suppose that all the vertices up to p(s^) touch P(K) and lie 
on a , but that P(Sj^^ ) does not. We do not yet know that every 

vertex has to touch P(k ) , so let P(s.) , j ^ h+2 , be the first 
vertex in order from p(sj^^ ) to touch F(K) on one of a and p
( P(s^^^) will do so, so P(Sj) exists). By definition p(Sj) cannot

touch P(k ) on the part of a between P(0) and p(s^) , since we are

assuming that all these vertices touch P(k) and this would imply the 
existence of a crossover. If it touches P(k) on the remaining part 

of a , then the straight line P(s^)p(sp must be part of F(k) and 

replacing P(sĵ )P(ŝ _̂̂  )...?(s ^  with the straight segment p(s^)p(sp 

reduces L(PqP^...P^) vdthout introducing any crossovers and without 

reducing A(k) , which Contradicts the extremal property of the polygonal 

line with K • Thus for some j > h+1 , P(Sj) must lie on P if

p(Sh does not touch P(k ) . This proves (d) .

(e) p(s^)...P(Sj) , p(s^)...P(s^) , ... must be straight lines.
These are the polygonal lines between a and P in the

arrangement of the Vertices p(0) , P(s^) , . ,  P(1) given

in (d) above. If they are not straight, we can reijlace them
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simultaneously with straight segments without introducing any crossovers, 

but reducing L(PqP^**»P^) without reducing A(k ) . Since again this 
is not so, the lines must bo straight.

With this result, we can assume that there are no vertices of 

p(0)P(s^)...P(s^_^)p(l) which do not touch P(k) (thus regarding 
p(8^)...P(Sj) etc. as single segments)» With this established, we 

can drop the ordering notation as it is no longer useful, and return to
the original notation for the line.

(f) If lies on a , all the vertices lie on a .
^7,

If not, suppose P^^^ is the first vertex which lies on ^ ^

( i+1 ^ n .) Then the line in part of F(k ) and the area

of triangle P^P^P^^^ contributes to A(K) • Since K is maximal by

definition, this means that ^(^o^i^i+1̂  must be as large as possible, 
keeping L(PqP^) and °°)^stant, and this so when the angle

between P^P^ and in #
Hence  ̂ that we can now make the following

construction. Supi osing that P^P\ ( k > i ) is on F(k ), extend it

to Q, ( P^ lying between Q and P^ ) so that

L C ' i + f )  = > L(PiPi+l) -

Now reflect in and rotate PqP^^^ rigidly

about P^^^ until P^ is coincident with Q » We have not altered
the length of the polygonal line, but by putting the vertices P^ , ..., P^ 

on the same polygonal arc from Pq to as P^^^ we have increased 

A(k ) by an amount equal to A(QP^P^^^ ) . (Here it is assumed that
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the change in position of leaves P^^^ still on the
frontier of the new convex cover. If it does not, then the area of 

the convex cover is increased still further, but we know from 
property (e) that this is itself not maximal, since not all the 

vertices of the polygonal line then lie on its frontier.)

Thus we have finally that the area of the convex cover is greatest
when all the vertices , ., P^_^ of the polygonal line lie on one

side of the straight segment P^P^ . Reflecting PqP^...P^ in PqP^ , 
we obtain a 2n-sided polygon (not necessarily convex) of perimeter 2 , 
and a polygon of given perimeter length has maximum area when it is 

regular. hence the convex cover of P^P^...?^ has, by elementary 

trigonometry, maximum area

= 1  ( k )  &

= ^  (tal ijfn) < ^
and as n increases 1 / 2ir . This proves the result.

Section 2 - dotation and Definitions.

(The page number refers either to the first page on which a given 

notation is used, and therefore explained, or to the page on which a 

given term is defined in full.)
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K Î page
F(K) * page éo

'i : page «
: page

A(XY2...) Î page é3

A(K) ; page
Cl J 3 : page éi

o : page

Vertex : page
Portion : page
Double (or multiple) portion : page



Section To find the maximum volume of the convex cover of a
simple arc of opace-curve of given length. ^ 5^

ù*y-\,trLt>ir\.s '

A bounded convex point set may be defined as a set wliich is 
identical to the set of its chords (using this term in its usual sense). 

Thus if #(S) denotes the set of all those points contained in at 
least one chord of S , S is convex if and only if u> (s) = S •
With this definition of io , it follows by Garathebdory* s theorem

(theorem 6 - page I3> ) that the convex cover t^(s) of a bounded 

point set S in is given by i5l(S) = m?(a>(S)) . For,

i5î (S) *z> A? (to(s)) trivially since 5l(S) is convex and contains S . 

On the other hand if a point x ^il(S) , then by Carathéodory*s theorem 

X is a point of a simplex with vertices x̂  , x^ , (in ),
x^ ̂  X for each i • The set A>(x^ , ..., x^ ) defines the edges

and interior diagonals of this simplex, and thus ^(^(x^ , # «, ))
defines the whole simplex. So x &  , ..., x^)) • But
since the set of the points x̂  ,..., x^ is contained in 3 , we have 

^  (x)(x^ , ..., x^ )) 2̂ ^(w(S)) , and so x (/̂  (S)) . Thus

finally »fl(S) = ^  (^o(s)) . ( Sl(^) = ^(S) is generally not
true, as for example when S is a set of four non-collinear points in

.)
Let K(Y ) denote a class of spaoe^ourves fin ) with the 

properties
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(I) »n(y ) = Av»( y ) f

(il) every interior point of «51 ( y ) is contained in one and 

only one chord of y •

A simple arc y ^  of space-curve is defined as an arc which haS

no four points coplanar. The problem is to determine the maximum

volume of the convex cover of all arcs of such space-curves y~^ which'

have a given length L , and we prove that the required maximum volume

is L® /  (l8/3îr ) , and that it is obtained only for an arc of a helix
L Lgiven by the equations x = cos t , y = sin t ,

z = ^ t , where 0 ^ t ^ .
2/3v

We prove first an ancillary result which in effect enables us to 

use in the main proof two equivalent definitions for the class K(y^) • 

A connexion between the classes K(y^ and K( y ) described 

above is immediately clear, since any arc which has four coplanar points 

cannot belong to the class K( y) because property (II) is
contradicted. We show here that any simple arc y is a member of

the class K(y ) and hence it will follow thel K( ŷ ) and K( y ) are 

in fact identical.

Suppose that y ^  is a simple arc with endpoints A and B • 

Consider the cone which projects y^ from a point C which is 

col linear with A and B and is separated from A by B (or from 

B by A ). fîe-e oyy-ostte., *)

(i) The cone is closed, in the sense that its intersection with a
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sphere centred at C is a closed curve* This is clear since the 

projecting lines of A and B are coincident, and the arc must cut 
every other generator of the cone once and once only# For if it out 
any generator more than once, the two points of intersection would be 

coplanar with A and B , which is a contradiction of the definition 
of y ; and so since A and B share the same generator y ^  must 
meet every other generator exactly once#

(ii) The generator passing through A and B is the only multiple 

generator# As we have already noted in (i) , any other double 
generator (for example) would contain two points of y ^  and these 

points would then (since any two genei^tors meet in C ) be coplanar 
with A and B •

(iii) The cone is convex in the sense that if its intersection with 
a plane is a bounded curve then that curve is convex# For if it were 

not, we should be able to find four coplanar generators, which would 

imply four coplanar points of the arc# For, suppose there is a plane 

which outs the cone in a bounded non-oonvex curve . Then P
has at least four collinear points, as follows#

Since the set X enclosed by P  is non-eonvex, there are two 

points X , y of X such that at least one point 3 , say, of the
segment 3̂  lies in the exterior of the closure of X (ttiat is, in the

exterior of the union of X and ^  )• Now consider the line through

X , y and z # ainoe x is interior to X and a is exterior to X ,
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there must be a point q not coincident with x or z on the 

segment xz such that q lies on the curve, and similarly there must

be a point r of the curve on the segment zy , r not coincident

with z or y # Pirmlly, since the curve is bounded, there must be 
two points p , 8 of the curve which lie on xy , with x between p
and y , y between x and s . Thus p , q , r , s are four

collinear points of the curve* It follows tlmt the generators of the 
cone through these four points are coplanar, and this in turn implies 

that there must be four coplanar points of the arc > which is a

contradiction with its definition. Hence must be convex*

(iv) The cone is convex in the usual sense. For if it were not, we

should be able to find tvio points x , y of the cone such that at least

one point z , say, of the segment xy is not contained in the cone.

If there is a plane througii xy which cuts the cone in a bounded curve, 

then we have an immediate contradiction with (iii) * If on the other 
hand every plane through xy cuts the cone in an unbounded curve, we
may note the following. There is a plane ir through the endpoint B

say of the arc y^ such that lies entirely within one of the closed 

half-spaces bounded by ir , and therefore there is a parallel plane ir̂ 
through the vertex C of the cone such that except for C the cone
lies entirely in one of the open half-spaces bounded by , Any

plane parallel to ir̂ which meets the cone meets it in a bounded curve 

sinoe otherwise this would contradict the definition of • Project
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the pointe x , y , z from C onto points x , y^ , ẑ  say of 
a plane through x parallel to • Then by our assumption

2  ̂ lies between x and y^ and does not belong to the cone, whereas 

X and y^ do belong to the cone* But by its construction meets

the cone in a bounded curve, and this curve is convex (by property 

(iii) )# It follows tnat ẑ  must belong to the cone, and we have 
a contradiction* Hence the cone is convex in the usual sense*

By a similar argument it follows also that the projecting cylinder 
of which has its generators parallel to AB is a closed convex
cylinder*

The cones which project the arc from its endpoints A and B may

be defined as follows* The cone which has A as vertex, say, consists

of (i) all t ie lines joining A to interior points of y ^  and (ii)

the plane sector which lies in the angle between the line AB and the

tangent to y^ at A * As before this cone and the one at B are

closed and convex, and in fact are the support cones of y ^  at A and
B • (The definition of a support cone is, as its name implies,

^
analogous to that of a support hyperplane*) Let the point set which isA
the intersection of these two support cones be denoted by l(y^) * We

now prove that l(y^) is the convex cover of , i.e* that

i(y ^) = .
If l( y^) = iO ( y^) , the result follows easily. We know

that l(f^) is convex (see theorem 2 - page ^ ), so that
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“ (I(y'*)) = l(r^) . But if » ( y * )  = f then

^ ( y *) = « ( « ( y*))= -»(I(y^)) = K y*) • (1)
îo prove I(y^ )  = to( -/*) , consider any point Q in the

(̂ ee. )
interior of I(y^) • ^ The plane QAB cuts y ^  in a single point
<4 (since no four points of y ^  are coplanar)* Denote by \ the

line through ÿ whioa is parallel to AB , and suppose that the plane

QAB is rotated about X through 180° • Call this rotating plane
IT: . As IT rotates, it has two well-defined points of

intersection, say X and Y , with y ^  , so that in its initial
position X is at A and Y at & , and in its final position X
is at Q and Y at B • This is easy to see as follows*

The support cylinder of the arc y ^  has only one double generator,
through A and B • Otherwise any generator contains a single point of

y ^  * The plane ir is rotating about a line in the interior of

this cylinder parallel to the cylinder, and so sinoe we have seen already

that the cylinder is convex ir cuts the surface of the cylinder in two

generators, and hence ir cuts y^ in just two points X , Y (one

on each generator), except in the case when one of the generators is
AB , which occurs at the beginning of the rotation and then not again

until the end of the rotation (when ir lias turned through 180® ) ,

Note also that from their construction the points X and Y move

continuously along y ^  *
Now the chord XY and the line A  lie in the same plane ir
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and 80 have a point of intersection R , unless they are parallel*

But they can never he parallel because if XY is ever parallel to )v 

then it is also parallel to AB , which implies that X , Y , A , B 

are four coplanar points of » thus contradicting the definition
of y ^  * Thus R always exists* Since X and Y move 

continuously along y ^ , it follows that the point R moves

continuously along \ • At the beginning of the rotation R is the 
point of intersection of the segment AQ and X , and at the end of 

the rotation R is the point of intersection of %  and X • But 

the segments AQ and lie completely in theJ frontier of l(y^) , 

and thus R starts and fiid.ahes on the frontier of l(y^) •
Therefore since R moves continuously along \  it follows that 

during the rotation R passes through every point of X which is 

interior to I(y^) • Thus there is a position of the chord XY such 
that it passes throu^ the arbitrary point % * Furtheimore this is Idie 

only chord whioh passes through Q , since if there were two such chords, 

say X̂  Ŷ  and XgYg , the four points X^ , Xg , Y^ , Yg of y^ 
would be coplanar.

We have proved, then, that through an arbitrary point of the 

interior of l(y^) there passes one and only one chord of y ^  , so

that the arc y ^  possesses property (II ) of the class K( y ) *

Also, since this has proved that l(y^ ) = ^ ( y ^ )  » according to the

definition of /o , we have
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Y^) = l( Ÿ^) = (y ^  from (l)

which is property (l) of the class K( y ) • Thus every simple arc

fs a member of the class K(y) > and hence, since we have already
seen at the beginning of this section that an arc which is not simple

is not a member of K( y ) » the two classes are identical*

Returning to the main problem, suppose then that y is a simple
arc of length ^ > 0 ) , the volume of whose convex cover
is maximal* (if such an arc is not simple, we can construct and

consider instead a simple arc, still of length L , for which the convex

cover differs in volume by an arbitrarily small amount from the maximum

value that we want*) We may now restrict attention to those curves at
each of whose points P there is a tangent whioh varies continuously

with P # For, given a curve without this property, it would be
possible to define a "smoothing” process for the arc whioh would increase

the volume of the convex cover without increasing the length of the arc*
77)

In the lemma proved beloi^ it is shown that the volume V of the convex

cover of a simple arc is given by
/*b

z(b) - z(a)
7 =--- ----------- [x(t)y(t) - y(t)x(t)] dt 

' a
where the functions x(t) , y(t) , z(t) have continuous first order 

derivatives, and where x = x(t) , y = y(t) , z = z(t) , a ^ t ^ b , 
are the equations of the arc in a given rectangular system of 

coordinates, chosen so that the z-axis lies along the chord AB joining
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the endpoints of the arc, such that x(a) = x(b) = y(a) = y(b) = 0 , 
and z(a) < z(b) ,

This formula implies

qT
V = 3

where q is the length of the chord joining the endpoints A , B of
the arc ( = z(b) - z(a) ) ; T is the area bounded by the

projections of points of y along lines parallel to the chord AB onto 

a plane perpendicular to AB # For the equations of the closed

projected curve are x = x(t) , y = y(t) as above, and the area T

enclosed by this curve is given by \ x(t)y(t)dt , integrating over

strips parallel to the x-axis, or by «*1 y(t)x(t)dt if the strips
a

are taken parallel to the y-axis. (Signs depend, of course, on the 

orientation of the arc, and will be opposite to the ones given above it 

T  would otherwise be negative.) Thus it follows trivially tiiat T is 

also equal to the average of these two integrals, as in the formula for V .
We may obtain the largest value of V by considering the following 

inequalities.
(i) If p is the length Of circumference of the cross-section of the 

projecting cylinder of y projected parallel to AB , then since of all 
closed curves of given circumference the circle has largest area,



(ii) If the projecting cylinder of y parallel to AB is developed 
into a plane, then, since the endpoints of an arc of given length are 

furthest apart when the arc is a straight line, we have by Pythagoras* 
theorem that

rf + q= ^ 34*
(iii) If 4 > 0 , q > 0 , then (34^ - q* )q 24®

We have from (ii) that p® + q^ ^  34* and we are trying to

obtain an inequality for p^q in order to reach a maximal value for V • 
If we put p = o4 , q = p4 , we have a® + = 5 in the

extremal case, and p*q = a*P4® • By ordinary differentiation of
with respect to p , say, we see that the maximum value of p*q occurs 

when 0 = 1 , so that q = 4 and (34* * ^  )q = 24® * Thus
in general (34* - q* )q ^ 24® *

Hence V satisfies the Inequalities

qT p*q (34* * q=)q 4® L®
3 12ir  ̂ 12w  ̂ 6ir 2*3^Ar

and these are valid if and only if the projecting cylinder has circular
cross-section (from (i) ), y is transformed into a Straight line
when the projecting cylinder is developed into a plane (from (ii) ),

L
and the length q of the chord AB is equal to 4 =  (from (iii) )•

Thus the maximum value of V whioh wè required is 1® / (18 V3ir ) and 

the only space-curve satisfying the conditions for it is an arc of a 

helix (because of (ii) ) traced on a circular cylinder (because of (i) )
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of zaâiua ^ /( ) (because of (iii) ), and corresponding to a
rotation 2ir (because the projecting cylinder is closed) and a 

translation l//3 (beUag the length of AB ) .

s

Lemma# A simple arc y in is defined in a given rectangular 
system of coordinates by the equations

X = x(t) , y = y(t) , z = z(t) , a ̂  t ^ b 
wiiere x(t) , y(t) , z(t) have,continuous first order derivatives 
with respect to t , and also

x(a) = x(b) = y(a) = y(b) = 0 , z(a) < z(b) . ( 1 )
(The effect of these last restrictions is to make the line joining the 

endpoints of the arc coincident with the z-axis#) Then the volume V

of the convex cover of y is given by 
z(b) - z(a)

V =  g---- j^x(t)Xt) - y(t)i(t)'^ dt .
a

Proof# As we have shown in the main part of the section, a simple arc 

y has the property tliat every interior point of its convex cover is 
contained in exactly one chord of y • Consider two points of y 

with parametric representations t̂  , tg • Any point of the chord



joining these may be given by the equations
1+t_ 1#t-

X «  2 x(t ) ♦ ----^ x(t^)
2 ^ 2 ^

1+t. 1-t-
y(t^) ♦ — ^ y ( % )

2
1+t

i m

2
1-t.

»(t ) 4" — »(t )
2 ^ 2 '̂

(2)

where t^ is variable, ~1 ^ t^ ^ 1 ; and if we specify that 

a ^ t̂  < tg ̂  b , there is then a one-one correspondence between the 
points represented by the equations (2) and the interior and frontier 

points of ^1(y)> t ie convex cover of y •

Hence it follows that the volume of 51(y) is given by

V = dx dy dz = i
-1 J a J a

dt^dtgdt^

Where the factor ^ arises because of the stipulation that t^ < tg . 

From (2) , we have
1+t* 1—t.

i(t^) — ^  t(tg) i x(t^) - i

a
1+t_ 1-t_ ^
— - — ^ K t g )  iy(t.) - i y(tg)
2 2 ^

1+t, 1-t,
— ^ I ( t j  — ^ &(tg) i *(tj - i iCtg)

(1 + t3)(1 - t^) 
8

i(t^) Sftg) %(t,) - %(tg)
f(t^) Ktg) y(t^) - y(tg)
l(t^) l(tg) z(t^) - l(tg)

(1 + t,)(1 - t,) / \ \3  --------  L. ( A(tJ - A(t ) ) , may.
8
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Thus V ^  ( A(t,) - ACtg) )dt^«2. [  ̂ t;)(1 -

5’̂ Î a  L  ^
rb 4(tg) x(tp

1
“ 12 f(t,) Ktg) y(t̂ )

\ a' a *(tp #(tg) *(ty)
dt^dtj

j_
12

a

&(tp i(tg) i(tg)

K t p  ÿ(tg) yftg)
*(tp »(tg) .(tg)

dt^dtg

A>s our choice to have t^ < tg was arbitrary, we are free to

interchange t^ and tg in the second term, say, which gives

&(t,) i(tg) *(t^)
f(t,) ÿ(tg) y(tp

*(tp *(*3)
dt,dtg

i(t,)dt,
K t p  y(t,)

♦ Rtg)dtg

1
- ? »(t2)dtg

Z(tp dt,

r i(t,) %(t,)'

1. *(tp ■(*,)

'b 'i(t,) *(tp '

* y(ty) y(t,)

dt.

dt.
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Of these three terms, the first two go to zero because of ( 1 ) , and 
so we have finally

V = -̂  ( z(h) - z(a) )
pb ' x(t) x(t) dt
a y(t)

iJhioh is the required formula#

Section 5 - Notation and Definitions#

(The page number refers either to the first page on whioh a given 

notation is used, and therefore explained, or to the page on which a 

given term is defined in full#)

jO(S)
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A , B

i (ŷ )

page

page él 
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Space-curve 

Simple aro

a curve of linear measure in #

page

Support cone i page 7 1
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Section 4» To show that the minimal width of a triangle 
circumscribing a plane bounded convex set of given frontier length 4 
is at most ^  , and is at most -§4 if the convex set is central#

r  denotes a plane bounded convex set whose frontier is of length

4 , and ABC denotes a triangle whioh circumscribes P  . One of

the vertices of ABC may be at infinity, so that "triangles" with two
sides parallel can be included. First note that if F* is an

equilateral triangle and ABC is a circumscribing equilateral triangle
with sides parallel to those of P  but oriented in the opposite sense,

4then the minimal width of ABC is ^  *
There is one convex set P  and one circumscribing triangle ABC 

for which the ratio of the minimal width of ABC to the frontier length 

of P  attains the largest possible value. For, given any triangle 

A'B'C' we can inscribe in A'B^O' an infinity of convex sets of 
different frontier lengths, and from these sets it is always possible to 

pick an infinite sequence in which the frontier length either decreases 

strictly or becomes constant, and in either case by the Blaschke 

selection theorem (theorem 7 - page fi) (since the closures of the 
convex sets are all contained in ) there is a convex set p '

inscribed in A^B'O' whose frontier length is at least as small as that 

of any other inscribed convex set. Denote the ratio of the minimal



width of A'B'C' to the frontier length of P' by V  . V  must 

be non-negative, and is certainly less than 2 , say. (Every convex 
set of frontier length 4 can be contained in a square of side 
length ^4 (trivially), and the largest minimal width of a triangle 

which circumscribes such a square is itself less than 4 - see

The values of V thus form an infinite bounded set and so an 

infinite sequence of increasing values of )/ selected from this set 
must converge to some value X , which is the ratio corresponding to 

some actual convex set P and a triangle ABC circumscribing P  • 
-lence we may prove the main result of this section by a discussion of

the extremal case, since we know that such a case exists.

Suppose then that the frontier length of F  is 4 , V/e begin
by establishing that P must have interior points. For if it does

not, that is, if it is a strai^t segment, its frontier length is twice 

the length of the segment, and thus the circumscribing triangle has 

minimal width at most ^4 . But this is impossible because we have
already noted a case in which the minimal width of the circumscribing 

triangle is . Hence P has interior points.

Further, we may assume that ABC either (i) has two sides
parallel (one of the vertices being taken as at infinity), or (ii) is
isosceles with the two equal sides at least as long as the third side. 

If (ii) is not true, suppose that the triangle is scalene with

AB > AC ^ BC , so that the minimal width of ABC is equal to the
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perpendicular length from C to AB . If there le a point of P  
other than at C on BC we can construct a second circumscribing 
triangle of I which has minimal width greater than tliat of' ABC # ̂  

For, let C' be a point near C on AC produced (so that C lies
between ’ A and G' ), and let C'B' be a support line of P
meeting AB in B' . Since C is not the only point of P  on
BC , B' tends to B as O' tends to C , so that in this case there
is a C  near enough to C for which the minimal width of AB'C' is
greater than that of ABC • But by the definition of ABC this is. 
impossible, and so if ABC is scalene the only point of P  on BC 
is C • But in this case we can replace BC by the line througji C 
[jarallel to AB , to obtain a circumscribed triangle wnose minimal 
width is not less than that of ABC , which enables us to include it 
in (i) above. Thus our original assumption is valid.
(i) Consider then the case in which ABC has two sides parallel.
Then the minimal width of ABC is not more than the diameter of P , 
and this is less than since P is not a segment. This case
cannot therefore be extremal because we have already noted a case for 
which the minimal width of the triangle is •
(ii) So ABC is isosceles with, say, AB = AC ^ BC . Having
established this much about the circumscribing triangle, we can go on
to specify P  in greater detail. First, there is an interior point 
of each side of ABC which is a point of P  . For if, for instance,



c is the only point of P  on BC , and ÏÏ is a point of P  on 
AB , then the length of the perimeter of P  is at least twice the 
length V of ON , which ̂is greater than or equal to the minimal width of
ABC .  ̂This again cannot he an extremal case as we require, because of
the case already noted for which the minimal width of the triangle is 
^  , whereas the minimal width in the present case is less than •
Thus we can ignore the cases in which P  does not pass through an
interior point of one (or more) of the sides of ABC •

So let L , M , N be points of P which are interior to BC ,
CA , AB respectively. Than ̂ P is in fact the triangle lilN , since 
otherwise ABC circumscribes a convex set whose perimeter length is 
strictly less than t , and ̂ this is impossible by the extremal property 
of P with ABC . Also, for the same reason, it follows that L , M ,
N are those points of BC , GA , AB 
for which the lengths of the broken 
lines , L!# , L M  respectively
are least. This gives us some = u; , ^
information about the geometry of 
P and ABC , because some 
elementary trigonometrical and
algebraic manipulation shows that 
A&l = BNL , A M  = CML , BLN = C m  .
Since ABC is isosceles it follows that triangles BLI4 and GUi are
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A Aequiangular, so that BNL = CML , and thus we have that A}A = AN 
because triangle A M  is isosceles. Hence BN = MC so that BLN

and CLÎÆ are in fact congruent, and BL = LC . Also we have 
LMC = A M  and since triangles AMN and ABC are proved equiangular
A AA M  = LCM , and so LC = • Thus BL = LC = JJ-Ï , and this implies

that there is a circle centred at L which passes tlirou^ the points 

B , C , M , and it follows, since BC is then a diameter of this
Acircle, that the angle BMC is a right angle. Thus B!' is 

perpendicular to AC *
Now Suppose that ABC is not an equilateral triangle, so that 

AB = AC > BC • Then we can change the shape of ABC slightly by
reducing the width rfiL of it. ^ Take a point P near A on AL (so 

that P is between A and L ) and construct the circumscribing 

triangle of P with P as vertex by producing PN and PÈÎ to points 

Q. , K respectively of the line containing BC # Then PQR is also a 
circumscribing triangle of P * If AP is sufficiently small, the 

minimal width of PQB is equal to the length of the perpendicular , 
say, from Q to PR . In the figure, BM is perpendicular to AC

and QM* is perpendicular to PR • Thus the angle between BM and

QM* is equal to the angle between AC and PR , so that we have
AQM' = BM 008 p m  + QB cos M'QB

= m  cos PMA + QB Sin PRQ (from triangle M'RQ )

= ( a  + B )  + Y *



where a = BM , 3 = O(PA^) and is non-positive, and y = O(CiB)

and is positive. Then since PA = 0(QB) , if PA is sufficiently

small, ( # + Y  ) is positive, and so the minimal width of PQR is

greater than that of ABC ♦ But this contradicts the definition of
ABC .

Hence the triangle ABC must he equilateral, with minimal width 
equal to AL , and AL = which is the same as ^

sinoe LMN is equilateral. But LM + ÏÆH + NL = -e , the frontier
length of P  , and so the theorem is complete.

To establish the corresponding result for the case in which P 
is a central set, we note first that if P  is a regular hexagon 

(which is of course central) of frontier length 6 » and ABC is an
equilateral triangle such that a vertex of P is at the midpoint of 

each side of ABC , then the minimal width of ABC is ,

As in the previous discussion we may suppose that there is a 

convex set P for whioh the minimal width of a circumscribing triangle 
ABC takes the largest possible value, and it may be proved just as above 

that this case occurs either when ABC has two parallel sides or when 

ABC is isosceles with the two equal sides at least as long as the 

third side. In the first case, since we know that P is again 

not a straight segment, the minimal width of ABC must always be 

strictly less than Je , so we need to consider only the second case.

In the second case, then, suppose again that P meets BC , CA ,
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AB in interior points L , M , N respectively. Denoting by 0

the centre of P , let L' , M' , N' be the points of P
which are the reflexions in 0 of L , M , N respectively. As P

iB^not a straight segment, 0 must be an interior point of ABC .

We find now an expression for the length of the frontier of P  ,

which in the extremal case is the polygon LN L'IL Suppose that

X is the point of intersection of a line through M parallel to LN' 

and a line through L parallel to N'M • Then XM = LN' = L'N and 

XL = H'M = KM' , and, since XfÆ'K and XI#'L are therefore 

parallelograms, XN = LM' = L'M • So the length -6 of the frontier 

of r  is twice the sum of the

Consider then the expression

XL + XM + XÎ When X is

fixed, the sum is, since L , M , N

lie on the sides of ABC , clearly

least when XL , j# , XK are

respectively perpendicular to

Fixing the

perpendicularity and considering

different positions of X we see that the sum is least when X is on 

BC . For, if the length of XL is denoted by h , and we put BC = a 

and ABC = ACB = a , it follows by elementary trigonometry that



XL + XîÆ + XN = h( 1 • 2 cos a) + a sin a =  f(h) , say.
We know that BC ^ AB so that cos a ^ ^ , and so f( h) increases

with h • It follows that the minimum value of f(H) occurs when
h = 0 , which means that X lies on BC •

But if X is on BC , XL + XM + XW = XM + XN , which is equal 
to the length of the perpendicular from B to AC , say, and this, 

sinoe ABC is isosceles, is the minimal width of ABC • hence in 

tills case the minimal width of ABC is equal to , and so we have

proved for all cases that the minimal width of the circumscribing 

triangle of a central convex set is not more than half the boundary 

length of the set#

Section 4 - Notation#

(The page number refers to the first page on which a given 

notation is used, and therefore explained#)

P  I page 2?

6 t page

ABC I page



Section 5# To prove that there is a unique sjihere of smallest radius 
r which contains a given bounded subset of E of diameter d , andn

W i r T "  ■ W

I jlPL̂  }0O , ̂

A sphere will be re^rded in either of two ways, as having its 

position fixed, so that it is completely specified in any discussion, 

or as being free, so that the size of the sphere can be discussed 

without its position being fixed. In the latter case, suoh a sphere 
will be denoted by 5^ , a sphere of radius r in ; if it is fixed, 

it will be denoted by » Similar notation is used for the
surfaces and of suoh spheres.

We have in essence two problems to solvei that of establishing 

the given inequality between r and d , and that of proving that there 

is a unique smallest sphere as defined, We consider the inequality 
first, and note that we can simplify this part of the problem 

immediately because it is sufficient to consider only those subsets M 

of which consist of (n-f 1) points. For, suppose that each set 

of (n +1 ) points of a set M is containable by a sphere 8^ of given 

radius r , and consider the family of spheres of radius r whose 
centres are at points of fî • Then it follows immediately that every 

(n+l) of these spheres have a point in common, and hence we know from
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ilelly's theorem (theorem 5 - page )l ) that there is a point p ,
say, common to all the members of the family of spheres. As the

centres of these spheres are at the points of M , we have in fact shown 
tiiet the distance between p and any point of LÎ is not more than r .
Hence if each set of (n + l) points of .M is containable by , then
M is itself containable by , and we need consider only sets Î.Î of

(n + l) points#

We note now tliat if P = (p^, p^, ) is a set of (n + 1)
points of with diameter d > 0 , the:ce is a positive number r 

such tiiat ? is containable by (whose position is now regarded
as fixed), but is not containable by for any r' < r • For

R ‘ ^ “̂ 0 “0ince the class K̂ , of all the S,, with radius R ^ for some R
0

say, is a class of closed sets all of which contain P , then by the

Bias dike selection theorem (theorem 7 - page li) (since the

are certainly subsets of some sphere of radius 2R^ ) every infinite
subclass of K. contains a convergent sequence, and hence iC is 

^0 0
compact. Thus it follows that there is an as defined#

Before we begin to establish the inequality between r and d , 

it is necessary to prove that this result for sets P of (n + 1) points 

is also, as in the first part of our discussion, true for general 

subsets M of * We assert, then, that there is a smallest 
sphere containing a bounded subset M of # The assertion
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is clearly valid for n = 1 , the required "sphere” being the

shortest closed single segment (which certainly exists) containing 
M • Suppose that it is valid for every positive integer k less than 
n I and consider the case in n dimensions#

The set M may be a subset of and not of an̂ f with

k < n , or it may be a subset of , i ^ k < n .  In the latter 
case, there is by the induction hypothesis a smallest k-dimensional 

sphere containing M , and it follows at once that the n-dlmansional 
sphere of the same radius, whose centre coincides with that of the 

k-dimensional sphere containing M , satisfies the conditions of the 
assertion*

In the former case, there is a non-empty class Kp consisting of 

all the sets P of (n + l) points of M , and for any one such set P 
we have already seen above that there is a positive number r(p) , say, 

such that the (n-dimensional, fixed) sphere contains P and

no sphere of smaller radius than r(p) contains P * Define r as 

the least upper bound of these numbers r(p) over the whole class 

Kp . The number r is positive and finite sinoe 0 < r(p) < d for

all P e Kp • Then we know that each set of (n + 1) points of M

is containable by a sphere (not regarded as fixed)* If M is 

containable by a sphere S^# where r' < r , then by the definition 

of X there is a set P of (n + l) points of M with r ̂  r(p) > r' , 

so that P is not containable by , whioh leads at once to a



contradiction* Hence is the sphere of smallest radius containing
M •

Having established, then, that the results which we need to be 

true for sets of (n+l) points are true also for general subsets î.î 

of , we can confine our attention to a set P = (p^, p^, *«», )
of (n + l) points of , and the smallest sphere containing it.

It is convenient here to note two properties of the centre o of this 

sphere, their proofs being given in lemmas 1 and 2 at the end of 
this section* Firstly, c is a point of the simplex whose vertices are

A -Vthe points of P • Secondly, if a point p. of P is not on CJ *Y
(the surface of the sphere S^ ), then c lies in the face of the

simplex opposite p. *
^ [SWe assume inductively that r ^ I Tyrr— rr ^ for all positive

integers k < n (the inequality being obviously true for n = 1 ,

when r = -Jti ), and prove it true for n *

Relabelling the points of P if necessary, choose so that
the centre o of does not lie in the face opposite « Then

by the second property of c that we noted, p^^^ is a point of ,
Taking p^^^ as the origin, choose a coordinate system so that ,

£ g ,  #**# # jO are vectors corresponding to the points of P , and
JO is tue vector corresponding to the centre c of * Then the

first property of c implies that there exist nonnegative constants
n+1

k , k_ , k , with k̂  = 1 , such that
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«±i
G = 21: «here = 0 .

V\/e may assume that all the points of P lie on ; for if, say,

(n-k) such points do not, then there is a k-dimensional subset of P 

which is containable by a k-dimensional sphere of the same radius as 

3 ^  (but by no smaller sphere), in wiiich case by the induction
hypothesis we tiave that

< [sCk'+ïll^ ^ " [zTFTTl) for k < n .

SO that the result is true for the case in which some of the points of 

P do not lie on • Thus we may ignore the oases in widoh, by the

second property of c , some of the k^ are zero*
Asaumo, then, that k^ > 0 for all .i , so that all the points

Pi lie on • Now j £  j is the radius of 3 ^  and we can

obtain an expression for £*£ by considering the scalar product 
for each i . We note that the point represented by the 

vector 2̂  is diametrically opposite the origin on , and hence

it follows thit the vector 2jc - is perpendicular to for

each i • Thus
k^j^.(2c - 2^) = 0 for ^ c h  1

and summing for i = 1 , 2, n we have
n n n
2 -  = s r ^  ♦i=1 1=1 1=1



n ^
Since D +1 ~ 2. f 2_  = -Z_, k.n, = c , and since

i=1 1=1 ”  ~

|%| < d for each i , this implies

I °j= < ±  k.i=1 i
But X  k. = 1 - k j , and the inequality will therefore be

1=1 ^
best if we choose the labelling of the points so that k^^^ takes 
the largest of the values of the , that is, so that k^^^ ^ k^

for i = l, n . Assuming this to have been done, then, we have that
n n

k . > tr^T k. , 80 that finally 2 Z  k. < , and hence
n-4-i 1 1=1 1 1

^  = 1̂ 1 ' ^ ZÎSfhj'** '  ̂ < [z(n " 1)'] ^^ •
Thus the required inequality is proved true for all n • To

complete the proof we need finally to establish the uniqueness of the
jy-

smallest sphere that we have obtained for a given subset M of
# Suppose tnat it is not unique, so that there are two spheres

V J*»^r(p) both of radius r but with centres at the points
p , q respectively, and which both contain M . Then M Is also 

contained in the common part of these two spheres and hence is contained 
in the smallest sphere containing their intersection* Unless p and

q are coincident, this sphere has radius smaller than r , which

contradicts the minimal property of r for M • Hence both the radius
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e/iid the centre of tiie containing sphere of If are fixed, and 

uniqueness is established* This completes the proof of the main 
result*

We may note that the inequality between r and d is the best 
possible, since equality occurs for the n-dimensional sphere of smallest 
radius containing an equilateral simplex of edge d • Tiiis is easy to 

prove by an inductive process. For n = 1 , it is obvious that

= ^  = ^ • Assume then that for a simplex ofr

(n- 1 ) vertices the ladius of the circmascribing sphere satisfies the
equality

how consider an n-dimensional equilateral simplex of edge d , Its

faces are equivalent to the simplex of (n« 1 ) vertices, and the radius

of its circumscribing sphere is of the distance between any
such face and the opposite vertex* But this distance is given by .

1

i
where x  ̂ satisfies the relation r . = x j, (that is,n-1 n-1 n n-i ' '
x^  ̂ is the distance between a face of the simplex of (n-1 ) 
vertices and the opposite vertex)* Thus we have

• r f - i
and equality is proved for all n when M is an equilateral simplex 

of edge d •
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Throu^out this proof it will have been noted that, although 

we have been diecussing the problem for a containing sphere only, we 
liave used results which are true for more general convex sets also.

In fact it may be seen that, as far as the point where we begin to 

establish the inequality between r and d , it is possible to obtain 
the same properties for closed central convex sets K(r) of "radius" r , 

which are homothetic translates of one another, as we have obtained for 

spheres * (See chapter III beginning of section 4^for a possible

definition of the number r . V/e could equally well use the diameter 

of the set K , as we need it only to distinguish sets of different 

sizes.) Thus we may deduce immediately from the previous discussion 

that there is a smallest set K(r) , for some "radius" r , the 

homothetic translate of a given closed central convex set K , which 

contains any given bounded subset M of •

If the set K is closed, central and strictly convex, then we may 

show further that there is a unique smallest homothetic translate K(r) 

of K containing M • For, suppose that , Kg are two such sets 
which contain M , Kg being a translation of through a distance

a , say. Then M is contained also in the intersection Kg •
For convenience, assume that a vector system has been defined in , 

write Kg = + a , and consider any point r of n Kg •

Then we have r é and r ^ Kg , which is equivalent to
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saying that

£  € and r - a € K. *

Since is strictly convex, it follows that ^  ~ ̂  belongs to 
K® , tiie interior of « Thus

r 6 Ko H- ^  

and so, since r is any point of Kg ,

Kg O  K® + àa

The set n Kg is closed, and so the distance between the frontiers 

of r> Kg and K® 4" ^  is strictly positive. Thus it follows
that there is a set concentric with K* 4- ^a which is homothetic to 

and smaller than K^ ( ^  and being of equal size) and
which contains ^  Kg (and hence M )* But this contradicts the

definition of as a smallest set containing M • Thus must
be unique.

The question of finding a relationship between the radius of K 

and the diameter of M becomes Inappropriate when we consider a more 

general set than a sphere.

yL
Lemma 1 , The centre c of the sphere of smallest radius r

containing P is a point of the simplex whose vertices are the points 

of P .
Proof, If not, there is a hyperplane which separates o from the
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simplex (e.g. one of tlie support hyperplanes of the simplex,', and 
it follows imraediately that the sphere , passing through the

intersection of with the hyperplane and liaving its centre in the
hyperpiano, contains P and has radius X' < r • This contradicts 

tne definition of , and the lemma follows.

Letansa 2. If a point p. of P is not on C , the surface of the

sphere , then c lies in the face of the simplex opposite •
Proof. Assume that c does not lie in the face of the simplex

opposite pj . Choose a rectangular coordinate system so tiiat the
(n« 1)-dimenaional hyperplane containing all the points of P except

Pj has equation x^ = 0 so that x^^^) , the n-th coordinate
of Pj , is strictly positive. Then by lemma 1 , c^ , the n-th

coordinate of o , which by our assumption is not zero, is strictly

positive. Let the equation of be f^(x) = 0 . Consider the

spherical surface which contains the intersection of C with8 r
x^ = 0 and has equation

q(x) + = 0 ( 1 )
say, for a positive value of t which will be chosen later. Now for

•y
each of the points p^ , 1 ^ j # f̂ (Pĵ ) = 0 since 3^ is the
smallest sphere which contains all the points p^ , and x^^^) = 0 ,

y
so that each of these points is contained in . For Pj , choose



t so that

= 0
since by hypothesis p. is not on , implying that f (p.) < 0«J ^ r J
(since p. is certainly in S )* Hence, forU I X ,

W l

t < = *0 • “ y»
n

y
all the points of P belong to • But if we choose t < min(tg, c^) ,
then the centre of , which is given by (c^, o^, c ^ ^ c ^ - t )  ,

(from equation (3) ), is nearer the plane = 0 than is c •
Hence s < r which contradicts the minimal property of r # It 

follows that our original assumption was false, and the lemma is proved.

Section 5 - Notation,

(The page number refers to the first page on which a given 

notation is used, and therefore explained,)

M I page

d t page
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page

page

page
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Section 6, To prove that any set of diameter d may be contained 
in a set of constant width d . ^ sj

) yWÿt /J

A set of constant width is a bounded closed convex set for which 

every two parallel support hyperplanes are the same distance apart. 
Adopting again a method of proof used earlier in this chapter, we shall 

define a new class of sets which will be shown to be the same as the 

class of sets of constant width, and shall prove the main result Using 
the new definition.

So we make first the following definition: a set X is complete

if and only if, for any set Y containing X , either Y is equal to

X or the diameter of Y is strictly greater than the diameter of X • 

In other words, the addition of any point to a complete set increases 

the diameter of the set*
With the ̂ ven definitions of complete sets and sets of constant

width, we may now show that the statements

(i) X is a set of constant width d ,

(il) X is a complete set of diameter d

are equivalent#
prove that (i) Implies (ii) , note first that, since X is

of constant width d , X has diameter d , For, there are two
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points X , y ê  X for which |x - y j = B(X) , where D(X)

denotes the diameter of X , and by the definition of the diameter of 

a set the hyperplanes through x , y perpendicular to the line xy 

are support hyperplanes of X • But the distance apart of any two 
parallel support hyperplanes of X is d , and so D(X) = d • how 

let z be a point exterior to X and let be the point of X
which is nearest to a , Then the hyperplane through x^ 

perpendicular to x^z is a support hyperplane of X , and there is a 

parallel support hyperplane of X which meets X in at least one point 

Xg , say. We may assume that x^ , x^ and z lie in a straight line 

because if Xg is not on zx^ produced we have D(X)^ |x^ - x^j > d ,

since d is the perpendicular distance between the hyperplanes. So 

since x^ , Xg and z are collinear we have immediately 
|z - Xgl > |x^ - Xg I =  d

so that the addition of z to X increases its diameter. Thus X is 

a complete set, of diameter d ,
To show that (ii) implies (i) we assume instead that it does 

not; so that there is a set X of diameter d which is complete but 

which has minimal width w < d • There are two parallel support 

hyperplanes of X , say and Pg , distance w apart. We assert 
that there are points x^ and Xg of X such that x^ lies on , 

Xg lies on Pg , and x^Xg is perpendicular to P^ and Pg . For if 

this is not so, suppose that x^ and Xg are two points of X such







that lies on xg" lies on Pg , and the distance between x̂
and Xg is smaller than the distance between any other such pair.

Construct an infinite hexagonal prism as follows, such that it 
contains the set X , and has two of its faces, A , B say, lying in
the hyperplanes P̂  , P g . ^ Let the other four faces of the prism
lie in support hyperplanes of X , say , Rg , where the

are parallel to each other and the Tt~ are parallel to each other.
The points x^ lie each in one of the faces A and B of the prism,
and by our definition of these points it is possible to construct the 
prism in such a way that, in the plane containing the points x^ and
perpendicular to the hyperplanes P^ , there is no line perpendicular
to the P^ which contains points of both A and B • (For if every
such prism yielded such a line, with points ŷ  in A and yg in B ,
say, it would follow that ŷ  and yg must belong to the set X , 
which is a contradiction with the definition of x̂  and Xg .)

Since the prism is constructed from support hyperplanes of X , 
its minimal width is the perpendicular distance between the faces A
and B (i.e. between the hyperplanes P̂  and Pg ). Consider any
perpendicular cross-section of the prism, and denote by y the point
of A nearest to B and by z the point of B nearest to A . Then
we may alter the prism slightly by rotating P̂  and Pg through the 
same (directed) angle about y , z respectively, to obtain a new 
prism lying in the hyperplanes say, which still contains
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the set X , the rotation being euoh that the acute angle between yz 

and the rotating plane is deoreaising. But the minimal width of this 

new prism, provided that the rotation of the is sufficiently small, 
is the perpendicular distance between the , which may be verified 
to be smaller than the minimal width of the original prism* This is 

a contradiction since it implies that the minimal width of a set 

containing X is smaller thfin the minimal width of X itself* It
follows that we cannot define two points , Xg as above unless the 
line joining them is perpendicular to P^ and Pg , and this is what 

we wanted to establish.

Thus our assertion is true that there are two points , Xg
of X such that x^ is on P^ , Xg is on Pg , and | x^ - Xg | = w ,

the perpendicular distance between P^ and Pg . Also there is a point

y X such that ( y - x^ | = d , because if jy • x^| ^ d^ ,
say, for all y ê  X , d ^ < d ,  then the set Y , which is the union of 

X and the points % for which )x - x̂ | ^  |d • d^ ] , properly

contains X but is not of larger diameter than X , which is a

contradiction since X is complete.
Mow either of the minor circular arcs which are of radius d and

have endpoints Xg and y must be contained entirely in X * In

fact it may be seen that, if S(X) denotes the intersection of all
spheres of radius d which contain X , then S(X) = X , and from this 

it follows easily that a minor circular arc of radius d which joins



two points of X must itself lie in X . To show that S(X) = X ,

note first $(X) X , trivially* If we do not have X 2) S(X) ,
then there is a point s of S(X) which is not in X • But by the 
definition of S(X) we have that for each x ^ X ,  |s*»xj^ d ,  

so the set formed by the union of s with X is still of diameter d • 
So X is not complete, which is a contradiction, and so we must have 
X r> S(X) . Thus S(X) = X *

Now there is a minor circular arc of radius d jolnli% Xg and

y which Grosses the hyperplane , for if it only touches Pg the

centre of the arc must lie along x^Xg (since this is perpend!oular 
to Pg ), and since we know that |y - x^| = d , the centre must be

at x^ • But this is impossible since |x^ - Xg| ^ d , so the arc,

which is contained in X , must cross Pg • But Pg is a support 
hyperplane of X , and so we have a contradiction* Hence our original 

assumption, th?,t there is a complete set X of minimal width w < d , 

is false, and (ii) lE^lies (!) *

This proves that the class of complete sets of diameter d a M  

the class of sets of constant width d are identical. We are now 

able to prove our required result, that any set of diameter d may be 

contained in a set of constant width d *
Suppose that X is a set of dieuaeter d * We may assume without 

loss of generality that X is closed and convex, since we know (see 

theorem 4 •* page ?o) that the convex cover of the closure of a set



has the same diameter as the set itself* If X is of constant 

width, there is nothing to prove since it is containable by itself*

If X is not of constant width, then it is not complete, and we shall

prove orr result by constructing a complete set wiiich contains X , as
follows;

Consider the set Q,(X) of all those points x for which the 
diameter of the union of x with X , D(% u X) , is equal to D(X) *

Clearly there is at least one subset of h (x ) which contains X and 

is complete* Select from Q(X) one point x^ whose distance from

the set X is a maximum in Q(X) ( ,Q(X) is closed and bounded, so
certainly exists), and denote by the set which is the convex 

cover of x̂  and X * Define a sequence of sets Y^ , i = 1,
2, ••*, inductively as followsi when Y^ has been defined, consider

the set Q(Yĵ) as above, select x^^^ from it, and define as
the convex cover of and Y^ •

Sow we have defined an infinite sequence of sets Y^ for which 

Y^ a  Y^^^ and Y^ C2 y(X) for all i « Thus the sequence

converges to a set Y , say. The closure of Y , Y , is convex, by

its construction, and S(Y) = D(X) , since Y C  ̂ (X) and J C  X * 
We want to show that Y is complete* Suppose that it is not complete,

and let y be a point not in Y such that D(y u Y) = D(Y) * In 

other words, with the notation used above, y ^ Q(Y) and, since 

Yj^C Y for any i , D(y u Y^) ^ D(y u Y) = D(Ÿ) = D(X) .
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But D(y u Y^) ^ D(Yĵ ) = D(X) , so that we have D(y u Y^) = D(X)
3 m  and henoe y e W(Y^) , that is (see page 7  )*

^  (y> Y^) ^ definition of ,

for any i ,
Since y is not in Y , denote by G the distance between the point
and the set, where 'b is strictly positive.

Mow take two points x^ , , j > i , using the same notation

as above. x. ê- Y. and Y. d  Y.. , so that we have1 1  1 J"* I

I =j - = 1 1 ) h )  > h-i ) '
But we have noted that, in particular, y;(xy Yj_^ ) ^ ^(y, Yj_^ ) ,

and yo(y, Yj_^ ) ^ ^(y, Y) since Y^^^ d  Y . So w© have

h j “ *il ) a(y« Ÿ) = 'S > 0.
But is an infinite sequence of points and all the x. lie in

Q(X) which is bounded, and thus it is impossible for every two of them
to be at a distance at least ^ â ârt.

Hence Y is complete, and this establishes the required result.

Section 6 - Notation and Definition.

(The page number refers either to the first page on which the 

notation is used, or to the page on which the given term is defined 

in full.)
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OHAPTER III

A coyniaMii OF a single set b y mipf sets oh of m m  sets b y a  single set

In the previous clmpter we considered some particular problems 
concerning the covering of a single set by a single set. In this 

second selection of papers we are to give consideration to finite or 

infinite classes of sets, and sliall discuss four particular problems.

The first one is that of finding a single set to cover an infinite clasa 

of sets, and the second and third involve covering one sot by a finite 

class of sets. The fourth paper to be discussed relates one set (the 
plane) and a given infinite class of sets* it is included for the sake 
of completeness and because of tiie methods of solution involved, but in 

fact can be considered as a problem in covering only if the latter term 

is not restricted to mean complete covering by a class of sets. The 

statements of the problems are as follows.

(a) To prove tliat the diameter of any minimal universal cover of plane 

sets of unit constant width is less than 3 » and to find such a 

minimal cover. To show that in tliree or more dimensions there is a 
compact minimal universal cover, of sets of unit constant width, whose 
diameter exceeds any specified length,

(b) To prove tliat, if K is a convex body of minimal width 6 in

, and K is contained in the union of r parallel strips of widths
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h^, hg , hp , then + hg + ... +]hp > 6 « (Tareki*8
plank problem.)

(c) To show that a small-circle of a unit sphere, of angular radius 

yB f can be covered by a flid.te number of lunes only if the sum of
their width is at least , and, if the sum is exactly 2^ ,
only when they all share the same vertices.

(d) To show that, for all maximal K-packings of positive minimal
ITradius, the greatest lower bound of their lower densities is ,

and is strictly less than if K-packings of ellipses are

excluded.



Section 1 « To prove that the diameter of any minimal universal 

cover of plane sets of unit constant width is less than 3 , and to 

find such a minimal cover# To show thit in three or more dimensions 

there is a compact minimal universal cover, of seta of unit constant 
width, whose diameter exceeds any specified length# ^10^

We denote by the class of subsets of which have unit
constant width# A set C <T? 12̂  Is called a unlvezrsal cover if it is 

closed, convex and such that for every set A cl with diameter

d(A) 1 we can find a set B O  C such tiiat B and A are 

congruent# We know from a result proved in the previous chapter 

(see page that every such set A is contained in a member of ,
and so it is sufficient in showing that a set C is a universal cover 

to show that for each A 2 there is a congruent set B d  C #

A minimal universal cover is a universal cover of which no proper subset 

is a universal cover#

With these definitions we can ask the following question (see 
f l O  ): is there a finite upper bound, depending on n only, of
the diameters of compact minimal universal covers in ? In the 

following discussion of this question we show that in the plane the 

diameter of any minimal cover is less than 3 and we show also that a
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certain plane set, waich will be defined, is a universal cover; 
however, in three or more dimensions we show that there is a compact 
fninimal universal cover in whose diameter exceeds any specified 
length. ^
The diameter of any minimal cover in the plane is less than 5 ,

Suppose that we are given a plane universal cover C of sets of 
unit constant width whose diameter is at least equal to 3 • We siiall 
show tiiat such a cover is not minimal.

C contains two points x , y say for which xy = 3 (where xy
denotes the length of xy ), anu there are subsets X , Y of C of
unit constant width such that x ^ X , y 6 Y . ^ Let pq , rs be the
"va"''exterior common support lines of X and Y , meeting the frontiers of
k min.: - -i-the sets in points p , r ^ X and q , s ë Y . The subset p<̂ sr
of C is a rectangle since X , Y are of constant width, pr = qs = 1,

^ and both pr and qs are perpendicular to pq (and rs) .
Now construct points x' , y* such that x'is distant 1 from p
and r and not interior to C , and y' is distant 1 from q and s
and again not interior to C . Then xy** is parallel to the common 
support lines of Xi , Y , meeting pr and qs at m , n , say.

how since x' , y* are not interior to C , we have x'y' > 3 •
For, the set X is contained in the intersection of the discs centred 
at the points p , r of X and having radius 1 , and so the point



X (of X ), and similarly the point y , lie within a figure which is 
hounded by the segments PQ § rs , and arcs (of radius 1 ) px* , 

x'r , qy' $ y's « It is clear that the diameter of this figure is

the length of x'y* • and hence, since x and y are both contained
by it, the length of x'y' must be at least equal to the length of xy , 
wiiich by hypothesis is equal to 3 •

Also x'm < 1 and ny* < 1  , so tliat mn > 1 * Thus pq > 1
and hence C contains as a proper subset a square of side 1 • But

a square of side 1 is a universal cover for plane sets of constant 
width 1 * Thus C is not a minimal universal cover.

Hence any minimal cover in the plane must have diameter less 
than 5 •

A minimal universal cover in the plane*

We define Y to be the set which is the union of a circular disc 

and a Reuleaux triangle, both of constant width 1 , the triangle being 

placed so that two of its vertices are at opposite ends of a diameter 

of the disc. (A disc is the union of a circle with its interior; a 

Reuleaux polygon of width 1 is the set bounded by a number of circular 

arcs, each of radius 1 , the centre of each arc being the vertex of 

the polygon opposite th t arc.)
If Y is a universal cover, it follows at once that it must be 

minimal since no proper subset of Y can contain both a disc and a 

Reuleaux triangle each of unit width. To prove that Y is a universal



cover we note the following, which allows the problem to be discussed 
from an alternative standpoint.

In a loose sense it may be said that tiie "difficult" part of the 

set y is the semi-circular part of its frontier, since this is of

radius ^ whereas a set of constant width 1 has its frontier
consisting of circular arcs of radius 1 « To take this into 
consideration, we assume (and shall then prove) the following property 

(p) of plane sets of unit constant width: if X is such a set, then
on the frontier of X there are two points s , t sâ ,, at unit

distance apart, such that of the two seui-oiroular arcs of radius i

which pass ttirough both s and t , at least one does not meet the 
interior of X . Mow with this property assumed, it follows that, 

since each point of X is at a distance at most 1 from s and t , 
X must lie entirely within a figure bounded by the semi-circular arc 

just described together with two arcs each of radius 1 centred at 

3 and t respectively* But this figure is congruent to Y , and 

hence X is congruent to a subset of Y ♦ But X is any set of 

unit constant width, and so it follows from our earlier remark that 

Y is a universal cover.
V/e now prove the property (p) which we assumed above, noting 

at tiie outset that it is sufficient to prove it when X is a Reuleaux 

polygon Z , say, because any other set X can be approximated to by 

means of circular arcs (which form the arcs of the frontiers of
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Reuleaux polygons). We make the following definitions* (i) two 

vertices a , b of Z are opposite if and only if their distance

apEurt is 1 , (ii) the line ab is defined to have a positive and

a faegative side, wnere the positive side is that on wnich the two

circular arcs lie whose centres are a , b resi>ectively* (These 

arcs cannot lie on opposite sides of ab , because then the distance 
between an interior point of one of the arcs and an interior point of
the other would bo greater tïian ab , wiiich is equal to 1 , thus
contradicting the definition of Z .)

Let X v  denote the circumcircle (considered as a disc) of the

jiart of Z on the negative side of ab , and r , its radius.ao A
^ab ^ ^  since any circumoircle contains a chord ( ab ) of
unit length. We assume, then, tiriat there are no opposite vertices 
a , b for which r^^= -g- , am' show tlic t this leads to a

contradiction.

Let p , q be any two vertices on the frontier of 2 . They

divide the frontier into two î arts, and if p , q are not opposite

points one of the two parts contains no points opposite to p or q .
(otherwise suppose that x is a point on one of the parts of the 

frontier, opposite to p , say. ^ Then if y is a point on the other 

part, y cannot be opposite to p since there is only one circular arc

corresponding to each vertex of the polygon. But if y is opposite to

q , tiie distance between x and y is greater thi.n the distance



between q and y , which again contradicts the definition of 3 • )
The vertices of Z which lie on such an arc, containing no points

opposite to p or q , are defined to lie between p and q • If

p and q are opposite, the vertices defined to lie between p and

q are those which lie on tiie negative side of pq •

We are assuming tiiat, for any pair of opposite vertices p , q ,

^pq  ̂ i  * there must be at least one vertex between p and q
which lies on v « (because otherwise v would just be the semi- *pq »pq

circle on pq , so tliat r^^ j j- ). Wappose then timt v , w are 
vertices lying on such that there are no other vertices lying on
y^^ between p and v or between q and w . ( v , v/ need

not of course be distinct vertices.) Let V(p) , V(q) be tiie

numbers of vertices lying between p , v and q , w respectively, 

and let

V(p,q) = inin(V(p),V(q) ) and r  = min V(p,q) .
p»q

how choose opposite vertices a , b such tiiat T  = V(a,b) and 

suppose for definiteness that V(a,b) = V(a) • Let b^ be the 

vertex opposite a adjacent to b and be tiie vertex opposite

b̂  adjacent to a . (bote that a^ and b both lie to the same 

side of ab^ since we liave already seen that the circular arcs centres 

a and b̂  must lie on the same side of ab^ .)

Consider first the case in wuich "T = 0 , so tliat lies on

(the frontier of) y^^ # b^ lies outside y^^ since b^ ^ b
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(so that ab^ is distinct from but the same length as the diameter
ab of Yq-u )j &nd hence y -u cuts the segment a.b in two points,

. &D. 11(̂Çte fj) cyyu>si,te. )
and c (say), ^ Since a and a^ lie on y^^ the line joining

b^ to the centre of y^^ bisects internally the angle ab^a^ and so
the centre of y^^ lies on the positive side of a^b^ (being the
side on which the arc aa^ lies). Thus except for a^ the part of

on the negative side of a^b^ lies interior to )) » which
1 1

implies that no vertex of Z on the negative side of a^b^ lies on
Y_ n . But this would mean that r , = i » which by our
assumption is impossible.

So we are left with the alternative that T' > 0 , In this
case let c be the vertex of Z between a and b on y , which

lYi) .) ^
is nearest to a . ̂ Because iT > 0 , b must be an interior point
of y , (since b , b are adjacent); and because of the
extremal property of a , b and c with respect to tT , c and all
the vertices of Z (if any) between â  and c must be interior
points of y , . Since the frontier of y , contains a^ anda^b^ a^b^ 1

^is interior to y^^ , and since b , c are on the frontier of
y^^ and are interior to ^ , it follows (since trm distinct

1 1
circles intersect in at most two points) that the part of y^^ between
b and c must lie interior to y^ ^ . Thus all the vertices of Z

between b and c are interior to y , . But then all the



vertices of Z between b. and a. are interior to y , , which1
is impossible by oux- assumption*

Hence our assumption is wrong, and there do exist two opposite 
vertices a , b for which r^^ = -g- , TMs completes the proof that 
Y is a universal cover*

It may be conjectured here, although no method of proof is 

suggested, that the cover Y which iias been described is in fact the 
minimal universal cover of largest diameter in tue plane*

A minimal universal cover of large diameter in , n ^ 5 •

We snail snow th£it such a cover exists by constructing one of
diameter at least equal to some given number h , however large* We

begin with an obvious universal cover P , the semi-infinite prism

jx̂ l ^ i f i = 1 , 2, *,., n-1, \  ^ 0 ; and our minimal cover will
be a subset of P *

how let Xq denote the perpendicular projection of any set X in

H onto X = 0 • If Y K. and Y d  P , we have é- K . andn n n 0 n-1
Yq CT Pq , where Pq is the (n-1 )-dimensional cube whose faces lie 

in the intersections of the hyperplanes x^ = ^  k • i = 1, 2» .**, 

n-1 , with x^ = 0 * Denote by P(Pq) the face of this cube which 

lies in x^ = jf • Yq must meet P(Pq) in just one point since Pq 
is a unit cube and Yq lias unit constant width* Denote this point 

by f(YQ)* how consider the class U  of sets congruent to Y which



lie in P and are obtainable from Y by a combination of any
rotation and/or reflexion together with a translation perpendicular
to the x^ axia (so that the n< w set is contained in P again) •

Let F(^ ) or P be the set of points f(Y) for all Y ̂  , and

lot P* CZ F be t le set of points most distant from the centre

(i> 0, O) of F(Pq) (the cube is symmetrical about x^ = 0
for each i , so all the coordinates except x^ of the centre of F(Pq )

go to zero)* If (̂ , x^, x^, . x^_^ , 0) 4P P , then because of

the reflexion and rotation referred to above, F contains all the
2”"^ points (^jdbXg, drx^, **.,±x^_^, 0) and clearly they are all

at the same distance from (J, 0, .*., 0) » It follows that there is

a point of P* , say (^, x^ , , .*, x^^^, 0) , for which x^ % 0

XXX® for all i . Choose one such point and let Y'G'y be the set

(or one of the sets) for which f(Y') = (i, Xg , x* , **,, x^_^ , 0) •
If f(Y') = (J, 0, , 0 )  , then every set belonging to *y has

f(Y) = (̂ , 0, . 0) (since f(Y*) is most distant from (iV, 0,.. ,0) ),
ÏXXpÜ&Müi ;ow the construction of the class }̂j ensures that the

original set Y can be moved so that any given frontier point of Yq

is a point of P(P^) , so it is equivalent to say tiiat if îljûtîX 
f(Y ) = '

(d"> 0, . 0 )  , then every face (because of the rotation property)
of any (n»1 )-dimensional unit cube containing Yq meets the

frontier of Yq only at the centre of the face* Alternatively, if

we take any two-dimensional section of Yq which is of unit constant



width, then every square circumscribing it has its sides bisected by 
points of Yq • Then it may be proved (lemma that every such

section of Yq is a disc* Thus Yq is an (n-1 )-dimensional ball 
(solid closed sphere), and hence so is the projection of Y in any

direction (by the construction of 3 )  « It follows, then, that if
f(Y*) = (&, 0, 0) , Y is a ball.

It may be shown (corollary to lemroa 2^ that there is at least 

one member of such that the circumradius of its projection in any

direction is strictly greater than J * Let Z denote that member 

for which the greatest lower bound of such oiroumradii has the largest 
possible value, and let this value be R * Now choose a large positive 

number M which satisfies the inequality (2R - 1)M > D * The
reason for our choice will become clear at the end of the oonstruotion*

Let P., be the intersection with P of the cone defined by

(*n + 3

V  . V  ‘ -  • ■ c ,  <

where this is chosen so that P^ just contains the n-dimensional unit

ball B whose centre is at (0, ••*, 0, 4) , (it may easily be

verified that B CZ P^ and that the frontiers touch at the points with

5^ “ # ) Also the cone intersects = k in the
(2M +1)

( (n-1 )-dimensional) ball centre (0, ••*# 0, k) and radius

r, = ----------f, . Since r, is large for large
 ̂ /((eii + 1)' - 1)



values of k it follows that is a universal cover (as the 

construction of involves removing only a finite volume from the 
prism P ) •

Now for each set Y ^ , Y cZ P , take the corresponding set

Y' as defined above, and translate Y* until it lies inside P̂  ̂ but 
as near to = 0 as possible. Let this new set be denoted by Y •

Let Q, be the union of all such sets Y ^  , and let S be the convex

cover of the closure of G , Q is bounded, and therefore so is S .

S is contained in and meets the hyperplane x^ = 0 (since B ).

Also, by considering the set Z corresponding to Z , we can see that 
S meets the hyperplane x^ = D # For if Z lies in x^ < D then

H ̂  r^ since E is the smallest value of the oiroumradii of S ,
and if E > r^ Z would have to lie at least partly in x^ ̂  D for

it still to be contained in the cone. Then

D + M /  i\-i
H ^   =   (1 +

((2M . 1)i 2M V kJ

D + M  

2M
^ since M > 0

and hence (2R - 1)M s< D which contradicts our choice of M . So 
and hence S must lie at least nartlv in lnZ and hence S must lie at least partly in x_ ^ D . Thus, since

3 also meets x^ = 0 , the diameter of S is at least D .
S is a universal cover by its construction from each Y ^  ,



and is compact since any closed bounded subset of is compact*
Let T CZ S be a minimal compact universal cover* By the same 

argument as above T contains points in D . We want to show
that it contains a point in x^ = 0 *

The line L defined by the equations

= g , %2 — = ## = = 0
meets Q in the point q = (4# 0, **., 0, 4) * since B d  Q, * Now 
q is the only point on L of the closure of Q * For# suppose that 
tiiis is not so, so t’nat there is a point p o f ~  o n L , p j l q *  

Then there is a sequence of points ^ Q (not in general on L ) 
such that p. ^ p as j oo , Then p. (near p ) belongs to

V J

one, say , of the sets whose union is ^ * Y^^ meets = 4

in a single point (since Y.^ is a set of constant width), say y;^ * 
pee cliâ^riL^) ^ ^
We need to know something about the length of py."^ * Now Y.^ lies 
n J J
wholly inside an n-dimensional ball of radius 1 which touches

= 4 &t * Call the centre of this ball e and denote the

angle poy^ by 6^ . Then cyj^ = 1 and so py^ = tan 6̂  .

We know that p. ̂  p as j -* , and p. g Y, . Thus p. belongsJ i) J J
to the ball containing Y. , and so pp. ^ px (with the notation of0 J
the diagram), where pxc is a straight line* Hence pp. ^ sec 0 . - 1J j
But p . -» p as j -> 60 , which means that 0. -» 0 and soj J
py^^ -*>0 as j oo • Thus if



f yp^ $ y^^^ ) , we must have -* 0 ,
I - 2| 5* $**$ u-1 , since p ^  L and L has Xg = Xj = #,.=x^  ̂= 0.
XX3É^jXXXXXaXi Now of the sets Yj ^ corresponding to the Y ^  ,

there is a subsequence Y^^ , converging to a set W , say, W ^ ,

and f(W') = (4,0 , O) (since the first and last coordinates of
f(W') are fixed by the construction of f anyway). Then since the
Y. and hence W are arbitrarily placed in P„ , we may use lemza 1 
d /5Y) *

again^to establish that W must be an n-dimensional ball. Thus W

is congruent to B • But Y^^ is one of the sets whose union is ^
and so it lies as near to x^ = 0 as possible while still being

contained in P„ If Y.. touches x = 0 , then so does W | if M « ji n
not, then Y^^ touches the cone and hence so does W ♦ Thus in
either case W is in fact B , in which case Y ^  converges to B •
Hence -[ yj^ | converges to q and p = q , Thus we have a 

contradiction, and so the line L meets Q in the single point

q = (4# 0# •••! 0> ¥)•
Now S is the convex cover of U (by definition) and Q 

meets L in the single point q = (4, 0, . 0 ,  4) > so it follows 

tliat S cannot meet L in any other point than q • But 3 ZD Q 
and so q ^  S # T is a universal cover and hence contains an 

n-dimensional ball of radius 4 i ^nd any n-dimensional ball of radius 

4 in P must touch the line L é Thus T must contain the point



q , and the ball containing this point is B by our definition of 

B • Thus Ï contains B (since this is th n  the only such ball T 

can contain), and thus T contains the point (0, . 0) e B *
Hence T has points in both = D and = 0 , and so the 

diameter of T is at least D » This establishes the required 
result.

Lemaa 1 . If Z 6 Kg and every square circumscribing Z has its 
sides bisected by the points of contact with Z then Z is a disc. 

Proof. V/e require first the property that any member Z of Kg 

contains a semi-circle of radius ÿ , and this may be deduded from the 
discussion of the two-dimensional result proved in the first part of 

this section. For, we may, as before, take Z to be a Reuleaux 

polygon, and if, with the previous notation, r^^ = 4 i then all those 
vertices of Z on the negative side of ab lie within • Then

the frontier of Z on the positive side of ab must lie outside or on 
the frontier of y^^ , since it consists of arcs of radius 1

centred at the vertices on the negative side of ab . Thus one of the 

semicircles forming the frontier of y^^ lies inside Z (allowing 

that frontier points of Z may lie on the frontier of y^^ ).
So now let a , b be two opposite points of Z such that the



kvi. ̂
semicircle joining ab lies in Z . ^ Let p denote the centre

of the semicircle, and let q be a point of Z furthest from p , so 
that it follows that the line through q perpendicular to pq is a 

support line of Z , because otherwise there would be a point of 2

further from p than q # There are two support lines of Z parallel
to pq and since Z ^ Kg the distance between them is 1 , and 

hence by the condition of the lemma they must touch, in points p^ ,
Pg say, the circle of which t̂ ^̂  is a part. Let the support line of 
Z tteough meet'the support line of Z through q (perpendicular

to pq ) in the point q^ , Then the two support lines through 
, pg and the line q^q^ form three Bides of a square of side 1 

circumscribing 2 # But by hypothesis every such square has its sides

bisected by the points of contact with Z , so that the segaents

each of length 4 • Thus the length of pq must

also be equal to 4 t and so, since q is a furthest point from p ,

the whole of Z is contained in a circle centre p and radius ^ ,

hence, since Z <r Kg * Z must be the circle itself*

Lemma 2* There is a member 'W of , n > 3 , whose projection in 
any direction is not an (n-1 )-dimensional ball.

Proof» We prove the lemma by constructing a particular set W and 

shoving that it satisfies the conditions of the leimia.
Let Bq (in n dimensions) denote the ball of radius 4 and



with centre at (O, 0) . Let denote the ball of radius 1

and with centre at the point p^ where the i-th coordinate of p^

is k , say (to be chosen later), and every other coordinate is aero.

Consider the intersection of Bq with the n , and let V denote
the union of the resulting set and the points p. . Then let W bei
a member of which contains V • For this to be possible, we must

have that the distance between any pair of most distant points of V ,
which is given by k /  2 , is at most 1 •

V/ denotes the projection of v in the direction 6 • how

we can choose W so that there is a point f on the frontier of W
o

Which is the projection of a point on the frontier of V/ that lies 

interior to Bq and on the frontier of one of the , I'or, this 

is equivalent to saying that every great-oircle on Bq (that is, every 

section of Bq by a hyperplane through the centre of Bq ) cuts 
properly - that, in a set X , say, where the interior of X is non
empty - the intersection of Bq with one of the ; for then the

projection of W in a direction perpendicular to such a great-cirole 

must contain the projection (in the same direction) of X , and 

except for this restriction we are free to choose W so that its 

frontier coincides with the frontier of at a point of X - Fr(BQ) ,

that is, at a point interior to Bq • To show that it is possible to

choose k so tliat every great-cirole on Bq outs Bq o properly, 

we note tiie following.
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Consider the sets which are the intersections of Fr(Bq) and 

Pr(B^) t i = 1 >2, n # We know that, since n ^ 3 , there
are more than two of these sets. Let q. be a point of Fr(BQ)rt Pr(B. ) ,

, and o the centre of Bq • ^ The distance p^q^ is then, 
with the notation of the diagram, given by

^i^i^ = + k̂  + k 008 p
where varies with the position of p^ . As we have not yet fixed 
the distance op^ ( = k ), choose ^ to be ^  . Then it can

be seen inunedlately, from the remark at the beginning of this paragraph, 

that every great-cirole on Bq must out at least one of the Bq n B^ 
properly, as required.

Then we have

= = 1  + l£= + i/2k■ 4
and since q^ is on Fr(Bĵ ) , p^q^ = 1 * So we have

4k* + 2 /2k - 3  = 0 ,
V7 ^ 1 yiT - 1

which gives k = ^2 T z “ * Note also that kV2 = " — ,
which is, as required, not bigger than 1 •

This completes consistently the construction of ’/ , and we have 

noted above that there is then a point f on the frontier of 

wliich is the projection of a point on the frontier of W that lies 

interior to B^ and on the frontier of one of the • But this 

means that sufficiently near f the frontier of coincides with



the frontier of an (n-1)-dimensional ball of radius 1 (i.e. ).

Thus Vi/0 is not an (n-1 )-dimensional ball of mdius 4 • It follows, 
since Wq has constant width 1 (trivially), that is not an
(n- 1 )-dimensional ball.
Corollary. There is a member W of such that the greatest 
lower bound of the oiroumradii of projections of W in all directions 
is greater than 4 •
Proof. Suppose that there is no such member of . Then for 

every W ^  , the greatest lower bound of the circumradii of

projections of W in all directions is ^ » But then by compactness 

it follows that there is a projection of W , for every W , for which 

the circumradius is equal to 4 ; which contradicts the lemma. Hence 
the corollary follows.
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Section 2, To prove that, if K ie a convex body of minimal width 
^ in , and K is contained in the union of r parallel stripe

of widths h^ , hg , • • •, h^ , then + hg + • • • + h^ ^ ^ #
(Tarski’s plank problem. [i2] ) [13]

fcïX-t'lorV gLXLof

A parallel strip of width h is defined as beiny tliat closed 
subset of which lies between two parallel (n-1)-dimensional

hyperplanes whose distance part is h • (Note that the term ’’parallel 

strip” does not mean tliat the strips are parallel to one another.) 

Suppose tliat there is a system of vectors already defined in E^ with 

respect to some given origin and initial line. Then to a given 
parallel strip of width h there corresponds a pair (ji, c) , where

u is a vector with [ju| > 0 and c is a constant, such that the
equations of the hyperplanes enclosing the strip are given by 

r.u + c=îtu^ « If we call the hyperplane whose equation is

+ c & + JU* the positive hyperplane, and the other the .negative
hyperplane, note that the vector u is perpendicular to these planes 

and directed from negative to positive; and put 2j^| = h . The

constant c is then given by the equation c + ( )̂ + 1  )jû  = 0 ,

where jiu [ is the distance of the negative hypeiplane from the 

origin of vectors. If positive and negative are interchanged so that



the, direction of the strip is changed, the corresponding pair 
becomes (-u, -c) •

Thus we oan identify a parallel strip by its corresponding pair 

(u, c) Consider, then, r parallel strips (u^ , o^ ) , (ug, Og) ,
léêi (u^, c^) * The part of which is not contained in the

union of these strips consists of (finite or infinite) polyhedra 
which may be denoted by P_ _ where €. is equal to +1 
or -1 according as the polyhedron is on the positive or negative side 

respectively of the strip (u^, c^) # For convenience of notation,

we shall write C for the sequence , and shall undetstand
€ usually to run throu#i all possible sequences formed by the 

numbers ±1 , even if some of these 2 sequences do not correspond
to actual polyhedra • The sequence £ may thus be used in the

same way as an r-dimenoional vector in the discussion that follows.

Now suppose that we are given r parallel strips (u.|, o^ ) ,

(j^, Cg) , (u^, o^) whose widths are denoted by \  »
1 = 1 ,*#.,r , and suppose that the h^ are such that their sum is 

less than I , where I is the minimal width of the convex body K 

we are considering# We want to prove that in this case K is not 

entirely contained in the union of the strips*
The part of K outside the union of the strips consists of the 

domains K m , which are all separated from one another by the
strips. If we give to each K « a translation - 2 u , where



eu  denotes the sum €^u^ + EgUg + + l^u^ , we are in

effect eliminating these separations. The translations may cause 

overlapping, but this makes no difference to the method of proof we 

are using# The total part of the space filled by these K o  
after translation is

U  [(K - o  {Pj. - Eu)]
Now the geometrical significance of K - s u is merely that K is in
a different position corresponding to a translation -fu for one 

given C ; if then we consider the intersection of the sets 

K - c/u where ranges over all possible values of C , this
intersection must be contained in K - Cu « Hence

0  [(K -£u) n (Pj. U  |{Q(K -c'a)? m (Pg - Cu)]

= |p(K - ê u)| -£S)1 I (1 )
for c! ranges over all possible C so that the union over all ^ of 

(K - g/u) leaves it the same.
Now we can s ow that in fact - S u) is the whole space ,

as follows. For a particular C =  (E], .## ^^) , put
= (O, 0, ,##) , where every term of the sequence

except is zero# For a given sequence S =  ( 5^, ,,,, ,

let denote the set of points r which satisfy r.(Su) + 5^c >C^u)^ »

, where as above we have S u  = +***+ # and
So = + Sj,ĉ  f then for jFuj > 0 , is the half-

sîiaoe lying on the positive side of the strip (Su, Sc) . Then with



this notation we see that Pg is given by the equation

^  ' 0  ®^(i) •
Now define by = A   ̂2 ' "^here €  denotes one
particular sequence of numbers dlr1 , and d  ranges over all possible
such sequences. If we set such that and

cj = for all j ^ 1 I it is clear that each oan be put

in the form (C - . Hence cZ , and we oan now show that

in fact 0(0.^ - f u) is the whole space.
Consider any point r of . r lies in

if and only if r + Cu satisfies the Inequation for £0/2 *
that is,

(r+Cu) . 1 ^ = ^  a )  +

which gives

2r.(fu) + 2gc + feu)^ ^ 2r.(f^u) + 2£»o +
where again € is fixed and is any sequence of the numbers zfcr1 • 
Then t lies in - £\x when tliie inequality is satisfied for all

. This is true automatically for a value of C (there may be 

more than one) which makes the left-hand side of the inequality maximal 

(since LH3 and 8HS have exactly the same form)* Hence every point r
lies in one of the , and this proven that

®n “ L)(Qf - <: U(Pg -êtt)
and henoe 0  (Pg <• Cu) = .
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ShuB we have from (1) that

U  [(K -Eu) o (Pg Q  (K - £/u)

= n(K-*üi i- (2)
where, by the definition of the , the last intersection ranges 

over all possible oosibinations of signs* To prove our result, we want 
to prove that this intersection is not empty*

It is sufficient to prove that for a convex body M of minimal 
width m , and v a vector whose length is |v| = 4h where h< m , 

the intersection f){U d  v) == (M - v ) n v) , which is convex,
is not empty and has minimal width not less than (ra - h) « Then 

successive applications of this to (2) will establish the main result.

M has at least one chord (lying between i)arallel support
hyperplanoe at its endpoints), of length k , say, k ̂  m , in the
direction of the vector v * A length k - 2|vj = k - h > 0 of this 

chord is contained in db v) # Denote the endpoints of this
length by A , on the boundary of M + v , and B , on the boundary

of M - V * Now if we take A as the oentre of similitude of the
k — hratio - - , which is less than 1 , the set M + v may be carried

into a subset M* of itself, and the minimal width of this subset is 

given by # which, since h < k , is not less than (m - h) .
Similarly, if we take B as the oentre of similitude of the same ratio, 
the set M - V  is carried into exactly the same set , which is

therefore also a subset of M - v • Henoe M'cr d: v) , and
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we have already seen that the minimal width of M' is not less than 
(m - h) •

Applying this result, then, to the intersection i6 (2) , we
have that flCKdr is not empty and in fact contains a
convex set whose minimal width is not less than -6 - h ^ - . * ,  - h ^  •

Thus if h,j + ••* + h^ < ^ , K is not entirely contained in the
union of the strips, and so we have finally that if K is contained

by such a union, the sum of the widths of the strips must be at least

-e •

It may be noted, to conclude this section, that a much shorter 

and simpler proof of the same result is possible when K is a circle,

yu: pose that K is a given circle of diameter €- which is

fiovered by r parallel strips of widths h^ , hg , h^ ,

Consider the hemispherical surface H erected on K as its base, and

denote by , Hg , the zones on H which are bounded by
planes perpendicular to K through the edges of the parallel strips 

covering K , so that the strips which cover K are the projections 

of the perpendicular to K onto K • There is a one-one

correspondence between the points of H and the points of K , so that 

it follows that H must also be completely covered by the zones

We may now make use of the property that the surface area of the



zone of a sphere is a function only of the width of the zone (so long 

as both parallel edges of the zone meet the surface of the sphere) and 
not of its position relative to any fixed point or line. Thus we may 

replace any of the zones with a zone f say^ whose projection

on K perpendicular to K is still of width h^ , and whose surface 

area (on the hemisphere) is equal to that of . Choose, then,

a set , Zg, ,,,, Zp of such zones, such that they all lie parallel 

to one another on H and still cover H • (%ie know that this is

possible because we have kept the same total area of the zones, and if
by lying parallel to one another and not overlapping they do not cover 

H then there is no position of them for which H would be completely 

covered,)
Then, finally, the projections of the zones Z^, Zg, , Z^ on 

K form a set of parallel strips, parallel to one another, of widths 

h^, hg, , h^ , which cover K since the Z^ cover H • Since 
K is covered, therefore, the sum of the widths of the strips in this 
position must be at least equal to the diameter of K , and thus in

general, from the above argument, we have h^ + hg + + h^ ^ ^ •
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Section 3# To show tbiat a small-circle of a unit sphere, of angular 
radius ^  , can he covered by a finite number of lunes only if the sum 

of their widths is at least 2^ , and if the sum is exactly ^  ,

only when they all share the same vertices, C^4j

fcr»- trior̂

Consider the class of all great-circles of a unit sphere. Then 

it is a well-known problem to find the shortest possible curve, with 

various restrictions on the definition of ”curve”, which cuts every 
member of the class at least once. If the curve must be continuous, 

the extremal is a semi-circle (of length ir ),
A variation of the problem is to find the shortest possible curve 

on a unit sphere which outs every great-circle making an angle less

than some fixed ^  with the equatorial plane, and we discuss this now,

What we are considering in fact is not the problem as it stands, but an 

equivalent statement of it which is analogous to the “plank problem” 

of T. Bang,
In place of the zone of the sphere between two circles of latitude 

^  we take the largest spherical cap which can be contained by such a 

zone; this has the advantage, as will be seen by the way the problem 

is treated, of having circular symmetry* Our equivalent problem is 
then to cover this cap by a set of lunes and to determine the least 

sum of the widths of the lunes for which such a covering is possible.
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(a lune is that part of the surface of a sphere which is hounded by 

t>ie arcs of two intersecting circles on the surface of the sphere*)
We consider here covering by a finite number of lunes.

v;e need first some definitions. A small-circle P  of a sphere

is any circle whose centre does not coincide with the centre of the 
sphere. Denote by D the interior (on the sphere) and the frontier 

of V  f and let C be the centre (on the sphere) of D * We 

define a sliver as a lune of small thickness Ç  (at its widest part) 

bounded by t>vo great-semicircles 5 this will enable us to consider a 

large number of slivers in place of a smaller number of lunes covering 

D , Such a sliver is said to be centrally situated with respect to 

D if the great-circle joining its centre to C is perpendicular to 

the sliver. (if we call the points of intersection of the bounding 
semi-circles of the sliver its poles, the centre of the sliver is the 

point, of the sliver, which lies midway between these two poles and 
equally distant from both the bounding semi-circles.)

Now in moving to what we have noted is an equivalent problem, as 

it is set out at the head of this section, we have in fact moved from 
a statement involving linear measures to a problem whose solution 

demands the use of area. V/e want therefore to make sure that in 
considering the new problem we are not introducing more than the original 

problem contained* In order to do this, we show that we can attach at 

each point of D a “weight function” f such thqt the “weighted area”



of the intersection with D of a centrally situated sliver S , tliat 
is, the integral of f over such a region, is proportional to the 

thickness of S and does not depend on the relative positions of S 
and D , provided that both edges of S actually intersect D • Also, 

since we are working with a cap of a sphere, we shall require that the 

function f has circular s:/mmetry on D , tiiat is, tiiat it is a 
function only of the angular distance t from any given point to the 

centre C , on the sphere, of * Lerxa Improves the existence

of ouch a weight function, and also establishes certain smoothness 
properties wiiioh we need*

V/e have, then, a weight function f with a s ecific property 
related to centrally situated slivers, as we have described* We shall 

need to know something about the integral of f over the intersection 

with D of a sliver S which is not centrally situated, and it may 
be shown (lemî a 2^) that such an integral increases as S is slid, in 

the direction of its own length, towards a centrally situated position, 

and tliat the maximum value of the integral occurs only when S is 

centrally situated# With these properties established, it is easy to 

prove the main result#
As there is no restriction (except that we do not consider 

infinite numbers) on the number of lunes taken, we may take a large 
number n of slivers , and consider the integral of the weight 

function f over the intersection with D of the union of the



slivers* It follows that, using a condensed notation,

with strict inequality unless no two of the slivers overlap (although 

they may of course liave frontier points in common). Let denote
the sliver when it is slid into the centrally situated position; 
then by lemiiia 2

J ' < J '
D„S.'

and tiie inequality is strict unless = 8^ . Finally since f

lias circular symmetry, we may replace 8^ by 8'' , where 8^ and

S V  are both the same distance from the centre U of D but all the

8^" shai’o the same vertices. Then wo have

ik(L̂) ̂ ̂ Jsy ̂ =̂'' d[ŝ'  ̂ I'd ̂
if the sum of the widths of the is less than or equal to 2̂  •
Equality in all three inequations occurs only if the lunes do not 
overlap, are centrally situated, share the same vertices, and the sum

of their widths is equal to 2 ^  • If P  can be covered by the

lunes 8^ , we know that Ç , and thus we have from

above that the sum of the widths of the must be at least 2^ .



If their sum is exactly 2^ , then equality must hold in all the

inequations above, so tînt tne lunes do not overlap, are centrally 

situated, and share the same vertices (which in fact implies the 
centrally sitUcited property).

(From this follows the corresponding measure tîieory result for 

sets of great-circles, which we mentioned at the beginning Of the 

sections the shortest continuous curve on the unit sphere which outs 
every great-circle, making an angle of less than ^  with the 

equatorial plane, is part, of length ^  and bisected at the equator, of 
some circle of lor^tude.)

Lemma 1 , The angular distance of a point P of D from the centre 

C is denoted by t . Let tne angular radius of P  (the frontier of 

D ) be a • A function f is to have the following properties»

(i) f exists for every point P of i) ,
(ii) f has circular s^nametry, i.e. it is a function of t only,

(ill) the integral of f over the intersection with D of a centrally 

situated sliver 8 of thickness *b , is independent, for fixed ^ ,
of the relative positions of I) and 8 , i.e. it is proportional to
^  , provided that both edges of 8 actually intersect I) •

Then the (positive) weight function



itq

f(.) . #  f...-' - ( s t )  • } ■

where c is any positive constant, satisfies these requirements* 
hroof. t is the angular 
distance from C of a 
small element of width 
d(/? of the centrally 
situated sliver S , the 
angular distance of the 
element from the centre of 
the sliver being ^ • 6
denotes the angular distance 
from C of the centre of the 
sliver*

If CPX in the diagram 
represents the same spherical
triangle, with sides of length 6 , cf> , t , and 0 denotes the 
centre of the sphere of which D is a cap (so that OX = OP = OC = 1 ),
then XY and XZ , the tangents to the triangle’s sides at X , are 
perpendicular to eacn other and to OX , and we have 

YZ® = YX^ + XZ^ = tan^e + tan^ cf"

and YZ^ = OY® + OZ^ - 2*0Y.0Z.cos YOZ
= 860*8 + sec*t;f> - 2 sec 8 sec <f> cos t

which gives cos t = cos 8 cos ^ •



The area of the small slice of 8 to the first order is 

S  cos dcj> « Then the property (iii) that we want for f is 
seen to he equivalent to saying that the integral

^ [ f(t) oosc^ dc^ ~  2S f f(t) cos ^ d ( 1 )
4  Jo

where cos t = cos 6 cos cj?, 8 ^ t ^ a , cos a = cos Ô cos X , 
must be independent of 0 in the range 0 ^  e^o-S (to satisfy the 

condition that both edges of S should intersect D ). Since D has 
circular symmetry, any function f depending only on the angular 

distance t of a point from the centre of D automatically satisfies

(ii) , so tliat we need only to prove that a function f(t) exists such 
timt the integral ( 1 ) is independent of 6 , 0 ^ 8 ^  o-S .

Using 008 = cos t j cos 8 we see that we require

f(t) ^ t dt
j t-0 008 0 cos 0 V^î - (cOS*t/oO8*0)~]

to be constant} that, putting F(x ) = f(t ) , coe*t = % , cos*6 = y ,

cos* a  =r k , we require

= C

where c is constant.

This, put in the form

^ P(x)dx
/(y-"x7 = = g(y)k



is a standard Abel type of integral equation, from which we want a 

solution for F(x ) • (bee ref# p l ^  *) g(y) is continuous in 
the closed interval ĵ k, y*] , and

('

= 2cy(q • -g- sin 2q)

= 2cy| 2 sin*q dq
vl

putting T= y sin*q
1= ,2ir

has derivative with respect to y equal to 

20 [  I  -  3in‘(/(|) -

y) *

V[yVk)

= 2g C08~]|̂

which is continuous in the half-open interval (k, y"] , but
g(k) = 2oVk ^ 0 since Vk = cos a and a ^ since D

is strictly less than a hemisphere ( P was defined not to be a
great-circle).

HenCu the unique solution for F(x) is givers by

' W  ■ 4 ^  # 3 -  • ^

2c/k 2o
m/’(x - k)

k\ VkV(x - k)



#  [“--’J® • ^
I... m  . ÿ  [ « . "  ( ^ , )  , .
as in the statement of the lemma.

We may take c = ^  since it is arbitrary. We shall be 

concerned with integrals of f with t taking any value between 0 
and C , and we need to know tivit these integrals will exist and 
converge throughout* It may easily be calculated that

f '(*) = ton t..qqs a (oosH + ooB^a) o x 6 < t < a
(co8*t • cos*a)* /*

> 0 for all t in the given range

and therefore f(t) increases monotonioally, 6 ^ t < a • Since

f(0) = a + 2 cos a > 0 , f(t) > 0  for all t in the range
we are considering* Also we have

, \ __ i.f1 / cos \ 2 cos af(a + h) = Qoé (oos (a 7hyj* T̂ cSr̂ TSrThTTSSFS) •
Then for h negative and sufficiently small,

( c o B ° % V h 7  )  " ° as h . 0

2 008 a = 2 008 o (ĥ sin̂ a - 2h sin a oos a)~̂
/(oos» (a + h) - (ioPa)

neglecting hi^er powers of h 
under the root sign



= (-h)~^2cos JOb (sin 2«. + 0(h))
-*■ oO in the same way as

(2 oot a)^(a - t)**̂  as t + # ,
1

and the integral of (a » t ) ^  with respect to t converges over any

range ĵ a, b 2 for which 0 ^ a ^ b a . From these last 

considerations it will be seen triat all the integrals to be considered 
do converge.

Lerryiia 2» If a sliver 3 is not centa®.lly situated, then the integral

of f over S X) increases as S is slid, in the direction of its
own length, towards a centrally situated position, and the maximum 

value of the integral occurs only when S is centrally situated.

Proof. We can ignore the case when 8 * D = . Otherwise there
are three possible oases to considers

(i) S cuts P  twice ;

(ii) S outs P  only once but cuts the perpendicular great-circle 
from G to S 5
(iii) S outs P  only once and does not cut the perpendicular
great-circle from C to S .

Suppose that S is displaced from its centrally situated position

through an angular distance , and put \ = cos* \  cos m/ cos 0 )
as in lemma 1 • Then the integrals over S I) for the three cases



are seen to be as follows»
X

(i)
f A
I f cos( ̂  )dc|> +J 0

A
f cos(<f - 'yj)drj> =  ,

and 0 <
X

f -X
(11) f cos( sp — 'Vj )dcj> + \ f cos(t|> + oj )dt^ s

(iii) f 008^^- yj )dcj? f

and f  ̂  *y[ f  + )̂
In these integrals denotes the angular distance of the element from 

the perpendicular great-circle from C to S ; , if we denote the
integrand by f oos ̂  in each case, is the angular distance of the 

element from the centre of the sliver; the integrals are thus seen to
rX

be of the same form as the integral j f(t)cos d((> of lemira 1
0

To prove the increasing property of the integral of f as stated 
in the lemna, we need to show that each of the integrals , Ig ,

increases as the value of ^ decreases. The two integrals whose sum

is have the same range of integration, which is independent of

7j ; so we need only note that the sum of the integrands is 2S
2f cos ^  008 , which certainly increases as ij decreases. Hence

so does • In passing from (i) to (ii) , note tliat = I^



TT \for ^  “ *2 * * The range of integration of the first
integml contributing to is independent of ^ , and the integrand

is f cos(<f? ) where 7| -<=(>> 0 so that f cos(«(>-'>|) increases 
as *yj decreases; in the second integral both the integrand and the
range of integration increase as decreases. Hence so does 1^ *
Fote again that for ^  . Finally f > 0

again for 1  ̂ , so that the integrind, the range of integration, and 
thus , all increase as decreases.

This proves the first assertion of the lemioa. For the second we 
need only to note that, throughout the range of values for which the 

integral 1  ̂ holds, the integrand 2f cos ()> cos is in fact 

increasing strictly, so that the maximum value of I^ occurs only at 

= 0 in this range, and since the values of and do not,
from the first part of the lemma, ever exceed any value of , the

lemi.a is proved completely.



Section 3 - Notation and Definitions*

(The page nuBiber refers either to the first page on which a 

given notation is used, and therefore explained, or to the page on 

which a given terra is defined in full.)
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Section 4* To show that, for all maximal K-packings of positive 

minimal radius, the greatest lower hound of their lower densities is 
, and is strictly less than if K-packings of ellipses

are excluded,

The definitions of the terms of the problem are stated first.
Eg is the Euclidean plane with a prescribed cartesian system, with 

origin o • Â convex body in Eg is defined as a closed bounded 

strictly convex set of points of Eg which is symmetric in an Interior 

point of the set* Let K be a convex body which is symmetric in o ,

Associate with K the unique distance function F(x) , defined and 
continuous for all x ^ Eg , such that

(i) F(tx) - |tjp(x) for all real t ,

(ii) F(x ) > 0 for all x other than o ,
(iii) F(x  + y) ^  F(x) + F(y) for all x , y , with equality

only if X , y are coUinear with o ,
(iv) K is the set of points x for which F(x) ^ 1 ,

Given g G Eg and R a positive real number, we denote by

K(z,r) the set of points x for which P(x - z) ̂  r j the set

K(z,r) is known as the homo the tic translate of K with centre s and

radius r , We define a maximal K-packing of minimal radius r to be

a collection M of homothetio translates of K , of possibly different



radii but all at least r , such that

(a) no two distinct members of M have an interior point in common,
(b) any hoa»thetic translate of K with radius r which is not in 

M has at least one interior point in common with a member of M •

Now given a K-colleotion N of bodies, let V(N,k) denote the 
area of the point set union of the intersection of members of N with 
the circular diso centred at o and with radius k > 0 • We define

the lower density of N to be the number lim inf V(N#k) . Let
k-* oC TI^

k = k (k ) denote the greatest lower bound of the lower densities of 
all K-collections of sets of minimal radius r > 0 . (The general 

definitions are given, although in practice most of what follows will 
refer to particular K-oollections M which are maximal K-paokings#)

It was conjectured by Pejes Toth (^7]) that if K is a circle, 

there is a maximal K-paoking of lower density k , every member of 
which is a circle of radius r « The conjecture was in fact made also 

for saturated systems of circles which may not form a packing. While 

not establishing this completely, we shall prove here a modification of 
it, which is the analogous result for packings when K is any strictly 

convex domain with a centre - it is obtained on the lines of the 

corresponding proof by Eggleston ( /iB^ ) for K a circle. The

authors of the paper to be discussed have also ( [193 ) extended
Eggleston’s result to the case when the circles form a uniform 
saturated set, the method of proof following very similar lines to those



which we shall be considering here.

(a set of closed circular discs of radii r.j , r^ in the 
plane is a uniform saturated set if it has the properties»
(i) r = inf r^ > 0 #
(ii) any circle of radius r has at least one point in common with a
member of the set.)

The main result to be proved is stated as follows*
Theorem A* There is a maximal K-packing of minimal radius r whose 

lower density is = k^K) and every member of which has radius r . 
If t(K) denotes the area of the largest triangle contained in K , then

A . )  - %  .
Its proof is a consequence of the following theorems 1 and 2 «

Theorem 1 * Given a maximal K-packing LI of minimal radius r ,

there is a triangulation of the plane with the properties that
(i) each vertex of each triangle is the centre of a member of M ,

(ii) if abo is any one of the triangles and K(a) , K(b) , K(c) , 

are those members of M with centres a , b , o respectively, then 

there is a point p such that the homothetio translate of K with

centre p and radius r has a point in common with each of K(a) ,

K(b) , K(o) .
Theorem 2* Let K(a) , K(b) , K(o) be non-overlapping homothetio 

translates of K , with centres at the vertices a , b , o of a



non-degenerate triangle, each of radius at least r , and each having 

a point in common with a homothetio translate of K of radius r .
Then

Vlft'be n fK(a) u Kfb) V KfcUl 7(K)

T(abo) ^ 8t(K)
where abc denotes the convex cover of the points a , b , c «

It is known (and is stated without full proof in, for example,
Bambah and Rogers [20^ ) that , with equality

2t(K) V 3
needed only for ellipses. Thus we have finally, using theorem A , 
the following result*

Theorem 5. k^K) = ^ » ^ith equality only
when K is an ellipse.

Proof of theorem 1 .
Let IVI be a maximal K-packing of minimal radius r . In order

to begin the construction of a suitable triangulation of the plane, we 

make the following definitions.
Given K(a,R(a)) € M and an arbitrary point x of the plane, 

put d^(x) = F(x - a) - H(a) ,
and denote by 8(a) the set of all those points x of the plane which 

liave the property d^(x) ^ d^(x) for all K(b,li(b)) € M .
V/e note tliat d^(x) can be negative and that therefore 8(a)



always includes K(a,R(a)) itself» Also dĝ (x) ^ r for all a 

and X G S(a) since M is a maximal packing» We state here also 

three properties of the sets 3(a) which will be used later in the 

proof of this theorem; the proofs are given in lemmas 2 , 5  and 4 • 
(See î>age #)

S(i) If x €  S(a) , then every point except possibly x of the

line segment ax is an interior point of 8(a) »
S(ii) if a , b are distinct centres of members of M , then

3(a) c: K(a,F(b~a)) »

S(iii) If a , b , o are non-collinear centres of members of M

then 8(a) r\ S(b) cannot have any point in common with the

closed set
H(a,c, b^) A H(b,o, a*)

(nor, similarly, 3(b) S(o) in H(b,a, c“) H(o,a, b*) ,

S(o) A S(a) in H(o,b, a*) a  H(a,b, c“) ),
where H(x,y, denotes the closed half-plane, containing 

the point z , whose frontier passes throng the points x , y ; 

and U(x,y# tT) denotes the closed half-plane, not containing 

the point z , whose frontier passes through the points
X , y • Now we define a crosspoint of M to be a point v

of the plane which lies in at least three distinct sets 3(a) , S(b) , 

3(c) where a , b , c are centres of distinct members of M • We

say that a , b , c belong to v • Again we state three properties



of the crosspoints of M which will be used later; their proofs are 

in lemmas 5 * 6 , 7  (page of this section.

0(i) Any three centres belong to at most one crosspoint.
C(ii) The crosspoints of M form a discrete set.

C(iii) At most a finite number of centres of IT belong to one

crosspoint.

For each crosspoint v we denote by P(v) the convex cover 
of all the centres of M which belong to v . Since we are attempting 

to construct a triangulation of the whole plane, v/e prove first that 

crosspoints exist in the plane and tïiat the sets P(v) , which by 

property C(iii) are polygons, cover the whole plane.

By their definition the sets 8(a) cover the plane without 
overlapping (although of course as they are closed they may have frontier 

points in common). Each 8(a) is by its definition bounded and because 

of property s(i) a star body (that is, a body such that a eegraent 
which joins the point a to any point of the frontier is entirely 
contained in the body). Thus its frontier is a simple closed curve, 

and eveiy point of the frontier belongs to at least one other such 

set S(b) • S(a) must meet at least two such sets, because if its 

whole frontier belonged to S(b) , for example, 8(b) would not be a 

star body (since no interior points of 8(a) belong to 8(b) ) .
But we know (lemma 1̂ ) that only finitely many members of M 
intersect any fixed diso in the plane, and hence 8(a) can meet only



finitely many sets S(b) . So the frontier of S(a) can be 

represented as the union of a finite number of (and at least two) 
closed sets each belonging to a set S(b) different from S(a) ,

Hence there must be a point v of S(a) which is contained in at 
least two other such sets 8(b) (since all the sets are closed), and

so V is a croespoint of M • This i)roves the existence of a
crosspoint in the plane.

Now consider any crosspoint v and the polygon P(v) which is 

the convex cover of all the centres belonging to v • Let a , b be 

two centres belonging to v such that ab is a proper edge of p(v) . 

p(v) has an interior since any tiiree centres belonging to v cannot 

be oollinear. (See the beginning of the proof of lemma 5 , page •)
In order to show that the ?(v) cover the plane, we need to show that

there is a crosspoint w of H different from v such that the set

f (w ) u P(v) contains the segment ab as an interior diagonal. For

then we may complete the proof as follows. The union of all the p(v) 

is closed, so that its complement is open. If this is not empty, it 

has a frontier which must consist of line segments each being on the 

frontier of a polygon P(v) . But if the existence of polygons P(v) 
and p(w) on either side of an arbitrary line segment ab joining 

centres of members of M has been proved, this is a contradiction and 

we shall have shown that the polygons ?(v) cover the whole plane.

We want, then, the existence of w satisfying the conditions



léa





given above* We must obtain it for each of two cases, since we do not 
know if V and P(v) are on the same side or opposite sides of ab 
so suppose first that they are on the same side of ab,  ̂Denote by v' 
the point of the frontier cÇ S(a) which lies on the ray ba produced
past a , and let B(a) denote thp.t part of the frontier of 3(a)
which has endpoints v , v* and which passes, at least in part, through 
the side of ab opposite to that containing P(v) • Fach point of 
B(a) lies as we liave seen in at least one set S(o) , say, other than 
S(a) . We assert now ths.t there is a neighbourhood of v such that 
except for v the part of B(a) lying in the neighbourhood belongs to 
S(a) and S(b) but to no other such set.

For if not, there is a set S(c) , different from S(a) and S(b) , 
which has points other tlian v on B(a) and arbitrarily close to v • 
It follows that V itself belongs to S(c) since by definition S(c) 
is closed, and so o is a centre belonging to v • Now consider the 
possible positions of the point c . Since a , b , c are all centres 
belonging to v , c cannot be collinear and with a and b , and
since c is a point of the polygon P(v) it must lie on the same side
of ab as P(v) . Also o cannot lie in the triangle abv . For,
V G S(a) n 3(b) so that we have r  ̂ d^(v) = P(v-a) - R(a) and
r ^ d^(v) = P(v-b) - R(b) ; hence the triangle abv, except
possibly for the point v , lies completely in the interior of the union 
of the sets K(a,R(a)+r) , K(b,R(b)+r) , and thus no centre o of M



*4»
can lie in abv since r (c) ^ r for all k (c,R(g)) ̂  M • If w©

take any point d distinct from v in the set B(a) ̂  S(c) , we know

by property S(i) tliat the segment cd consists except for d of
interior points of S(o) * This implies the.t cd cannot cross either 
av (which except for v is interior to s(a) ) or bv (which

except for v is interior to S(b) ), since by definition no two sets
S(a) , 8(b) can liave interior points in common, and we have already 

specified that d is distinct from v • i o c can only lie collinear 

with d and v , with v lyinr between d and c • Thus v is an 

interior point of S(c) , since both c and d belong to 8(c) , which

is a contradiction since v is a crosspoint of M • Hence if v and

P(v) are on the same side of ab , there is a neighbourhood of v 

such that except for v the part of B(a) lying in the neighbourhood 

belongs to 8(a) and 8(b) but to no other such set.

If, on the other hand, v and P(v) are on opposite sides of

ab , let B(a) be defined exactly as before* ^ We make the same 

assertion and again assume the contrary to obtain a contradiction*

Again we have a set 8(c) as above and v ^s(o) so that c is a

centre belonging to v • The point c cannot be collinear with a

and b , and again it must lie on the same side of ab as P(v) •

If we consider a point d of B(a) n S(o) as before, then d can be

chosen as close to v as we please. Now the segment cd cannot cross 

av , bv , or ab (since all points except one of ab are interior



to one of 8(a) , S(b) and d is variable so ne cannot ensure that

cd always passes through this one particular point), and so it follows 
that o is confined to one of the regions

H.(a,b, v") A H(a,v, b“) ,
n(a,b, v“) n il(b,v, a*) •

But then v lies in one of the regions

U(a,c, b“) A H(a,b, o**) ,

H(b,c, a^) r. H(a,b, c*) ,
Either of these is a contradiction with property S(iii) , since

V 8(b) S(c) and v ê S(a) a S(c) «
Thus in either case our original assertion is true, that there is 

a neighbourhood of v :.uoh that except for v the part of B(a) in 
the neighbouaAiood belongs to 8(a) and S(b) but to no other such sot. 
Bow the endpoint v* of 3(a) does not lie in 8(b) since the segment 

bv* lies partly in 8(a) , thus contradicting property 8(i) . Hence 

there is a first point, which will be seen to be the point w that we 

want, of B(a) other than v which lies in some s(o) , say, other 
than S(a) and S(b) * Then w is a croespoint of M different from

V and a , b , c are centres belonging to w • Since tliie is so, we 
imve again that a , b , c cannot be collinear, and since c is a 

point of the polygon P(w) it must lie on the same side of ab as 

p(w) • If 0 also lies on the same side of ab as P(v) , then this 

is the same as was true in each oase above and leads to the same



lié

contradiction with the propertieo of v . Thus c must lie on the 
opposite side of ab to P(v) , which implies tliat P(v) , P(w) lie

on opposite sides of ab and so contain ab as an interior diagonal

(since each polygon P(v) has an interior, in other words, is not 
degenerate)•

hence, as we Imve already seen, we may deduce from the existence 

of the crosspoint w that the polygons P(v) cover the whole plane. 

v;e require finally that no t?/o such polygons overlap, that is, have 
interior points in common, for then it is straightforward to divide each 

p(v) up into triangles having their vertices at the vertices of P(v) , 
and so to triangulate the whole plane according to the conditions of 

theorem 1 •
So suppose that we are given distinct crosspoints v , w such 

that the centres a , b , c of M belong to v and centres d , e , 

f to w # By property C(i) at least one of the centres d , e , f
is distinct from a , b , c • If we can establish that the triangles

abc and def do not overlap, then this is sufficient since each is an 

arbitrary triangle formed by vertices of the polygon P(v) or P(w) 

and so it follows immediately that the polygons themselves do not 

overlap*
Suppose instead that abc and def do have interior points in 

common* By its definition the point v is common to the three sets 

K(a,R(a)+r) , K(b,R(b)+r) , K(c,R(c)+r) , and since the sets are
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strictly convex and a , b , c are their centres it follows, because 
of the packing properties of M , that apart from v (possibly) the 
triangle abc is contained in the union of their interiors; thus, 
abc and similarly def can contain no centre except at their vertices. 
Then abc and def must overlap in such a way that at least one edge 
of abc intersects an edge of def in a point which is interior to 
both edges. Suppose these edges are denoted by xy » at respectively, 
and let C(x,y) denote the path consisting of the two line segments 
XV and vy , and C(e^t) the path consisting of the segments zw and 
wt . Except for the point v the path C(x,y) lies in the union of 
the interiors of S(x) and S(y) (by property S(i) ), whereas
except for .w C(z,t) lies in the union of the interiors of S(z) and
S(t) . Also V ^ w , so C(x,y) and C(z,t) Viave no loint in
common (by the definition of the sets S(x) ). But, according to 
the property S(iii) , w cannot lie in the region H(x,z, t z. ;

( X , z , t being non-collinear), or in the region 
H(y,z, t") /̂ H(y,t, z“) ( y, z, t being non-collinear). Hence
C(z,t) cannot intersect either of these regions and so it must 
intersect the segment xy in an interior point (since the regions 
defined above are closed). Similarly C(x,y) must intersect zt in 
an interior point. Hence C(x,y) and C(z,t) must have a point in
comiiion; but we have already shown that this is impossible. Thus the

 ̂-triangles abc and def cannot overlap.



With this result established, theorem 1 follows, as we have 

seen, at once, because the plane can now be triangulated as required.

Proof of theorem 2.

In accordance with the conditions of the theorem, suppose that 

we are given a triangle abc and bodies K(a,R(a)) , K(b,R(b)) ,

K(<3,R(o)) , no two of which overlap, but such that K(a,R(a)+r) , 

K(b,R(b)+r) , K(c,R(c)+r) have a point in common. If we put 

vfaho r, {K(a,H(a)) u K(b,H(b)) u K(o,K(o))|]
^ =   ■ ■    9

V(abc)
the theorem will follow, as will be seen later, if we show that inf A 

is obtained when R(a) = R(b) = R(c) = r • Our method of proof of 

this subsidiary theorem is to begin by making a reduction of the problem 

and then to prove the result for a restricted class of configurations.

The reduction is as follows* Let N be the set of all

non-negative numbers n for which

K(a,R(a)+r-n) m K(b,R(b)+r-n) n K(c,H(c)+r-n) ^ •
N is non-empty, since by hypothesis 0 G N , and is bounded above by 

r , also by hypothesis, and so there is a least upper bound m which 

belongs to N since the homothetic translates of K are all closed* 

Since K is strictly convex, the set
K(a,H(a)+r-m) r» K(b,R(b)+r-m) n K(c,R(o)+r-m) 

consists of a single point t , say#
We shall need to know that t is a point of abc. For



convenience of notation we write for K(o,R(a)+r-m) , a = a, b, c 
&X#XX%XÿXX& respectively* Since the are strictly convex, at 

least one pair, say , overlap (with interior points in

common) * The set n ia convex (see ch* 1 , theorem 2, 
page 9 ) with two "vertices” at the points of intersection of the 

frontiers of » Ky , and is tangential to this set at the 

point t • (Ttiat there are just two points of intersection of the

frontiers of and is proved in theorem 10 of ch* 1 «• see

page «3^)* If t is not at one of the vertices, then is 
tangential to , say, ana in this case it follows that t is an
interior point of the line segment ao (since ac most pass through

the point of contact of K i and K )• Thus t belongs to abc $
On the other hand, suppose that t is at a vertex of ^ ^
Denote by S the region H(a,t, b'*) n H(b,t, a’“) * If c lies in

S it follows at once that t belongs to abc * If c does not lie

in S , then suppose it does not lie in H(a,t, b*) • Let u denote 

the point of the frontier of which lies in the segment ac • Then 

since the have a point in common, u must belong to (for
if it did not, no point of would belong to ) so that either 
the major arc ut or the minor arc ut must lie in since t is 
in • But the major arc oannot lie in since then we should 

have the point a in which ia impossible* Thus the minor arc

ut lies in , and therefore must overlap n , which
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is again impossible by the oonstruction of the number m (by which 

the Ka are defined)• . We hive therefore a contradiotion, and so
the point o must lie in H(a,t, b”) « Similarly o must lie in

H(b,t, a ) and therefore in S , and so it is proved tiiat t is a 
point of the triangle abc •

Now take coordinates so t?ia.t t is at the origin o # If we 

put s = r - m ^  0 we have s ^ 0 since we have seen tliat at 
least two of the must overlap. If o is an interior point of

abc , it follows at once thai the bodies K(a,îî(a)) , K(b,R(b)) , 
K(c,R(c)) all touch K(o,s) externally (and of course do not overlap,

by hypotlieais); for if K(a,R(a)) , say, meets K(o,s) in interior 
points, then there is a body K(o',s') with s' < s which touches all 

three bodies Ki,a,H(a)) , K(b,R(b)) , K(o,R(o)) externally, which 
in turn implies that the bodies K(a,R(a) s') , a = a, b, c , have a 

common point of intersection o', and since a * < a this is in 

contradiction with the definition of the number s # If o is not 
an interior point of abc , then it cannot be at a vertex since
8 > 0 implies that o is exterior to each of the bodies K(a,R(a)) ,

If, then, 0 is an interior point of one of the sides of abc , say

ab , we must have first thit k (o ,s) touches each of K(a,R(a)) ,
K(b,R(b)) externally, for if it meets either in interior points the 

minimal property of the number s is again contradicted. If it also 

touches K(c ,R(c)) externally, then the reduction is complete.



if not, thon K^o,s) and K(c,U(c )) have interior points in comnon*
In tills case wo reduce R ( g )  until one of two tuings iiappens, either

(i) H(c ) is reduced to r , tne minimal radius of the packing, or

(il) R(o) is reduced to R'(c) ^  r and k(c,H'(c)) touches K(o ,s )
externally. If (ii) noids, then again the reduction is complete.

if (i) holds, then vary abc slightly by moving c perpendicularly

away from ab to a point o' tiirough a distance small enough for
K(c',r) still to meot K(o,s) • Denote by X the set of points of
abc which do not lie in

K(a,K(a)) u K(b,%(b)) u K(c,r)

and by X' the set of points of abc which do not lie in

K(a,H(a)) u ÎC(b,R(b)) u K(c',r)
Let C > 1 be the ratio of the length of oc' to the length of oo .

Then a line perpendicular to ab which meets X in a segment of

length 6 meets X' in a savent of length where d  ^

always and for some segments. Thus we have

V(X') > SV(X) .

Then since V(abc') = 'b V(abc)

we have * Y(X')  ̂ V(abc) - V(X) ,
V(abo') V(abc)

and 30 it is seen that the value of A (defined at the beginning of 

theorem 2^) is reduced by altering abc slightly in this way. Since 
we want the value of inf A , we can continue tliis process until



K(c',r) just touches K(o ,b) • This completes the reduction,

Now we change the class of configurations under discussion. Let

Z denote the class of triangles xyz such that the vertex x lies 

on the segment oa , x not being at o , the vertex y lies not at
o on the segment ob , and the vertex z lies not at o on the

segment oo , Define , K̂ . , now to be the bodies

K(x ,R(x )) , K(y,R(y)) , K(z ,R(z)) respectively, where h(x) , R(y) ,
R(z) are such that , touch k (o ,s ) externally -
which we can do because of the reduction described above. Then theorem 

2 will follow as shown below if we can prove the statement of theorem 4 •
Theorem 4, The infimum of the ratio

V[ryz A (K^ V K u Kp]

V(xyz)

extended over all members of the subclass of I for which R(x ) ^  s ,

XŒQC R(y) > s , R(z) and no two of overlap

is attained by a member of for which R(x) = R(y) = R(z) •

Proof, Put V(X(xyz)) = V ^ z  m ( K ^ u  w , Among the

moDibers of there is a sequence of triangles * n = 1,2,...,

3?XTOf such that

inf
^ V(xyz)

We have F(x^) ^ F(a) by the construction of the class I , and
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F(x^) = R(x^) + s ^ 2s > 0 , and similarly

0 < 2s ^ H \ )  ^ F(b) , 0 < 2s ^ F(zJ ^ P(o) ,

by compactness the sequence "i u convergent
subsequence, so th;.t there ie a triangle uvw in the class Iq for 
which

Thus

Y(xCuvw)) _ inf Y(x(xyz))
V(uvw) ^ ^0 V(xyz)

We may assurae without loss of generality that P(u) ^ I (v) > P(w) •

Theorem 4 will follow if we can prove F(u ) = 2s , and to do this

we assume that 1 (u) > 2s and shall show tiriat this leads to a

contradi ction.

how put X(uvw) = uvw rs (K^ u w K^) ,
Y(u v w) = uvw - X(uvw) ,
Z(uvw) = Y(u v w) n (uv u uw) •

Also define W(uw/j to be the part of uvw which lies on lines

parallel to ou through points of Z(uv?;) . We write as Y^(uvw) ,
\/^(uvw) those parts of Y and V; which lie on the same side of ou

as V , and as Y (uvw) , (uvw) those parts which lie on the same

side as w *
The essence of the proof is to show that

V(W(uvw)) < V(y(uvw)) ,

and clearly it is sufficient to show that V(W^) ^ V(Y^) and
V(V»̂ ) ^  V(Y^) with strict inequality in at least one of these
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oases. The proofs are parallel and we siriall in fact shov/ that 
V(W^) ^ V(Y^) with strict inequality provided that o is not on the 

line segment uv7 . '
If V(Ŵ ^̂ (uvw)) = 0 , we have from the strict convexity of K

that V(Y^(u v w)) ^ 0 , and so in this case the result is clear. So
Ç̂êe. «ytVjvxwv ^

in what follows we assume that V(W ) ^ 0 • , Now let K meet' w' ' A u uw

and ou in points e , f respectively, and let meet uw in e'.

Let f ̂ be the point such tliat ff ' is equal to ee ' and the

direction of f to f ' is the same as that of e to e' . Denote

by P the curvilinear parallelogram eff'e' bounded by the segments 

ee' , ff' , the arc ef of the frontier which lies in uw/ ,

and the translation e'f' of this arc.

Produce the line segment uo to a point v^ such that o is 

the midpoint of uv^ , and let the line tVirough uv^ meet the

segment vw in p . Then P(u) = P(v^) , and P(w) P(u) by

hypothesis, so that w is contained in the body K(oyF(u)) • Also

F(v ) ^ P(u) , again by hypothesis, and so since p is on the line 

segment vw it follows that P(p) ^ P(u) . Hence F(p) ^ F(v^ ) , 

X|SXXj , which implies that v^ is either outside uvw or on its 

frontier.
We may assume that o is' not on the segment uw or W^(uvw)

would be the empty set which is contrary to our hypothesis. W^(uvw) 

by its construction is bounded by two lines parallel to ou • Of
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these lot the one tliroogh e meet vrv̂  in j , and draw a line 

through j parallel to uw to meet uv^ in the point q # he

saall need to know something about the position of tho point q •

The triangle uwv^ is similar to qjv^ with centre of 

similitude v , Hence

i’(q - u )f (w - ) = F(,j - w )f (v  ̂ - u ) .
Also uwv^ is similar to ewj with centre of similitude w , so that

we have

P(j -  w)f(u - w) =  F(e -  w)f(v^ -  V/)

Thus F(q - u) = F(e - w)*F(v^ - u) . ( 1 )

r(u - w)

We have F(v^ - u) = 2F(u ) by the construction of v^

= 2(b + P(u - f))
= 2(s + F(u  - e)) ( 2 )

Thus

F(e - w)F(Vi - u) = F(c - w).2(s + F(a - e))
(e - w)F(u - e) + F(e - w)(2s + F(u^- e^) #

P(e * w)p(u - e) - (f (u  - w) - F(u - e))F(u - e) 

and F(u  - w) < F(u) + P(w) since o is not on uw
^ 2F(u ) by hypothesis

- p(u # v^ ) by the construction of
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so that

P(e - w )f (u  - e) < (f (u  - ) - F(u - e))F(u - e)

= (2s + F(u - e))F(u - e) by (2)
and hence by (5)

F(e - w)p(v^ - u) < (2s + P(u - e))(P(u - a) + F(e - w))

= (2s + P(u - e))P(u - w)

Thus from ( 1 ) we have

F(q - u) < 2s + F(u - e) •

If then q is on the line segment ov^ we have
2s + F(u  - e) > P(q - u) = F(q) + P(u) = F(q) + s + F(u - e)

so that P(q) < s and hence q is contained in K(o,s) . If q 

is not on the line segment ov^ , then either q lies on the segment

fo and so is in k (o ,s) , or q lies on the segment uf • We deal

separately with the cases

(i) q lies in K(o,s) ,

(ii) q lies on the segment uf •
/7‘Tj

(i) See the figure (i) Let the line tlirough ff' meet v^w
in m , and let the line throu^ q parallel to v^w meet fm in n . 

The triangle fqn is similar to uv^w , and F(f) ^ F(q) since q 
lies in K(o,s) and f lies on its frothier. if we were to take a 

triangle fq'n' , also similar to uv^w but such that o is the 

midpoint of fq' (as it is of uv^ ), then we should have
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F(w) F(u )

But since such a triangle would be larger than fqn (since

F(q) < F(f) = F(q') ) we should have also F(n') ^ P(n) • Thus
it follows that F(n)  ̂ F(f)

F(w) P(u)

and so, since F(w) ^ F(u) by hypothesis, F(n) ^ F(f) • Thus
the points f , q  , n are all in K(o,s) and hence immediately by

convexity the triangle fqn is contained in k (o ,s ).

Now let ej , fm meet vw in k , t respectively# If the
whole of the segment ft lies between up and ek , we have the same

situation arising as will hold in case (ii) , in which q lies on the

segment uf , and the completion of the proof in this case is therefore

given under (ii) below* If, on the other hand, ft intersects ek

in a point z lying in uvw , we proceed as follows# The triangles

fqn and zjm are congruent so that fqn may be translated to cover

zjm f The whole of fqn but not the whole of zjm is contained in

uvw , and it follows that the part of %^(uvw) not lying between fta

and uw has strictly greater area than the part of W^(uvw) which is
not between fm and uw # The other property that we can establish

to complete the proof is that the area of the part of P n uvw which

lies in X_(uvw) , where P is the curvilinear parallelogram defined 
" «2oo)

previously and P may be proved (lemma 8 ) to lie entirely within
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Y^(avw) f is at least as great as the part of W^(uvw) which lies 
between fm and uw • This property will be used again in case (ii) , 
and the proof is given there. With these two results established, we 
have at once that

V(W^(uvw)) < V(y^(uvw))
(oMoribe )

(ii) See the figure (ii; ̂  . It is proved in lemma 8 of this 
section (page <5oo ) tiiat the curvilinear parallelogram P is 
contained in Y^(uvw) • It is possible to map P into a set which 
contains W^(uvw) , by the following transformation Waich preserves 
its area. Consider P as the collection of line segments parallel
to ee' • Take any such line segment and map it onto the line
segment collinear with it and with endpoints lying on ej and e'j' , 
where j' is the point of intersection with v^w of a line through 
e' parallel to ej . If the direction of translation of an
individual segment is from u towards w , then any point of the image
Welch lies in uvw must have a preimage wiiich also lies in uvw .
But we do not know at once that the direction of translation is from u
towards w . If for any segment it were from w towards u , the arc
e'f' in the frontier of P must cross the ray e'j' in a point k ,
distinct from e' • The arc e'f is convex, so k is unique. To 
show that this is in fact impossible, it is sufficient to prove that 
the part of e'j' which lies in the triangle ouw lies also in ,
in which case no point of e'j' can lie in the arc e'f , because 
according to lemma 8 no point of P (except ê  ) lies in .
We need only to consider the part of e'j' inside ouw because
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again from lemma 8 we know that P is wholly contained within the 

triangle ouw and a defined sector of K(o,s) , and by convexity no 

point of the segment e'j' outside ouw can lie in k (o ,s) # Let 

be the point of intersection of e'j' and ow . To prove that
the segment e'a^ lies in , we note tj?at by hypothesis

P(e' - u) ^ P(e - u) = P(f - u)

= F(u) - P(f)

> P(w) - F(f)
= F(w) - F(g)

where g is the point of the frontier of which lies

on ow
= P(g - w) = P(e' - w)

since e^ , g are both on the frontier of K • Then since e'a.' w 1
and uo are parallel it follows that

) Ï. - w)
If aj lies in there is nothing to prove, so suppose that it does 

not. In this case must lie in k (o ,s) (for since the two

bodies K(ojs) and touch and m^ lies on the line of centres,

it must lie in one or the other), in which oase F(m^ ) ^ s .
Then P(m^ • w) ^ s ^ R(w) so that does lie in , which

is a contradiction. Thus the part of e'j' which lies in ouw lies

also in • Hence the map we have described is an area-preserving 

map whose image contains V/^(uvw) (because of the fact that in this



case qj lies between ff' and ee' ) and such that any point of
VV^(uvw) lias a preimage lying in P n uvw , and by lemma, 8 P uvw
is contained in Y^(uvw) • Hence V(W^(uvw) ^ V'(Y^(uvw)) •

Finally let ej , e/j' meet vw in k , k' respectively# The
trapezium kk'j 'j does not belong to W^(uvw) but ia in the image

of the above map, and at least a part, with positive area, of this
trapezium must liave a preimage lying in P /> uvw , so that in fact the

inequality is strict.
In all oases, then, V(w^(uvw)) < V(Y^(uvw)) . We may now

complete the proof of theorem 4 • Vary the triangle uvw by taking

u^ close to u on the segment ou so that ou > u^o > 2s .
Then u^vw is a member of the class Iq defined in the theorem. Put

uvw = T^ , u^vw = T^ , W(uvw) = Wq , W(u,|Vw) = , Y(uvw) = Y^ ,
tÿCÿ U(u^vw) = Y^ , VV̂ (uvw) = , W^(u^vw) = ,

Y (uvw) = , and Y (u.vw) = Y^*) . Let the ratio of thew 0 w' 1 ' 1
distance up to the distance u^p be ^  ( > 1 ) . Then

T(Tq ) = Sv(T^ ) . (4)

Y/e have shown above that

Y(W^) < 7(Yq) . (5)

Thus XYg) , ?(Yi ) ^ Y(Yq) - & ) from (4). (6)
V(To> 7(^1 ) Y(Tq )

We now find an expression for T(Y.) in terms of V(ï^ ) and V(W. )
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(The original paper contains an error here.)
Consider V(Yq^^) » Disregarding all previous notation for

points in the configuration we are discussing, except for the points
(^e

o , u , û  , v , ' w ,  define points as follows. ^ Let a be
the point of intersection of u^w with the frontier of . Let

1

b , G respectively be the points of intersection of uw , u^w with
the frontier of K $ Let d , e respectively be the points of

. i Ü
intersection of uw , u.w with the frontier of K . If a' is1 w
the point of vw such that aa' is parallel to uo , let f be the
point of intersection, between a and a.* , of aa' with the frontier
of , and let g be the point of intersection of a'a (produced)
with uw • Let h be the point of u^w such that bh is parallel
to uo , and let j be the point of uw such that je is parallel
to uo , Finally let k be the common point on uo of the frontiers
of K and K • <

1
Curves denoted by ka , kf , fc , cb , de always represent

the arcs of the frontiers of the bodies (as
1

appropriate), and all others should be taken to denote line segments.
Keeping this in mind, let A , C , D , E respectively denote the
areas of the curvilinear triangles boh , dej , afk , acf , B the 
area of the trapezium bhej , and P the area of the curvilinear 
quadrilateral acbg *
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Then «e have
v{r^h = v(T^) + a +  b +  c - ( d + s )

and S V(W^’ )̂ - V(w(*)) = A + B + P

80 that T(Ŷ '*̂ ) = + (S -l)V(w(*)) + C - (fi + E + P) .

It can easily be seen tliat because of their relative shapes and
positions in the sector between wu and wu. , the areas C and F

is ti\Ai4̂  A. AxLuciv ls Oju\ iX rv^ti~c ; jc
satisfy the inequality C < P . ^  Thus 0/  ^

0 =  D + E + P - C  > 0 ,

and hence V(Yq ) = V(Y^) + (^ - 1)V(W^) - y where y > 0 .
Putting this expression in (6) , we have

Y(Yq) 2 T(Yp (S' - 1)(V(Ŵ ) - V(Ŷ )) - Y
V(Tq ) T(T^) ’ V(Tq )

CS - 1 )(V(W, ) -  V(Y^)) .

V(Tq)

Now o > 1 , and as ^  1+ , we have V(VĴ ) Y(v/ ) ,

T(Y^) -» T(Y_) I 80 that for S sufficiently near 1 , it follows 

from the inequality (5) that 

V(Yq) V(Y^)
—  ' " — <  V  •

V(Tq) v (t ,)

Henoe V(Xq ) V(X^)



(carrying through the same notation). This is a contradiction 

because was defined as a minimal configuration, and with this 

contradiction theorem 4 is proved*
To show how theorem 2 follows from this result, we note that

an equivalent statement of the result is that the vertices of T^ lie 
on the frontier of K(o ,2s ) # Also V(X^) = J-Y(k (o ,s )) , since

all have the same radius s and so the parts of them
tliat lie in iiave in sum an area equal to half of that of K(o ,s ) , 

since K is symmetric* Then we have

V(Xy) iV(K(o,e)) Y(K(o,s)) V(K) ,
V(Tg) " t(K(o,2e)) 8t(K(o,s)) 8t(K)

where as before t(E) denotes the area of tlie largest triangle 

contained la K • Thus theorem 2 is proved#

Proof of theorem A*

Let li be a maximal K-packing of minimal radius r * It may be 

proved (lemma 9 - see page that we can in fact replace M by a

maximal packing M for which no body K(a,R(a)) has radius greater 

than some finite constant R « it follows that we can find a constant 
N' , depending only on N , K and r  ̂with the property that given 

any oircle G with centre o and radius k , the union of those 

triangles of the configuration described in theorem 1 which lie 
completely in C contains a concentric oircle of radius (k - B') .



Then »e have

V(M*,K) r, (K(a) u K(b) v K(o))]
>

-idc® nk^

where the union is taken over all triangles 

abc contained completely in C

V(k) U  V(abo)
 #abc______ by theorem 2
8t(K) irk»

T(K) . ii(k - K*V
8t(K) irk“

by the definition of the number (k - K') above. Taking lower limits
on both sides as k -♦ ©o we have then that the lower density of M ,

and thus, by lenr.ia 9 » of M , is not less than Y(K) . Hence the
8t(K)

Ygreatest lower bound k (k ) of lower densities satisfies

k^(K) ^ V(K)
8t(K)

To establish equality, it is sufficient to produce a maximal 

K-paoking whose members all have radius r and which has lower density 

V(K)/(8t(K)) « (It is known that such a lattice packing is a maximal 
packing,) Consider then a body K(o,2r) and let abc be the triangle 

of largest area contained in it, V/e can establish certain properties

of this triangle abc which we sliall need to form the paclcing. It
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contains the point o # because if it did not we could obtain a larger
e-.h'C. Ayv o/ /Jtix- yySArest tB O kl^ i t i  £mA<^€ tA. A .

triangle^ iiwiW11 K&Yig■ n ( ®) opposite page)* Also# the lengths of the
Bides# F(a - b) # P(b - c) # F(c - a) # are all at least equal to

2r « For# if say F(a - b) < 2r # then both of the points a-b #

b-a lie in the interior of K(o,2r) # and# if we consider the triangle

in K(o#2r) with vertices a«b # b-a and the point o , we see that
ÎÎKvAe o is Lf\Sid€. A&C 

the length of the side opposite to c is 2(a - b) and^the height of
the triangle from c to the side opposite is at least half of the
height of abo # so that the area of this txlangle is at least equal to
that of abc * But two of its vertices are interior points of K(o,2r) #

so :̂ hat K(o#2r) contains larger triangles - which by the definition of

abc is impossible*
Thus K(a#r) # K(b#r) # K(o#r) do not overlap, and each touches

K(o#r) externally* As K(a#r) , for example# cannot cross the broken

segment hoc , none of the bodies centred at a # b # o can intersect

the side of abc opposite to the centre of the body. The sides of

abo can thus be used to generate a lattice (by means of a series of

reflexions in the sides) such that the bodies K of radius r centred
at the points of this lattice give a maximal K-paoking of bodies all

with radios r # whose lower density is# from theorem 2 # equal to

V(K)/(8t(K)) • This completes the proof*
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Lemma 1 » Given a maximal K-paoking M of minimal radius r # and

any fixed disc G in Eg , there are at most finitely many members of 

M which intersect C *
Proof. We assime that infinitely many members of M meet some C #

and shall obtain a contradiction. Let K(a#R(a)) ^  M intersect C #

If it meets C only in Interior points of K(a#R(a)) , then C is

completely contained in the interior of K(a,R(a)) . Then no other 

member of M can meet C since this would be inconsistent with the 
packing property (a) (given in main section^. Go suppose that the 

frontier of K(a,H(a)) meets C in a point x , so that

F(x - a) = R(a) . Our method of proof is to construct bodies K(p,r)
for points p to be defined# each of which is contained in one of the 

K(a,R(a)) which meet G . We note the following*

f [(i - rR*1(a))(x - a)j = -rR*\a)J R(a)
(since 1 - rE*\a) 0 )

= R(a) - r ,
and so# if we put p =  ( 1 lïT^{&))(% - a) + a , any point y of 

K(p#r) , which automatically satisfies the inequation 

F(y - p) << r
satisfies also P(y - p) ̂ P(y - a) - p|J(l - rR ^(a))(x - a)^

by the definition of p

which implies F(y - a) ^ R(a) •

Thus K(p,r) CT K(a#R(a)) # and also
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P(x-p) = P ĵ rH"’̂ (a)(x-ajJ
= rR*\a)P(x - a)

• = r since x is on the frontier
of K(a,R(a))

so that X is a point of K(p,r) • If we now make the same 
construction for each K(a,R(a)) which meets C we obtain infinitely 
many bodies K(p,r) all having radius r and all intersecting C in 
such a way that no two overlap since K(p,r) CZ K(a,R(a)) and the 
K(a,R(a)) do not have interior points in common. So if the diameter 
of K(p,r) is D we have constructed infinitely many K(p,r) packed 
in the disc whose centre is the centre of C and whose radius is D 
plus the radius of C , a construction which is clearly impossible.
Thus the lemma is proved.

Lemma 2. If x G S(a) , then every point except possibly x of the
line segment ax is an interior point of S(a) .

Proof. Let z  ̂ x be a point of ax , and consider any body 
K(b,R(b)) €r M with a j h , We show first that z belongs to S(a) , 
and prove that in fact dg(z) < d^(z) , and then prove that it is
an interior point of S(a) • There are two cases.

If a , b , z are non-collinear,^thon we have since z ^ x ,
F(z - x) + F(z - b) > F(x - b) •
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Thus we have

P(x - a) - [p(z - x) + p(z - bQ < F(x - a) - F(x - b)
which implies, since F(x - a) - P(z - x) = F(z - a) , that 

F(z - a) - F(z - b) < F(x - a) - F(x - b) ,
Thus, by definition, d^(z) - d^^z) < d^(x) - d^^x) , and we know
that dg(x) ^ d^(x) since x ^ S(a) , and so d^(z) < d^(z) •

If a , b , z are collinear, then we have

da(z) = d^(x) - F(x - z)
^ d^(x) - F(x - z) since x 6 S(a)

< V ”) •
Now for equality to hold, we must have in particular 

db(x) - F(x - z) = &y(z) ,
that is, F(x - b) - P(x - z) = F(z - b) 
which implies that z must lie between 
X and b , But z is by hypothesis a 
point of ax , and so is not a point of 
the segment ab . If, then, z is 
outside the segment ab and on the side 
of a opposite to b , we have

F(z - b) = P(z - a) + F(a - b)
^ F(z - a) + R(a) + R(b)

since the members of M do not meet in interior points, and so
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djj(z) = P(a-b) - H(b) j. p(z-a) + H(a)
= ajz) + 2E(a)

>

and so equality cannot hold. A similar argument holds if z is on

the side of b opposite to a , and hence in all cases we have

a^(z) < %(z) •
To prove the remaining part of the lemma, we assume that z is

not an interior point of S(a) and shall obtain a contradiction. Then

there is a sequence of points , having z as the limit point,

and a sequence of bodies K(b^,R(b^)) in M , all different from

K(a,R(a)) and such that z^ é S(b^) for each n . üince M is

maximal, we have ^  + r) * We may order the b^
so that b^ is furthest from the origin o , and if we then take a

fixed disc C centred at o which contains K(b^,R(b^ ) + r) , it

follows that all the bodies K(b^,R(b^) + r) intersect C • Hence
all the bodies K(b^,R(b^)) intersect some fixed disc centred at o ,

and it follows from lemma 1 that there are at most finitely many
distinct b^ , which implies that there is a subsequence 6f

centres which are all equal to some c « Now d^ (z^) ^ ^a^*n^ for
n

each n since G S(b^) , and so d^(z^) ^ dĝ (ẑ ) , and since F

is a continuous function it follows that d^(z) ^  d^(z) . This is a

contradiction, since we have already proved that d^(z) < d^(z)

for any b . Thus the lemroa is proved completely.
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Lemma 3. If a , b are distinct centres of members of M , then 

3(a) C  K(a,F(b - a)) .
Proof. üinoe a , b are distinct, K(a,R(a)) and K(b,R(b)) do not

overlap, and so it follows that P(b - a) ^ r + R(a) since
R(b) ^ r for all K(b,R(b)) ^ M • Now if x Ê 3(a) then

r ^ dg(x) (by the maximal property of M ), so that 
r ^ P(x - a) - R(a) 

which implies that P(x - a) ̂  r + K(a) ^ P(b - a) .

Thus X & K(a,F(b - a)) and the lermra follows at once.

Lemma 4* If a , b , c are non-collinear centres of members of U , 

then S(a) n s(b) cannot have any point in common with the closed set
H(a,c, b") n(b,c, a") ,

nor, similarly,
3(b) n 8(c) in H(b,a, c~)n H(c,a, b*) ,

3(0) S(a) in H(c,b, a“) U(a,b, c~) .

Proof. V/e assume the contrary, tbtt there is a point x of 3(a) c\ S(b) 

in U(a,c, b~) n H(b,c, a") , and shall obtain a contradiction. The 

point c satisfies d^(c) =- -R(c) < 0 and so since no two

members of M overlap we have that c is an interior point of 3(c) . 

Thus X f 0 since x ^ 3(a) 3(b) and sets of the form 3(a)

can by definition only have frontier points in common. So c is a 

point of the triangle abx and is not a vertex of the triangle.
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By lemma 3 we have 8(a) C2 K(a,?(‘b * a)) and S(b)c K(b,F(a - b)) , 

and so since x 9 S(a) n 8(b) it follows that any point except 

possibly X of abx is in the interior (since K is strictly 
convex) of either K(a,F(x - a)) or K(b,P(x - b)) • Hence either

r(c - a) < P(x - a) or P(c - b) < F(x - b) .
In the first case,

F(g - a) < p(x - a) = d^(x) + R(a) ^ r + R(a) since x ̂  8(a) . 

But this means that the distance between the centres of K(a,R(a)) and 
K(c,r(c)) is less than the sum of their radii, which implies that the 
bodies have interior points in common. This is impossible since M is 

a packing, and so we must have F(c - b) < P(x ~ b) . But this 

leads in the same way to a contradiction in making K(c,R(c)) and 

K(b,R(b)) overlap. Thus our first assumption was wrong, and the 

lemma is proved.

Lemma 5# Any three centres belong to at most one crosspoint#

Proof. Suppose that v and w are distinct crosspoints common to 

8(a) , S(b) , S(c) . By lemma 3 , if a , b , c are collinear, 

with b , say, between a and c , then S(a) cZ K(a,F(b - a)) and 

S(c)c:K(o,F(b - o)) and by strict convexity the only point common 
to K(a,F(b * a)) and K(c,F(b - c)) is the point b . But

b ^  s(a) or s(o) and so 8(a) and 8(c) have no point in common.

This is a contradiction, and so a , b , o cannot bo collinear.



Then by lemma 4 neither v nor w can lie in the closed regions
H(a,c, b*) ^  H(b,c, a*) , H(b,a, c*) o H(c,a, b~) ,
H(o,b, a") fs H(a,b, c") .

We note the following restrictions on the position of w . ^

(!) Except for v , the line segments va , vb , vc lie in the 

interiors of S(a) , S(b) , S(c) respectively (lermna 2 ), so w 
cannot lie on any of these line segments since by definition it is a 

point of the frontiers of the S(a) •
(ii) Except for w , every point of the segment wc lies in the

interior of S(c) , and so, since va and vb except for v lie in

the interiors of S(a) and S(b) respectively, and since no two sets

of the form s(a) have interior points in common (by definition), we

cannot cross va or vb .
Similarly wa cannot cross vb or vc , and wb cannot cross 

va or vc #
Bat with (i) and (ii) both holding, if w is distinct from 

V it is impossible for w to lie anywhere in the plane. Thus we must 

have w = V and the lemma is proved.

Lemma 6. The crosspoints of M form a discrete set.
Proof# If not, then there is a limit point x say of crosspoints.

From lemma 5 it follows that there must be an infinite number of the

sets 8(a) which intersect the disc with centre x and radius 1 , say.
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Then there must also he an infinite number of members of M which
intersect the disc with centre x and radius (1 +r) , which
contradicts lemma 1 • Thus the lemma is proved.A

Lemma 7. At most a finite number of centres of M belong to one 
crosspoint.
Proof. Again, assume the contrary. Then there is a crosspoint v
such that infinitely tminy centres of M belong to v . Then there are 
infinitely many members of M which intersect the disc with centre v 
and radius r , and this again contradicts lemma 1 . The lemma
follows.

Lemma 8. The curvilinear parallelogram P defined in the main part 
of this section (page ) does not overlap) any one of the bodies ,

Proof. Wo use the same notation as before, so that meets uw
and ou in e , f respectively, meets uw in e' , and f*

is the point such that ff' is equal and parallel (in the same 
direction) to eo' . ^ P is the curvilinear parallelogram eff 'e '
bounded by the segmenjis ee' , ff* and the arcs ef , e'f' where 
e'f' is a translation of the arc ef of the frontier of .

Two of the cases of the lemma are easily dealt with. By its
construction P cannot overlap . Also since K is centrally



symmetric and strictly convex the arc e'f' meets only in the 
point e' , so tliat P does not overlap # Thus we have only to 
show that P does not overlap .

Let g be the point common to the frontier of and the line 

segment ow • The frontier of K(o ,s ) meets ou in the points f $ 
-f (using ordinary vector notation), and meets ow in the point g

(since ow is the line of centres of the two bodies and thus g is

their unique point of contact). Taking -fg to denote the arc of the 
frontier of K(o,s) which has endpoints -f , g and which lies in 

the sector H(o,u, r\ H(o,w, f*“) , let K denote the region bounded

by the arc -fg and the segments -fu , uw , wg . We shall show

that N does not overlap and that P is contained in N , thus

proving the lemma.
Firstly, then, we assert that N does not overlap • The

sector bounded by -fo , og and the arc -fg , which together with 
the triangle ouw comprises N , lies entirely in K(o,s) and so 

cannot overlap • But also the segments ou , ow lie, except for 
the points f , g , in the interior of K^u  v K(o,e) , and so 

cannot cross these segments. Hence cannot overlap the triangle

ouw , and thus does not overlap N .

Secondly, we assert that P is contained in N , and to prove 

this we assume the contrary and shall obtain a contradiction. 

cannot cross ow , and so the arc ef and the segment ee^ both lie



in H • If f* lies in N then it lies either in the triangle ouw , 

in which case ff ' is in IÎ , or in K(o,s) and again ff ' is in N 

hy the convexity of K • Now we are assuming tliat P does not lie in 
N , so that if f* lies in N the arc e*f* is not contained in N • 

Similarly if f* does not lie in N , this implies that e'f' is not

contained in N • Thus in either case it follows that e'f' must 
cross the segment ow at least once. Let h he the point of ow such 

that the part of the arc e'f' with endpoints e' and h lies in the

triangle ouw • Since K is strictly convex, the whole except for the

point g of the segment og , and hence the point h , must lie in the
interior of K(o,s) . Thus since e' is exterior to K(o ,s ) , the arc

e*f' must cross the frontier of K(o,s) in a point x say, A lying 

in the triangle ouw • Now e f *  does not lie entirely in N , so it 

crosses the frontier of K(o ,s) also in a point y ^ x (not shown in 

the diagram) which lies outside the triangle ouw , ilie points x and 
y satisfy F(x) = F(y) since they both lie on the frontier of

K(o ,s ) • But the translation which takes e to o* maps u onto a

point u* on the segment uw for which the arc e*f* is part of the

frontier of K(u*,R(u)) , the translation of , go tliat we have also 

P(x - u*) = F(y * u*) • (1 )
But u* is not o since



we have eliminated this case 
(that is, in which 
V(V/̂ (uvw)) = 0  ), and u'
lies in the region 
H(o,x, y“) A H(o,y, x”**) .
Given this, u* lies also 
either in H(x,y, o'*") , or in 
H(x,y, o") .
If u* G: H(x,y, o’*") , the segments u*y , ox meet in the point d 
say, so that F(u' - y) = F(u' - d) + F(d - y) «
By convexity, F(u* - x) ^ F(u* - d) + F(d - x)
and F(y) = P(o - y) < F(o - d) + F(d - y)

(with strict inequality since u* is not o )
Adding, we have

P(u* - x) + F(y) < F(u* - y) + P(x)
80 that, since p(x) = P(y) , as we noted above,

F(u* - x) < P(u' - y) , 
which is a contradiction with (1) .

the segment u*y meets ox 
produced in the point d say, 
such that 
F(u* - y)

= F(u' - d) + F(d - y) .
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By convexity,
F(u * - x)

^ P(u* -d) + P(d - x) 

and P(d) < P(y) + P(d - y) ,

with strict inequality since x , y are distinct, and because y 

cannot by its construction lie on the segment od since x , y are 
both frontier points of a strictly convex body centred at o •

Adding, we have F(u’̂ - x) + P(d) < P(u* - y) + F(d - x) + F(y) ,
that is, P(u* - x) + F(x ) < F(u * - y) + F(y) ,

which again gives a contradiction with ( 1 ) •
Thus our original assumption, that the arc e*f* crosses the 

segment ou at least once, is false, and hence P is contained in K • 

This proves the lenima.

Lemma 9. Given a maximal K-packing M of minimal radius r , there
exists a positive constant K such that there is a second maximal

yK-packing M , of minimal radius r , with the properties
(i) the lower density of Î.Î does not exceed the lower density of M ,

(ii) if K(a,R(a)) e  then R(a) < K .
Proof. Let L denote a densest lattice packing (that is, in which

the radii of the bodies are all equal) of the plane by bodies K(x,r) •

Given k > 0 , let L^ denote the point set union of those elements

of L which are completely contained in K(o,k) ( o being the origin),



and let V(L^) denote the area of . ‘oinoe K is strictly
convex we know that

11m sup   = t < 1 .
V(K(o,k))

Then we may choose a number t* such that t < t* < 1 and a number

V ( I^ )

such that

^ t' for k ), . ( 1 )
V(K(o,k))

In wliat follows, we shall refer to a number N which we do not 

define at present but which we shall restrict through the proof so that 
it satisfies the requirements of the lemma. If M does not contain a 

body with radius at least N , there is nothing to prove, so we assume 
that there is a member K(a,R) of M with R ^ N . If we remove this 
member from U we can restore the packing property by putting in its 

place all the bodies K(x,r) which make up , each translated by
a • Thus we may form a packing P given by

P = (M - {K(a,R)] ) 1/ (Lg + a) .

(Using here we are considering it as the collection of the K(x,r)
in k (o ,R) rather than as their point set union.) By its construction

P has minimal radius r . It may not be a maximal packing, but we can 

complete it to a maximal packing , say, by adding as many K(x,r)

as we can while still retaining the packing property. If we consider



any one of these K(x,r) in , we know that it cannot overlap

any member of P , so that the point x is confined to the band

K(a,R + r) - K(a,R - $r) . For, if x lies outside K(a,K + r) ,

then K(x,r) lies completely outside K(a,R) , which implies that M
is not maximal: and if x lies inside K(a,R - $r) , then K(x,r) is

completely contained in K(a,R - 2r) , which implies tliat L is not

maximal, again a contradiction since it is known that a lattice packing 

is a msiximal packing. Thus the sets K(x,r) of can vover at

most the band k(a,R + 2r) • K(a,R - 4r) .

Row outside K(a,R + 2r) the packings II and agree.
Inside i;(a,R + 2r) , the i>aoking M covers a set whose area is at

least V(K(a,R)) = ÏÎ®V(K) (by the definition of K ).

, on the other hand, covers a set inside K(a,R + 2r) whose area 

is at most

A = V[ic(a,fi + 2r) -j. K(a,R - #)"] + T(Lg)
< V(K(a,K + 2r)) - V(E(a,K - 4r)) + t*ir(K(o,H))

l)y ( 1 ) if E ,

= + 2r)* - (R - 4r)* + t*R=^V(K)

Now lim (r + 2r)° - (R - 4r)^ _ ^
R-»ô  R=

and so we may choose a number such that

^ i - t' for r ^ h„ .
R= ^ ^



Then A ^ R^V(K) for K ^ max (N^, N^) •
At this point define the number ÏÏ with which we began as 
N = J2S.X (N̂  f Ng) • Then since we have already made the condition 

that R ̂  If , it follows from the areas covered by the packings inside 

K(a,R + 2r) that the lower density of does not exceed the.t of M .
This construction, then, has given us a means of obtaining a new

packing by removing a body K(a,R(a)) for which R(a) N • If M

contains only finitely many such bodies, then clearly we can repeat tt# 

construction for each of them in turn until we obtain a maximal packing
•y

l\ which satisfies the conditions of the lemma. If, finally, M

contains infinitely many such bodies, we choose K(a,R) ^ iî , R ^ N #
to be a body for which the distance between a and o is smallest,

and construct as above. Repeating this process we obtain a

sequence of ^lackings I.L, all of which are maximal with
minimal radius r , and have the property, following from lemma 1
that given any disc D centred at o there corresponds a suffix n^

such that for m , n > n_ the members of M which intersect D areu m
precisely the members of which intersect T) . Thus there is a

limiting collection M which satisfies the conditions of the lemma» 

This completes the proof.
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