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Abstract 

Recent advances in sediment fingerprinting research have seen Bayesian mixing models 

being increasingly employed as an effective method to coherently translate component 

uncertainties into source apportionment results. Here, we advance earlier work by presenting 

an extended Bayesian mixing model capable of providing a full Bayes treatment of 

geochemical uncertainties. The performance of the extended full Bayes model was assessed 

against the equivalent empirical Bayes model and traditional frequentist optimisation. The 

performance of models coded in different Bayesian software („JAGS‟ and „Stan‟) was also 

evaluated, alongside an assessment of model sensitivity to reduced source representativeness 

and non-conservative fingerprint behaviour. Results revealed comparable accuracy and 

precision for the full and empirical Bayes models across both synthetic and real sediment 

geochemistry datasets, demonstrating that the empirical treatment of source data here 

represents a close approximation of the full Bayes treatment. Contrasts in the performance of 

models coded in JAGS and Stan revealed that the choice of software employed can impact 
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significantly upon source apportionment results. Bayesian models coded in Stan were the 

least sensitive to both reduced source representativeness and non-conservative fingerprint 

behaviour, indicating Stan as the preferred software for future Bayesian sediment 

fingerprinting studies. Whilst the frequentist optimisation generally yielded comparable 

accuracy to the Bayesian models, uncertainties around apportionment estimates were 

substantially greater and the frequentist model was less effective at dealing with non-

conservative behaviour. Overall, the effective performance of the extended full Bayes mixing 

model coded in Stan represents a notable advancement in source apportionment modelling 

relative to previous approaches. Both the mixing model and the software comparisons 

presented here should provide useful guidelines for future sediment fingerprinting studies. 

 

Keywords: Tracing; river; apportionment; uncertainty; JAGS; Stan. 

 

1. Introduction 

Sediment fingerprinting has become a widely used technique for apportioning the sources of 

sediment transported through, or deposited within, fluvial environments (Walling, 2013). The 

technique exploits differences in the geochemistry of potential sediment source areas across a 

river catchment and contrasts these with the geochemistry of riverine sediments using a 

mixing model approach (Guzmán et al., 2013). Whilst sediment fingerprinting has been 

carried out since the 1990s (Collins et al., 1997; Walling et al., 1999), its use has intensified 

in recent years (Kraushaar et al., 2015; Lamba et al., 2015; Vale et al., 2016) and attention 

has now shifted onto ways to improve the accuracy and robustness of the procedure (Koiter et 

al., 2013; Haddadchi et al., 2014; Pulley et al., 2015; Smith et al., 2015). This has included 
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re-evaluating the criteria for selecting individual fingerprints (Belmount et al., 2014; Laceby 

et al., 2015; Palazón et al., 2015; Pulley et al., 2016), re-assessing the use of post-hoc data 

corrections (Smith and Blake, 2014; Laceby and Olley, 2015; Koiter et al., 2015), exploring 

the effectiveness of land use specific tracers (Blake et al., 2012; Cooper et al., 2015a; Alewell 

et al., 2016; Reiffarth et al., 2016), and improving methods for accurately quantifying the 

uncertainties associated with mixing model results (Rowan et al., 2011; Clarke, 2015; Cooper 

et al., 2015b).  

A key advancement in quantifying the uncertainties associated with the sediment 

fingerprinting procedure has been the emergence of Bayesian mixing models (Massoudieh et 

al., 2012; D‟Haen et al., 2012; Nosrati et al., 2014; Stewart et al., 2015; Abban et al., 2016) as 

an alternative to the more commonly applied least-squares „frequentist‟ mixing model 

approaches (Walling et al., 2003; Martínez-Carreras et al., 2010; Collins et al., 2013). 

Uncertainties include spatial and temporal variability in source and riverine sediment 

geochemistry, analytical instrument error, mixing model error, and unknown residual error 

such as non-conservative sediment transport (Small et al., 2002; Sherriff et al., 2015). 

Through the probabilistic treatment of these uncertainties, Bayesian approaches allow for the 

coherent translation of all sources of analytical and procedural uncertainty into mixing model 

results within a hierarchical framework, albeit dependent upon error assumptions (Van den 

Meersche et al., 2008; Cooper et al., 2014a).  

Building on previous research in the fields of ecology (Hopkins and Ferguson, 2012; Parnell 

et al., 2013) and geoscience (Fox and Papanicolaou, 2008), Cooper et al. (2014a) developed a 

Bayesian mixing model using the open-source software „JAGS‟ (Just Another Gibbs 

Sampler; Plummer, 2003) to apportion the sources of suspended sediment at high-temporal 

resolution in a lowland river in the United Kingdom. However, JAGS did not allow the full 

“online” estimation of source and error covariance matrices as it did not ensure positive-
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definiteness when sampling these matrices. Hence, a full Bayes treatment of geochemical 

uncertainties was not possible and consequently an empirical Bayes approach was adopted 

where some parameters (here the source geochemistry and error covariance matrices) were 

fixed “offline” at their Maximum Likelihood estimates. Full Bayes approaches, where all 

model parameters are treated probabilistically, are considered advantageous over empirical 

approaches as they reduce the likelihood of unrepresentative data, for example where sample 

numbers are small, biasing mixing model results (Ward et al., 2010). Furthermore, through 

the incorporation of a separate residual error term, full Bayes mixing models should be able 

to better account for uncertainties associated with the non-conservative behaviour of 

fingerprint properties during sediment transport. In frequentist approaches this issue has 

traditionally been addressed through the application of unrefined particle size and organic 

matter corrections, the suitability of which has recently been questioned (e.g. Smith and 

Blake, 2014; Sherriff et al., 2015). 

To address existing mixing model deficiencies, we here present an extended version of the 

Cooper et al. (2014a) model using the alternative open-source software „Stan‟ (Stan 

Development Team, 2015), which allows for the full Bayes treatment of all geochemical 

uncertainties. The primary objectives of this paper are as follows: 

i. To present the structural details of the extended full Bayes sediment 

fingerprinting mixing model coded in Stan; 

ii. To compare and contrast the accuracy and precision of the full and empirical 

Bayes mixing models using both synthetic and real sediment geochemistry data; 

iii. To compare the performance of mixing models coded in different software 

(JAGS vs. Stan); 

iv. To assess mixing model  sensitivity to varying levels of representativeness of the 

source geochemistry data; 
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v. To assess mixing model sensitivity to non-conservative fingerprint behaviour;  

vi. To compare Bayesian mixing model performance against the more commonly 

applied frequentist optimisation approach. 

Both the mixing model and software comparisons will provide useful guidelines for 

fingerprinting studies in other environments and using other models. 

 

2. Methods and Materials 

2.1 Mixing model structure 

2.1.1 Empirical Bayes 

The empirical Bayes sediment fingerprinting model follows that presented by Cooper et al. 

(2014a) and is summarised by the Directed Acyclic Graph (DAG) in Figure 1a. The model is 

solved as a mass balance, whereby the concentration of each fingerprint in the target riverine 

sediment (Y) is obtained from the concentration of each fingerprint in each potential sediment 

source area (S) multiplied by the proportional sediment contribution (P) derived from that 

source. This can be summarised by the following likelihood function: 

(1)                 

An empirical approach is used to estimate the prior distributions for the sediment source area 

geochemistry (S). Here multivariate normal (MVN) distributions are parameterised using the 

means (µ
s
) and covariance matrices (Ʃ

s
) of the fingerprint concentrations estimated “offline” 

by Maximum Likelihood from the source area samples. Whilst this has the advantage of 

reducing model complexity and correlation between parameters, it also reduces model 

flexibility and can lead to biased estimates where data are unrepresentative.  
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For the prior probability on the proportions (P), the compositional data are transformed via 

the isometric log-ratio (ILR) transformation to ensure that all proportions are independent in 

transformed space and are positive and sum to unity in original space (Egozcue et al., 2003; 

Parnell et al., 2013). The ILR transformation is specified as:   

(2)                    
   

     
   

   

     
   

where V is a deterministic k-1 x k triangular Helmert matrix used to transform the simplex 

into orthogonal space and g(Pi) is the geometric mean proportion over all sources k=1, …, K 

for sample i. The actual values of V do not matter here as long as the matrix meets Helmert 

criteria. Real P values are returned from Φ by exponentiation and re-normalisation (Egozcue 

et al., 2003): 

(3)              

Weakly informative (i.e. relatively flat) normal (N) and inverse gamma (Inv-Γ) distributions 

are assigned to the Φ prior means (µ
Φ
) and variances (σ

2Φ
), respectively (these are so called 

hyper-parameters). An inverse Wishart distribution (Inv-W) parameterises the combined 

instrument precision and residual error (Ʃ
resZ

). Here, the Wishart scale matrix is defined as the 

product of an uninformative JxJ identity matrix (IJ) for residual error and an informative 

covariance matrix (Ʃ
Z
) for instrument error. Ʃ

Z
, like the source covariance matrices above, 

was derived empirically by Maximum Likelihood from 42 repeat analyses of a sediment 

standard. This instrument error (Ʃ
Z
) is subtracted offline from the total variability in the 

source fingerprint data (Σ
SZ

) to isolate the spatial variability in the source data (Σ
S
) used for 

estimating the source distributions (S).  
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See Cooper et al. (2014a) for a sensitivity analysis of the model with respect to the various 

error assumptions made here. Table S1 provides definitions for the mixing model 

components, whilst the complete posterior distribution of the empirical Bayes model is 

summarised as follows: 

(4) 

                           

                                                                  

         

 

2.1.2 Extended full Bayes 

The full Bayes mixing model (Figure 1b) extends the empirical model by treating the hyper-

parameters of both the source geochemistry distributions and the instrument error as random 

variables with their own prior distributions. Additional data is then supplied to estimate these 

priors directly through the MCMC algorithm, just as is done with the Y data. As such, all 

priors are integrated out probabilistically during the numerical solution rather than some of 

them being fixed “offline”. This is true to the Bayesian paradigm and should, theoretically, 

increase model flexibility and reduce the risk of model bias from unrepresentative data. 

Specifically, it relaxes the assumption that the geochemistry of the sampled source area 

sediments is fully representative of the entire catchment wide geochemical variability.  

The prior means of the sources (μ
S
) were assigned uninformative (i.e. flat) normal 

distributions, N(10,10), based on the fingerprint data being supplied as percentage 

concentrations on a scale of 0–100% (see section 2.5). Uninformative inverse Wishart 

distributions Inv-W(IJ,J) were assigned to the source covariance matrices (Σ
S
). In turn, the 
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posteriors of μ
S 

and Σ
S
 were estimated online based on the actual observed source data (Y

s
). 

Instrument precision (Ʃ
Z
) and residual error (Ʃ

res
) are assigned separate inverse Wishart 

distributions, as opposed to the combined Ʃ
resZ

 of the empirical model, with the posterior of 

Ʃ
Z 

being estimated from the observed, normalised, instrument error data (Y
z
). In total, 10 

nodes of random variables were estimated by MCMC sampling in the full Bayes model 

compared with 7 nodes in the empirical version. The extended full Bayes model is 

summarised as follows: 

(5) 

                                          

                                                                   

                                                                 

 

2.2 Bayesian software: JAGS and Stan 

Two types of open source software for running probabilistic Bayesian hierarchical models 

with Markov Chain Monte Carlo (MCMC) sampling are „JAGS‟ („Just another Gibbs 

sampler‟; Plummer, 2003) and „Stan‟ (Stan Development Team, 2015) – both of which are 

interfaced within the R environment (R Core Team, 2016). Although either can be used for 

developing sediment fingerprinting mixing models, there are important implementation 

differences between the software which affect how the models perform. Firstly, Stan and 

JAGS use different MCMC sampling algorithms to estimate the posterior distribution. Whilst 

JAGS uses Gibbs sampling (Gelfand, 2000), Stan uses a variant of Hamiltonian Monte Carlo 

(HMC) known as a „No-U-Turn‟ sampler. This No-U-Turn sampler avoids the random walk 

behaviour and sensitivity to correlated parameters common to other MCMC samplers, thus 

enabling the model to more quickly converge on the optimal solution (Hoffman and Gelman, 
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2014). These contrasting MCMC procedures result in differing explorations of the model 

parameter space, increasing the possibility of the two procedures yielding different 

apportionment results when samplers do not converge. Additionally, there are significant 

differences in the handling of covariances, with ordinary covariance matrices implemented in 

Stan, whilst inverse covariance (i.e. precision) matrices have to be parameterised in JAGS. 

This can lead to sizable differences in covariance values between model versions when 

matrices are inverted offline (empirically) by approximation and are forced into the nearest 

positive-definite matrix before being supplied to the mixing model – an essential procedural 

step in the JAGS operation. Lastly, Stan allows a greater range of algebraic operations to be 

performed compared to JAGS, thus facilitating enhanced model development.  

 

2.3 Frequentist optimisation 

For comparison of these Bayesian models with the frequentist optimisation approaches 

adopted in the majority of previous sediment fingerprinting studies (e.g. Walling, 2013), a 

least-squares regression model based on Collins et al. (1997) was formulated. The frequentist 

model optimisation was solved for P by minimising the sum of squared residuals (SSR):  

(6) 

                  

 

   

 

  

   

 

whilst satisfying the following constraints: 

(7) 
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  and    

(8) 

      

Similar to recent practice (e.g. Collins et al., 2012), instrument error and variability in source 

(S) and target (Y) fingerprint geochemistry was incorporated into the model by nesting the 

Maximum Likelihood optimisation step within an ordinary Monte Carlo iteration. This 

involved sampling from multivariate normal distributions for both the S and Y parameters 

using the empirical source mean (µ
s
), source covariance (Ʃ

s
) and instrument error (Ʃ

Z
) 

estimates.  

 

2.4 Mixing model versions 

Three versions of the Bayesian mixing model were formulated (Table 1): model 1 (M1) was 

the empirical Bayes model of Cooper et al. (2014a) run in JAGS; model 2 (M2) was the same 

empirical Bayes model run in Stan; and model 3 (M3) was the extended full Bayes model run 

in Stan. Model 4 (M4) was the frequentist approach. All four models were run in the R 

environment. M1 was run for 750,000 iterations, with a 250,000 sample burn-in to reduce the 

impact of the initial starting conditions, and a jump length of 225. The jump length 

determines how far the sampler moves within the parameter space between each step of the 

MCMC walk. In setting a longer jump length exploration of the entire parameter space occurs 

faster and autocorrelation between runs is minimised by reducing the number of subsequent 

sample draws from the same region. However, a balance has to be found as setting the jump 

length too long can result in a low acceptance rate, meaning a greater number of iterations are 

needed to achieve convergence of the posterior distribution.  
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The higher efficiency of the No-U-Turn sampler allowed a reduced number of iterations 

(10,000), burn-in (5,000) and jump length (25) for Stan models M2 and M3. For all Bayesian 

models, three MCMC chains were run in parallel from random initial conditions and trace 

plots of the parameter distributions were inspected for mixing. Models were run until 

convergence was achieved for all variables, with convergence diagnostics performed via the 

„coda‟ package within R (Plummer et al., 2006). The frequentist model optimisation was run 

for 10,000 iterations using the „limSolve‟ R package (Van den Meersche et al., 2008).    

 

2.5 Data collection 

2.5.1 Characterising sediment sources 

Sediment source area geochemistry was characterised using real data collected as part of the 

River Wensum Demonstration Test Catchment (DTC) project, of which comprehensive 

details can be found in Cooper et al. (2015b). To summarise, four potential sediment source 

areas were identified across a 5.4 km
2
 section of the lowland, arable, Blackwater sub-

catchment of the River Wensum, Norfolk, UK (52
o
47‟14”N, 1

o
07‟42”E). These were eroding 

stream channel banks, subsurface agricultural field drains, arable topsoil, and damaged road 

verges (Figure 2). From each source area, 30 soil/sediment samples were collected, wet 

sieved to <63 µm to extract the fine clay-silt fraction, and transferred onto quartz fibre filter 

papers. These filter papers were then analysed by X-ray fluorescence spectroscopy (XRFS) to 

determine the geochemistry (wt. %) following the method of Cooper et al. (2014b) which had 

previously been successfully applied in this catchment. In total, concentrations of eight major 

elements (Al, Ca, Ce, Fe, K, Mg, Na and Ti) were determined and selected as fingerprints for 

use in the mixing models. Prior to running the models, the geometry of the source 

geochemistry mixing space was examined via a principal component analysis (Figure 3). The 
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fingerprint loadings (right-hand panels) revealed calcium (Ca) to be the most powerful 

discriminator of the surface (road verge and topsoil) and subsurface (channel bank and field 

drain) sources, whilst iron (Fe) provided strong discrimination of road verge versus topsoil 

and channel bank versus field drain sources. However, significant overlap in the geochemical 

ranges of both channel bank and field drain sediments made differentiation difficult and the 

geochemical data for these two sources were consequently merged into a single combined 

„subsurface‟ sediment source prior to running the models. 

 

2.5.2 Reducing source representativeness 

As described previously, one of the main advantages of adopting a full Bayes approach is to 

minimise the risk of unrepresentative empirical data biasing mixing model results. This is 

particularly true where the number of samples collected from each source area is small, with 

Ward et al. (2010) cautioning that full Bayes approaches should be adopted if there are <20 

samples per source. Here we assess the impact of reduced source representativeness on model 

accuracy and precision by re-running each model four times for the six synthetic mixtures 

with source distributions parameterised using a decreasing number of sediment source 

samples (Table 2). 

  

2.5.3 Characterising target river sediment mixtures 

For the target river sediment (Y), both real and synthetic data were used. Firstly, a set of six 

synthetic mixtures were generated within the R environment to incorporate a wide range of 

subsurface (0–75%), road verge (0–60%) and topsoil (12.5–100%) contributions (Table 3). 

The mean concentrations for the eight elemental fingerprints in each source area were 
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considered to represent 100% contribution from that particular source (e.g. mixture 1 in Table 

3). Derivative mixtures of this were then obtained by multiplying the mean concentrations by 

the relative proportions of each source (e.g. 0.5 x road verge mean + 0.5 x topsoil mean for 

mixture 2). Using synthetic mixtures with known source contributions enables a robust 

assessment of mixing model accuracy and precision.  

Then, to assess model performance using real target data, instream suspended particulate 

matter (SPM) samples were collected at the outlet of the 5.4 km
2
 portion of the Blackwater 

sub-catchment during a heavy rainfall event in February 2013. A bankside ISCO automatic 

sampler (Teledyne ISCO, Lincoln, NE) was remotely activated to collect a 1 L stream water 

sample every two hours over a 48 hour period. Use of automatic samplers can introduce 

sampling bias due to the preferential uptake of finer SPM in the suction line (Krueger et al., 

2009), but this issue was largely circumvented here by wet sieving the resulting 24 samples to 

<63 µm on returned to the laboratory. The samples were then vacuum filtered onto quartz 

fibre filter papers to extract the SPM and analysed by XRFS to determine the geochemistry 

(wt. %) of the target riverine sediment.  

2.5.4 Non-conservative target mixtures 

To assess the ability of each mixing model to handle the non-conservative behaviour of 

fingerprint properties during sediment transport, each model was re-run for the six synthetic 

mixtures using four target geochemistry datasets that had been deliberately 

manipulated/corrupted offline to simulate downstream enrichment. This involved increasing 

the concentrations of all eight target sediment fingerprints by 10, 20, 50 and 80% for each of 

the six target mixtures (Table S2). Whilst we acknowledge that in a real-world situation all 

fingerprints would not necessary be enriched equally during downstream transport, the data 

corruption tested here provides a „worst case scenario‟ and an ultimate test for the models in 
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which none of the fingerprints in the target sediment have maintained their original 

composition. The average deviation between the model estimated proportions and the actual 

true proportions could then be used to infer model sensitivity to non-conservative fingerprint 

behaviour.   

 

3. Results and Discussion 

3.1 Model comparisons: synthetic data 

Sediment source apportionment results for the six synthetic target mixtures are presented in 

Figure 4 and summarised in Table 4. These results reveal fairly consistent apportionment 

estimates both between different model software (M1 and M2) and between full and 

empirical Bayes approaches (M2 and M3). The average deviation across the six mixtures 

between the median apportionment values estimated by the model and the actual true 

proportions (i.e. the model accuracy) was 12.9% (range = 0.4–34.3%) for the empirical JAGS 

model, 11.6% (range = 0.5–27.4%) for the empirical Stan model and 11.4% (range = 0.6–

26.3%) for the full Bayes Stan model. The frequentist model had slightly higher accuracy, 

with a mean deviation from the true contribution of 8.9% (range = 0.0–27.8%).  The greatest 

Bayesian model accuracy was observed for mixture 4 (33.3% subsurface, 33.3% road verge 

and 33.3% topsoil), with an average deviation from the actual contribution of just 5.9% 

observed across all three sources. This can be explained by the mean hyper-parameter 

distribution on the transformed proportions (µ
ɸ
) being a normal distribution centred on zero 

(N(0, 1)), which, after retransformation, equates to equal contributions (i.e. 33.3%) from all 

sources. The lowest accuracy was recorded for mixture 5 (50% subsurface and 50% topsoil) 

where all models overestimated road verge contribution and underestimated topsoil and 
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subsurface proportions, resulting in an average deviation across the three sources of 20.7% 

from the actual contributions.  

In terms of the estimated apportionment uncertainty, mean 95% credible interval widths 

varied from 55.3% (range = 19.6–82.3%) for the empirical Stan model, to 56.4% (range = 

21.8–80.1%) for the full Bayes Stan model and 61.4% (range = 30.8–90.4%) for the 

empirical JAGS model. The frequentist model M4 had the highest degree of uncertainty with 

a mean confidence interval width of 70.0% (range = 12.7–100.0%) across the six mixtures. 

Estimates for mixture 2 yielded the greatest amount of uncertainty for an individual mixture 

amongst the Bayesian models, with a mean credible interval width of 65.6%. Estimated 

proportions for mixture 1 had the lowest uncertainty, with a mean credible interval width of 

47.8%. 

Overall, all models showed the highest level of accuracy and precision when estimating the 

contribution of sediment derived from the subsurface source. This reflects the relative 

uniqueness of the subsurface source geochemistry compared with topsoil and road verge 

sources whose geochemical ranges were more closely aligned (Figure 3). This characteristic 

of the source dataset reduces the ability of the mixing model to successfully differentiate 

between road verge and topsoil sources, thus resulting in reduced model accuracy and 

increased uncertainty. The Stan models (M2 and M3) did, however exhibit marginally 

improved discrimination between road verge and topsoil sources compared to the JAGS 

model, with both higher accuracy and narrower credible interval widths observed for these 

two sources. This higher uncertainty of the JAGS model was most apparent for mixtures 1 

(100% topsoil mix) and 2 (50% road verge, 50% topsoil) where the actual subsurface 

contribution was zero and hence the target geochemistry sat directly within the road verge–

topsoil mixing space. This seems to suggest that where geochemical distributions of the 
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source samples overlap, the Stan models may be able to achieve better source group 

differentiation than the JAGS model under the conditions of this study. 

 

3.2 Model comparisons: real data 

Source apportionment results for SPM transported in the River Blackwater during a heavy 

precipitation event in February 2013 are presented in Figure 5, whilst Figure S1 presents 

time-series of changing SPM geochemistry. During the event, 12.8 mm of rainfall fell over a 

period of 10 h resulting in a five-fold rise in river discharge (0.03 to 0.15 m
3 

s
-1

) and a rapid 

increase in SPM concentration (9 to 176 mg L
-1

) within 2 h of peak rainfall intensity. Prior to 

the event, all three Bayesian models estimated similarly high subsurface (53–54%), low 

topsoil (11–13%) and intermediate road verge (29–33%) median contributions. This differed 

from the frequentist model which estimated a substantially higher median road verge 

contribution (62%) and lower subsurface (38%) and topsoil (0%) proportions. As SPM 

concentrations increased during the onset of the heaviest rainfall ~8 h into the monitoring 

period, all models estimated a rapid and pronounced increase in topsoil contribution and 

corresponding declines in subsurface and, to a lesser extent, road verge material. Median 

topsoil apportionment estimates increased to 47% (4–85% at the 95% credible interval) for 

the empirical JAGS model, 66% (13–93%) for the empirical Stan model and 65% (14–94%) 

for the full Bayes Stan model. The frequentist model estimated the highest median topsoil 

contribution of 90% (33–100 % at the 95% confidence interval) during this period. 

As the event progressed over the following 24–36 h, SPM concentrations gradually reduced 

back down to pre-event levels (12 mg L
-1

) and estimated subsurface contributions increased 

consistently across the three Bayesian models to once again become the dominant sediment 

source (median = 43–51%; 95% credible interval = 28–80%). The frequentist model also 
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estimated an increase in subsurface sediment contribution by the end of the monitoring period 

(median = 53%), but with greater uncertainty (95% confidence interval = 0–100%). In fact, as 

with the synthetic mixtures, the frequentist model yielded the most uncertain source 

apportionment estimates for all three sources across the whole precipitation event, with mean 

95% confidence interval widths of 79% for the subsurface, 95% for road verges and 53% for 

topsoil. Conversely, the full and empirical Bayes Stan models yielded more precise 

apportionment estimates, with near identical mean 95% credible interval widths of 49% for 

the subsurface, 61% for road verges and 59% for topsoil for both models.  

Differences in apportionment estimates between the four model versions consequently 

impacted upon the estimated SPM load transported during the 48 h event (Table 5). Very 

similar SPM loads were estimated for the empirical and full Bayes Stan models, with 604-

608 kg derived from topsoil, 427-428 kg from the subsurface and 351-357 kg from road 

verges based on the median estimate. This equates to 43% (6–77% at the 95% credible 

interval) of the ~1390 kg of SPM transported to originate from topsoil, 31% (13–63%) from 

the subsurface and 26% (4–69%) from road verges. Conversely, the empirical JAGS model 

estimated a substantially greater load of SPM from road verges (562 kg) and lower loads 

from topsoil (445 kg) and the subsurface (386 kg). These JAGS estimates translate into 40% 

(9–78% at the 95% credible interval) of total SPM transport originating from road verges, 

32% (2-70%) from topsoil and 28% from the subsurface (13–57%). The frequentist model 

estimated the highest topsoil (650 kg) and lowest subsurface (326 kg) loads of the four model 

versions. This equates to 47% (13–79% at 95% confidence interval) of SPM originating from 

topsoil, 29% (0–91%) from road verges and 24% (0–62%) from the subsurface. 

 

3.3 Model sensitivity to reduced source representativeness 
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The impact on mixing model accuracy and uncertainty of reducing the representativeness of 

the source area geochemistry data is shown in Figure 6. As the number of source area 

samples was reduced from 120 to 80, there was no obvious deterioration in the accuracy of 

any of the four model versions (Figure 6A). However, further reductions in the number of 

source samples down to 40 and then 15, resulted in a pronounced contrast in the accuracy of 

apportionment results between models. The performance of the empirical JAGS model 

deteriorated most severely, with the average deviation between the median estimated 

apportionment values and the actual true proportions increasing significantly (p < 0.05) from 

12.9% at 120 samples to 21.5% at 15 samples. The Stan empirical model deviation increased 

from 11.6% at 120 samples to 14.1% at 15 samples, whilst the frequentist model deviation 

increased from 8.9% to 12.1%. The full Bayes Stan model was the least sensitive to changes 

in the number of source samples, with a non-significant (p > 0.05) increase in mean deviation 

of just 0.8% from 11.4% at 120 samples to 12.2% at 15 samples. This is consistent with the 

observation of Ward et al. (2010) that full Bayesian approaches are advantageous where 

sample numbers are small. 

There was an inconsistent response in model uncertainty to reducing sample numbers (Figure 

6B). The average 95% confidence interval widths of the frequentist model demonstrated the 

greatest sensitivity, increasing from 70.0% at 120 samples to 80.1% at 15 samples, albeit 

non-significantly (p > 0.05) due to considerable scatter. Conversely, the JAGS model showed 

a small, yet consistent, decline in the mean 95% credible interval width from 61.4% at 120 

samples to 56.7% with 15 samples. The empirical and full Bayes Stan models were the least 

sensitive to changing source sample numbers, with no significant (p > 0.05) change in 

credible interval width between 120 and 15 samples. 

 



 

 
This article is protected by copyright. All rights reserved. 

The reduced sensitivity of the full Bayes version to source geochemistry representativeness 

arises because assigning uninformative prior distributions to the hyper-parameters of the 

sources relaxes the assumption that the geochemistry of the source samples is fully 

representative of the entire catchment wide geochemical variability. Consequently, the model 

is more flexible and less likely to be biased by unrepresentative data. In this respect, it is 

slightly surprising that the performance of the empirical Stan model did not deteriorate 

further as the sample numbers were reduced. This suggests that for the dataset used here, the 

empirical treatment of the source data does represent a good approximation of the full Bayes 

treatment and that either approach could reliably be adopted.  

However, a key reason behind the higher sensitivity of the empirical JAGS model relates to 

the parameterisation of precision matrices instead of the covariance matrices employed in 

Stan. As the number of source samples is reduced, correlation between the source 

geochemical fingerprints is altered, thus altering the covariance structure of the source 

dataset. When the covariance matrices are inverted offline (empirically) to form precision 

matrices by approximation, which necessitates forcing the precision matrices into the nearest 

positive-definite matrices before input to JAGS, the precision matrix estimates can become 

biased resulting in substantially different prior source distributions (Figure 7). Here, this leads 

to a decrease in the accuracy and uncertainty of the JAGS model results as the number of 

source samples is reduced.  
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3.4 Model sensitivity to non-conservative behaviour 

The impact on mixing model performance of corrupting the target geochemistry to represent 

non-conservative fingerprint behaviour can be seen in Figure 8. The empirical JAGS model 

was the most sensitive to the corruption of the target dataset, with the average deviation 

between the median estimated apportionment values and the actual proportions increasing 

significantly (p < 0.05) from 12.9% with no corruption to 33.6% at 80% corruption (Figure 

8A). The frequentist model also displayed relatively high sensitivity to tracer corruption, with 

mean deviation increasing significantly (p < 0.05) from 8.9% with the uncorrupted target 

dataset to 21.5% when target geochemistry values were increased by 80%. These 

observations are similar to that previously reported by Sherriff et al. (2015). Conversely, both 

empirical and full Bayes Stan models exhibited minimal deterioration in model accuracy as 

target fingerprint corruption increased, with a non-significant (p > 0.05) increase in deviation 

of <6% at 80% corruption. This clearly demonstrates that the Stan models are able to cope 

better with non-conservative fingerprint behaviour than either the JAGS or frequentist 

approaches. The reduced performance of the JAGS model with increased fingerprint 

corruption is again an artefact of the biased covariance structures that are produced when 

inverting to precision matrices offline (Figure 7).  

As observed when reducing source representativeness, there was an inconsistent response in 

mixing model uncertainty to the corruption on the target geochemistry (Figure 8B). The 95% 

credible interval widths of the JAGS model declined significantly (p < 0.05) from 61.4% to 

39.6% as corruption increased to 80%. This, together with the decreased accuracy, arose 

because as the degree of corruption increased the model increasingly estimated contributions 

almost entirely of subsurface origin. Whilst the accuracy of both Stan models was largely 

insensitive to non-conservative behaviour, model uncertainty did increase by ~5% between 

0% and 80% fingerprint corruption, albeit with considerable scatter and no significant trend 
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(p > 0.05). Frequentist model uncertainty remained relatively unchanged, with a 3% decline 

in confidence interval width at 80% corruption.   

 

3.5 Significance and recommendations 

For both artificial and real sediment mixtures, the results presented here have demonstrated a 

clear consistency in source apportionment estimates between mixing models adopting either 

an empirical or a full Bayes treatment of geochemical uncertainties. Therefore, for the dataset 

used here, we can say that the empirical treatment of the source data does represent a good 

approximation of the full Bayes treatment and that either method would be suitable under 

these conditions. Whilst empirical Bayes might be preferred for numerical efficiency 

(although efficiency gains are small in Stan), we recommend that future studies stay true to 

the fundamental principles of Bayesian statistics and adopt the full Bayesian approach to 

minimise the risk of a more unrepresentative dataset than that utilised here biasing the 

apportionment results.  

Contrasts in the performance of mixing models coded in JAGS and Stan reveal that the 

choice of mixing model software employed can impact significantly upon source 

apportionment results. This is most apparent in the increased sensitivity of the JAGS model 

to both reduced source representativeness and non-conservative tracer behaviour. JAGS 

necessitates the use of inverse covariance (i.e. precision) matrices to characterise the 

uncertainty around source, target and instrument error, and it is the bias that can be 

introduced during the “offline” estimation of these precision matrices that results in the 

reduced performance of the JAGS model. As shown in Figure 7, distributions parameterised 

by covariance matrices more closely approximate the actual empirical data. Whilst further 

research comparing the relative performance of JAGS and Stan coded mixing models is 
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required to confirm the results presented here, these initial findings indicate Stan as the 

preferred software for future Bayesian sediment fingerprinting studies. 

Comparison of Bayesian and frequentist mixing models reveals generally comparable 

accuracy in source apportionment estimates but with substantially greater uncertainty 

generated by the frequentist approach. As was previously demonstrated by Cooper et al. 

(2014a), this is in large part due to the bimodality of frequentist source apportionment results 

in which 0% and 100% are often the most commonly estimated source contributions. This, 

arguably unrealistic behaviour, arises from the linear optimisation forcing a fit onto single 

draws from the source and target datasets. The effect is avoided in Bayesian inference where 

the entire distributions of all parameters are explored simultaneously resulting in more 

realistic posterior distributions. The frequentist model is also less effective at dealing with 

non-conservative tracer behaviour than either of the Stan Bayesian models. These results, 

combined with the fact that frequentist optimisation lacks the structural flexibility to 

coherently translate all sources of uncertainty into mixing model results, means that adopting 

Bayesian inference in future sediment fingerprinting studies is preferable to the more 

commonly applied frequentist approach. 

 

4. Conclusions 

The empirical Bayes mixing model published by Cooper et al. (2014a) represented a notable 

improvement in the handling of uncertainties associated with the sediment fingerprinting 

technique compared with commonly employed least-squares frequentist optimisation 

routines. However, in fixing the prior parameters of the source geochemistry offline, the 

model did not stay true to the Bayesian paradigm of treating all model parameters 

probabilistically, thus increasing the risk of the model results being biased by 
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unrepresentative input data. The extended full Bayes model presented here addresses this 

deficiency. Whilst it is recommend that this extended full Bayes model supersedes the earlier 

empirical version, the empirical model coded in Stan remains a satisfactory approximation. In 

all cases, the frequentist optimisation generated substantially greater uncertainty around 

source apportionment estimates relative to the Bayesian models and was less effective at 

dealing with non-conservative tracer behaviour. Differences in the performance of models 

coded in JAGS and Stan, specifically the lower sensitive of the Stan models to both reduced 

source representativeness and non-conservative fingerprint behaviour, provisionally highlight 

Stan as the preferred software for future fingerprinting studies. Further investigation into the 

comparative performance of different Bayesian mixing model software is highly 

recommended as the research community looks to continue advancing existing sediment 

fingerprinting techniques.           
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Tables 

Table 1: Summary of the four mixing model versions.  

Model 

Version 
Inference Type 

Software/ 

Package 

MCMC 

Sampler 

Source 

Uncertainty 

No. 

MCMC 

Chains 

Iterations 
Burn-

in 

Jump 

Length 

M1 Bayesian Empirical JAGS Gibbs Partial 3 750,000 250,000 225 

M2 Bayesian Empirical Stan No-U-Turn Partial 3 10,000 5,000 25 

M3 Bayesian Full Stan No-U-Turn Full 3  10,000 5,000 25 

M4 Frequentist Frequentist limSolve - - - 10,000 - - 

 

 

Table 2: Number of collected soil/sediment samples used to characterise the source 

distributions.  

Set 

Number of samples 

Subsurface Road Verge Topsoil Total 

1 60 30 30 120 

2 40 20 20 80 

3 20 10 10 40 

4 5 5 5 15 

 

Table 3: Percentage source contributions for the six synthetic target mixtures 

Mixture Source Contribution (%) 

Subsurface Road verge Topsoil 

1 0 0 100 

2 0 50 50 

3 20 60 20 

4 33 33 33 

5 50 0 50 

6 75 12.5 12.5 
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Table 4: Summary of mixing model performance for the six artificial mixtures. 

Model 

Version 

Mean deviation between actual 

and median predicted 

proportions (%) 

 

Mean 95% CI width (%) 

SUB RV TS Overall  SUB RV TS Overall 

M1 11.1 16.0 11.5 12.9  39.4 73.6 71.0 61.4 

M2 10.8 14.3 9.8 11.6  36.3 66.5 63.2 55.3 

M3 9.6 14.1 10.5 11.4  41.2 66.2 61.9 56.4 

M4 4.2 11.2 11.2 8.9  59.6 89.3 61.0 70.0 

 

 

 

Table 5: Median (95% credible/confidence interval) suspended particulate matter (SPM) load 

contributions estimated by four mixing model versions for the entire February 2013 

precipitation event.  

Model 

Version 

SPM Load Contribution (kg) 

Subsurface Road Verge Topsoil 

M1 386 (179–798) 562 (124–1085) 445 (34–980) 

M2 428 (187–865) 357 (57–955) 604 (86–1072) 

M3 427 (181–879) 351 (54–959) 608 (88–1071) 

M4 326 (2–859)  407 (0–1252) 650 (183–1099) 
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Figure 1: Directed acyclic graphs of (A) the Cooper et al. (2014a) empirical Bayes mixing 

model and (B) the full Bayes model introduced here. White circles denote random variables 

estimated by Markov Chain Monte Carlo (MCMC) sampling. Grey squares denote nodes of 

observed data, including parameters estimated “offline” by Maximum Likelihood in the 

empirical Bayes approach. Prior distributions and deterministic link equations are presented 

adjacent to nodes. MVN, N, Inv-W and Inv-Γ represent multivariate normal, normal, inverse 

Wishart and inverse gamma distributions, respectively. Dashed red lines represent the 

extension to full Bayes.       
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Figure 2: Schematic of the sediment source areas identified across the River Blackwater 

catchment, with overlay of the extended full Bayesian Directed Acyclic Graph (DAG).  
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Figure 3: Principal component analysis plots of the source area samples (left) and fingerprint 

loadings (right) for the first three principal components. Shaded ellipsoids encompass 50% 

and 95% of the source area range. 

  

  



 

 
This article is protected by copyright. All rights reserved. 

 

Figure 4: Comparison of sediment source apportionment results estimated by the JAGS 

empirical (M1), Stan empirical (M2), Stan full Bayes (M3) and frequentist (M4) mixing 

models for the six synthetic target mixtures. Medians (points), 95% credible/confidence 

intervals (error bars) and actual contributions (dotted lines) are shown.   
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Figure 6: Effect of reducing the number of source area samples on (A) model accuracy and 

(B) model uncertainty. Model accuracy refers to the median contribution. Power law 

regression lines plotted for model accuracy; linear regressions plotted for model uncertainty.  
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Figure 7: Histograms of the actual road verge source concentrations plotted alongside the 

prior multivariate normal distributions estimated using covariance (Stan) and precision 

(JAGS) matrices as hyper-parameters for the covariance. Prior distributions plotted using 

kernel density smoothing.   
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Figure 8: Impact of corrupting the target geochemistry data to simulate non-conservative 

behaviour on (A) model accuracy and (B) model uncertainty. Model accuracy refers to the 

median estimated contribution. Linear regression lines plotted for both model accuracy and 

uncertainty.  

 

 

 


