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Abstract—We propose the use of the convex optimization-based
EDA (cvxEDA) framework to automatically characterize the force
and velocity of caressing stimuli through the analysis of the
electrodermal activity (EDA). CvxEDA, in fact, solves a convex
optimization problem that always guarantees the globally opti-
mal solution. We show that this approach is especially suitable for
the implementation in wearable monitoring systems, being more
computationally efficient than a widely used EDA processing al-
gorithm. In addition, it ensures low-memory consumption, due
to a sparse representation of the EDA phasic components. EDA
recordings were gathered from 32 healthy subjects (16 females)
who participated in an experiment where a fabric-based wearable
haptic system conveyed them caress-like stimuli by means of two
motors. Six types of stimuli (combining three levels of velocity and
two of force) were randomly administered over time. Performance
was evaluated in terms of execution time of the algorithm, memory
usage, and statistical significance in discerning the affective stim-
uli along force and velocity dimensions. Experimental results re-
vealed good performance of cvxEDA model for all of the considered
metrics.

Index Terms—Affective haptics, caressing stimuli, convex op-
timization, CT fibers, electrodermal activity, electrodermal re-
sponse, sparse representation, wearable haptics.

I. INTRODUCTION

W EARABLE haptics refers to a novel concept of haptic
devices which can be easily worn by humans. A wear-

able haptic system applying stimuli to the human body can be
used to allow augmented communication, interaction, and coop-
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eration with other robots, other humans, or other digital contents
and virtual reality [1].

An emerging field of application of wearable haptics systems
is the so-called “affective haptics” [2], [3]. Affective haptics
refers to the ability of haptic systems to communicate emotions,
possibly affecting social behavior and interactions [4]. This is
possible because of the action of a specialized kind of tactile
sensors in the skin, i.e., the unmyelinated CT tactile fibers [5],
[6], whose activity is linked to the controlateral primary and
bilateral secondary somatosensory area, as well as contralateral
middle and posterior insula cortex [7]. Previous studies demon-
strated how these fibers are sensitive to changes in the physical
characteristics of the haptic stimulus. Specifically, changes in
contact force and velocity of human caresses can vary the va-
lence perception (pleasantness/unpleasantness) of the stimulus
[8], [9]. Caressing stimuli having velocity of 3 cm/s and applied
forces as low as 2N have been shown to convey a maximal pleas-
antness perception [8], thus optimally activating the CT fibers
[10]. In addition, other physical parameters, such as texture and
roughness, were found to have a role in the affective perception
of the tactile stimulus [11].

In this study, we focus on the effects of affective haptic stim-
uli on autonomic nervous system (ANS) dynamics. Brain areas
activated by CT fibers, in fact, are known to be also responsible
for crucial homeostatic functions involving ANS activity from
the whole body. More specifically, prior art reports on a strong
correlation between ANS dynamics, as estimated through elec-
trodermal activity (EDA) processing, and stressful and affective
elicitations [4], [12]–[14].

It is well known from the literature that EDA signaling is
comprised of a tonic component, having low-frequency infor-
mation, and a phasic component, having higher frequency in-
formation [15], [16]. Anatomically, EDA is directly linked to
the eccrine sweat glands activity through the sudomotor nerve
activity (SMNA) [15], and can be easily monitored through volt-
age/current measures between two fingers [15]. Importantly, in
a previous endeavor, we developed a fabric-based sensorized
glove able to continuously record the EDA [13].

EDA processing was employed in a number of applications
involving the assessment of haptic perception, including interac-
tion with robots in nursing context [17], detection of nociceptive
pain in adults [18] and preterm newborn infants [19], and in as-
sessing the so-called “rubber hand illusion” [20] and vibrotactile
sensory substitution [21]. Furthermore, EDA was used to assess
the emotions in interacting partners [4], and to investigate the
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effect of tactile stimulation in persistent vegetative state [22],
and in social anxiety [23].

However, a methodological framework to assess the phys-
ical characteristics of caressing stimuli, being also suitable
for implementation in embedded computing systems, is still
missing. To this extent, we here propose the application of a
computationally efficient EDA processing algorithm to automat-
ically assess the velocity and force of caressing stimuli elicited
through a wearable haptic device. Here, we demonstrate that
this algorithm, which is called convex optimization-based EDA
(cvxEDA) [24], is suitable for embedded computing of EDA
processing. CvxEDA, in fact, is based on a sparse representation
of the phasic components of EDA thus requiring low-memory
consumption, and it has been recently validated and proven to be
effective also in affective computing applications [24]. Although
sparse representation of EDA phasic components was also pro-
posed in other studies [25] where the use of overcomplete dic-
tionaries leads to a nonconvex problem, cvxEDA employes a
convex optimization approach, thus enabling to always find the
globally optimal solution [24]. In our recent study, performance
of the proposed approach was compared with a deconvolution
method for EDA tonic and phasic components separation, i.e.,
the continuous deconvolution analysis (CDA) [26]. This specific
comparison was justified by the fact that CDA is a widely used
model-based approach for the decomposition of the EDA in its
components, and it has been a source of inspiration for cvxEDA
development [24].

Data used in this study were gathered from 32 healthy
subjects, enrolled in the frame of the European project
“WEARHAP” (WEARable HAPtics for humans and robots).
Each subject underwent affective haptic elicitation through a
previously developed wearable haptic device able to mimic the
human caress [3]. Specifically, a layer of fabric was stretched by
two motors, whose position and velocity determined the force
and velocity of the simulated caress. In this way, the artificial
caresses could be controlled and standardized in terms of force
and velocity [3]. Six kind of stimuli, by the combination of
three level of velocity and two levels of force, were randomly
administered along time.

The rest of the paper is organized as follows: Section II reports
on the experimental setup, giving also details on the wearable
device used for the haptic stimulation, and signal processing
methods; Section III summarizes results, and Section IV dis-
cusses the experimental findings.

II. MATERIALS AND METHODS

Changes in EDA are directly linked to the eccrine sweat gland
activity, which is modulated by the ANS through the SMNA.
Such changes can be related to both the psycho-physiological
state of a person, and the interaction with exogenous events. The
EDA is practically measured by means of the skin conductance
(SC) and therefore hereinafter we will refer to SC in place of
EDA. The SC signal is defined in the frequency band of 0–2 Hz
[27] and can be split into a slowly varying component, the so-
called tonic component, and a superposed phasic component
[15], [28]–[30].

Tonic component corresponds to the baseline level of the SC
signal (i.e., SC level), and reflects the person’s general psy-
chophysiological state, and his autonomic regulation [15].The
phasic component, instead, is comprised of consecutive, often
overlapped, responses, called SC responses (SCRs), to exoge-
nous stimuli such as lights, sounds, smells. SCRs are defined as
variations in the SC signal arising within a predefined response
window (1 − 5 s after stimulus onset) [26]. Sometimes, even if
no stimuli are presented, there are some innate responses that
are called nonspecific SC responses (NsSCR). They have the
same characteristics as stimulus-related SCRs, but are consid-
ered tonic measures because they occur in the absence of exter-
nal stimuli and in the absence of artifacts such as movements
and sights [31].

In this section, we briefly report on details on the cvxEDA and
the CDA models, which are described in [24] and [32]. Note that
these two methods are able to discern overlapping consecutive
SCRs, likely to be present in case of an interstimulus interval
shorter than the SCR recovery time.

A. EDA Processing Using Convex Optimization-Based
Electrodermal Activity Algorithm

CvxEDA proposed a representation of the SCRs as the output
of a linear time-invariant system to a sparse nonnegative driver
signal. The model assumes that the observed SC (y) is the sum
of the phasic activity (r), a slow tonic component (t), and an
additive independent and identically distributed zero-average
Gaussian noise term ε

y = r + t + ε. (1)

Physiologically plausible characteristics (temporal scale and
smoothness) of the tonic input signal can be achieved by means
of a cubic spline with equally spaced knots every 10 s, an offset
and a linear trend term

t = B� + Cd (2)

where B is a tall matrix whose columns are cubic B-spline
basis functions, � is the vector of spline coefficients, C is a
N × 2 matrix (where N is the length of the SC time series) with
Ci,1 = 1 and Ci,2 = i/N , d is a 2 × 1 vector with the offset and
slope coefficients for the linear trend.

The phasic component is the result of a convolution between
the SMNA p, and an impulse response h(t) shaped like a biex-
ponential Bateman function [32]–[34]

h(t) =
(
e−

t
τ 1 − e−

t
τ 2

)
u(t) (3)

where τ1 and τ2 are, respectively, the slow and the fast time
constants of the phasic curve shape, and u(t) is the unitary step
function.

Taking the Laplace transform of (3) and then its discrete-time
approximation with sampling time δ (using a bilinear transfor-
mation), we obtain an autoregressive moving average (ARMA)
model (see details in [24]) that can be represented in matrix
form as

H = M−1A (4)
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where M and A are tridiagonal matrices with the MA and AR
coefficients along the diagonals. Using an auxiliary variable q
such that

q = A−1 p, r = M q (5)

we write the final observation model as

y = Mq + B� + Cd + ε. (6)

Given the EDA model (6), the goal is to identify the max-
imum a posteriori (MAP) neural driver SMNA (p) and tonic
component (t) parametrized by [q, �, d], for the measured SC
signal (y). CvxEDA rewrites the MAP problem as a constrained
minimization QP convex problem (see details in [24])

minimize
1
2
‖Mq + B� + Cd − y‖2

2 + α ‖Aq‖1 +
γ

2
‖�‖2

2

subj. to Aq ≥ 0. (7)

After some matrix algebra, this optimization problem can be
rewritten in the standard QP form and solved efficiently using
one of the many sparse-QP solvers available. After finding the
optimal [q, �, d], the tonic component t can be derived from (2),
while the SMNA driving the phasic component can be easily
found as p = Aq (see also the upper diagram in Fig. 2).

The objective function (7) to be minimized is a quadratic
measure of misfit or prediction error between the observed data
and the values predicted by the model. Moreover, the prior
knowledge about the spiking sparse nature and nonnegativity of
the SMNA (p) and the smoothness of the tonic component are
accounted for by the regularizing terms and the constraint.

The strength of the penalty is regulated by α and γ terms.
A sparser estimate is yielded by large values of α. Concern-
ing γ, higher values mean a stronger penalization of �, i.e.,
a smoother tonic curve. Of note, fixed values of τ1 = 0.7s,
τ2 = 3.0s, α = 0.4, and γ = 0.01, which were chosen dur-
ing previous exploratory tests on separate data, were employed
throughout this analysis.

CvxEDA algorithm is implemented in MATLAB language
and the software is available online (http://www.mathworks.
com/matlabcentral/fileexchange/53326-cvxeda).

B. EDA Processing Using CDA

CDA [15] also describes the relationship between SMNA
and SC data using the Bateman function, which has already
been described in the previous paragraph [see (3)]

EDA(t) = SMNA(t) ⊗ h(t) (8)

where SMNA = (DRIVERtonic + DRIVERphasic).
In (8), SMNA is the unknown quantity that is estimated by

deconvolving the EDA signal with h(t).
The CDA algorithm is comprised of three stages (see the

bottom diagram in Fig. 2): the preprocessing stage, the decom-
position of the SC in its tonic and phasic component, and the
optimization stage.

The preprocessing consists of the visual detection and re-
moval of the movement artifacts, and a low-pass zero-phase
filtering with a 2 Hz cutoff. The decomposition in the two driver

Fig. 1. Application of the cvxEDA (red) and CDA (blue) decomposition
procedure to the SC signal recorded during the affective haptic stimulation.

functions is achieved by a deconvolution between the SC data
and the impulse response function. The hypothesis underlying
SC component behaviors is that tonic activity is observable in the
absence of any phasic activity [15]. Therefore, the DRIVERtonic

component is obtained by the application of a smoothing Gauss
window of 200 ms and a peak detection algorithm in order to
find the peaks under a threshold of 0.2μS, used to build a 10-s
spacing grid and then the grid points were interpolated with
a cubic spline fitting method. The DRIVERphasic component,
instead, is computed by subtracting the previously estimated
DRIVERtonic from the SMNA.

Finally, the optimization stage aims at increasing the spar-
sity of the DRIVERphasic signal and obtain a signal with a
zero baseline and peaks as distinguishable as possible. Starting
from fixed values, the parameter τ1 and τ0 of (h(t)) are opti-
mized minimizing a specific cost function given by the sum of
the points of the DRIVERphasic component that have negative
value and the points above a predefined threshold. More details
can be again found in [32]. Note that the CDA algorithm is
implemented in the Ledalab software package for MATLAB
[35].

C. Subject Recruitment, Experimental Protocol, and
Acquisition Set-Up

Thirty-two healthy subjects aged 27 ± 2 (16 males, age 26 ±
2, and 16 females, age 27 ± 2) gave their informed consent to
take part in the study. This study was approved by the local
Ethical Committee. Exemplary data from one subject are shown
in Fig. 1. Caresses were administered through an affective touch
display, described in detail in [3]. Specifically, subjects were
asked to place the forearm on a support so as to put the upper
side in contact with the fabric layer. The fabric is connected to
two motors, whose rotations allow modifying velocity and force
of the mimicked caress (see Fig. 3).

Throughout the experiment, participants wore earplugs in or-
der to prevent any auditory cues, while their SC was recorded
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Fig. 2. Block diagrams of both cvxEDA (upper) and CDA (bottom) methods. They summarize the main steps of both processing chains.

Fig. 3. Overview of the haptic system worn by a subject.

using a BIOPAC MP150 physiological acquisition system.
Following the literature guidelines and in order to avoid in-
terferences between the acquisition and the elicitation devices,
haptic stimuli were applied on the dominant forearm, whereas
the BIOPAC system measured the SC on the distal phalanxes of
the index and middle finger of the nondominant hand. Prior to
the experiment, the haptic device’s load cell was calibrated with
respect to the forearm weight. We used six different combina-
tions of stimuli through two levels of force (F1 = 2 N, F2 = 6 N)
and three levels of velocity (V1 = 9.4 mm/s, V2 = 37 mm/s,
and V3 = 65 mm/s). In between two stimuli, the motors were
stopped and the force was set to 0 N. The values of velocity were
chosen according to previous studies, which explored the hedo-
nic aspects of caress-like stimulation on glabrous skin in a range
between 0.1 and 30 cm/s. In such studies, the pleasantness

Fig. 4. Example of protocol scheme of one subject. Velocity and force
combination is randomized.

ratings showed an inverted U-shaped pattern, with the high-
est values related to the range 1–3 cm/s [8]–[10]. Moreover, in
our previous work, we analyzed the subjects’ self-reports on the
perceived emotive response to caress-like haptic stimuli which
included different velocities and force levels [3].

The experimental protocol consisted of the following consec-
utive sessions:

1) resting state of 3 min;
2) randomized caressing elicitation of ∼ 12 min; and
3) resting state of 2 min .
Of note, all the six combinations of velocities and forces were

randomized among subjects (see an example of protocol scheme
in Fig. 4), with a prestimulus and a poststimulus interval of
35 s each.

D. Feature Extraction, Performance Metrics, and Statistical
Analysis

Once the tonic and phasic components are estimated from
both cvxEDA and CDA approaches, several features can be
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TABLE I
LIST OF FEATURES EXTRACTED FROM EDA PHASIC AND TONIC COMPONENTS

Phasic Feature Description

Npeak Number of significant SCR wrw
AUC Area under curve of SMNA signal wrw (μSs)
peak Maximum amplitude of significant SCRs wrw1(μS )
stdphasic Standard deviation of SMNA signal wrw (μS )

Tonic Feature Description
MeanTonic Mean value of the tonic component wrw (μS )

MeanTonic difference between
diffTonic post/prerest sessions (μS )

Difference of AUC of spontaneous SCRs
diffNSAUC between post/prerest sessions (μSs)

wrw= within response window (i.e., 5 s after stimulus).

Fig. 5. Example of CDA (left) and cvxEDA (right) phasic responses to
each combination of caressing force (F = 2N, F = 6N) and velocity (V1
= 9.4 mm/s, V2 = 37 mm/s, and V3 = 65 mm/s) level, within the stimulus
time window.

extracted to investigate the sensitivity to changes in caressing,
along the force and velocity dimensions. Proposed features in
this study are summarized in Table I.

Through these features, the following analyses were per-
formed.

1) Event-related phasic analysis, through which EDA was
studied within a time response window of 5 s after the
affective stimulus Fig. 5.

2) Nonspecific fluctuation and tonic analysis, comprised of
a) the tonic value, averaged within the time-response

Fig. 6. Processing time of the CDA and cvxEDA algorithms at different length
of signal input, with sampling time of 60 s.

Fig. 7. Within-subject ranks of the tonic feature set obtained from CDA (left)
and cvxEDA (right) models between the two force levels (F1 = 2N, F2 = 6N).
Values represent average rank ± standard error (SE) across subjects. Asterisks
indicate significant differences between velocities: (∗)p < 0.05, (∗∗)p < 0.01,
(∗ ∗ ∗)p < 0.001.

window, and the nonspecific electrodermal fluctuations,
and b) differential tonic value between the post- and pres-
timulus session.

The differences between the two levels of force (i.e., F1 =
2 N and F2 = 6 N) and among the three velocities (i.e., V1 =
9.4 mm/s, V2 = 37 mm/s, and V3 = 65 mm/s) were studied
using Wilcoxon signed-rank tests and Friedman tests, respec-
tively, due to the non-Gaussianity of samples (as confirmed by a
preliminary analysis performed through Shapiro–Wilk tests).
In case of rejection of the Friedman test null-hypothesis, a
post hoc analysis, using Wilcoxon signed-rank with Bonferroni
correction, was also carried out.

Finally, to test the suitability of the proposed algorithm
in embedded computing systems, computational performance
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TABLE II
MEDIAN ± MAD (MEDIAN ABSOLUTE DEVIATION) INTERVAL FOR

CDA FEATURES

Feature F1 F2 p-value

Npeak 0 ± 0 0 ± 0 >0.05
Peak 0.0419 ± 0.0255 0.0387 ± 0.0256 >0.05
AUC 0.236 ± 0.176 0.263 ± 0.202 >0.05
stdphasic 0.0108 ± 0.00891 0.00996 ± 0.00834 >0.05
MeanTonic 1.67 ± 0.452 1.55 ± 0.413 >0.05
diffTonic −0.0457 ± 0.067 −0.0113 ± 0.0624 <0.005
diffNSAUC 0.112 ± 0.122 0.151 ± 0.156 >0.05

Values were averaged among the subjects. Last column shows p-values
from Wilcoxon nonparametric tests, with null hypothesis of equal me-
dian values between two force levels.
Bold values mean statistically significant p-value.

analysis was also performed. This is related to the execution
time of the algorithm (processing time), and the memory usage
of the CDA and cvxEDA models output vectors. Concerning
the running time analysis, as a first step, we calculated the time
to decompose 60 s of SC signal. Then, we incremented the time
length of the SC segment with a sampling step of 60 s, until
we estimated the processing time needed to decompose the total
length of the SC signal (1800 s).

Estimates of these metrics were obtained on the same personal
computer, with processor 1.7 GHz Intel Core i7, RAM memory
8 GB 1600 MHz DDR3.

III. EXPERIMENTAL RESULTS

In this section, results from the statistical analysis performed
on features from CDA and cvxEDA algorithms are reported.
Such results are shown considering EDA nonspecific fluctua-
tions and tonic components analysis, as well as event-related
phasic components analysis.

A. EDA Nonspecific Fluctuations and Tonic Components
Analysis

Only one feature, diffTonic, extracted from both the CDA and
cvxEDA models showed a significant difference (p < 0.005,
Fig. 7) between the two levels of force while caressing. In par-
ticular, the higher the diffTonic values, the higher the caressing
force. Note that diffTonic calculated through cvxEDA showed a
higher discerning power, i.e., lower p-value, as compared with
CDA modeling (see Tables II and III).

Concerning the three levels of caress velocity, among the fea-
tures extracted using the CDA model, significant differences
(p < 0.05) were found in diffTonic while discerning V 1 versus
V 2, and V 1 versus V 3, and in diffNSAUC while discerning V 1
versus V 3 and V 2 versus V 3 (see Table IV and Figs. 9 and 10).
On the other hand, using the cvxEDA model, a significant differ-
ence in discerning V 1 versus V 2 was found through meanTonic
(see Table V and Fig. 9). CDA showed a higher number of statis-
tical differences among the velocities through the tonic features
than cvxEDA, though a complete discrimination of all of the
three levels is not achieved by both.

TABLE III
MEDIAN ± MAD INTERVALS FOR CVXEDA FEATURES

Feature F1 F2 p-value

Npeak 3.0 ± 1.0 3.0 ± 1.0 >0.05
Peak 3.99 ± 3.94 3.78 ± 3.58 >0.05
AUC 24.6 ± 21.6 32.0 ± 27.5 >0.05
stdphasic 0.414 ± 0.41 0.412 ± 0.378 >0.05
MeanTonic −0.289 ± 0.476 −0.406 ± 0.445 >0.05
diffTonic −0.109 ± 0.231 0.0453 ± 0.382 <0.0005
diffNSAUC 2.11 ± 7.01 4.9 ± 10.1 >0.05

Values were averaged among the subjects. Last column shows p-
values from Wilcoxon nonparametric tests, with null hypothesis of
equal median values between two force levels.
Bold values mean statistically significant p-value.

Fig. 8. Within-subject ranks of the phasic feature set obtained from CDA (left)
and cvxEDA (right) models between the two force levels (F1 = 2N, F2 = 6N).
Values represent average rank ± standard error (SE) across subjects. Asterisks
indicate significant differences between velocities: (∗)p < 0.05, (∗∗)p < 0.01,
(∗ ∗ ∗)p < 0.001.

B. EDA Event-Related Phasic Components Analysis

This analysis revealed no significant differences between the
two caressing forces, being consistent between the CDA and
cvxEDA approaches (see Tables II and III, and Fig. 8).

Concerning differences between the three caressing veloci-
ties, CDA modeling showed significant differences (p < 0.002)
on the number of significant peaks (Npeak), and the area un-
der the phasic signal curve (AUC) while discerning V 1 versus
V 2, and V 1 versus V 3. No significant differences were found
otherwise, including V 2 versus V 3 (see Table IV and Fig. 10).
Using the cvxEDA approach, instead, we found significant dif-
ferences in all of the pairwise comparisons, with p < 0.005
(see Table V and Fig. 10). Importantly, a monotonically
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TABLE IV
MEDIAN ± MAD INTERVALS FOR CDA FEATURES

Feature V1 V2 V3 p-value

Friedman V1−V2 V1−V3 V2−V3

Npeak 0 ± 0 1.0 ± 1.0 1.0 ± 1.0 <1e-5 <0.005 <1e-5 >0.05
peak 0.0519 ± 0.0308 0.0344 ± 0.0216 0.0397 ± 0.0255 >0.05 >0.05 >0.05 >0.05
AUC 0.0964 ± 0.0634 0.331 ± 0.241 0.343 ± 0.254 <1e-14 <1e-6 <1e-8 >0.05
stdphasic 0.0134 ± 0.0108 0.0103 ± 0.0076 0.00924 ± 0.01773 >0.05 >0.05 >0.05 >0.05
MeanTonic 1.53 ± 0.369 1.69 ± 0.467 1.64 ± 0.463 >0.05 >0.05 >0.05 >0.05
diffTonic −0.0663 ± 0.0815 0.00352 ± 0.0773 −0.0175 ± 0.0599 < 0.005 < 0.005 < 0.05 >0.05
diffNSAUC 0.0633 ± 0.0697 0.127 ± 0.148 0.259 ± 0.219 <1e-5 >0.05 <0.005 <0.001

Values were averaged among the subjects. Last four columns show p-values from the Friedman test and Wilcoxon nonparametric
tests, with null hypothesis of equal median values between three velocity levels.
Bold values mean statistically significant p-value.

TABLE V
MEDIAN ± MAD INTERVALS FOR CVXEDA FEATURES

Feature V1 V2 V3 p-value

Friedman V1−V2 V1−V3 V2−V3

Npeak 2.0 ± 1.0 3.0 ± 1.5 4.0 ± 2.0 <1e-5 <0.005 <1e-6 <0.0005
Peak 0.256 ± 0.256 4.36 ± 4.03 7.61 ± 6.16 <1e-9 <1e-5 <1e-6 >0.05
AUC 6.89 ± 6.59 32.4 ± 24.8 72.6 ± 42.0 <1e-12 <1e-7 <1e-8 <1e-4
stdphasic 0.0356 ± 0.0355 0.469 ± 0.406 0.752 ± 0.577 <1e-11 <1e-6 <1e-7 <0.05
MeanTonic −0.527 ± 0.471 −0.261 ± 0.429 −0.292 ± 0.568 <0.05 <0.05 >0.05 >0.05
diffTonic −0.122 ± 0.335 −0.0251 ± 0.303 0.0417 ± 0.221 >0.05 >0.05 >0.05 >0.05
diffNSAUC 2.1 ± 6.61 2.13 ± 9.22 5.43 ± 9.37 >0.05 >0.05 >0.05 >0.05

Values were averaged among the subjects. Last four columns show p-values from the Friedman test and Wilcoxon nonparametric
tests, with null hypothesis of equal median values between three velocity levels.
Bold values mean statistically significant p-value.

TABLE VI
MEDIAN ± MAD INTERVALS FOR CDA AND CVXEDA PERFORMANCES

CDA cvxEDA p-value

Processing time [s] 8.171 ± 1.239 7.038 ± 1.657 >0.05
Memory [Kb] 359.004 ± 2.868 136.65 ± 95.384 <0.001

p-values are gathered from the Mann–Whitney nonparametric tests with
null hypothesis of equal medians between models. Values were calculated
for each recording, and averaged among the subjects.
Bold values mean statistically significant p-value.

increasing trend among the three velocities was found for each
of the considered features (see Fig. 10). Fig. 5 shows exem-
plary EDA phasic responses from CDA and cvxEDA models,
for each combination of caressing force and velocity. Note that,
considering sparse outputs from cvxEDA, amplitude values are
consistent with the caressing velocity level.

C. Computational Performance Analysis

Results from the computational performance analysis, show-
ing groupwise statistics, are reported in Table VI.

Concerning the processing time, no significant difference was
found between the two models. However, as we show in Fig. 6,
CDA execution time is not linearly related to the length of
the input signal. In particular, for input signals longer than

Fig. 9. Within-subject ranks of the tonic feature set obtained from CDA (left)
and cvxEDA (right) models between the three velocity levels (V1 = 9.4 mm/s,
V2 = 37 mm/s and V3 = 65 mm/s). Values represent average rank ± stan-
dard error (SE) across subjects. Asterisks indicate significant differences be-
tween velocities: (∗)p < 0.05, (∗∗)p < 0.01, (∗ ∗ ∗)p < 0.001.

1300 s, CDA processing time tends to grow superlinearly. Con-
cerning memory usage, a significant difference was found be-
tween the two models. As expected, given to the intrinsic sparse
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Fig. 10. Within-subject ranks of the phasic feature set obtained from CDA
(left) and cvxEDA (right) models between the three velocity levels (V1 =
9.4 mm/s, V2 = 37 mm/s, and V3 = 65 mm/s). Values represent aver-
age rank ± standard error (SE) across subjects. Asterisks indicate significant
differences between velocities: (∗)p < 0.05, (∗∗)p < 0.01, (∗ ∗ ∗)p < 0.001.

nature of cvxEDA phasic components, lower storage values
were associated with the cvxEDA model.

IV. CONCLUSION AND DISCUSSION

In this paper, we proposed the cvxEDA approach [24] to per-
form EDA processing through wearable monitoring systems,
during affective haptic stimulation. In the literature, several
methods for the analysis of the EDA have been presented, such
as “continuous deconvolution analysis” [32], PsPM suite [36],
[37], Lim et al. model [38] or Chaspari et al. method [25]. Actu-
ally, the proposed algorithm has been compared with the CDA as
it has been of great inspiration for the development of cvxEDA,
and is one of the widely used approach for EDA processing.
Both methods employ the same impulse response function to
model the sweating process, but the cvxEDA approach intro-
duces 1) the ideas of modeling the phasic component as IIR,
2) solving a regularized quadratic-programming problem for
EDA decomposition, and 3) using a constrained estimation to
enforce nonnegativity of the SMNA driver signal. These three
important features allowed us to obtain a sparse nonnegative
representation and a greater computational efficiency for EDA
processing.

One of the main issue in the EDA analysis concerns the ab-
sence of an universally accepted protocol for the validation of
EDA analysis algorithms. Unless the sympathetic nerve activ-
ity is also recorded through microneurography, we can equally

ascribe a failure detection of an SCR after the occurrence of a
stimulus to a low sensitivity of the algorithm or to the inability
of the stimulus to consistently elicit a phasic response.In this
work, quantitative statistics of cvxEDA and CDA comparison
were expressed in terms of time of execution of the algorithm,
memory usage, and statistical significance in discerning affec-
tive stimuli along the force and velocity dimensions. We aimed
to effectively discern caressing force and velocity levels, as
elicited through a wearable haptic system [3]. EDA recordings
were gathered from 32 healthy subjects (16 females), undergo-
ing affective haptic elicitation through a wearable system able
to convey caress-like stimuli by means of two motors, which
stretch a strip of fabric. Six kinds of stimuli were randomly
administered in time, being comprised of combinations of three
velocities and two forces levels.

Concerning the study of the statistical power of the EDA
features, for the caressing force dimension, only the diffTonic
feature (computed from both cvxEDA and CDA outputs) was
significantly different between the two caressing force levels.
Moreover, higher caressing force was associated with higher
feature values. This means that the higher the intensity of caress-
ing, the higher is the tonic level of EDA after such a cutaneous
stimulus. This is a reasonable behavior, being in line with typ-
ical physiological dynamics associated to EDA [15]. However,
it is worthwhile noting that the cvxEDA provided tonic features
with more discriminant power (i.e., lower p-values) than the
CDA approach.

Along the caressing velocity dimension, experimental results
demonstrated that cvxEDA modeling outperforms CDA ap-
proach. Features from the sparse phasic components of EDA, in
fact, were able to discern all of the differences between caress-
ing velocity levels. Phasic components estimated from CDA,
instead, were not able to discern between V 2 and V 3, and
were always associated with higher p-values than the cvxEDA
ones (see Tables IV and V). Importantly, increasing monotonic
trends among caressing velocities were associated to cvxEDA-
related phasic features. Therefore, it is possible to conclude
that cvxEDA modeling approach provides feature values able to
automatically assess caressing stimuli in a force–velocity space.

We also demonstrated that the cvxEDA approach is partic-
ularly suitable for implementations in embedded computing
systems. Computational performance analysis, in fact, demon-
strated that the execution time of the cvxEDA algorithm linearly
increases with the length of the acquisition, whereas processing
time of CDA model tends to grow superlinearly (see Fig. 6).
This is reasonably due to the CDA optimization stage [15]. In
the cvxEDA approach, thanks to the use of an IIR representa-
tion of the IRF, the computational time is reduced respect to the
AR modeling [29]. More specifically, for all practical purposes,
the computational cost of the cvxEDA algorithm is dominated
by the ARMA representation of the phasic activity within the
constrained minimization QP convex problem. Both M and
A, in equation 7, are N × N tridiagonal matrices, i.e., sparse
matrices with O(N) nonzero elements. Whenever a sparse
solver is employed, i.e., a solver that can exploit the sparsity of
the problem, space complexity and time complexity are O(N),
i.e., they scale linearly with the length of the SC time series. Of
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note, a crucial running-time factor is the use of a good solver for
the optimization problem. For example, in MATLAB language,
the use of CVX toolbox [39] allows the choice among several
solvers in addition to the MATLAB default (implemented in
this version of the algorithm), that could further improve the
performance.

Moreover, taking advantage of the sparse nature of its pha-
sic components, cvxEDA-derived outputs needed significantly
lower storage values than the CDA model, thus being more
suitable for the implementation in wearable monitoring sys-
tems than CDA. Furthermore, it is worthwhile noting that the
cvxEDA approach needs to solve a convex optimization prob-
lem, thus always guaranteeing to find the globally optimal solu-
tion. Moreover, it is worth noticing that the degree of sparsity of
the cvxEDA-based phasic components depends on the number
of peaks, i.e., number of stimulus responses, occurring in a given
recording. A sparse representation is more convenient if there
are a high number of zeros in the matrix or vector to be saved.
Assuming a Poisson distribution of the nerve firing rate, we indi-
rectly guarantee a good sparsity level. Therefore, differences in
memory storage between the CDA and cvxEDA models could
be minimized even in other experimental protocols involving
high-frequency stimuli.

Findings of this study can be profitably exploited in the field
of affective haptics or, more in general, wearable haptic devices
[1]. These systems, in fact, require processing algorithms with
low-computational cost and low-memory consumption, in order
to effectively augment communication, interaction, and cooper-
ation between human and robots. Regarding the affective part
of caressing stimuli used in this study, in a previous endeavor,
we demonstrated how caressing force and velocity levels relate
to perceived arousal (the emotional intensity) and valence (the
emotional pleasantness) levels of emotions [40]. Specifically,
subjects’ self-ratings revealed that caresses performed at low
force and low velocity are perceived as more pleasant and less
arousing than others [8], [9], [40].

Possible challenging application fields can be related to as-
sistive devices and rehabilitation, e.g., with patients with severe
brain damages, which can be in one of several states now col-
lectively known as disorders of consciousness (DOC). Indeed,
the treatment of these patients is often driven by experience,
expertise, and intuition of the clinicians, but there is no stan-
dardized approach in order to investigate if some perceptual
channels (such as touch, which was proven to communicate dis-
tinct emotions as discussed in the Introduction) are still active
and can be used to communicate with them. DOC assessment
and rehabilitation will benefit from wearable affective haptic
systems, like the one described in this paper, together with the
novel here presented processing approach, thus enabling remote
control of the stimulation (e.g., coming from relatives) as well as
reliable affective-inspired actuations. Finally, the cvxEDA algo-
rithm could be also profitably used in conjunction with wearable
sensing systems like the one in [13] to assess mental and phys-
ical stress [41], key parameters to monitor during the course of
a rehabilitation intervention or for the use of a prosthesis.

Future works will focus on an actual implementation of
the proposed cvxEDA algorithm in different portable/wearable

devices, allowing the study of EDA signatures in a more
naturalistic environment. Moreover, future work will include
a gender analysis.
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