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Diagrammar in an Extended Theory of Gravity

David C. Dunbar, John H. Godwin, Guy R. Jehu and Warren B. Perkins

College of Science,
Swansea University,

Swansea, SA2 8PP, UK

Abstract

We show how the S-matrix of an extended theory of gravity defined by its
three-point amplitudes can be constructed by demanding factorisation. The
resultant S-matrix has tree amplitudes obeying the same soft singularity
theorems as Einstein gravity including the sub-sub-leading terms.

Keywords:

1. Introduction

Scattering amplitudes are traditionally defined from a quantum field the-
ory and the resulting Feynman vertices and Feynman diagrams. Alterna-
tively, the amplitudes can be regarded as the fundamental objects which
define the theory perturbatively. It is not very useful to define a theory
by specifying the entire S-matrix explicitly but it is an important question
whether the S-matrix can be defined from a minimal set of data and rules
i.e. a ”diagrammar” [1]. Once a minimal set of amplitudes is specified we
aim to construct all other amplitudes by demanding they have the correct
symmetries and singularities. Defining the S-matrix using its singularities is
a long-standing programme which is still active and fruitful [2, 3, 4, 5, 6, 7].

In this letter we build an S-matrix from a set of three-point amplitudes
using their singularity structure. The S-matrix corresponds to a theory of
Einstein gravity extended by the addition of R3 terms. We are working with
massless theories and view the amplitude as a function of the twistor variables
λa
i and λ̄ȧ

i , M(λi, λ̄i). The spinor products ⟨i j⟩ , [i j] are ⟨i j⟩ = ϵabλ
a
i λ

b
j,

[i j] = ϵȧḃλ̄
ȧ
i λ̄

ḃ
j. In this formalism amplitudes have a well-defined “spinor

weight”. Counting λi as weight +1 and λ̄i as −1, then the amplitude has

Preprint submitted to Physics Letters B March 24, 2017



weight +4 for a negative helicity graviton and −4 for a positive helicity
graviton.

We define the theory starting with the the usual three-point amplitudes
of Einstein gravity:1

V3(1
−, 2−, 3+) =

⟨1 2⟩6

⟨1 3⟩2 ⟨3 2⟩2
,

V3(1
+, 2+, 3−) =

[1 2]6

[1 3]2 [3 2]2
,

V3(1
+, 2+, 3+) = V3(1

−, 2−, 3−) = 0 . (1)

These amplitudes have the correct spinor weight and are quadratic in the
momenta. These amplitudes are only defined for complex momenta. For
an on-shell three-point amplitude the condition k1 + k2 + k3 = 0 demands
k1 · k2 = 0 etc. For real momenta this implies ⟨i j⟩ = [i j] = 0 and the
vertices are all zero. However if we consider complex momenta then we can
have λ1 ∼ λ2 ∼ λ3 but [i j] ̸= 0.

The tree amplitudes for Einstein gravity can be computed recursively
starting from these [8, 9, 10]. We show that a similar construction can be
used for an extended theory.

We extend this theory by adding additional three-point amplitudes which
are of higher power in momenta. To be non-trivial, these three-point am-
plitudes must either be functions of ⟨i j⟩ or [i j] exclusively. The simplest
polynomial amplitudes arise with six powers of momenta and are

V α
3 (1−, 2−, 3−) = α⟨1 2⟩2 ⟨2 3⟩2 ⟨3 1⟩2 ,

V α
3 (1+, 2+, 3+) = α[1 2]2 [2 3]2 [3 1]2 (2)

where α is an arbitrary constant. We also have

V α
3 (1−, 2−, 3+) = V α

3 (1+, 2+, 3−) = 0 , (3)

there being no polynomial function with the correct spinor and momentum
weight. These are essentially the unique choice for a three-point ampli-
tude [11].

1We remove a factor of i(κ/2)n−2 from the n-point amplitude.
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Figure 1: The non-zero three-point amplitudes

The amplitudes in this theory can be expanded as a power series in α,

Mn(1, · · · , n) =
∑
r=0

αrM (r)
n (1, · · · , n) (4)

where M
(0)
n is the Einstein gravity amplitude. Here we focus on the r = 1

part of the extended theory. This being the leading deformation of the theory
from Einstein gravity.

The theory we are considering would arise using field theory methods
from the Lagrangian

L =

∫
dDx

√
−g(R + CαRabcdR

cdefRef
ab) (5)

where Cα = α/60. However we note that to do so would involve determining
increasingly complicated n-point vertices as the Lagrangian is expanded in
the graviton field. As we will see the three-point amplitudes are sufficient to
completely determine the S-matrix.

The key element is that the entire S-matrix is determined from these
vertices if we demand that the amplitudes factorise on simple poles. Specif-
ically, for any partition of the external legs into two sets, {kL1 , kL2 · · · , KLl

}
and {kR1 , kR2 · · · , kRm} with l +m = n and l,m ≥ 2, if K =

∑l
j=1 kLj

, then

when K2 −→ 0 the amplitude is singular with the simple pole being

M tree
n

K2→0−→
∑
λ=±

[
M tree

l+1 (kL1 , . . . , kLl
,−Kλ)

i

K2
M tree

m+1(K
−λ, kR1 , . . . , kRm)

]
.

(6)
We can excite the pole in K2 by shifting to complex momenta and ap-

plying methods of complex analysis. There are two shifts which we use to
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generate the S-matrix. Firstly there is the original Britto-Cachazo-Feng-
Witten (BCFW) shift [5],

λi −→ λi + zλj , λ̄j −→ λ̄j − zλ̄i . (7)

For Einstein gravity this shift is sufficient to generate the tree level S-
matrix [12]. Additionally we can use the Risager shift [13],

λi −→ λi + z [j k]λη ,

λj −→ λj + z [k i]λη ,

λk −→ λk + z [i j]λη , (8)

where λη is an arbitrary spinor. Both shifts change the momenta to be func-
tions of z whilst leaving all momenta null and preserving overall momentum
conservation. We need both shifts to construct the S-matrix for the extended
theory. By considering the integral∫

γ

M(z)

z
(9)

where γ is a closed contour, provided M(z) vanishes at infinity the unshifted
amplitude, M(0), can be obtained from the singularities in the amplitude.
These occur at points zi where K2

i (z) = 0. At these points,

K2
i (z) = −(z − zi)

zi
×K2

i (0) (10)

and we obtain,

M tree
n (0) =

∑
i,λ

M tree,λ
li+1 (zi)

i

K2
i (0)

M tree,−λ
mi+1 (zi), (11)

where the summation over i is only over factorisations where there are shifted
legs on both sides of the pole. This is the on-shell recursive expression of [5].
Note that if M(z) does not vanish at infinity this does not imply factorisation
is insufficient to determine the amplitude but only that that particular shift
can not be used to engineer the amplitude.

Expressions obtained from (11) are not manifestly symmetric as the choice
of shift legs breaks crossing symmetry, however symmetry is restored in the
sum. This is a highly non-trivial check that the amplitude has been computed
successfully.
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2. Generating the amplitudes

In this section we give some of the details of the process of generating the
leading α contribution to the S-matrix.

Four-Point Amplitudes: The three-point amplitudes are our inputs so
the first outputs are the four-point amplitudes. There are three independent
helicity configurations,

M4(1
+, 2+, 3+, 4+) , M4(1

−, 2+, 3+, 4+) , M4(1
−, 2−, 3+, 4+) . (12)

Of these the first two are vanishing in Einstein gravity with only the last being
non-zero: which is consequently termed the “Maximally-Helicity-Violating”
(MHV) amplitude. For M

(1)
4 the reverse is true: M

(1)
4 (1−, 2−, 3+, 4+) =

0 since there are no possible factorisations, while M
(1)
4 (1+, 2+, 3+, 4+) and

M
(1)
4 (1−, 2+, 3+, 4+) are non-zero.
The factorisations of the n-point all-plus amplitude are shown in fig. 2,

and the factorisations of the four-point single minus amplitude are shown on
fig. 3.

+

+

+

+

+

+

− +

Figure 2: Factorisations of the n-point all-plus

+

+

+

−

− +

Figure 3: Factorisations of the four-point single minus amplitude

These factorisations can be excited using either of the shifts in (7) and (8).
In the all-plus case only the second results in an amplitude with the correct
symmetries. This in indication that (7) yields a shifted all-plus amplitude
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that does not vanish at infinity. Conversely, for the single minus amplitude
we must use the BCFW shift. Performing the shifts and evaluating the
amplitudes we obtain

M
(1)
4 (1+, 2+, 3+, 4+) = 10

(
st

⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩

)2

stu ,

M
(1)
4 (1−, 2+, 3+, 4+) =

(
[2 4]2

[1 2] ⟨2 3⟩ ⟨3 4⟩ [4 1]

)2
s3t3

u
. (13)

The other non-zero amplitudes are available by conjugation. For the all-plus
amplitude the recursion generates terms that contain the arbitrary spinor λη,
however the sum of terms is independent of λη and simplifies to the above.
These four-point amplitudes due to a R3 term have been computed using
field theory methods long ago [14]. These amplitudes vanish to all orders in
a supersymmetric theory: a fact used show supergravity was two-loop ultra-
violet finite [15, 16]. The above expressions are in a spinor helicity basis
but agree once this is accounted for. In [17] these four-point amplitudes
were also obtained using a “all-line recursion” technique where all legs have
shifted momenta. These expressions also appear as the UV infinite pieces
of both two-loop gravity in four dimensions [18, 19] and one-loop gravity in
six dimensions [20].
Five-Point Amplitudes: As before the shift (8) yields an all-plus amplitude
that is independent of λη and has full crossing symmetry:

M
(1)
5 (1+, 2+, 3+, 4+, 5+) =

(∑
P6

TA
(1,2,3),(4,5) +

∑
P3

TB
(1,2,3),4,5

)
(14)

where

TA
(1,2,3),(4,5) = 10

[1 4]

⟨1 4⟩
[5 3] [5 2]

⟨1 η⟩2 ⟨4 η⟩
[2 3]2

⟨4 5⟩
× [5|K14|η⟩[2|K14|η⟩[3|K14|η⟩ , (15)

TB
(1,2,3),4,5 = −10

[1 4] [1 5] [2 3] [1|K23|η⟩2[5|K23|η⟩[4|K23|η⟩
⟨2 3⟩ ⟨2 η⟩2 ⟨3 η⟩2

[4 5]

⟨4 5⟩
(16)

and P3 denotes summation over the three cyclic permutations of legs 1,2 and
3. P6 denotes the three permutations of P3 together with interchange of legs
4 and 5. The λη independence of M

(1)
5 (1+, 2+, 3+, 4+, 5+) is not manifest.
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Figure 4: Factorisations of the five-point single minus amplitude

The factorisations of the five-point single minus amplitudes are more var-
ied as shown on fig. 4. Using the BCFW shift on (λ̄1, λ2) we obtain the
amplitude

M
(1)
5 (1−, 2+, 3+, 4+, 5+) =

10

[1 2]2

( ∏
i,j=2,3,4,5,i<j

[i j]

)(
⟨1 5⟩
[1 5]

[2 5]3

⟨3 4⟩
+

⟨1 3⟩
[1 3]

[2 3]3

⟨4 5⟩
+

⟨1 4⟩
[1 4]

[2 4]3

⟨5 3⟩

)

+
⟨1 2⟩2

⟨3 4⟩ ⟨3 5⟩ ⟨4 5⟩
∏

i=3,4,5 ⟨1 i⟩

(
[2 3]5 [4 5] ⟨1 3⟩5

⟨2 3⟩
+

[2 4]5 [5 3] ⟨1 4⟩5

⟨2 4⟩
+

[2 5]5 [3 5] ⟨1 5⟩5

⟨2 5⟩

)

+
1

⟨1 2⟩2 ⟨3 4⟩ ⟨3 5⟩ ⟨4 5⟩

(
[2 3] [4 5]5 ⟨1 5⟩3 ⟨1 4⟩3

⟨2 3⟩
+

[2 4] [5 3]5 ⟨1 3⟩3 ⟨1 5⟩3

⟨2 4⟩

+
[2 5] [3 4]5 ⟨1 4⟩3 ⟨1 3⟩3

⟨2 5⟩

)
. (17)

The five-point MHV amplitude is non-zero. The non-zero factorisations
of the amplitude are shown in fig. 5.

+

+

+

−

−

+ −

+

+

−

+

−

− +

Figure 5: Factorisations of the five-point MHV amplitude

This amplitude can be obtained using a BCFW shift of either the two
negative helicity legs or of a negative-positive pair. Shifting the two negative
legs generates the expression (using only the second factorisation of fig. 5),

M
(1)
5 (1−, 2−, 3+, 4+, 5+) = −s34

⟨1 5⟩
[1 5]

[3 4]2 [3 5]3 [4 5]3

[1 2]2 [2 3] [2 4]
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− s45
⟨1 3⟩
[1 3]

[4 5]2 [4 3]3 [5 3]3

[1 2]2 [2 4] [2 5]
− s53

⟨1 4⟩
[1 4]

[5 3]2 [5 4]3 [3 4]3

[1 2]2 [2 5] [2 3]
. (18)

This completes the set of five-point amplitudes. We can continue in this
way generating the tree-level S-matrix. We have made available M

(1)
n for n ≤

7 in Mathematica format at http://pyweb.swan.ac.uk/ dunbar/Smatrix.html.
The amplitudes have been generated up to n = 8 and have the correct sym-
metries, are η-independent and have the correct leading soft-limits.

We have evaluated amplitudes in a R+αR3 theory. In ref. [21] amplitudes
in Yang-Mills theory extended by F 3 terms were studied. Then using double
copy techniques and the KLT relations [22] graviton scattering amplitudes
were derived upto n = 6. As noted in [21] these correspond to amplitudes in
a R + αR3 +

√
αR2ϕ theory. The four-point amplitudes in the two theories

are proportional [17, 21] but beyond four-point the two sets of amplitudes
are functionally different. The all-plus amplitude in the two theories remain
proportional for n > 4 with

M (1),R3+R2ϕ
n (1+, 2+, · · ·n+) =

5

2
M (1),R3

n (1+, 2+, · · ·n+) (19)

and we confirm this for n ≤ 7.

3. Soft Limits

Graviton scattering amplitudes are singular as a leg becomes soft. Wein-
berg [23] many years ago presented the leading soft limit. If we parametrise
the momentum of the n-th leg as kµ

n = t × kµ
s then in the limit t −→ 0 the

singularity in the n-point amplitude is

Mn −→ 1

t
× S(0) ×Mn−1 +O(t0) (20)

where Mn−1 is the n–1-point amplitude. The soft-factor S(0) is universal and
Weinberg showed that (20) does not receive corrections in loop amplitudes.

Recently it has also been proposed [24, 25, 26] that the sub-leading and
sub-sub-leading terms are also universal. This can be best exposed, when a
positive helicity leg becomes soft, by setting

λn = t× λs , λ̄n = λ̄s . (21)
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In the t −→ 0 limit the amplitude has t−3 singularities. At tree level the
amplitudes satisfy soft-theorems [25] whereby their behaviour as t −→ 0 is

M tree
n = StM

tree
n−1 +O(t0) =

( 1

t3
S(0) +

1

t2
S(1) +

1

t
S(2)

)
M tree

n−1 +O(t0) (22)

where, for a positive helicity-leg becoming soft [25, 27, 28]

S(0) = −
n−1∑
i=1

[s i] ⟨i α⟩ ⟨i β⟩
⟨s i⟩ ⟨s α⟩ ⟨s β⟩

, (23)

S(1) = − 1

2

n−1∑
i=1

[s i]

⟨s i⟩

(
⟨i α⟩
⟨s α⟩

+
⟨i β⟩
⟨s β⟩

)
λ̄ȧ
s

∂

∂λ̄ȧ
i

, (24)

S(2) =
1

2

n−1∑
i=1

[i s]

⟨i s⟩
λ̄ȧ
s λ̄

ḃ
s

∂

∂λ̄ȧ
i

∂

∂λ̄ḃ
i

. (25)

The proof of the soft theorems follows from Ward identities of extended
Bondi, van der Burg, Metzner and Sachs (BMS) symmetry [29]. Although
exact for tree level amplitudes these receive loop corrections [27, 30, 31].

Whether the soft theorems extend beyond Einstein gravity has been ex-
amined before. In particular the leading soft behaviour can often be used
as a check upon amplitudes such, e.g. in [21]. The leading and sub-leading
limits were shown to hold for a R3 insertion in [32]. Here we examine the
amplitudes and, in particular, test the sub-sub-leading soft behaviour.

We can summarise the behaviour of the leading amplitudes, M
(1)
n , simply

by stating:

All the amplitudes calculated satisfy the soft limits of
(22) up to and including the sub-sub-leading term.

We have verified this for all helicity amplitudes up to n = 8. Note: to
check (22) one must implement momentum conservation consistently between
the n-point amplitudes and the n − 1-point amplitudes which in essence
specifies how the point t = 0 is approached. These are several ways to do this.
We have followed the prescription of [25] but alternative implementations are
possible [27, 28].
In principle we could have found a behaviour of the form

M (1)
n −→ StM

(1)
n−1 + Sα

t M
(0)
n−1 +Rn (26)
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where Sα
t would be an α correction to the soft functions and Rn is a non-

factorising term. In terms of this we find Sα
t = Rn = 0. Since the theory we

are considering is higher derivative it is not surprising that the leading and
sub-leading parts of Sα

t vanish however it is interesting that the vanishing
continues for the sub-sub-leading - unlike the loop corrections to Einstein
gravity.

Incidentally as a consequence of eq.(19) the amplitudeM
(1),R3+R2ϕ
n (1+, 2+, · · ·n+)

also satisfies the soft theorems to sub-sub leading level.

4. Other Theories

We have chosen to extend gravity using a three-point vertex and use a dia-
grammar approach whereby we only consider the on-shell amplitudes. There
is, of course, complementarity between this approach and that of Lagrangian
based field theory. The single choice of three-point amplitude corresponds to
the single R3 field density that affects on-shell amplitudes. This makes the
extended S-matrix simply depend upon the single parameter α.

If we were to deform Einstein gravity by an additional four-point am-
plitude then there are more choices consistent with symmetry and spinor
weight, e.g. we could have

M4(1
+, 2+, 3+, 4+) = α1(⟨1 2⟩4 ⟨3 4⟩4 + ⟨1 3⟩4 ⟨2 4⟩4 + ⟨1 4⟩4 ⟨2 3⟩4)

+α2(⟨1 2⟩ ⟨2 3⟩ ⟨3 4⟩ ⟨4 1⟩+ permutations)2 + · · · (27)

From a field theory perspective this freedom corresponds to the observation
that there are multiple R4 tensors that contribute to on-shell amplitudes [33].

The same issue arises when we consider the further expansion in α. If we
consider M

(2)
4 (1−, 2−, 3+, 4+) there is a single factorisation as shown in fig. 6.

The amplitude

M
(2)
4 (1−, 2−, 3+, 4+) = ⟨1 2⟩4 [3 4]4

(
tu+ βs2

s

)
(28)

has the correct factorisation for any choice of β. This ambiguity means we
also have to specify the four-point amplitude to determine the S-matrix.
In the diagrammar approach this ambiguity arises due to the existence of
a polynomial function with the correct symmetries and spinor and momen-
tum weight. From a field theory perspective, additional counterterms can
contribute to this amplitude. Specifically, we could deform the theory via

R −→ R + CαR
3 + CβD

2R4 (29)

10



and the four-point amplitude is only specified once Cα and Cβ are determined.

+

+

−

−

− +

Figure 6: Factorisations of the four-point MHV amplitude at α2.

5. Conclusion

We have constructed the (leading part) of the S-matrix of an extended
theory of gravity starting from three-point amplitudes and only demanding
factorisation. The theory is extended by the addition of amplitudes which
are polynomial in momentum, thus implicitly imposing locality and unitarity
on the S-matrix. We also require the amplitudes to have the correct spinor
helicity as appropriate for massless particles. The S-matrix is then generated
entirely from on-shell amplitudes by demanding factorisation. Specifically,
we have extended the theory by the addition of three-point amplitudes which,
from a field theory perspective, corresponds to introducing R3 terms. This S-
matrix differs from that obtained by applying double copy or KLT techniques
to a F 3 extension of Yang-Mills.

Beyond the leading part, polynomial amplitudes exist at higher point
and these must be specified to fully determine the S-matrix. Consistency of
this approach and a field theoretic approach beyond leading order requires a
correspondence between these polynomial amplitudes and the counter terms
contributing to on-shell amplitudes.

We find that these amplitudes satisfy the same soft theorems as the tree
amplitudes of Einstein gravity up to and including the sub-sub leading terms.
It is interesting that these theorems are robust to deformations of Einstein
gravity even at the sub-sub-leading level particularly given the link to BMS
symmetry which plays an important role in the recent understanding of black
hole soft hair [34].
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