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A stabilised immersed boundary method on hierarchical b-spline grids for
fluid-rigid body interaction with solid-solid contact

C. Kadapa∗, W. G. Dettmer, D. Perić

Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Fabian Way, Swansea, SA1
8EN, Wales, UK.

Abstract

An accurate, efficient and robust numerical scheme is presented for the simulation of the interaction between

flexibly-supported rigid bodies and incompressible fluid flow with topology changes and solid-solid contact.

The solution of the incompressible Navier-Stokes equations is approximated by employing a stabilised for-

mulation on Cartesian grids discretised with hierarchical b-splines. The solid is modelled as a rigid body

and represented by linear segments along its boundary. Kinematic conditions along the fluid-rigid body

interface are enforced weakly using Nitsche’s method, while ghost penalty operators are employed to avoid

excessive ill-conditioning of the system matrix arising from small cut cells. A staggered scheme is used for

resolving the coupled fluid-rigid body interaction. The contact between moving or moving and fixed solid

bodies is modelled with Lagrange multipliers. The excellent performance and wide range of applicability

of the proposed scheme are demonstrated in a number of benchmark tests as well as industrially relevant

model problems. The examples cover the galloping phenomena, particulate flow, hydraulic check valves and

a model turbine.

Keywords: Fluid-rigid body interaction; Hierarchical b-splines; Immersed boundary methods; Staggered

scheme; Particulate flows; Check valve.

1. Introduction

Fluid-structure interaction (FSI) is frequently encountered in science and engineering. Developing robust

and accurate numerical schemes for the simulation of FSI phenomena has been in the focus of research in

computational engineering for several decades. Despite some considerable developments in this field, see

[1–3], a substantial amount of research is still required in order to extend the methodology to the range

and scale of problems encountered in industrial practice. This is due to the numerous challenges that the

developers of FSI solvers face, including: (a) large structural deformations, (b) topological changes of the
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fluid domain, (c) added-mass effects and (d) computational efficiency. Therefore the range of applicability of

existing numerical schemes and commercial software tools is generally limited. In fact, many important real

world engineering problems, for instance, various types of valves, pumps, turbines and blood flow through

heart and arteries, require that all these challenges are addressed successfully.

A number of researchers have developed numerical schemes for FSI based on the now well established

arbitrary Lagrangian-Eulerian (ALE) formulation using body-fitted meshes, see [4–11] and references therein.

Despite the significant research effort invested, such schemes have certain inherent disadvantages that limit

their applicability to complex FSI problems. Namely, FSI schemes based on ALE require sophisticated mesh-

moving and/or remeshing algorithms in order to capture large structural deformations. These algorithms

are not only complex to implement but also introduce additional numerical errors during the data transfer

from one mesh to the other, when remeshing is needed during the solution process. In situations involving

complex geometries and frequent topological changes, typically encountered in valves, pumps, mixers etc,

use of body-fitted ALE bases FSI schemes, although possible in some cases using complex mesh generation

strategies (see [12–14]), becomes impractical for a majority of such problems.

In order to overcome the difficulties encountered by ALE formulations in problems with large structural

deformations and topological changes, numerical methods based on immersed or unfitted strategies have been

explored. Immersed methods offer important advantages over body-fitted ALE schemes, namely, (a) the fluid

grid does not have to align with the boundary of the solid and (b) the formulation naturally allows for large

structural deformations and topological changes. Several different immersed boundary methods have been

proposed, based on different strategies for the imposition of the interface conditions between the fluid and

solid phases, such as: immersed boundary method (IBM) of Peskin [15], immersed interface method by

LeVeque et al. [16, 17], immersed structural potential method (ISPM) by Gil et al. [18], immersed finite

element method by [19, 20], immersed b-spline methods by Rüberg and Cirak [21, 22] and immersogeometric

methods [23–27]. The latter relate to the innovative field of isogeometric modelling which originates from

the work by Hughes and co-workers [28]. However, many of these schemes lack local refinement capabilities,

a feature that is essential in order to reduce the computational cost of the simulation. In addition, in the

original IBM and many of its variants, the interface conditions are enforced weakly using virtual springs

which limits the time steps to very small values in order to maintain stability.

With the aim of addressing the above concerns, our recent research effort has been directed at the

development of a computational framework based on an immersed method, which is robust and efficient,

and suitable for the simulation of complex industrial FSI problems. Kadapa et al. [29] present a fully-

coupled numerical scheme for the interaction of thin flexible structures with viscous incompressible fluid

flow based on hierarchical b-splines and a fictitious domain method (FDM) employing Lagrange multipliers.

The present work presents a new numerical framework motivated by the recent developments in unfitted

methods, also known as CutFEM, by Burman et al. [30–33]. A preliminary study of this framework is
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presented in Dettmer et al. [34], which focuses on the accuracy and robustness of the scheme in the context

of the Laplace equation and the steady incompressible Navier-Stokes equations on fixed domains immersed in

Cartesian b-spline grids. The methodology is essentially based on the deactivation of the degrees of freedom

which do not possess any support in the physical domain. The integration of the cut cells is restricted to the

active part of the cells and the immersed boundary conditions are imposed by applying Nitsche’s method.

It is known and demonstrated clearly in [34] that the presence of small cut cells leads to excessive system

matrix condition numbers. So-called ghost penalty terms, originally developed by Hansbo and Burman in

[30–32] and references therein, are employed to alleviate this effect. Thus, the present article presents the

extension of the methodology proposed in [34] to the simulation of fluid-rigid body interaction.

For the temporal discretisation, we employ the generalised-α method for first and for second order

problems as proposed by Jansen et al. in [35] and Chung and Hulbert in [36], respectively. The staggered

scheme presented by Dettmer and Perić in [9] is used to resolve the interaction between the fluid flow and the

flexibly-supported rigid bodies. Thus, the methodology including the weakly coupled FSI solution scheme

is based throughout on the second order accurate time integration procedures. Normal contact between

moving rigid bodies or moving bodies and the fixed fluid boundary is accounted for by employing Lagrange

multipliers in the solid solver. This technique is standard in implicit computational contact mechanics and

is described, for instance, in [37].

Summarising, the key ingredients of the present work are:

• hierarchical b-spline grid for the discretisation of the fluid flow,

• SUPG/PSPG formulation for the incompressible Navier-Stokes,

• Nitsche’s method for imposing boundary as well as interface conditions,

• ghost penalty terms for the stabilisation of cut cells,

• generalised-α method for time integration,

• staggered solution scheme to solve the coupling between solid and fluid,

• Lagrange multipliers for modelling solid-solid contact.

The remainder of this article is organised as follows. In Section 2, we briefly introduce the b-spline grids

with hierarchical refinement. In Section 3, we describe the aspects of the adopted immersed methodology.

The governing equations relevant to the present work are given in Section 4. The adopted time integration

schemes are described in Section 5. In Section 6 we present the staggered solution scheme for coupled

fluid-structure interaction and comment on the modelling of solid-solid contact. The detailed finite element

formulation for the fluid flow is given in Section 7. The performance of the proposed scheme is demonstrated

using several numerical examples in Section 8. The summary and the conclusions are provided in Section 9.
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2. B-Spline grids with hierarchical refinement

Hierarchical b-splines have some attractive mathematical properties and their tensor-product structure

is very convenient for computer programming. As such, they offer many advantages over standard Lagrange

polynomials when used for the discretisation of the Cartesian grid in immersed boundary methods. In

particular, the hierarchical refinement property allows for local grid refinement, which is very useful for

problems exhibiting high gradients in solution variables, typically encountered around interfaces and intricate

boundary shapes. This hierarchical refinement capability of the b-splines helps to improve the computational

efficiency.

The theory and programming aspects of hierarchical b-splines are well established. In this section we

present only basic properties of b-splines and their hierarchical refinement. For detailed information, we

refer to Piegl and Tiller [38] and Rogers [39].

2.1. Univariate b-splines

B-splines are piecewise-continuous polynomial functions. For a given knot vector Ξ = {ξ0, . . . , ξn+a+1}
and degree of polynomial a, the univariate b-spline functions are evaluated from the following recurrence

relations,

Ni,0(ξ) =




1 if ξi ≤ ξ ≤ ξi+1

0 otherwise

(1)

Ni,a(ξ) =
ξ − ξi

ξi+a − ξi
Ni,a−1(ξ) +

ξi+a+1 − ξ

ξi+a+1 − ξi+1
Ni+1,a−1(ξ) . (2)

Fig. 1 illustrates univariate uniform b-spline basis functions of different orders. A b-spline function Ni,a of

degree a is nonzero in knot span [ξi, ξi+a+1] and is zero otherwise; and is at least Ca−1 continuous in that

knot span. Uniform b-splines are considered throughout this paper, i.e. when there is no local refinement,

∆ξ = ξi+1 − ξi is constant throughout the domain.

ξ0 ξ1 ξ2 ξ3 ξ4 ξ5
0.00

0.25

0.50

0.75

1.00
Q1

Q2

Q3

Q4

Figure 1: Univariate b-spline basis functions for different orders. Q1, Q2, Q3 and Q4 refer to linear, quadratic, cubic and

quartic b-splines, respectively.
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2.2. B-splines in higher dimensions

One of the main motivations behind using b-splines for spatial discretisation is the ease with which they

can be extended to higher dimensions. This is achieved by using the tensor product nature of b-splines.

With Nξ, Nη and Nζ as the univariate b-spline functions in ξ, η, and ζ parametric directions, respectively,

the multivariate b-spline basis functions in two- and three-dimensions are given as,

N(ξ, η) = Nξ ⊗Nη in 2D (3)

N(ξ, η, ζ) = Nξ ⊗Nη ⊗Nζ in 3D . (4)

2.3. Hierarchical refinement

The local refinement strategy of b-splines is based on their subdivision property, also known widely as

two-scale relation. According to this property, a single b-spline function can be written as a sum of scaled

and translated copies of itself. For a general b-spline function Na, the two-scale relation is written as,

Na(ξ) =

a+1∑

i=0

αiNa(2ξ − i) , (5)

where αi are functions of Binomial coefficients, given as,

αi =
1

2a


a+ 1

i


 . (6)

In the context of hierarchical refinement, this property can be restated as: a b-spline function on a knot

vector with knot span ∆ξ can be evaluated as a linear combination of b-spline functions defined on a knot

vector with knot span ∆ξ/2. That is, b-spline basis functions Nk(ξ) at level k can be written as a linear

combination of b-spline basis functions Nk+1(ξ) at level k+1. This is expressed as

Nk(ξ) = S Nk+1(ξ) , (7)

where S is the subdivision matrix which contains the coefficients αi from Eq. (5). Fig. 2 illustrates the

schematic representation of two-scale relation for linear(Q1), quadratic(Q2), cubic(Q3) and quartic(Q4)

b-splines.
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Figure 2: Two-scale relation of the b-spline functions.

The hierarchical refinement of b-splines can be implemented efficiently by using Tree data structures,

see [40, 41], and the concept of templates in the programming language C++, see [42]. The algorithms

pertaining to hierarchical refinement of b-splines are presented in Bornemann and Cirak [43] and Schillinger

et al. [44]. In this work we have followed [44].

3. The immersed boundary method

The following subsections describe the key aspects of the immersed methodology adopted in this work.

3.1. B-spline grid with hierarchical refinement

The Cartesian grids employed in this work allow for targeted local refinement. In areas with complex

local geometries or small physical features, the same refinement procedure can be applied to successive levels

of b-spline basis functions, thereby allowing for arbitrarily small resolutions. If refinement is applied during

run time, the mathematical properties of the b-spline based discretisation allow for the exact data transfer

from the coarse to the refined mesh. The computational cost for mesh generation, local refinement and

data transfer is negligible. This is a powerful setting for an immersed method and allows to employ efficient

discretisations without any unnecessary degrees of freedom.

3.2. Cut finite element method

The degrees of freedom which are supported entirely outside of the fluid domain are deactivated and

not included in the solution procedure. For problems with large inactive areas of the background mesh,
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this adds significantly to the efficiency of the methodology. Those degrees of freedom which possess support

partly inside and partly outside of the fluid domain remain active and are solved for. This is schematically

displayed in Figure 3. Only the active part of the cut finite elements is integrated. In the presence of small

cut cells, some degrees of freedom possess very little support inside the active domain. It is well known and,

for instance, demonstrated clearly in [34, 45] that this leads to system matrices with excessive condition

numbers. While this may not be a problem for direct linear equation solvers, it can be detrimental to the

performance of iterative solvers. Therefore, it is common to apply some form of cut cell stabilisation. In

this work, we apply the ghost penalty terms developed by Burman, Hansbo and co-workers, see [30–33] and

references therein. These penalty terms are used to enforce a suitable amount of continuity of the solution

across the inter-element boundaries between the cut elements and the interior of the active domain. For

a comprehensive study of the performance of this methodology in the context of steady-state problems we

refer to [34]. The ghost penalty terms are presented in detail in Section 7.

Ωf

Ωs

(a)

Ωf

Ωs

(b) (c)

Figure 3: Immersed methodology: (a) problem geometry with fluid domain Ωf and rigid body Ωs, (b) discretisation with 5× 5

elements, (c) elements belonging to domain Ωf .

3.3. Modelling of immersed solids

The geometry of immersed solids can be represented using parametric equations or level sets for simple

geometries. However, the use of parametric equations is not a viable option for problems involving complex

geometries and intricate shapes frequently encountered in real-world industrial problems. Even though level

set data can be generated for complex geometries it requires sophisticated algorithms and, moreover, such

procedures introduce additional numerical errors in geometric representations. As the main motivation of the

present work is to develop a numerical scheme that can be easily applied to complex geometries encountered

in industrial problems, we use a discrete representation of the geometry that can be generated by using the

standard meshing tools available in the engineering community. In 2D, the boundary of the immersed solid

is represented as a set of straight edges and in 3D the surface of the immersed solid is represented as a

set of 3-noded triangles. The methodology can be extended to NURBS-based descriptions of the immersed

boundary which may be obtained directly from computer-aided design tools, similar to the methodology
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proposed by Hsu et al. [26].

3.4. Integration of cut cells

The inaccurate integration of cut cells results in suboptimal convergence rates, as demonstrated in [34].

For fluid-structure interaction problems, it also leads to inaccurate interface forces and hence the poor

quality of results. A widely used method for the integration of cut cells is sub-triangulation or tessellation,

which is achieved by subdividing the active part of the cell into triangles in 2D (and tetrahedrons in 3D)

and subsequently applying a standard quadrature rule to each sub-triangle. The foremost advantage of

using such a technique is that the cut cells can be integrated exactly. This technique has been followed in

[22, 46, 47]. However, the disadvantage is that it is difficult to generate sub-triangulation if the immersed

boundaries are curved. Moreover, the procedure is relatively complicated for 3D problems. For example, for

immersed surfaces discretised with triangles, one has to use complex constrained Delaunay tetrahedralization

algorithms. An alternative to this approach is to use the level-set representation of geometry, as in Burman

et al. [46] and Rüberg and Cirak [22], and to use this information for sub-triangulation of cut-cells. However,

acquiring a level-set representation of geometry for real world engineering problems itself is a difficult task and

also generating subtriangulations from level-set data introduces discretisation errors. Alternatively, adaptive

procedures based on the hierarchical application of Gauss-quadrature may be used for the integration of

the cut cells, see for instance [44]. An efficient adaptive integration methodology based on this approach is

presented in [34].

In the two-dimensional examples in Section 8 the immersed boundary is represented by straight line

segments and we employ sub-triangulation for the integration of all cut cells. The number of Gauss points

in a sub-triangle depends on the order of the b-spline basis functions.

4. Governing equations

4.1. Incompressible Navier-Stokes

The Navier-Stokes equations for modelling laminar, viscous and incompressible fluid are given as,

ρf
∂vf

∂t
+ ρf (vf · ∇)vf − µf∆vf +∇p = gf in Ωf (8a)

∇ · vf = 0 in Ωf (8b)

vf = v̄f on Γf
D (8c)

σf · nf = t̄f on Γf
N , (8d)

where vf is the velocity of the fluid, p is the fluid pressure, ρf is the density of the fluid, µf is the viscosity

of the fluid, gf is the body force, σf = µ∇vf − p I, is the stress tensor, nf is the unit outward normal on

the boundary Γf of the fluid domain Ωf , v̄f is the prescribed velocity on the Dirichlet boundary Γf
D and t̄f

is the prescribed traction on the Neumann boundary Γf
N. Here, Γ

f
D

⋃
Γf
N = Γf and Γf

D

⋂
Γf
N = ∅.
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4.2. Rigid-body dynamics

The equations governing the dynamics of rigid bodies considered in this work can be summarized as

Mas +Cvs +Kds = Fs , (9)

where ds, vs = dds/dt and as = d2ds/dt2 are the displacement, velocity and acceleration vectors of the

rigid body, respectively, Fs is the force acting on the rigid body and M, C and K are mass, damping and

stiffness matrices, respectively.

4.3. Interface constraints

For accurate simulation of FSI phenomena two important conditions have to be satisfied at the interface

Γf−s between fluid and solid. The first is the kinematic constraint which requires that the fluid-solid interface

moves at the same velocity as the boundary of the solid, while the second condition enforces the equilibrium

of stresses along the interface. The two conditions can be written as

vf = vs on Γf−s (10a)

σf · nf + σs · ns = 0 on Γf−s (10b)

with ns = −nf . In the context of fluid-rigid body interaction Eq. (10b) can be expressed as

Ff + Fs = 0 , (11)

where,

Ff =

∫

Γf−s

σf · nf dΓf−s . (12)

If the rigid body possesses rotational degrees of freedom, Eqs. (9), (10a) and (11) need to be extended appro-

priately in a standard manner. For the two dimensional problems considered in Section 8 the incorporation

of the rotational degree of freedom is straightforward.

5. Integration in time

In the present work, we use the second-order accurate and unconditionally stable generalised-α schemes

for time integration of both the fluid and solid subsystems. For the detailed discussion of these schemes, we

refer to the original articles by Jansen et al. [35] and Chung and Hulbert [36].

5.1. Generalised-α method for the fluid

Defining the acceleration af = dvf/dt and letting vf
n and afn denote, respectively, the fluid velocity

and acceleration at time instant tn, the system of equations for the generalised-α method for the fluid as

9



proposed in [35] may be presented by

vf
n+1 = vf

n +∆t
(
(1− γf)afn + γf afn+1

)
(13)

vf

n+αf
f

= (1− αf
f )v

f
n + αf

f v
f
n+1 (14)

af
n+αf

m
= (1− αf

m)afn + αf
m afn+1 . (15)

Once the velocity vf
n+1 at time tn+1 is obtained the acceleration afn+1 can be computed from Eq. (13) as

afn+1 =
1

γf ∆t
(vf

n+1 − vf
n) +

γf − 1

γf
afn . (16)

The parameters are defined as

αf
m =

1

2

3− ρf∞
1 + ρf∞

, αf
f =

1

1 + ρf∞
, γf =

1

2
+ αf

m − αf
f , (17)

where ρf∞ ∈ [0, 1] is the user-defined spectral radius for an infinite time step and allows to choose the amount

of numerical high-frequency damping in the scheme.

5.2. Generalised-α method for the solid

Similarly, with ds
n, v

s
n and asn denoting, respectively, the displacement, velocity and acceleration at time

tn, the system of equations for the generalised-α method for the solid is given in [36] as

ds
n+1 = ds

n +∆tvs
n +∆t2

(
(
1

2
− βs)asn + βsasn+1

)
(18)

vs
n+1 = vs

n +∆t
(
(1− γs)asn + γsasn+1

)
(19)

ds
n+αs

f
= (1− αs

f )d
s
n + αs

f d
s
n+1 (20)

vs
n+αs

f
= (1− αs

f )v
s
n + αs

f v
s
n+1 (21)

asn+αs
m
= (1− αs

m)asn + αs
m asn+1 (22)

Fs
n+αs

f
= (1− αs

f )F
s
n + αs

f F
s
n+1 . (23)

Choosing the velocity as the primary variable, Eqs. (18) and (19) can be rearranged as

vs
n+1 =

γ

β∆t
(ds

n+1 − ds
n) +

(
1− γ

β

)
vs
n +

(
1− γ

2β

)
∆t asn (24)

asn+1 =
1

β∆t2
(ds

n+1 − ds
n)−

1

β∆t
vs
n −

(
1

2β
− 1

)
asn . (25)

Chung and Hulbert [36] have proven that, in order for the scheme to be unconditionally stable and second-

order accurate, the parameters require

αs
m =

2− ρs∞
ρs∞ + 1

; αs
f =

1

ρs∞ + 1
(26)

γs =
1

2
+ αs

m − αs
f ; βs =

1

4
(1 + αs

m − αs
f )

2 , (27)
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where ρs∞ ∈ [0, 1] is the spectral radius, similar to ρf∞, and allows to control the amount of numerical

high-frequency damping in the scheme.

6. Resolution of fluid-structure interaction and solid-solid contact

The combined governing equations of the FSI problem, Eqs. (8), (9) and (10), can be solved by using

either a strongly-coupled scheme, see [6–8, 29], or a weakly-coupled staggered scheme as proposed in [9, 48–

53]. In this work we employ the force-predictor based staggered scheme proposed by Dettmer and Perić [9]

which is proven to be second-order accurate. For the purpose of clarity and completeness, the pseudocode

for the staggered scheme is shown in Algorithm 1. In the remainder of this article the user-defined parameter

β, with 0 < β ≤ 1, is referred to as the relaxation factor. Problems which feature strong added mass effects

require a small value of β. For the detailed discussion of this scheme, we refer to [9].

In the presence of contact between two moving rigid bodies or between one moving body and the fixed

fluid boundary, Lagrange multipliers are incorporated into the solid solver in Step 2 of Algorithm 1 to avoid

penetration. This is a standard technique in implicit computational contact mechanics and, for instance,

described in [37]. In the context of the b-spline background mesh, numerical experimentation shows that,

independently of the b-spline order, singularities in the fluid solver due to dynamic topology changes can be

avoided by ensuring a minimum gap width in the contact zone which corresponds to two or three element

diameters. Based on targeted hierarchical refinement of the background mesh, arbitrarily small gap widths

can be achieved in an efficient manner.

The adopted second order accurate staggered time stepping procedure may cause artificial rebound

effects when solid-solid contact first occurs. To alleviate this, the force predictor in Step 1 of Algorithm 1 is

modified to FsP

n+1 = Fn, if the rigid body has been in contact with another solid at tn. As shown in Sections

8.6 and 8.7 in the simulation of hydraulic valves, this measure is sufficient to avoid any oscillatory behaviour

when contact is activated or released.

For every time step:

1. predict force on the solid: FsP

n+1 = 2Fn − Fn−1

2. solve the solid problem for ds
n+1 and vs

n+1 using FsP

n+1

3. reposition immersed solid, activate/deactivate fluid degrees of freedom, update cut cell data

4. solve the fluid problem to obtain force Ff
n+1

5. average the interface force: Fn+1 = −β Ff
n+1 + (1− β)FsP

n+1

6. proceed to next time step

Algorithm 1: Staggered scheme by Dettmer and Perić [9] for the present immersed methodology
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7. Formulation

In the context of the staggered scheme described in Section 6, the solution of Eq. (9) for rigid body

dynamics is straightforward whereas the solution of fluid system requires special consideration. Hence, this

section is restricted to the solution of the fluid problem.

7.1. Variational formulation for the fluid

The variational problem for the incompressible Navier-Stokes equations given by Eqs. (8) is stated as:

Find the fluid velocity vf ∈ Sv and the pressure p ∈ Sp such that for all weighting functions wf ∈ Vv and

q ∈ Vp,

Bf
Gal({wf , q}, {vf , p}) +Bf

Stab({wf , q}, {vf , p}) +Bf
Nitsche({wf , q}, {vf , p})

+Bf
GP({wf , q}, {vf , p}) = F f

Gal({wf , q}) , (28)

where Bf
Gal({wf , q}, {vf , p}) and F f

Gal({wf , q}) consist of terms corresponding to the standard Galerkin

formulation. Bf
Stab({wf , q}, {vf , p}), Bf

Nitsche({wf , q}, {vf , p}), and Bf
GP({wf , q}, {vf , p}), respectively, are

the terms corresponding to the SUPG/PSPG stabilisation, the Nitsche’s method and the ghost penalty terms

for cut cell stabilisation.

7.2. Standard Galerkin terms

The terms corresponding to the standard Galerkin formulation are given as

Bf
Gal({wf , q}, {vf , p}) =

∫

Ωf

wf · ρf
(
∂vf

∂t
+ vf · ∇vf

)
dΩf

+

∫

Ωf

µ∇wf : ∇vf dΩf −
∫

Ωf

∇ ·wf p dΩf +

∫

Ωf

q∇ · vf dΩf (29)

F f
Gal({wf , q}) =

∫

Ωf

wf · gf dΩf +

∫

Γf
N

wf · t̄f dΓ . (30)

7.3. SUPG/PSPG stabilisation

The Galerkin formulation of the incompressible Navier-Stokes equations, when used on its own, requires

that the combination of spaces used for the discretisation of the velocity and the pressure fields satisfy the

so-called LBB or inf-sup condition, see Brezzi and Fortin [54]. In the Lagrange family of elements, only a few

combinations of basis functions have so far been proven to satisfy the inf-sup condition, for example, Taylor-

Hood elements, see [55, 56] for further details. Inf-sup stable velocity-pressure combinations for Stokes flow

in the context of isogeometric analysis have been studied in [57]. Rüberg and Cirak [21, 22] have applied

inf-sup stable velocity-pressure b-spline combinations to fluid-structure interaction problems, while inf-sup

stable displacement-pressure NURBS discretisations have been employed for nearly incompressible linear

and non-linear elasticity by Kadapa et al. [58]. In both cases two different meshes are required, one for the
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velocities (or displacements) and another for the pressure, together with sophisticated data structures to

compute basis functions on different meshes (see [21]). The complexity of this approach increases further if

hierarchical refinement is used. Moreover, all inf-sup stable Galerkin methods require sophisticated linear

solvers for the saddle-point systems. In order to avoid these difficulties, we use SUPG/PSPG stabilisation

(see [59–61]), which allows for the use of the same discretisation for the velocity and the pressure. This

technique also provides stability to the velocity field in convection dominated areas of the fluid domain.

The terms corresponding to SUPG/PSPG formulation are given as

Bf
Stab({wf , q}, {vf , p}) =

nel∑

e=1

∫

Ωfe

1

ρf
[τSUPG ρf vf · ∇wf + τPSPG∇q] · rM dΩf

+

nel∑

e=1

∫

Ωfe
τLSIC ρf (∇ ·wf ) (∇ · vf ) dΩf , (31)

where rM is the residual of the momentum equation and is given as

rM = ρf
∂vf

∂t
+ ρf (vf · ∇vf )− µf∆vf +∇p− gf . (32)

The stabilisation parameters τSUPG, τPSPG and τLSIC are defined as

τSUPG =
(
vf ·Gvf + CI ν

2 G : G
)−1/2

(33)

τPSPG = τSUPG (34)

τLSIC = (trG τSUPG)
−1

, (35)

where CI is a positive constant independent of the mesh size. The quantity G is the element contravariant

metric tensor. In the context of Cartesian b-spline grids with square elements, G can be written as

G =
4

h2
I , (36)

where I is the identity tensor and h is called as the characteristic element size. The exact values of CI and

h can be computed by solving local eigenvalue problems, see [62]. However, this procedure becomes quite

expensive for dynamic FSI simulations. Therefore, in this work, we compute h from the area/volume of the

corresponding element. For the evaluation of the stabilisation parameters in cut cells, h is evaluated, in the

two dimensional setting, as

h =
√
A′ , (37)

where A′ is the intersection of the element area and the physical domain Ωf . In all examples in Section 8

we use CI = 4.

7.4. Nitsche’s method

The accurate imposition of the interface conditions is the critical aspect of finite element formulations

based on the immersed boundary approach. However, the fact that the fluid grid does not align with the
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boundary of the immersed solid makes the task of imposing the interface conditions challenging. Recent

developments [34, 63–67] have proven that Nitsche’s method represents a robust and accurate technique for

the imposition of boundary and interface conditions for finite element formulations based on b-splines. The

terms corresponding to the Nitsche’s method are given as

Bf
Nitsche({wf , q}, {vf , p}) = γN1

∫

ΓD

wf · (vf − v̂) dΓD −
∫

ΓD

wf · (σ({vf , p}) · nf ) dΓD

− γN2

∫

ΓD

(σ({wf , q}) · nf ) · (vf − v̂) dΓD , (38)

where γN1
≥ 0 is a penalty parameter and γN2

allows to choose between the symmetric (γN2
= 1) and

the unsymmetric (γN2
= −1) variants of Nitsche’s method. Nitsche’s method is applied at the interface

between the fluid and moving rigid bodies as well as at all fixed Dirichlet boundaries of the fluid domain,

thus, ΓD = Γf
D

⋃
Γf−s. The vector v̂ is the imposed velocity which is given as v̂ = v̄f on Γf

D and v̂ = vs on

Γf−s. Following [34], the penalty-free (γN1
= 0) and unsymmetric version of Nitsche’s method is used for

imposing all Dirichlet boundary conditions in the examples in Section 8.

7.5. Cut cell stabilisation

If the active part of at least one cut element is small, then some basis functions possess little support inside

the physical domain. This leads to large system matrix condition numbers, which makes the methodology

unsuitable for the employment of iterative linear solvers and may cause solution inaccuracies in the context

of direct solvers. The issue can be alleviated by applying the so-called ghost penalty terms along the inter-

element boundaries of cut cells as shown schematically in Figure 4. These ghost penalty terms enforce a

suitable amount of continuity across the boundaries between cut cells and the active cells in the interior of the

physical domain. For detailed information we refer to [30–33]. A comprehensive study of the performance

of ghost penalty terms in the context of an immersed method based on b-spline grids is presented in [34].

Following [33], the ghost penalty term for a scalar valued problem is defined as

gs(w, v) :=

a∑

j=1

∑

F∈F
h2(j−1)+s

∫

F

[Djw][Djv] dF , (39)

where [Dj(•)] denotes the jump of the normal derivative of (•) of order j on the face F . The order of the

basis function is denoted by a and h is element length scale. The parameter s is introduced for notational

convenience. In the context of b-spline grids of polynomial order a, all derivatives except the one of order a

are continuous across the inter-element boundaries and Eq. (39) reduces to

gs(w, v) :=
∑

F∈F
h2(a−1)+s

∫

F

[Daw][Dav] dF . (40)
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For a vector valued function v of dimension d, the ghost penalty term can be defined by using the straight-

forward component-wise extension of Eq. (40) as

Gs(w,v) :=

d∑

i=1

∑

F∈F
h2(a−1)+s

∫

F

[Dawi][D
avi] dF . (41)

Hence, using the operators defined in Eqs. (40) and (41), the ghost penalty terms for the incompressible

Navier-Stokes equations with velocity vf and pressure p as independent variables are given as

Bf
GP({wf , q)}, {(vf , p)}) = γu

GP µG1(w
f ,vf ) + γp

GP

1

µ
g3(q, p) , (42)

where γu
GP and γp

GP are the dimensionless ghost penalty parameters for velocity and pressure, respectively.

They can typically be chosen within a wide range of values spanning several orders of magnitude, such that

they are small enough not to jeopardise accuracy but sufficiently large to effectively avoid excessive matrix

condition numbers. A detailed investigation of the performance of ghost penalty terms on b-spline grids is

presented in [34]. In the present work, the parameters have simply been set to γu
GP = γp

GP = 0.01 in all

examples in Section 8.

active cell

cut cell

inactive cell

ghost-penalty edge

immersed boundary

Figure 4: Active, inactive and cut cells for the scenario presented in Fig. 3. Ghost penalty operators are applied only on the

edges of the background grid highlighted in blue color.

Remark: In [46, 47] ghost penalty terms are used effectively to stabilise the pressure field. For this

purpose they are applied to all inter-element boundaries of the domain. A significant disadvantage of this

type of pressure stabilisation is, however, that it substantially increases the fill-in of the system matrix by

connecting degrees of freedom with neighbouring but non-overlapping support. In the context of higher

order b-spline grids this additional fill-in is particularly undesirable. Therefore, the present work follows [34]

and employs the PSPG/SUPG stabilisation technique.
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8. Numerical examples

The accuracy and robustness of the proposed scheme are assessed in this section by performing a number

of numerical simulations. The following benchmark problems are studied: (1) flow around a fixed cylinder,

(2) translational galloping of a square body, (3) rotational galloping of a rectangular body and (4) sedimen-

tation of a circular cylinder. These are followed by the study of (5) the sedimentation of 25 particles, (6) the

dynamic behaviour of a ball check valve with an elastic spring or (7) with a fixed retainer and (8) a model

turbine.

All examples are based on the unsymmetric penalty-free Nitsche method and employ ghost penalty

parameters γGPu
= γGPp

= 0.01.

8.1. Unsteady flow around a fixed circular cylinder for Re = 100 and Re = 200

The flow around a fixed cylinder is a classical benchmark example used to study the performance of

a numerical scheme for incompressible fluids. The geometry and boundary conditions considered for this

problem are shown in Fig. 5(a). The b-spline mesh with level-3 hierarchical refinement near the cylinder

shown in Fig. 5(b) is used for the simulations. The cylinder surface is represented by 80 straight line

segments. We consider the unsteady flow for Re = 100 and Re = 200. For the generalised-α scheme a

spectral radius of ρ∞ = 0.2 is used. Computed values of drag coefficient CD, lift coefficient CL and Strouhal

number St are presented in Table 1. The use of Q2 b-splines improves the accuracy of the results when

compared with Q1 b-splines and the results obtained with the Q2 b-splines match well with the reference

values. The evolution of CD and CL for Re = 100 and Re = 200 is shown in Fig. 6 and Fig. 7, respectively,

with Q2 b-splines and ∆t = 0.1.

10 20

15

15

1

vx = 1.0
vy = 0

vy = 0, tx = 0

vy = 0, tx = 0

t x
=

t y
=

0

(a) (b)
(c)

Figure 5: Flow around a fixed circular cylinder: (a) geometry and boundary conditions, (b) b-spline mesh and (c) subtriangu-

lation of cut elements.
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Re = 100 Re = 200

CD CL St CD CL St

Braza et al. [68] 1.36 ±0.250 - 1.40 ±0.750 -

Liu et al. [69] 1.35 ±0.339 0.165 1.31 ±0.690 0.192

Calhoun [70] 1.33 ±0.298 0.175 1.17 ±0.668 0.202

Russell and Wang [71] 1.38 ±0.300 0.169 1.29 ±0.500 0.195

Le et al. [72] 1.37 ±0.323 0.160 1.34 ±0.430 0.187

Kadapa et al. [29] 1.39 ±0.339 0.166 1.42 ±0.711 0.194

Present - Level-2, Q1,∆t = 0.1 1.27 ±0.270 0.158 1.35 ±0.662 0.183

Present - Level-2, Q1,∆t = 0.05 1.27 ±0.270 0.158 1.35 ±0.662 0.186

Present - Level-3, Q1,∆t = 0.1 1.28 ±0.270 0.158 1.31 ±0.704 0.192

Present - Level-3, Q1,∆t = 0.05 1.28 ±0.270 0.162 1.31 ±0.701 0.188

Present - Level-2, Q2,∆t = 0.1 1.34 ±0.329 0.167 1.34 ±0.714 0.195

Present - Level-2, Q2,∆t = 0.05 1.35 ±0.328 0.167 1.34 ±0.717 0.195

Present - Level-3, Q2,∆t = 0.1 1.34 ±0.333 0.169 1.34 ±0.716 0.196

Present - Level-3, Q2,∆t = 0.05 1.34 ±0.330 0.169 1.35 ±0.717 0.196

Table 1: Flow around a fixed circular cylinder: CD, CL and St for Re = 100 and Re = 200.
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Figure 6: Flow around a fixed circular cylinder: evolution of CD and CL for Re = 100 with Q2 b-splines and ∆t = 0.1.
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Figure 7: Flow around a fixed circular cylinder: evolution of CD and CL for Re = 200 with Q2 b-splines and ∆t = 0.1.

8.2. Translational galloping of a square body

Galloping is an aerodynamically unstable phenomenon involving high-amplitude oscillations of rigid-

bodies exposed to fluid flow. For the theoretical background on galloping we refer to the text books by

Blevins [73] and Den Hartog [74]. The geometry and boundary conditions of the problem considered are

shown in Fig. 8(a). A rigid square body, of side length D = 1, supported on a spring-mass-damper system,

starts oscillating transversely when exposed to fluid flow. The properties of the spring-mass-damper system,

Kyy = 3.08425, Cyy = 0.0581195 and Myy = 20.0, are the same as those used in [8, 75]. The natural

frequency for this system is fn = 0.0625. The density and viscosity of the fluid are ρf = 1.0 and µf = 0.01,

respectively. The inflow velocity is v∞ = 2.5, so that the Reynolds number is Re = ρDv∞/µ = 250, which

is one of the cases studied in [8, 75]. The hierarchical mesh shown in Fig. 8(b) with Q1 and Q2 b-splines is

used for the analysis. The parameters for the generalised-α method and for the staggered scheme are set to

ρf∞ = ρs∞ = 0.2 and β = 0.5, respectively. The simulations are carried out for two different time step sizes,

∆t = 0.1 and ∆t = 0.05. The displacement amplitude and frequency of the oscillation of the rigid body are

given in Table 2. The results obtained with the present scheme agree well with the reference values reported

in [8, 75]. Fig. 9 shows the evolution of the displacement for the level-2 mesh with ∆t = 0.1 and Fig. 10 for

the level-3 mesh with ∆t = 0.05. Contour plots of vorticity and pressure at two different time instants are

shown in Figs. 11 and 12.
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Figure 8: Translational galloping: (a) geometry and boundary conditions and (b) hierarchical b-spline mesh.

DOF max(dsy) fo

Robertson et al. [75] - 1.150 0.938 fn

Dettmer and Perić [8] - 1.117 0.943 fn

Present - Level-2, Q1, ∆t = 0.1 33195 1.080 0.068= 1.088 fn

Present - Level-2, Q2, ∆t = 0.1 33417 1.050 0.069= 1.104 fn

Present - Level-3, Q1, ∆t = 0.1 47460 1.081 0.060= 0.960 fn

Present - Level-3, Q2, ∆t = 0.1 47475 1.046 0.060= 0.960 fn

Present - Level-3, Q1, ∆t = 0.05 47460 1.197 0.059= 0.944 fn

Present - Level-3, Q2, ∆t = 0.05 47475 1.202 0.059= 0.944 fn

Table 2: Translational galloping: maximum value of displacement dsy and frequency of oscillations fo.
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Figure 9: Translational galloping: evolution of displacement dy for level-2 mesh with ∆t = 0.1.
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Figure 10: Translational galloping: evolution of displacement dy for level-3 mesh with ∆t = 0.05.
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Figure 11: Translational galloping: contour plots of pressure and vorticity at t = 201.2 using level-3 Q2 mesh.
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Figure 12: Translational galloping: contour plots of pressure and vorticity at t = 209.4 using level-3 Q2 mesh.

8.3. Rotational galloping of a rectangular body

In this example we simulate the rotational galloping of a rectangular body studied in [8, 75, 76]. The

geometry and boundary conditions of the problem are shown in Fig. 13(a). The thickness of the rectangular

block is D = 1 and its length is 4D. The body is constrained in x- and y-direction and its rotational degree

of freedom is associated with a spring-mass-damper system. The properties of spring-mass-damper system

are: moment of inertia Iθθ = 400, damping Cθθ = 78.54 and stiffness Kθθ = 61.685. The density of the fluid

is ρf = 1.0 and the viscosity is µf = 0.01. The inlet velocity is set to v∞ = 2.5 resulting in the Reynolds

Re = ρDv∞/µ = 250. Simulations are carried out on the hierarchical b-spline mesh shown in Fig. 13(b)

with level-3 and level-4 refinements using linear (Q1) and quadratic (Q2) b-splines. The spectral radii for

the generalised-α schemes are set to ρf∞ = ρs∞ = 0.8. The relaxation parameter for the staggered scheme is

chosen as β = 0.9. Simulations are performed using a constant time step size ∆t = 0.05. The rectangular

block is initially placed at an angle of 0.1 degrees in order to expedite the onset of oscillations.

The evolution of the angle of rotation of the rigid body, obtained with level-3 and level-4 meshes, is shown

in Figs. 14 and 15, respectively. The amplitude, max(θ), and frequency of the oscillations, fo, obtained

from the simulations, are tabulated in Table 3, along with the reference values. The results obtained with

the present scheme are in excellent agreement with those published in Dettmer and Perić [8] and Robertson

et al. [75]. Contour plots of pressure and vorticity at two different time instants are presented in Figs. 16

and 17.
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DOF max(θ) fo

Robertson et al. [75] - 0.2620 0.762 fn

Dettmer and Perić [8] - 0.2670 0.780 fn

Present - Level-3, Q1 61560 0.2233 0.052= 0.832 fn

Present - Level-3, Q2 109713 0.2262 0.050= 0.800 fn

Present - Level-4, Q1 61491 0.2833 0.050= 0.800 fn

Present - Level-4, Q2 109395 0.2688 0.048= 0.768 fn

Table 3: Rotational galloping: maximum value of angle of rotation (θ) and frequency of oscillations (fo).
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Figure 13: Rotational galloping: (a) geometry and boundary conditions and (b) hierarchical b-spline mesh.
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Figure 14: Rotational galloping: evolution of rotation angle θ with level-3 mesh.
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Figure 15: Rotational galloping: evolution of rotation angle θ with level-4 mesh.
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Figure 16: Rotational galloping: contour plots of pressure and vorticity at t = 150.7 using level-4 Q2 mesh.
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Figure 17: Rotational galloping: contour plots of pressure and vorticity at t = 160.7 using level-4 Q2 mesh.

8.4. Particulate flow - single particle

Fictitious domain methods have been studied extensively for the modelling of particulate flows, see for

instance Glowinski et al. [77–79]. Particulate flows have also been simulated in [7, 11] using the ALE

framework with adaptive refinement. In this example we simulate the sedimentation of a single cylindrical

particle which is falling freely under the action of gravity in an incompressible Newtonian fluid. The particle

accelerates and eventually reaches a terminal velocity. The parameters are the same as those used in [11].

The geometry and boundary conditions of the problem are as shown in Fig. 18(a). The density and viscosity

of the fluid are ρf = 0.998 g/cm3 and µ = 0.0101 dyn s/cm2s, respectively. The diameter of the particle is

D = 0.2 cm and its density is ρs = 1.002 ρf . The value of the gravitational acceleration is g=981 cm/s2. It is

well known that the width of the channel influences the terminal velocity of the particle. Hence, simulations

are carried out on two domains of different widths, L = 10D and L = 20D, with the hierarchical meshes

shown in Figs. 18(b) and 18(c). The parameters for the generalised-α method and the staggered scheme are

ρs∞ = ρf∞ = 0.0 and β = 0.1, respectively. The time step size is set to ∆t = 0.02.

The evolution of the vertical velocity of the particle is shown in Fig. 19. The terminal velocity attained

by the particle in the narrow channel is obtained as 0.40 cm/s which agrees excellently with the result of

0.39 cm/s obtained in [11] for the same problem, but with a methodology based on an ALE formulation

and remeshing. From two different semi-empirical formulae presented in [11] and references therein, the

settling velocity of the considered particle in a wide channel is given as 0.42 cm/s or 0.48 cm/s. Our result

of 0.44 cm/s obtained for the wide channel lies well within this range and is close to the settling velocity

of 0.45 cm/s which is obtained in [11] for L = 50D. Contour plots of the velocity magnitude, pressure and

vorticity at t = 10s are shown in Fig. 20 for L = 20D using Q2 b-splines.

24



D

L

0
.8

7
.2

v
f
=

0

v
f
=

0

vf = 0

g

(a) (b) (c)

Figure 18: Sedimentation of single particle: (a) geometry and boundary conditions, (b) hierarchical b-spline mesh for L = 10D,

and (c) hierarchical b-spline mesh for L = 20D.
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Figure 19: Sedimentation of single particle: time history of particle velocity.
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Figure 20: Sedimentation of single particle: contour plots of velocity magnitude, pressure and vorticity at t = 10s for L = 20D

with Q2 b-splines.

8.5. Particulate flow - multiple particles

In this example we simulate the sedimentation of 25 cylindrical particles initially positioned as shown

in Fig. 21(a). The uniform mesh of 180×300 elements displayed in Fig. 21(b) is used with Q1 b-splines.

The physical and simulation parameters are the same as those considered for the single particle in Section

8.4. A constant time step size ∆t = 0.005 is used. Contact between particles and between particles and the

grid boundary are modelled using Lagrange multipliers. The minimum gap width is set to two times the

element size, which is equal to 1/6th of the particle diameter. Snap shots of displaced particles at several

time instants during the sedimentation process are shown in Fig. 22.
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Figure 21: Multiple particles: (a) geometry and boundary conditions and (b) mesh with particles at t = 0.
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Figure 22: Multiple particles: contour plots of velocity magnitude at different time instants.

8.6. Ball check valve with an elastic spring

Various configurations of ball check valves are used in the mechanical engineering industry. They are,

for instance, employed in hydraulic pumps or in automobile engines, where they control the oil flow. In this

subsection we consider the axisymmetric model shown in Fig. 23(a). Here, the ball is connected to an elastic

spring with linear stiffness, such that a positive pressure differential between inlet and outlet is required to
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move the ball along the central axis and to open a gap for the fluid flow.

The density and viscosity of the fluid are ρf = 800 kg/m3 and µf = 50 cP, respectively. The spherical

ball is made of steel with density ρs = 8000 kg/m3. The stiffness of the spring is Kyy = 100 N/m. The

simulations are performed in an axisymmetric setting and are based on the hierarchical discretisation shown

in Fig. 23(b). The fluid domain is refined locally in the zone where the ball comes into contact with the

valve seat, thus allowing for a minimum contact gap of approximately 1% of the ball diameter. We point

out that the minimum gap can be reduced further by adding more levels of localised refinement and doing

so would not result in a significant increase of the computational cost. In fact, in certain applications the

modelling of the seepage flow is important since it substantially influences the opening pressure of the valve.

Simulations are based on Q1 b-splines. The parameters for the generalised-α schemes and for the stag-

gered scheme are set to ρs∞ = ρf∞ = 0.0 and β = 0.8, respectively. The pressure at the outlet is zero and

two different cases are considered at the inlet: (a) constant inlet pressure and (b) sinusoidally varying inlet

pressure.

8.6.1. Constant inlet pressure

Simulations are performed for three different values of pin with a constant time step ∆t = 0.2. The

evolution of the valve displacement and of the flow rates obtained from the simulations are displayed in

Fig. 24. These graphs quantify the increase of the valve displacement and the flow rate due to larger inlet

pressures. Contour plots of the velocity magnitude at the end of each simulation are shown in Fig. 25.

Pressure contour plots are displayed in Fig. 26.

29



16

4.
5

2.
2

1.75

1 2

1.
2

1

pin

pout

(a) (b) (c)

Figure 23: Ball check valve with spring: (a) geometry and boundary conditions (dimensions in [mm]), (b) hierarchical b-spline

mesh and (c) discretisation around the opening.
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Figure 24: Ball check valve with spring: (a) evolution of ball displacement and (b) flow rates for different inlet pressure.
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Figure 25: Ball check valve with spring: contour plots of velocity magnitude with constant inlet pressure.
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Figure 26: Ball check valve with spring: contour plots of pressure with constant inlet pressure.

8.6.2. Sinusoidal inlet pressure

We now assess the performance of the valve under sinusoidally varying inlet pressure, pin = pA sin(2 π ft).

For each simulation the time steps size is set to ∆t = 1/(100 f). Fig. 27 shows graphs of the valve

31



displacement for pA = 0.1 bar and different values of f . From these graphs it can be observed that the

maximum valve displacement decreases as the frequency of the inlet pressure is increased. The displacement

of the valve is negligible for frequencies above f = 500 Hz. We observe that for frequencies of 100 Hz or

more the backflow is of the same order of magnitude as the flow in the desired direction. This limits the

application of this valve to the low frequency domain. Better performance at higher frequencies can be

achieved by decreasing the ball inertia and increasing the valve stiffness or by applying a pre-load to the

spring.
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Figure 27: Ball check valve with spring: ball displacement and flow rates for pin = 0.1 sin(2π ft) bar.

8.7. Ball check valve with a fixed retainer

In this example we consider the ball check valve described in Section 8.6 but without the elastic spring.

Instead, the displacement of the ball is restricted to a maximum of 0.4 mm by mechanical contact with a

fixed retainer. The presence of the retainer is accounted for by a Lagrange multiplier similarly to the contact

between the ball and the valve seat. In the study performed here, the retainer is not ‘seen’ by the flow.

Fig. 28 shows the evolution of the displacement of the ball for different combinations of pA and f .

From these graphs we observe that for higher inlet pressures pA and lower frequencies f , the valve switches

more quickly between the closed and open positions. The impact velocities and contact forces at the valve

seat and at the retainer are also computed by the adopted methodology. They are of great interest to the

mechanical engineer as they serve as important design parameters in selecting suitable material for the valve

components. As an example, input pressure, ball displacement, ball velocity, contact forces and flow rate

for pA = 0.2 bar and f = 50 Hz are displayed in Fig. 29.
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Figure 28: Ball check valve without spring: ball displacement for (a) f = 50 Hz and different pA and (b) pA = 0.2 bar and

different f .
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contact force for the bottom contact F t
c [N], contact force for the top contact F b

c [N] and flow rate Q [ml/s] for pA = 0.2 bar

and f = 50 Hz.

8.8. Model turbine

The model turbine studied in this subsection demonstrates the robustness of the scheme for problems

involving full rotations of a component, which are a key feature of turbines, pumps and compressors. The
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geometry of the problem is shown in Fig. 30. The level-1 hierarchical mesh with Q1 b-splines shown in

Fig. 31 is used for the simulation. This discretisation results in approximately 90000 DOF. The density and

viscosity of the fluid are ρf = 1.0 and µf = 0.02, respectively. The rotary moment of inertia of the turbine

wheel is Iθθ = 5.0 and corresponds to a density of ρs = 5.5 for the wheel. A constant pressure value of 1500

is applied at the inlet and the outlet is assumed to be traction-free. The parameters for the generalised-α

method and for the staggered scheme are set to ρf∞ = ρs∞ = 0.0 and β = 0.2, respectively. A constant

time step of ∆t = 0.01 is used. The evolution of the rotation angle and the angular velocity of the wheel

is displayed in Fig. 32. Contour plots of velocity magnitude and pressure are shown in Figs. 33 and 34,

respectively.
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Figure 30: Model turbine: geometry.

Figure 31: Model turbine: hierarchical b-spline mesh used for the simulation.
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Figure 32: Model turbine: evolution of the rotation angle and the angular velocity. The rotation angle is reset to zero at the

end of each full rotation for the purpose of clarity.
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Figure 33: Model turbine: contour plots of velocity magnitude at t = 1.0 and t = 5.02.
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Figure 34: Model turbine: contour plots of pressure at t = 1.0 and t = 5.02.

9. Summary and conclusions

We have presented a numerical scheme for the simulation of fluid-structure interaction involving rigid

solid bodies and laminar viscous incompressible fluid flow with topology changes and solid-solid contact.

Linear and quadratic b-spline grids with targeted hierarchical refinement have been used for the com-

putationally efficient simulation of a number of numerical examples. The results obtained for the galloping

and particle sedimentation benchmark problems are in excellent agreement with other published studies.

The other numerical examples involve fluid-structure interaction and solid-solid contact. They include par-

ticulate flow, hydraulic check valves and a model turbine and thus clearly demonstrate the applicability

of the proposed scheme to a wide range of industrially relevant problems. Key advantages of the present

methodology lie in the robustness observed for large time steps and for the coupling of solid-solid contact

with fluid-structure interaction.

Thus, the combination of the immersed finite element method proposed in [34] with the staggered scheme

described in [9] and a standard Lagrange multiplier based solid-solid contact formulation has been proven to

possess excellent potential for the modelling of coupled mechanical processes. Future work will be directed

at its application to large-scale industrial simulations.
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[58] C. Kadapa, W. G. Dettmer, and D. Perić. Subdivision based mixed methods for isogeometric analysis of linear and

nonlinear nearly incompressible materials. Computer Methods in Applied Mechanics and Engineering, 305:241–270, 2016.

[59] A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows

with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and

Engineering, 32(1-3):199–259, 1982.

[60] T. J. R. Hughes, L. P. Franca, and M. Balestra. A new finite element formulation for computational fluid dynamics: V.

Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating

equal-order interpolations. Computer Methods in Applied Mechanics and Engineering, 59:85–99, 1986.

[61] T. E. Tezduyar, S. Mittal, S. E. Ray, and R. Shih. Incompressible flow computations with stabilized bilinear and linear

equal-order-interpolation velocity-pressure elements. Computer Methods in Applied Mechanics and Engineering, 95:221–

242, 1992.

39



[62] I. Harari and T. J. R. Hughes. What are C and h?: Inequalities for the analysis and design of finite element methods.

Computer Methods in Applied Mechanics and Engineering, 97:157–192, 1992.

[63] S. Fernandes-Mendez and A. Huerta. Imposing essential boundary conditions in mesh-free methods. Computer Methods

in Applied Mechanics and Engineering, 193:1257–1275, 2004.

[64] Y. Bazilevs and T. J. R. Hughes. Weak imposition of Dirichlet boundary conditions in fluid mechanics. Computers and

Fluids, 36:12–26, 2007.

[65] A. Embar, J. Dolbow, and I. Harari. Imposing Dirichlet boundary conditions with Nitsches method and spline-based finite

elements. International Journal for Numerical Methods in Engineering, 83:877–898, 2010.

[66] M. Reuss, D. Schillinger, Y. Bazilevs, V. Varduhn, and E. Rank. Weakly enforced essential boundary conditions for

NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. International Journal for

Numerical Methods in Engineering, 95:811–846, 2013.

[67] D. Schillinger, I. Harari, M. Hsu, D. Kamensky, S. K. F. Stoter, Y. Yu, and Y. Zhao. The non-symmetric Nitsche method

for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements. Computer

Methods in Applied Mechanics and Engineering, 309:625–652, 2016.

[68] M. Braza, P. Chassaing, and H. Ha Minh. Numerical study and physical analysis of the pressure and velocity fields in the

near wake of a circular cylinder. Journal of Fluid Mechanics, 165:79–130, 1986.

[69] C. Liu, X. Sheng, and C. H. Sung. Preconditioned multigrid methods for unsteady incompressible flows. Journal of

Computational Physics, 139:35–57, 1998.

[70] D. Calhoun. A cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular

regions. Journal of Computational Physics, 176:231–275, 2002.

[71] D. Russell and Z. J. Wang. A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous

flow. Journal of Computational Physics, 191:177–205, 2003.
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• Stabilised immersed framework for fluid-structure interaction.

• A second-order accurate staggered solution scheme.

• SUPG/PSPG stabilisation and ghost-penalty stabilisation.

• Penalty-free unsymmetric Nitsche method for imposing interface and boundary conditions.

• Applied to galloping, particulate flows, ball check-valve and a model turbine.


