
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in :

Aquatic Toxicology

                                  

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa31780

_____________________________________________________________

 
Paper:

Uren Webster, T., Williams, T., Katsiadaki, I., Lange, A., Lewis, C., Shears, J., Tyler, C. & Santos, E. (2017).  Hepatic

transcriptional responses to copper in the three-spined stickleback are affected by their pollution exposure history.

Aquatic Toxicology, 184, 26-36.

http://dx.doi.org/10.1016/j.aquatox.2016.12.023

 

 

 

 

 

 

 

 

_____________________________________________________________
  
This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository. 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/78862876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa31780
http://dx.doi.org/10.1016/j.aquatox.2016.12.023
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 

Aquatic Toxicology 184 (2017) 26–36

Contents lists available at ScienceDirect

Aquatic  Toxicology

j o ur na l ho me  pag e: www.elsev ier .com/ locate /aquatox

Hepatic  transcriptional  responses  to  copper  in  the  three-spined
stickleback  are  affected  by  their  pollution  exposure  history

Tamsyn  M.  Uren  Webstera,b,∗,1,  Tim  D.  Williamsc,1, Ioanna  Katsiadakid,  Anke  Langea,
Ceri  Lewisa,  Janice  A.  Shearsa,  Charles  R.  Tylera,  Eduarda  M.  Santosa,∗∗

a Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
b Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK
c School of Biosciences, The University of Birmingham, Birmingham B15 2TT, UK
d Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Weymouth DT4 8UB, UK

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 1 September 2016
Received in revised form 5 December 2016
Accepted 28 December 2016
Available online 31 December 2016

Keywords:
Metals
Pollution
Adaptation
Freshwater
Teleost

a  b  s  t  r  a  c  t

Some  fish  populations  inhabiting  contaminated  environments  show  evidence  of  increased  chemical  tol-
erance,  however  the  mechanisms  contributing  to this  tolerance,  and  whether  this  is  heritable,  are  poorly
understood.  We investigated  the  responses  of two  populations  of wild  three-spined  stickleback  (Gas-
terosteus  aculeatus)  with  different  histories  of contaminant  exposure  to an oestrogen  and  copper,  two
widespread  aquatic  pollutants.  Male  stickleback  originating  from  two sites,  the  River  Aire,  with  a history
of complex  pollution  discharges,  and  Siblyback  Lake,  with  a  history  of  metal  contamination,  were  depu-
rated and  then  exposed  to  copper  (46 �g/L) and the  synthetic  oestrogen  ethinyloestradiol  (22 ng/L).  The
hepatic  transcriptomic  response  was  compared  between  the  two populations  and  to  a  reference  popu-
lation  with  no  known  history  of exposure  (Houghton  Springs,  Dorset).  Gene  responses  included  those
typical  for  both  copper  and  oestrogen,  with  no discernable  difference  in  response  to oestrogen  between
populations.  There  was,  however,  some  difference  in  the magnitude  of  response  to  copper  between  pop-
ulations.  Siblyback  fish  showed  an  elevated  baseline  transcription  of  genes  encoding  metallothioneins
and  a lower  level  of  metallothionein  induction  following  copper  exposure,  compared  to  those  from  the
River  Aire.  Similarly,  a further  experiment  with  an  F1 generation  of  Siblyback  fish  bred  in  the  labora-
tory  found  evidence  for elevated  transcription  of genes  encoding  metallothioneins  in unexposed  fish,
together  with  an  altered  transcriptional  response  to  125  �g/L  copper,  compared  with  F1  fish  originating
from  the  clean  reference  population  exposed  to the  same  copper  concentration.  These  data  suggest  that
the stickleback  from  Siblyback  Lake  have  a differential  response  to  copper,  which  is  inherited  by the  F1
generation  in  laboratory  conditions,  and  for which  the  underlying  mechanism  may  include  an  elevation
of  baseline  transcription  of  genes  encoding  metallothioneins.  The  genetic  and/or  epigenetic  mechanisms
contributing  to  this  inherited  alteration  of metallothionein  transcription  have  yet  to be  established.

© 2017  The  Authors.  Published  by Elsevier  B.V. This  is  an open  access  article  under  the  CC BY  license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Metals and oestrogenic chemicals are widespread contami-
nants of freshwater systems worldwide. Anthropogenic sources of
metal pollution include mining and industrial activity, and oestro-
genic pollution derives from industrial, agricultural and domestic
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sources. Toxic effects of chronic metal exposure in wild fish popu-
lations include impaired metabolic activity, growth, immunity and
genetic diversity (Bourret et al., 2008; Couture and Kumar, 2003;
Levesque et al., 2003; Pierron et al., 2009; Rajotte and Couture,
2002). Exposure to environmental oestrogens has been reported
to induce intersex in some fish species (Jobling et al., 1998; van
Aerle et al., 2001) whilst roach (Rutilus rutilus)  inhabiting some of
the more contaminated sections of UK rivers may have reduced
reproductive success and genetic diversity (Hamilton et al., 2014;
Harris et al., 2011; Jobling et al., 2002). Viable populations of fish,
however, do exist in some heavily polluted environments, includ-
ing those contaminated with metals and/or oestrogens (Hamilton
et al., 2014; Uren Webster et al., 2013).

http://dx.doi.org/10.1016/j.aquatox.2016.12.023
0166-445X/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Selective pressures favouring increased tolerance to pollution
are likely to drive adaptive change in populations inhabiting con-
taminated environments. One of the best characterised examples
of this are populations of North American Atlantic killifish (Fun-
dulus heteroclitus), which have adapted to estuarine environments
heavily contaminated with aromatic hydrocarbons. These killifish
showed reduced sensitivity to aromatic hydrocarbon exposure, pri-
marily due to a lack of induction of cytochrome P4501a (CYP1A)
through suppression of the aryl hydrocarbon receptor (AHR) sig-
nalling pathway (Whitehead et al., 2010; Wirgin and Waldman,
2004), and this mechanism of tolerance was inherited to F1, and
in some cases F2, generations (Whitehead et al., 2012). Evidence
of a genetic basis of this tolerance to aromatic hydrocarbons
includes functional differences in the CYP1A promoter (Williams
and Oleksiak, 2011) and altered SNP frequency in AHRs (Reitzel
et al., 2014), although this tolerance may  not be entirely due to
genetic selection, and is also likely to vary with the contaminant
(Clark et al., 2013).

Altered response to oestrogen exposure has also been demon-
strated in several populations of killifish in New Bedford Harbour
and Newark Bay with a history of exposure to chemicals affect-
ing oestrogen signalling, including PCBs. Depurated male killifish
from polluted environments showed reduced transcription of
oestrogen-dependent genes including vitellogenins, chorion proteins
and aromatase following exposure to 17�-oestradiol (E2) com-
pared to those from a clean, reference population (Bugel et al.,
2014; Greytak et al., 2010). Their F1 larvae showed attenuation
of the ER˛  transcriptional response, but not the other oestrogen-
response biomarkers (Greytak et al., 2010). This suggests that
chronic environmental exposure drives a reduced sensitivity to
oestrogen, through modulation of oestrogen receptor signalling,
but this response can vary with life stage (Bugel et al., 2014; Greytak
et al., 2010). Studies on roach populations originating from river
stretches in the UK heavily contaminated by oestrogenic chemicals
have found the opposite, with a sensitisation of oestrogen respon-
siveness (Lange et al., 2009). Genetic and epigenetic mechanisms
contributing to these responses are suspected but have not yet been
established.

Potential adaptation to chronic metal exposure has been
reported in various wild fish populations. For example, brown trout
(Salmo trutta) from the River Hayle in Cornwall, UK, have shown tol-
erance of high concentrations of a mixture of metals that are lethal
to naïve trout. These trout displayed relatively little evidence of
overt toxicity, despite accumulating high tissue concentrations of
metals, and showed evidence of several mechanisms of metal tol-
erance including up-regulation of metal-handing pathways and ion
homeostasis (Uren Webster et al., 2013). Genetic analysis revealed
differences between populations, both within this river and com-
pared to clean rivers nearby, which were predicted to coincide with
increases in local mining activity, suggesting that local adaption
to metal contamination had contributed to a reduction in gene
flow between these populations (Paris et al., 2015). Studies on yel-
low perch (Perca flavescens)  populations inhabiting lakes in North
America contaminated through industrial and mining activity have
shown tolerance of high concentrations of metals including cop-
per and cadmium, and the potential mechanisms of tolerance were
reported to include elevated metallothionein and oxidative stress
responses (Defo et al., 2015; Giguère et al., 2005; Pierron et al.,
2009). There is also some evidence of selection in these perch pop-
ulations driven by metal contamination (Bélanger-Deschênes et al.,
2013; Bourret et al., 2008).

Evidence of considerable toxicity was also found in yellow perch
chronically exposed to metals, including impaired metabolism and
poor condition (Couture and Kumar, 2003; Levesque et al., 2003;
Pierron et al., 2009; Rajotte and Couture, 2002), compared to less
obvious signs of toxicity in the Hayle brown trout (Uren Webster

et al., 2013). This may reflect a greater adaptive change in the
trout following longer historical contamination in the river Hayle
(∼1000 years) compared to the ∼100 years of contamination expe-
rienced by fish in the North American lakes. A genetic contribution
to metal tolerance in fish therefore seems likely, but the precise
mechanisms of this adaptive change and the potential relative con-
tributions of phenotypic plasticity or other mechanisms are yet to
be established. In addition, little is known about the response of
depurated individuals to metal exposure or whether metal toler-
ance is inherited in F1 or subsequent generations raised in clean
environments.

Three-spined stickleback (Gasterosteus aculeatus) inhabit many
water systems worldwide, are relatively tolerant of stressors and
can undergo rapid speciation in response to environmental change
(McKinnon and Rundle, 2002). We have previously used global
transcript profiling to establish the transcriptional signatures of
response to copper and 17alpha-ethinylestradiol (EE2) in stickle-
back originating from a reference site (Houghton Springs, Dorset,
UK), receiving borehole water with no known history of metal or
oestrogenic contamination (Katsiadaki et al., 2010; Santos et al.,
2010). Here, we examined the hypothesis that historical exposure
to these classes of pollutants modifies the tolerance of exposed
populations, altering their response to further exposure. We  inves-
tigated the transcriptional responses to EE2 and copper in two
populations of stickleback that originate from water systems with
a history of contamination by a wide range of chemicals including
oestrogens (River Aire, Leeds, UK) and metals (Siblyback Lake, Corn-
wall, UK), followed by periods of improved water quality. We  found
responses typical for both copper and oestrogen exposure in both
populations, as identified previously for stickleback at Houghton
Springs (Katsiadaki et al., 2010; Santos et al., 2010), but with differ-
ences in the magnitude of response to copper between populations,
and differences in the baseline transcription of copper-responsive
genes, including metallothionein. A further experiment with an F1
generation of Siblyback fish bred and maintained in a clean environ-
ment, and subsequently exposed to copper, showed evidence of an
elevated baseline transcription of metallothionein, together with an
altered transcriptional and behavioural response, compared with
F1 fish originating from the reference (Houghton Springs) popula-
tion.

2. Materials and methods

All experiments were performed using reagents from Sigma-
Aldrich (Dorest, UK), unless otherwise stated.

2.1. F0 exposure

2.1.1. Site selection
Stickleback fish were collected from two  sites chosen based

on their history of oestrogen and metal pollution. The River Aire
flows through a heavily industrialised area in Yorkshire, UK, and
has a long history of heavy pollution. Considerable stretches of this
river downstream of wastewater treatment outflows were reported
to contain high concentrations of oestrogenic chemicals, particu-
larly alkylphenol polyethoxylates (Harries et al., 1997), although
improvements in wastewater treatment have since considerably
reduced the degree of oestrogenic activity in this river (Sheahan
et al., 2002). High prevalence and severity of feminisation in wild
fish populations have been reported in this river (Jobling et al.,
2002; Jobling et al., 1998; van Aerle et al., 2001). Resident stick-
leback populations are also known to have undergone significant
population bottlenecks, although this has been shown not to have
impacted on male reproductive competitiveness (Santos et al.,
2013).
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The Siblyback reservoir, constructed in the 1960s, is situated
on Bodmin Moor in Cornwall, in an area with a history of intense
tin and copper mining that began in the Bronze Age, intensified
during the 18th century and later declined during the latter 19th
century. Several tributaries of the River Fowey are feeder streams
to the reservoir, and are also known to have been directly used
for metal streaming (extraction and washing) (Pirrie et al., 2002).
The population of stickleback in Siblyback reservoir, originating
from these feeder streams, are therefore likely to have been histori-
cally exposed to high levels of metal contamination for hundreds of
years. Recent water chemistry data (kindly supplied by the Environ-
ment Agency) shows that the copper concentrations in the reservoir
have been low (generally <2.5 �g/L) for at least the last 15 years,
suggesting multiple generations (over 15 generations considering
that typically this species have a new generation each year) of this
population have been living in cleaner conditions.

2.1.2. Maintenance, exposure and experiment
Mixed populations of juvenile three-spined sticklebacks were

collected from Siblyback Reservoir and the River Aire and housed
in aquaria at the University of Exeter for a minimum of 4 months, to
allow depuration and acclimation to laboratory conditions. Stock
tanks were supplied with de-chlorinated tap water, aerated and
maintained at the ambient temperature (12–17 ◦C), pH 7.5, total
hardness of 23.8 mg/L. Air saturation was maintained above 90%,
and ammonia, nitrate and nitrite levels were maintained within an
appropriate range. Fish were maintained under a constant photope-
riod (12 h light/dark cycle), and fed to satiation with bloodworm
(Tropical Marine Centre, Hertfordshire, UK). During the depuration
and acclimation period, fish from the river Aire suffered a higher
mortality rate, due to white spot disease, compared to fish originat-
ing from Siblyback, resulting in lower density in the holding tanks.
This contributed to a significantly higher body size in the remaining
Aire fish prior to the start of the exposure experiment.

For the exposure experiment, fish (average 4.39 cm;  0.81 g) were
randomly allocated into groups of 20 individuals and maintained
in 40 L glass tanks for one week prior to the onset of exposure. Fish
were exposed to three concentrations of copper (3.2, 32, 128 �g/L;
prepared using copper sulphate (Fisher, UK)), three concentrations
of EE2 (1, 10, 32 ng/L) and three mixtures (3.2 �g Cu/L and 32 ng
EE2/L; 128 �g Cu/L and 1 ng EE2/L; 128 �g Cu/L and 32 ng EE2/L)
in duplicate tanks. These nominal exposure concentrations were
selected to match those used previously by Santos et al. (2010)
and Katsiadaki et al. (2010) to enable comparisons between the
responses measured in the current and previous studies. A dilution
water control treatment was also included in duplicate. At the start
of the chemical exposure, tanks were spiked to achieve the required
nominal exposure concentrations. Fish were then exposed for four
days under flow-through conditions with a water replacement time
of 0.6 vols every 24 h. The tank water was sampled on days 0, 2 and
4 for determination of dissolved Cu and EE2 concentrations.

At the end of the exposure period, fish were humanely sacri-
ficed by an overdose of benzocaine (0.5 g/L) followed by destruction
of the brain in accordance with UK Home Office regulations. Wet
weights and fork lengths were determined and used to calculate
condition index (k = (weight (g) × 100)/(fork length (cm)3)). The
livers were dissected, weighed, and immediately frozen in liquid
nitrogen and stored at −80 ◦C for subsequent transcriptomic anal-
yses. The gonads were dissected, weighed, and used to verify the
sex of each individual. Hepatosomatic index (HSI), nephrosomatic
index (NSI) and gonadosomatic index (GSI) were calculated as a
percentage of total body weight for each tissue.

Statistical analysis of morphometric measurements were con-
ducted using SigmaStat (version 12.0). All data met assumptions of
normality and equal variance, and were analysed using single fac-
tor one-way analysis of variance (ANOVA), followed by Holm-Sidak

post hoc test using a pairwise comparison method. Differences
between groups were considered to be statistically significant
when p < 0.05.

2.1.3. Water chemistry
Water samples (0.5 L) were collected at days 0, 2 and 4 into

acid washed plastic bottles and measurement of copper and EE2
determined as before (Katsiadaki et al., 2010; Santos et al., 2010).
Briefly, for measurements of copper, water samples were filtered
using a nucleopore 0.4 �m filter, and acidified by adding 100 �L of
nitric acid (Aristar grade) and 60 �L of hydrogen peroxide and UV-
digested over 12 h. The samples were stored at 4 ◦C in the dark until
determination of Cu concentrations. Total dissolved copper (TDCu)
was determined by differential pulse anodic stripping voltametry
at a hanging mercury drop electrode (DPASV-HMDE), Metrohm
Computrace 767 Multimode electrode system. For measurement
of EE2, water samples were filtered using a nucleopore 0.4 �m fil-
ter and extracted using C18 solid phase cartridge. Extracts were
dried under nitrogen gas, reconstituted in 1 mL  radioimmunoassay
buffer (0.5 M phosphate buffer containing 0.2% bovine serum albu-
min, 0.8% sodium chloride, 0.03% EDTA and 0.01% sodium azide)
and stored at −20 ◦C. EE2 concentrations were determined using
a radioimmunoassay, using a standard of radiolabelled EE2 at a
concentration of 500 �g/mL in ethanol, and an EE2 antiserum, as
described previously (Katsiadaki et al., 2010).

2.1.4. Transcriptomic analyses
Analysis of gene transcription was  conducted using the

stickleback ‘PGPS2’ cDNA microarray (Array Express Accession A-
MAXD-23) comprising 14,496 probes representing 5038 individual
stickleback genes as described previously (Brown et al., 2008;
Geoghegan et al., 2008; Katsiadaki et al., 2010; Santos et al., 2010;
Williams et al., 2009). Individual samples labelled with Cy5 were
hybridized to the microarray in competition with a common Cy3-
labelled reference pool synthesised from pooled male treated and
control samples from both populations. Samples from 5 individ-
ual fish from each treatment group were analysed, for a total of
120 samples. MIAME-compliant data and protocols are archived
at ArrayExpress under Accession E-MTAB-4907. Mean values were
used for all probes annotated to each stickleback gene after filter-
ing. Gene transcription analysis was  conducted within Genespring
(GX 7.3; Agilent Technologies, Berkshire, UK).

A T-test with Benjamini and Hochberg (1995) multiple testing
correction for a false discovery rate (FDR) <0.05 was used to com-
pare Aire and Siblyback control groups. Similar T-tests comparing
individual treatment concentrations with control groups identified
few differentially transcribed transcripts, therefore for each popu-
lation, corrected T-tests were performed comparing all fish exposed
to 0 �g/L copper against all exposed to 128 �g/L copper, and all fish
exposed to 0 ng/L EE2 against all exposed to 32 ng/L EE2. Annota-
tion enrichment analysis was  conducted in DAVID (Huang et al.,
2008) using lists of differentially transcribed genes in comparison
with a background list consisting of all detected genes.

In stickleback, the size of the kidney increases dramatically in
mature males due to spiggin production, a protein produced as a
result of androgen stimulation and used by males to build nests.
Kidney size is therefore a reliable indicator of maturity status in
males (Katsiadaki et al., 2010). In the Aire population, there was
high variability in gene expression and we  hypothesised that this
was related to differences between males with large and small
kidneys, reflecting different maturity status, therefore additional
statistical tests were performed to determine the influence of
kidney size (as a proxy for maturation status) on transcription,
comparing samples with high (>10 mg)  and low (<10 mg) kidney
weights.
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Following analysis of response to 128 �g/L copper and 32 ng/L
EE2 for the Siblyback and Aire populations, Gene Set Enrichment
Analysis (GSEA) (Subramanian et al., 2005) was used to investi-
gate whether responses to copper and EE2 in each population were
similar to those detected in previous experiments performed with
male sticklebacks from a reference site (Houghton Springs) with
no known history of pollutant exposure, that were exposed to the
same nominal concentrations (Katsiadaki et al., 2010; Santos et al.,
2010).

2.2. F1 exposure

2.2.1. Maintenance, exposure and sampling
Adult stickleback from two wild populations (Houghton Springs,

Dorset and Siblyback Reservoir, Cornwall) were collected, trans-
ported to the University of Exeter, maintained in mixed sex stock
tanks and allowed to breed naturally after a period of depuration of
four months. Fry from each population were housed in stock tanks
supplied with de-chlorinated tap water, aerated and maintained at
15–16 ◦C, pH 7.5, with a total hardness of 23.8 mg/L. All other hus-
bandry conditions were as described for the F0 exposure. As in the
F0 experiment, the parental Houghton Springs stickleback suffered
an outbreak of white spot disease while the Siblyback fish remained
healthy. As a result, fewer F1 Aire fish survived until maturity, and
these were maintained at lower stocking density and were larger
in size than those originating from Siblyback reservoir.

Sexually mature male sticklebacks (average 4.46 cm;  0.85 g)
from the F1 generation of each population were exposed to copper
via a flow-through system for a period of 4 days. The exposure was
conducted in 35 L tanks, supplied with one full tank water replace-
ment each day. For the Siblyback population, fish were exposed to
five concentrations of copper (3.2, 10, 32, 64 and 128 �g/L; prepared
using copper sulphate (Fisher, Fair Lawn, USA)) and a dilution water
control, and each treatment group was comprised of two  replicate
tanks, each containing six fish. These concentrations were selected
to match those used for the F0 exposure, with additional interme-
diate concentrations. For the Houghton Springs population, due to
the limited number of fish available the exposure was conducted
using only the highest treatment concentration (128 �g/L) and a
dilution water control. Water samples were collected from each
tank on day 2 of the exposure period and total copper concentra-
tions were determined using ICP-MS by an accredited laboratory
(South West Water, Exeter Laboratories). Qualitative observations
of activity and feeding behaviour were recorded over the course of
the exposure period.

Fish were humanely sacrificed on day four of the exposure
period by a lethal dose of benzocaine (0.5 g/L) followed by destruc-
tion of the brain, in accordance with UK Home Office regulations.
For each individual fish, wet weight and fork length were recorded
and the condition factor was calculated. Sex of individuals was
confirmed by observation of the gonads. Livers and kidneys were
dissected and weighed, and the HSI and NSI were determined. Liver
samples were snap frozen in liquid nitrogen and stored at −80 ◦C
prior to transcript profiling. Blood was collected from the caudal
vein using a heparinised collection tube and kept on ice for assess-
ment of DNA damage using the Comet assay.

2.2.2. Comet assay
Measurement of single- and double-stranded DNA damage in

blood cells was performed using the alkaline comet assay at the
end of the exposure. Briefly, 1 �L of whole blood was  diluted 2000×
in cold PBS and centrifuged at low speed. The red blood cell pellet
was then mixed with 180 �L of 1% low melting point agarose solu-
tion, warmed to 37 ◦C, then spread on slides coated with 1% high
melting point agarose. The slides were cooled to 4 ◦C for 10 min,
then placed in a lysis solution (2.5 M NaCl, 0.1 M EDTA, 10 �M Tris,

10% DMSO, 1% Triton X-100, pH 10) for 1 h at 4 ◦C. Cells were then
denatured in an alkaline electrophoresis buffer (0.3 M NaOH, 1 mM
EDTA, pH 13) for 40 min  before an electric current (24 V, 300 mA)
was applied for 30 min. Cells were washed in neutralising buffer
(0.4 M Tris, pH 7.5) before staining with 20 �L of 20 mg/L ethidium
bromide solution. Each slide was  viewed with a fluorescence micro-
scope (420–490 excitation filter; 520 nm emission filter) and the%
tail DNA from each sample was quantified for 100 cells (Kinetic
COMET software). For each individual fish the comet assay was
performed in duplicate, and an average value of DNA damage was
calculated.

2.2.3. RT-qPCR analysis
RT-qPCR was  used to quantify the hepatic transcription of

known copper-regulated genes, selected based on their response
to copper in a previous study using stickleback males from
the same reference site (Houghton Springs, Dorset) (Santos
et al., 2010) and in the F0 exposure. The target genes cho-
sen included, metallothionein (mt2) and transcripts encoding four
enzymes from the cholesterol biosynthesis pathway (isopentenyl-
diphosphate-delta-isomerase, idi1, 3-hydroxy-3-methylglutaryl-CoA
synthase, hmgcs,  3-hydroxy-3-methylglutaryl-CoA reductase, hmgcr;
24-dehydrocholesterol reductase, dhcr24). Ribosomal protein 8 (rpl8)
was used as a control gene, and the assays were optimised as
described previously (Santos et al., 2010). RNA was  extracted
using TRI reagent (Sigma-Aldrich) according to the manufac-
turer’s instructions. cDNA was synthesised from 2 �g of total RNA
treated with RQ1 DNase (Promega, Southampton, UK) using ran-
dom hexamers (MWG-Biotech) and M-MLV  reverse transcriptase
(Promega), according to the manufacturer’s instructions. RT-qPCR
was performed using 1:2 diluted cDNA in triplicate, using SYBR
green chemistry, with an iCycler iQ Real-time Detection System
(Bio-Rad Laboratories, Hercules, CA). A negative control was also
run in triplicate on each plate to verify the absence of cDNA contam-
ination. Efficiency-corrected relative transcription levels for each
transcript were determined by normalising to the control tran-
script, rpl8.

Statistical analysis was  conducted in SigmaStat (version 12.0).
Transcriptional data that did not meet normal distribution crite-
ria were log transformed before statistical analysis. All data were
analysed using single factor one way  analysis of variance (ANOVA),
followed by the all pairwise Holm-Sidak post hoc test. All values
presented are mean ± SEM. Data were considered to be significant
when P < 0.05.

3. Results

3.1. F0 exposure

3.1.1. Morphometric parameters
Following dissection, male fish were identified and all analy-

ses were conducted on males only to reduce possible variation
associated with sex. The mean length, mass and condition index,
for Aire and Siblyback fish respectively, were 4.55 ± 0.05 cm and
4.24 ± 0.03 cm;  0.93 ± 0.04 g and 0.66 ± 0.02 g; and 0.95 ± 0.01 and
0.84 ± 0.01. The mean HSI, GSI and NSI, for the Aire and Sibly-
back fish respectively, were 2.95 ± 0.08 and 1.7 ± 0.05; 0.58 ± 0.03
and 1.02 ± 0.05; and 1.25 ± 0.09 and 0.85 ± 0.04. Within each pop-
ulation there were no significant differences between treatment
groups in length, weight, condition factor, HSI, NSI or GSI. During
the course of the experiment, no obvious differences in swimming
or feeding behaviour were observed in any exposure group.

3.1.2. Water chemistry
The results of the water chemistry are shown in Table S1. For the

copper exposure, the mean measured concentrations were lower
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than the nominal in the intermediate and high treatment groups
(ranging from 24 to 38%), likely due to degradation or binding of
the chemicals to organic matter in the water or to the surface of the
tanks during the exposures. However, importantly, the measured
concentrations were similar for the exposures conducted on both
the Siblyback and Aire populations (49.1 and 43.5 �g/L, respec-
tively, for 128 �g/L copper), ensuring that comparisons between
the responses of each population are valid. Similarly, for the EE2
exposure, measured concentrations were lower than the nomi-
nals for the highest treatment group (32 ng/L), but were similar
between populations (23.8 and 21.0 ng/L for Siblyback and Aire,
respectively). The average measured exposure concentrations will
be referred to throughout the rest of the manuscript.

3.1.3. Transcriptomic analysis
3.1.3.1. Hepatic responses to copper and EE2 treatment. For the
Siblyback stickleback, a total of 15 genes were differentially regu-
lated following exposure to 22 ng/L EE2 (Table 1), and they included
genes known to be oestrogen-responsive (e.g. oestrogen receptor 1
and zona pellucida proteins 3 and 4). Following exposure to 46 �g/L
copper, 1071 genes were differentially transcribed (Table 2a and
Supporting file 2). These included typical copper-responsive genes
including metallothionein and genes encoding proteins involved in
cellular stress response. Annotation enrichment analysis of these
gene lists showed induction of transcription-related genes and
repression of those encoding immune response, secreted, plasma
and ribosomal proteins (Supporting file 3).

For the Aire population, there were a total of 22 significantly dif-
ferentially transcribed genes (FDR < 0.05) in fish exposed to 46 �g/L
copper, 10 of which were also regulated in the Siblyback popu-
lation (Table 2b). For EE2, no individual genes were found to be
significantly differentially transcribed, potentially due to the high
variability between individuals that were associated with the dif-
ferences in sexual maturity (indicated by the differences in kidney
size). To explore this further, we analysed differences associated
with kidney weight in Aire male fish exposed to 22 ng EE2/L. There
was a significant negative correlation of zp3 transcription with
kidney weight (R2 = 0.82; P < 0.05), and several other transcripts
found to be oestrogen-responsive in the Siblyback fish were dif-
ferentially transcribed between Aire males with smaller (<10 mg)
kidneys and larger (>10 mg)  kidneys (Table S4), indicating a con-
founding effect of kidney size in the Aire population for identifying
oestrogen-responsive transcripts.

3.1.3.2. Comparing the Aire and the Siblyback populations. The loss
of Aire fish due to white spot disease caused a differential stock-
ing density, resulting in different body sizes and sexual maturation
rates between populations. This may  be expected to cause dif-
ferences in baseline hepatic transcription, associated with size
or maturity, between unexposed control fish from the differ-
ent populations. Despite this confounding effect, there were also
clear differences in the baseline transcription of copper-responsive
genes identified in this, and previous, studies. Transcription of a
total of 157 genes was significantly different (FDR < 0.05) between
the control groups from Aire and Siblyback populations, includ-
ing metallothionein and those involved in response to cellular
stress and protein folding (Table S5). Functional analysis iden-
tified a number of Gene Ontology (GO) terms and pathways
that were significantly over-represented (FDR < 0.05) amongst the
differentially transcribed genes. These are shown in Supporting
file 3. Terms related to the endoplasmic reticulum was strongly
over-represented amongst the genes that were more highly tran-
scribed in the Aire population, while terms associated with energy
metabolism were most significantly enriched for genes that were
more highly transcribed in the Siblyback fish.

3.1.3.3. Comparing responses to copper and EE2 between the pre-
viously published Houghton Springs population and the Aire and
Siblyback populations. Genes found to be differentially transcribed
in our previous studies for a reference population (Houghton
Springs) following exposure of sticklebacks to 128 �g/L copper
(Santos et al., 2010) and 32 ng/L EE2 (Katsiadaki et al., 2010) are
shown in Table S3. Gene set enrichment analysis (GSEA) demon-
strated a significant similarity between these previous responses
to 128 �g/L copper and those for the Aire fish exposed to 46 �g/L
copper (FDR = 0.032), compared with controls. In contrast, there
was no significant similarity for the Siblyback copper-exposed fish
(FDR = 0.173). Transcriptional responses of the populations from
the River Aire and Siblyback to 22 ng EE2/L were both similar to
those measured in sticklebacks from Houghton Springs exposed to
32 ng EE2/L. This similarity was highly significant for the Siblyback
stickleback (FDR = 0.001), but less so for the Aire fish (FDR = 0.07)
that showed transcriptional variability related to kidney weight
(thus sexual maturity).

3.2. F1 exposure

3.2.1. Morphometric parameters and behaviour
All fish used for the analysis in this experiment were males as

confirmed by macroscopic evaluation of gonads. The Aire fish were
significantly larger than the Siblyback fish, potentially also affecting
baseline transcription between unexposed fish. Within each pop-
ulation there were no significant differences between treatment
groups in length, weight, condition factor, HSI or NSI following
the exposure. During the course of the exposure, we observed
a considerable reduction in activity and feeding, together with
darker colouration, in the Houghton Springs stickleback exposed
to 128 �g copper/L compared to the controls, but no differences
were observed for the Siblyback fish.

3.2.2. Water chemistry
Measured concentrations of copper in each of the treatment

groups are shown in Table S2. Concentrations measured in the high-
est treatment concentration (128 �g copper/L) were 96% and 98%
of the nominal value for the Siblyback and Houghton Spring’s pop-
ulations, respectively. For the lower treatment concentrations, the
measured concentrations were between 5 and 7 �g/L higher than
the nominal values, and the background level of copper measured in
the controls was between 6 and 9 �g/L. This is higher than expected,
but is within the normal range expected for de-chlorinated tap
water. However, background copper was  identical for all treat-
ment groups from both populations and therefore unlikely to affect
the comparisons of response to copper compared to the control
group within or between populations. The average measured expo-
sure concentrations will be referred to throughout the rest of the
manuscript.

3.2.3. Comet assay
The percentage of tail DNA, representing degree of single- and

double-stranded DNA damage, measured using the comet assay, is
shown in Fig. 1a. In the Siblyback fish there was a strong positive
correlation between treatment concentration and degree of DNA
damage (R2 = 0.57, P = 4.7e-10). There was a significant increase in
DNA damage in the blood cells of Siblyback fish exposed to both
70 and 124 �g copper/L compared to both the water control and
lowest treatment groups. In the Houghton Springs population, that
were only exposed to the highest copper concentration (126 �g/L),
there was a significant increase in DNA damage compared to fish
in the water control group. There was an apparent higher rate of
DNA damage in the Houghton Springs stickleback compared with
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Table  1
Transcripts differentially regulated in response to EE2 exposure.

Gene ID Name Symbol EE2/Ctrl FDR

A. Transcripts differentially regulated following exposure to 24 ng/L EE2 in Siblyback male sticklebacks
ENSGACG00000012381 Zona pellucida sperm-binding protein 3 zp3 2.52 6.26E-05
ENSGACG00000002960 Succinate-semialdehyde dehydrogenase, mitochondrial aldh5a1 2.378 0.000112
ENSGACG00000011891 Mps one binder kinase activator-like 2C mobkl2c 2.218 0.00103
ENSGACG00000007240 Probable prolyl-tRNA synthetase, mitochondrial pars2 1.983 0.000112
ENSGACG00000008711 Estrogen receptor alpha nr4a2 1.762 0.0227
ENSGACG00000018952 Tuberin tsc2 1.723 0.00986
ENSGACG00000005956 Choline dehydrogenase, mitochondrial chdh 1.718 0.0227
ENSGACG00000015930 Prostaglandin E2 receptor EP4 subtype ptger4 1.718 0.00653
Gac.7287 EST 1.67 0.000161
ENSGACG00000012495 Elongation factor Tu GTP-binding domain-containing protein 1 eftud1 1.643 0.00063
ENSGACG00000003367 NK-tumor recognition protein nktr 1.507 0.000112
ENSGACG00000013548 Ras-related protein Rab-35 rab35 1.475 0.0321
ENSGACG00000018584 Talin-1 tln1 1.446 0.00986
ENSGACG00000011851 Zona pellucida sperm-binding protein 4 zp4 1.443 0.00171
ENSGACG00000018876 Transmembrane protein 85 tmem85 1.383 0.00128

B.  Transcripts differentially regulated following exposure to 21 ng/L EE2 in Aire male sticklebacks
None statistically significant at FDR <0.05

the Siblyback fish in response to the highest copper concentration,
but this was not statistically significant (P = 0.11).

3.2.4. Transcript profiling
Transcript profiling using RT-qPCR for the target genes selected

is shown in Fig. 1b–f. For metallothionein (mt2), there was a sig-
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Fig. 1. Effects of copper exposure on F1 Siblyback and Houghton Spring fish: (A) DNA damage measured using the Comet assay and (B–F) transcript profiling conducted
using  RT-qPCR. Light-shaded bars represent the Siblyback population and dark coloured bars represent the population originating from Houghton Springs. Common letters
indicate  no significant difference (P > 0.05) between groups from the same population. Asterisks indicate a significant difference (P < 0.05) between control groups in each
population.
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Table 2
Transcripts differentially regulated in response to copper exposure.

nificant increase in transcription in Siblyback fish exposed to 37,
70 and 124 �g copper/L compared with the control group, and
also a strong correlation between treatment concentration and
mt2  transcription (R2 = 0.20, P < 0.001). There was also a significant
increase in transcription of mt2  in Houghton Springs fish exposed to
126 �g copper/L compared to the control group (P <0.001). There
was also significantly higher baseline metallothionein transcrip-
tion in the Siblyback controls compared with the Houghton Springs
controls (P = 0.027). For the genes encoding four cholesterol biosyn-
thesis enzymes (idds, hmgcs, hmgcr, dhcr24), there was  a clear, but
non-monotonic concentration effect of copper on their transcript
profiles in the Siblyback fish that was very similar for each gene.
The lowest treatment concentration (10.6 �g/L) induced increased
transcription compared to the control (significant for hmgcs and
dhcr24), while concentrations of 37, 70 and 124 �g/L (idds, hmgcs),
or 124 �g/L only (hmgcr, dhcr24)  significantly reduced transcrip-
tion compared to the control group. For the Houghton Springs

population, the single treatment concentration of 126 �g/L caused
a significant decrease in transcription of all four cholesterol biosyn-
thesis genes compared to the control group. Comparing the control
groups between the two  populations, significantly higher baseline
transcription was observed for both idds and hmgcs in the Siblyback
population compared to the Houghton Springs population and the
same trends towards higher transcription were observed for hmgcr
and dhcr24.

4. Discussion

4.1. Conserved response to oestrogen

The transcription profiles of stickleback males exposed to EE2
from both the Aire and Siblyback populations showed a signifi-
cant degree of concordance using Gene Set Enrichment Analysis
(GSEA) to that previously characterised by Santos et al. (2010)
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and Katsiadaki et al. (2010), demonstrating a conserved oestro-
genic response in stickleback from three independent populations.
For the Siblyback fish exposed to 22 ng EE2/L the majority of
differentially-transcribed genes identified have been previously
shown to be oestrogen-responsive, including oestrogen receptor and
zona pellucida proteins 3 & 4, and also other oestrogen responsive
genes (mobkl2c, tln1, aldh5a1, tsc2) previously identified in stick-
leback (Katsiadaki et al., 2010), confirming their value as good
markers of oestrogen exposure for this species. In the Aire fish,
kidney size (which is associated with sexual maturity in males
(Katsiadaki et al., 2002)) had a strong influence on typical oestrogen
responsive genes, increasing variability in the data and preventing
us from performing a comprehensive comparison of response to
EE2 between the two populations.

4.2. Comparative gene responses to copper

The response to copper exposure in both the Siblyback and Aire
populations showed some similarities to that previously described
for the stickleback from the clean Houghton Springs site (Santos
et al., 2010), as well as other studies on fish. For the Siblyback
fish, the transcriptional response included genes broadly related to
induction of a cellular stress response, consistent with previously
described response to copper exposure. Up-regulated transcripts
included the gene encoding the metal binding protein, metalloth-
ionein, and a number of well-characterised stress-response genes
encoding proteins such as heat shock proteins and other molecu-
lar chaperones, DNA damage-inducible proteins and components
of the antioxidant system. Functional enrichment of up-regulated
transcripts was dominated by terms related to ‘regulation of tran-
scription’, likely reflecting a specific increase in the transcription
of regulatory factors of stress-responsive pathways. The associ-
ated genes included those encoding several elongation factors
and a number of transcriptional regulators of cell signalling path-
ways involved in cell proliferation and apoptosis, including tumour
necrosis factor (TNF) and epidermal growth factor (EGF) signalling,
which have previously been linked with hepatic cellular stress
response to acute chemical exposure (Song et al., 2009; Uren
Webster and Santos, 2015). Notable in the list of down-regulated
transcripts were those of genes encoding several enzymes involved
in cholesterol biosynthesis (dhcr7, idi2) which is consistent with the
previously described down-regulation of this pathway in stickle-
back exposed to copper (Santos et al., 2010) and also in other species
(Huster et al., 2007). Functional analysis of the gene responses
revealed strong enrichment of terms associated with ‘Transla-
tion’ and ‘Ribosome’, with reduced transcription of genes encoding
over 40 ribosomal proteins. This is consistent with a global down-
regulation of translation, and is likely to be a protective mechanism
to limit protein misfolding and/or conserve energy which again
has previously been reported following exposure to environmen-
tal stress including toxic metals (Planelló et al., 2007; Spriggs et al.,
2008). ‘Immune response’ was also functionally enriched and, in
particular, transcripts encoding a number of components of the
complement system were down-regulated (c1s, c2, c4a, c6, c8a,
c8b, c8g, c9, cfh). Links between copper and the immune system
have been widely reported, with both excess and deficiency being
linked to disruption of immune function (Cunningham-Rundles
et al., 2005; Hood and Skaar, 2012). Impaired immunity and down-
regulation of components of the immune system have also been
reported in wild fish chronically exposed to metals (Pierron et al.,
2011; Uren Webster et al., 2013). For the Aire fish, consider-
ably fewer transcripts were significantly differentially transcribed,
likely reflecting the greater degree of intra-individual variation in
this population. However, several known markers of copper expo-
sure, including metallothioneins, were regulated and GSEA analysis
showed similarity to the dataset generated previously (Santos et al.,

2010). This evidence demonstrates a qualitatively similar response
to copper in three independent populations of stickleback.

There was also evidence of notable differences in the magnitude
of transcriptional response between the Siblyback and Aire popu-
lations, exposed to similar measured concentrations of copper. Of
the 10 transcripts that were differentially transcribed in both pop-
ulations, all were regulated in the same direction, and the majority
of these (8) were more responsive in the Aire fish compared with
fish from Siblyback. This suggests that despite the greater num-
ber of significantly differentially regulated genes, the amplitude
of the response to copper in the Siblyback population was  lower
than that for the Aire fish, suggesting lower sensitivity to cop-
per for Siblyback fish. Amongst these genes were two  transcripts
encoding metallothionein, which were significantly up-regulated
by 2.4/2.0 and 1.7/1.5 fold in the Aire and Siblyback populations,
respectively. Metallothionein also had a significantly higher base-
line transcription level in the Siblyback population compared to
the Aire stickleback population (by 2.5-fold). By binding free metal
ions and limiting oxidative damage, metallothionein plays a central
role in cellular copper detoxification and is consistently induced
following copper exposure in fish (Craig et al., 2009; Dang et al.,
2009; Hogstrand and Haux, 1991; Santos et al., 2010; Wood, 2012).
In the Siblyback population, this lower degree of metallothionein
up-regulation in response to copper, coupled with higher baseline
transcription level, suggests the possibility of a priming effect and
reduced need for metallothionein induction on exposure. Elevated
levels of metallothionein transcription and expression have been
reported for various populations of wild fish exposed to chronic
metal pollution, and this is known to be a key mechanism of metal
tolerance (Hansen et al., 2006; Uren Webster et al., 2013). The data
presented here for sticklebacks indicate a persistence of elevated
baseline metallothionein transcription in the Siblyback population
despite the recent reduction in copper levels in this area for at least
the last 15 years, suggesting this may  be an adaptive and inheritable
response to historical metal exposure. Evidence of different base-
line transcription levels of other metal-handling genes was  limited,
although in the Siblyback fish there was  higher transcription of a
number of genes associated with iron binding and storage, (includ-
ing ferritin heavy subunits and haem-binding subunits). Iron handling
pathways are known to have some transferability to the homeosta-
sis of other metals (Craig et al., 2009; Kwong et al., 2011) and similar
up-regulated responses were found previously in a metal-tolerant
population of brown trout (Uren Webster et al., 2013).

The differential size of fish from the two  populations, resulting
from an outbreak of white spot disease prior to the exposure exper-
iment and subsequent difference in stocking densities, is likely to
have influenced baseline hepatic transcription. Functional enrich-
ment analysis revealed that the most over-represented pathways
in the list of genes that showed differential baseline transcrip-
tion between the Siblyback and Aire fish were related to energy
metabolism, protein folding and lipid synthesis, which may  well
reflect their differential body size.

Despite this, there are some similarities between the enriched
processes and known copper-responsive genes and processes. In
particular, there was  strong enrichment of the endoplasmic retic-
ulum (ER), including differential baseline transcription of many
genes involved in the unfolded protein response (UPR), and lipid
metabolism. The UPR is an essential stress response mechanism
which prevents secretion of misfolded proteins, preserving cell
function and survival (Malhotra and Kaufman, 2007; Schröder and
Kaufman, 2005), and has been previously linked to copper exposure
(Song et al., 2015), and generation of oxidative stress (Malhotra and
Kaufman, 2007).
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4.3. Evidence of altered response to copper maintained in the F1
generation

Given the results of the F0 generation studies, which were sug-
gestive of a persistent primed response to copper in stickleback fish
originating from Siblyback Lake despite the recent improvement in
water quality, we conducted a follow-up experiment to investigate
if the effects of copper seen in the stickleback males originating
from Siblyback Lake were inherited in the next generation for fish
kept in laboratory conditions. To investigate this question, we col-
lected new populations of fish from the Siblyback Lake and from a
historically clean site (Houghton Springs), depurated them in the
laboratory and allowed them to breed naturally. We  tested F1 males
from both populations to investigate if differential responses to
copper occurred.

Exposure to a measured average concentration of 125 �g/L cop-
per caused a significant increase in DNA damage in blood cells in
both populations. There was a tendency for a higher rate of DNA
damage in the Houghton Springs population compared with the
Siblyback population (although this was not statistically signifi-
cant; P = 0.11). Furthermore, stickleback originating from Houghton
Springs showed a pronounced behavioural response to exposure
to 125 �g/L copper that was entirely absent in the Siblyback fish
exposed to an equivalent concentration. The reduced feeding and
swimming behaviour observed, as well as the darker colouration,
is a typical stress response associated with acute chemical toxicity
(Scott and Sloman, 2004). This suggests that this high concentra-
tion of copper was less acutely toxic to the stickleback originating
from Siblyback Lake.

Transcription of metallothionein and cholesterol biosynthesis
genes were similar in their patterns of response to copper as for
those observed in the F0 populations. Baseline transcription of met-
allothionein (in the unexposed control groups) was  significantly
higher in the Siblyback fish compared with the Houghton Springs
population (by 2-fold). This is similar to the difference between
the F0 populations of Siblyback and Aire stickleback, where Sibly-
back baseline mt2 transcription was 2.5 fold higher compared to
that in the Aire population. Following exposure to 125 �g/L cop-
per, there was an increase in mt2 transcription by 7-fold in the
Siblyback population and 10.3-fold in the Houghton Springs fish.
Again, the smaller relative induction of metallothionein in the Sibly-
back stickleback in the F1 study was similar to that observed
in the F0 Siblyback fish, compared to those from the river Aire.
Increased metallothionein transcription in response to metal expo-
sure is a well-established inducible stress response. It is the most
consistently responsive gene in acute copper exposures and its up-
regulation is also a key mechanism of metal tolerance in chronically
exposed wild populations (Hansen et al., 2006; Uren Webster et al.,
2013). Therefore, we have found evidence of increased baseline lev-
els of metallothionein transcription, not only in the F0 Siblyback
stickleback in the absence of immediate contamination, but also
inherited in F1 fish bred and maintained in the laboratory. This
suggests altered baseline metallothionein transcription may  consti-
tute a mechanism of metal tolerance in this historically exposed
population, complementary to its role in acute stress response.

For the cholesterol biosynthesis genes there was  also evidence
of differential baseline transcription between the two popula-
tions; the Siblyback fish had significantly higher transcription for
idds and hmgcs,  and similar trends towards elevated hmgcr and
dhcr24 transcription were also observed. Following exposure to
125 �g copper/L, there was an apparent up-regulation followed
by a significant down-regulation of all four cholesterol biosynthe-
sis genes, in both populations. This confirms the inhibitory effects
of a high concentration (46 �g/L) of copper on the cholesterol
biosynthesis pathway found in the F0 population and previously
in stickleback (Santos et al., 2010). We  also found clear evidence of

a non-monotonic dose-response relationship when the Siblyback
population was exposed to copper. This transcription pattern was
similar for all four cholesterol biosynthesis genes analysed, and was
characterised by up-regulation in the lowest treatment concen-
tration (10.6 �g/L measured), little change in the group exposed
to 16 �g/L and down-regulation in the higher treatment groups
(37, 70 and 124 �g/L). The consistency in the pattern between the
genes encoding the various enzymes that are part of the cholesterol
biosynthesis pathway aligns with the known co-regulation of these
genes by SREBP-2 (Sharpe and Brown, 2013), and of copper disrupt-
ing the function of this transcription factor. It is thought that copper
does not disrupt regulation of sterol regulatory element binding
protein 2 (SREBP-2) maturation and nuclear migration, but inter-
feres with SREBP-2 binding to sterol regulatory elements (SREs) or
subsequent activation of transcription (Huster et al., 2007). A stim-
ulatory effect of low concentrations of copper on the cholesterol
biosynthesis pathway has not been previously reported, although
similar trends in transcription were apparent for these genes
in stickleback originating from Houghton Springs (Santos et al.,
2010). Low concentrations of copper have been reported to cause
stimulatory effects on a number of cellular metabolic processes,
while higher concentrations cause inhibition, potentially reflecting
the beneficial effects of low concentrations of this micronutrient,
and/or a compensatory response to low-level toxicity (Bundy et al.,
2008). Similarly to a primed response of metallothionein, it is pos-
sible that the observed elevation in baseline transcription of these
cholesterol biosynthesis genes in the Siblyback population reflects
a legacy of compensatory up-regulation at low copper concentra-
tions, although at higher copper concentrations the transcription
of cholesterol biosynthesis genes was inhibited.

5. Conclusions

Variation in other environmental factors and genetic back-
ground between the Aire and Siblyback populations may well have
contributed to the different responses to copper observed, and
indicate the need for some caution in comparing responses across
populations and between studies. There was  no apparent difference
in response to oestrogen between the two  population, however,
we have found evidence to suggest that stickleback from Siblyback
reservoir have developed an altered response to copper likely due
to historical metal exposure, and that this has persisted not only fol-
lowing a more recent reduction in environmental copper exposure
encompassing multiple generations, but was also maintained in F1
fish bred in the laboratory. Metallothionein is likely to play a role in
this possible increase in copper tolerance of fish originating from
the Siblyback Lake. The mechanisms for the observed difference
in baseline metallothionein transcription are yet to be established,
and could include both genetic and/or epigenetic changes, includ-
ing alterations of the regulation, function or copy number of this
gene. Further studies are required to address these hypotheses,
and to clarify the mechanisms by which fish populations develop
tolerance to toxic metals in the wild.
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