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Abstract 

The common complications in heart failure patients with implanted ventricular assist 

devices (VADs) include haemolysis, thrombosis and bleeding, which are linked to shear 

stress-induced trauma to erythrocytes, platelets and von Willebrand factor (vWF). Novel 

device designs are being developed to reduce the blood trauma, which will need to 

undergo in vitro and in vivo pre-clinical testing in large animal models such as cattle, 

sheep and pig. To fully understand the impact of device design and enable translation of 

pre-clinical results, it is important to identify any potential species-specific differences 

in the VAD associated common complications. Therefore, the purpose of this study was 

to evaluate the effects of shear stress on cells and proteins in bovine, ovine, and porcine 

blood compared to human. Blood from different species was subjected to various shear 

rates (0 – 8000 s
-1

) using a rheometer. It was then analysed for complete blood counts, 

haemolysis by the Harboe assay, platelet activation by flow cytometry, vWF structure 

by immunoblotting, and function by collagen binding activity ELISA (vWF:CBA). 

Overall, increasing shear rate caused increased total blood trauma in all tested species. 

This analysis revealed species-specific differences in shear-induced haemolysis, platelet 

activation and vWF structure and function. Compared to human blood, porcine blood 

was the most resilient and showed less haemolysis, similar blood counts, but less 

platelet activation and less vWF damage in response to shear. Compared to human 

blood, sheared bovine blood showed less haemolysis, similar blood cell counts, greater 

platelet activation, and similar degradation of vWF structure, but less impact on its 

activity in response to shear. The shear-induced effect on ovine blood depended on 

whether the blood was collected via gravity at the abattoir or by venepuncture from live 

sheep. Overall, ovine abattoir blood was the least resilient in response to shear and 
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bovine blood was the most similar to human blood. These results lay the foundations for 

developing blood trauma evaluation standards to enable the extrapolation of in vitro and 

in vivo animal data to predict safety and biocompatibility of blood-handling medical 

devices in humans. We discourage the use of ovine abattoir blood and favour the use of 

bovine blood for in vitro device evaluation but multiple species could be used to create 

a full understanding of the complication risk profile of new devices. Further, this study 

highlights that choice of antibody clone for evaluating platelet activation in bovine 

blood can influence the interpretation of results from different studies.  

Key Words: Shear stress, bovine, human, ovine, porcine, vWF, platelet activation, 

haemolysis, haematology, rheometry 
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Introduction 

Ventricular assist devices (VADs) are an effective way to treat advanced heart failure in 

selected patients, both as temporary (bridge-to-transplant) and permanent (destination) 

therapy [1]. Although current VADs have benefited many patients, blood trauma 

associated with the non-physiological high shear flow within them remains a major 

clinical concern. The reported blood trauma includes haemolysis [2-4], platelet 

activation [5, 6], alteration of the coagulation cascade and thrombosis [7], leukocyte 

damage and release of microparticles [8-11], and degradation of von Willebrand factor 

(vWF) [12, 13] .   

An increased understanding of shear-dependent blood trauma is therefore 

important in order to develop new, safer VADs with reduced complication rates. Before 

new VADs can be introduced for clinical application, device safety must be evaluated in 

large animal models. The animal models commonly used for this purpose include cow 

[5, 14-17], sheep [18-21] and pig [22]. There is no agreed industry standard, although 

sheep or pigs have been proposed to have the most similar haemostatic properties 

compared to humans [23]. Porcine blood has shown similar levels of haemolysis in 

response to shear stress as human [24], whereas the mechanical fragility of ovine and 

bovine erythrocytes is higher [25]. Potentially this is related to the cellular flexibility as 

porcine erythrocytes show similar flexibility compared to human, whereas ovine and 

bovine erythrocytes are relatively inflexible [26]. Bovine blood is the most 

thrombogenic when compared to porcine during extracorporeal membrane oxygenation 

(ECMO) [27], and to human using a clot signature analyser [28].  ECMO also caused a 

greater reduction in bovine than porcine platelet counts [27]. A study using an in vitro 

Couette type model system found that although platelet counts decreased with 



Shear stress-induced blood trauma in multiple species 

5 

 

increasing shear in both human and porcine blood, there was no difference between 

them [24]. The thrombogenicity of bovine blood is not possible to monitor with 

standard human coagulation tests, whereas the reagents work for porcine blood [27]. 

Bovine platelets are less activated compared to human in regards to shear based on flow 

cytometry of surface marker CD62P [29], they are ineffective in plugging a 150 µm 

hole in a polyethylene tube under shear stress compared to both ovine and human blood, 

and they are less responsive to collagen during whole blood aggregation [28]. To 

summarise, if bovine blood is the most sensitive to clotting, then the tests in current use 

are failing to monitor this and limit the usefulness of bovine blood. Because of the 

contradicting data described with bovine blood, and because most studies evaluate few 

species and/or few parameters it is difficult to compare the results. To date, there is a 

lack of a side-by-side comparison of total blood damage due to shear using blood from 

the three relevant large animal models against human. 

To address this issue, we subjected human, bovine, ovine and porcine blood, to shear 

using rheometers, and analysed the effects on haemolysis, blood cell counts, platelet 

activation by surface marker expression, vWF multimer degradation and collagen 

binding activity (CBA). The knowledge gained from this study could be used to identify 

ideal animal model(s) for in vitro and in vivo VAD research and could aid the 

development of an evidence-based standard for use across the industry. 

  



Shear stress-induced blood trauma in multiple species 

6 

 

Materials and Methods 

Blood preparation 

Bovine, ovine, and porcine blood was collected from the carotid artery by gravity-filling 

at local abattoirs [30]. The animals were healthy as they would need to be to enter the 

food chain. However, the breed, sex and age were not available to us. In addition, ovine 

venepuncture blood (sourced from Ig-Innovations Ltd, Llandysul, UK, project licence 

(PPL) number 40/3538) was collected by venepuncture using an 11 G x 44 mm stainless 

steel needle from live sheep. The blood was collected into 14% Citrate Phosphate 

Dextrose Adenine anticoagulant solution and antibiotics / antimycotics (see Supplement 

1: Buffers and solutions). Human whole blood (54 mL) was collected from different 

healthy volunteers into Vacuette
®

 tubes containing sodium citrate 3.8% (455322, 

Grenier, Bio-one, Wemmel, Belgium). Use of human blood was approved by the Wales 

Research Ethics Committee 6. All volunteers gave informed written consent and were 

informed about the aims of the study in accordance with the Declaration of Helsinki. All 

haematocrit levels were adjusted to 30 ± 2% by dilution with phosphate buffered saline 

(Life Technologies Ltd., Paisley, UK) and transferred into the rheometer within 3 h of 

sample collection.  

Shear stress exposure with double concentric rheometer 

An AR-G2 rheometer (TA Instruments, New Castle, DE, USA) equipped with an 

anodised aluminium-coated aluminium double concentric geometry and a temperature-

controlled (+37°C) aluminium cup was used to expose human, bovine, ovine and 

porcine whole blood to different shear rates (0, 2000, 4000, 6000 and 8000 s
-1

) for 15 

min. The double concentric geometry is a continuously rotating apparatus that is used to 

apply shear, without turbulent flow. However, Taylor vortices are possible at the high 

shear rate especially shear rate at 8000 s
-1

. The surface roughness was unknown. The 
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sample volume loaded into the rheometer was 6.6 mL. Blood samples maintained in a 

water bath at +37°C for 15 min were used as static (0 s
-1

) controls. The sheared blood 

samples were analysed subjected to a complete blood count analysis, haemolysis 

measurement and platelet activation analysis. The remaining plasma samples were 

stored at -80°C until used for vWF analysis.  

Haemolysis (Harboe assay) 

1 mL aliquots of sheared blood samples were centrifuged at 4700 g for 7 min to prepare 

platelet-poor plasma (PPP). 100 µL PPP was transferred from each aliquot into a deep 

well 96-well plate (StarLabs, Milton Keynes, UK) and diluted with 1 mL 0.1% Na2CO3 

solution (Sigma-Aldrich). 170 µL diluted PPP was transferred into a 96-well flat bottom 

plate (ELISA plate, Greiner Bio-One, Stonehouse, UK) and the absorbance was 

measured at three wavelengths: 380, 415 and 450 nm (POLARstar Omega, BMG 

LABTECH Ltd, Aylesbury, UK). The plasma free haemoglobin (pfHb) was calculated 

(equation (1)) as described [31].  

𝑝𝑓𝐻𝑏 (
𝑔

𝐿
) = (167.2 𝑥 𝐴415 − 83.6 𝑥 𝐴380 − 83.6 𝑥 𝐴450) 𝑥

1

1000
 𝑥 (1/

𝑉𝑜𝑙 𝑝𝑙𝑎𝑠𝑚𝑎

𝑉𝑜𝑙 𝑁𝑎2𝐶𝑂3
) 

Haematology analysis 

Complete blood counts (leukocyte, platelet and erythrocytes) were determined using the 

clinical automated haematology analyser CELL-DYN Ruby (Abbott Diagnostics, 

Berkshire, UK) for human blood and the veterinary haematology analyser Abacus 

Junior vet 5 (Diatron, Budapest, Hungary) for bovine, ovine and porcine blood.  

Platelet activation 

Several different antibodies frequently reported in the literature for the individual 

species were employed in this assay to enable easy translation of results for other 

research groups. 20 µL aliquots of the sheared blood samples, along with a positive 

(1) 
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control of blood treated with 5 μM phorbol 12-myristate 13-acetate (PMA) for 60 min at 

room temperature, were single-stained with the following antibodies according to Table 

2: anti-CD62P, clone Psel.KO.2.5 [32]; anti-CD62P, clone Psel.KO.2.7 [29, 32]; anti-

fibrinogen [33]; anti-CD42b-FITC [34]; GC5 (reported to bind activated bovine 

platelets but antigen still unknown [5]); CAPP2A (an anti-ruminant CD41/61 antibody 

[14, 18, 19, 32, 35, 36]). Antibodies were diluted in flow cytometry (FC) buffer 

(Supplement 1). The blood samples were incubated with the antibody on ice in the dark 

for 30 min. For CAPP2A and GC5, cells incubated with primary antibody were washed 

once with FC buffer and then further stained with PE-conjugated F(ab’)2 fragment of 

goat anti-mouse IgG (H+L) antibody (0.25 µg/test, Life Technologies) in the dark on 

ice for 20 min. Red blood cells were then lysed with 2 mL BD FACS Lysing Solution 

(BD Bioscience) according to the manufacturer’s instructions. Cells were washed once 

with FC buffer and fixed with 200 µL BD Stabilizing Fixative (BD Bioscience) 

according to the manufacturer’s instructions and stored at +4°C overnight prior to 

acquisition using a 10-colour Navios flow cytometer (Beckman Coulter, High 

Wycombe, UK).   

All events were displayed first as a forward scatter (FSC) versus side scatter 

(SSC) density plot on logarithmic scale (Supplemental Figure 1A-B). The platelet 

population was gated to include both platelets in a resting and activated state using the 

unstimulated control and the PMA-stimulated sample as guidance; 10,000 events within 

this gate were recorded and analysed for each sample. Surface CD62P and fibrinogen 

binding increase with platelet activation, so gates were drawn to determine the 

percentage of positive events (Supplemental Figure 1C-F and M-N). CAPP2a, CD42b 

and GC5 are expressed on resting inactivated platelets and decrease with platelet 
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activation. Markers were drawn on CAPP2a, CD42b and GC5 to measure the 

percentage of negative events, and thereby determine the percentage of activated 

platelets (Supplemental Figure 1G-L). Data analysis was performed with Kaluza 1.3 

(Beckman Coulter). 

Immunoblotting for high and low molecular weight vWF  

PPP prepared from sheared and static samples was thawed and centrifuged at 15,000 g 

for 5 min to remove debris. 10 μL of PPP mixed in a ratio of 1:4 with non-reducing 

sample buffer (Supplement 1) was loaded into each well, and subjected to 

electrophoresis using high gelling temperature agarose (50041, Scientific laboratory 

Supplies, UK). The gel comprised of a 0.8% stacking gel and a 1.5% running gel. 

Electrophoresis was performed at room temperature for 20 hours at 60 volts and for 4 

hours at 80 volts. The fractionated plasma proteins were then transferred from the gel to 

a polyvinylidene difluoride membrane (0.45 µm, IPVH304F0, Immobilon-P, Millipore 

Corporation, MA, USA) using capillary blotting. Free binding sites on the blot were 

blocked by incubating the blot with blocking buffer (Supplement 1) with agitation for 1 

hour at room temperature. The membrane was incubated with horseradish peroxidase 

conjugated polyclonal rabbit anti-human vWF (P0226, DAKO, Denmark) diluted 

1:1000 in blocking buffer for 1 hour at room temperature with mild agitation. The 

membrane was washed six times with Tris-buffered saline/Tween-20 (5 min each rinse) 

and developed using chemiluminescence substrate (170-5060, Bio-Rad, CA, USA) and 

visualized with the ChemiDoc XRS scanner (Model Number: universal hood II, Bio-

Rad, CA, USA). The high molecular weight (HMW) vWF bands were counted and the 

loss of bands was compared to the 0 s
-1

 static control. The increase in the density of low 

molecular weight (LMW) vWF bands in each lane was quantified by densitometry 
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using Quantity One software, v4.6.8 (Bio-Rad, CA, USA) and normalised by dividing 

by total intensity of all vWF bands in each lane.  

Collagen binding activity of vWF  

PPP prepared from sheared and static samples was thawedand centrifuged at 15,000 g 

for 5 min to remove debris. The vWF collagen binding activity (vWF:CBA) in the 

samples was assessed using a Zymutest vWF:CBA enzyme-linked immunosorbent 

assay (ELISA) (Hyphen BioMed, Neuville-sur Oise, France) according to 

manufacturer’s instructions. Absorbance was measured at 450 nm (POLARstar Omega, 

BMG LABTECH Ltd, Aylesbury, UK). Results were normalised to the total vWF and 

compared to the static control. 

Data analysis 

For each assay the data were standardised to the static control to evaluate the relative 

increase or decrease of the parameter caused by increasing shear rates whilst minimising 

donor-to-donor variability within species. For haemolysis and platelet activation, the 

background levels observed in the static control were subtracted from all other 

measurements. For haematology, vWF immunoblotting, and vWF:CBA, the data were 

expressed as a percentage of the static control.  

The datasets consisted of repeated measurements of blood samples across 5 

shear rates, and 4 species, and in the case of platelet activation measurements 2 to 4 

antibodies. Linear mixed models were used to analyse the dataset. Shear and species or 

shear and antibodies (in the case of platelet activation) were regarded as fixed effects 

and the different subjects were treated as a random effect. Tukey’s Range test was 

performed post hoc to further investigate the differences between species and shear rates 

where such a difference was found to be significant in the analysis. This method enables 
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comparison of the different species to each other at the same shear rate and comparison 

of the effect of shear within species. All the analysis was performed using the R 

statistical environment, v 3.0.2 [R Core Team, Vienna, Austria] [37], Version 0.99.896 

[RStudio, Boston, MA, USA]) [38].  
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Results 

Haemolysis 

The haemolysis results differed significantly between the species (p < 2 x 10
-5

). The 

species could be divided into three groups: low haemolysis (ovine venepuncture, bovine 

and porcine), medium haemolysis (human), and high haemolysis (ovine abattoir) 

(Figure 1). Within the low haemolysis group there were no significant species 

differences. Ovine abattoir blood haemolysis was significantly greater than that found in 

human blood across all shear rates, and they both showed significantly greater 

haemolysis compared to the low haemolysis group (p < 0.002). The difference between 

the ovine abattoir and the low haemolysis species group became significant at a shear 

rate of ≥ 4000 s
-1

 (p < 0.01). At a shear rate of 8000 s
-1

 human blood haemolysis was 

significantly greater than ovine venepuncture and porcine (p < 0.01). 

Within the species groups, shear had an effect on haemolysis, with each shear 

rate producing significant pfHb levels compared to the static control (p < 0.038). This 

effect was seen in increments from 0 – 2000 s
-1

; 2000 – 6000 s
-1

; and 6000 – 8000 s
-1

, 

i.e. an increase in shear rate from 2000 – 4000 s
-1

 or from 4000 – 6000 s
-1

 did not 

produce a significant increase in haemolysis. 

Haematology 

Although there was an increase in pfHb in all species, there was no significant change in 

erythrocyte counts at any shear rate over the testing period indicating that they have 

remained intact throughout the shearing test (Figure 2). Nor was there a significant 

decrease in leukocyte numbers at any shear rate. Platelet numbers decreased slowly and 

at shear rates ≥ 6000 s
-1

 the decrease was significant across the species when compared 

to the static control (p = 0.040). Ovine abattoir platelets decreased in numbers (a 
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possible sign of activation) at all shear rates. This decrease was significantly more rapid 

than all other species (p < 0.01). 

Platelet activation 

Platelet activation was monitored using flow cytometry with a number of different 

antibodies specific for platelet cell surface antigens of the various species (Figure 3A-

E). The results obtained were compared to those reported for the antibodies in the 

literature.  

In human blood, shear rate significantly affected the platelet activation (p < 2 x 

10
-16

), except when increasing from 2000 s
-1

 to 4000 s
-1

. The activation measurements 

differed significantly between the CD62P antibodies (clones KO.2.5 and KO.2.7) and 

CD42b (p < 10
-8

). This became apparent at a shear rate of 8000 s
-1

 with CD62P clone 

KO.2.7 showing the same high level of activation as CD42b, both significantly greater 

than the level detected with CD62P clone KO.2.5 (p <0.03) (Figure 3A). 

In ovine abattoir blood, shear rate significantly affected the platelet activation up 

to a shear rate of 4000 s
-1

 (p < 0.0002), after which the activation plateaued. Activation 

measurements were significantly different depending on the antibody used: CD62P 

(clones KO.2.5 and KO.2.7) and CAPP2A (p < 10
-5

). The activation level detected by 

the two CD62P antibodies was the same, but at shear rates > 2000 s
-1

 this was 

significantly greater than the level detected by the CAPP2A antibody (p < 0.0003) 

(Figure 3B).  

In ovine venepuncture blood, there was a significant effect of shear (p < 3 x 10
-

8
). Starting at 4000 s

-1 
there was significant platelet activation compared to the static 

control (p < 4.2 x 10
-4

). A shear rate of 8000 s
-1

 also had a significant effect compared 
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to 2000 s
-1

 (p = 0.02), but there were no other significant differences between the 

individual shear rates. The antibodies used for ovine venepuncture blood were the same 

as described for ovine abattoir blood. However, compared to the ovine abattoir blood, 

the antibody trend was reversed: CAPP2A reported the highest activation levels and the 

two CD62P antibodies reported the lowest levels. Interestingly, the maximum level of 

activation reported by CAPP2A appeared constant, with roughly 10% activation at 8000 

s
-1

 in both abattoir and venepuncture blood (Figure 3C).  

In bovine blood, a shear rate of ≥ 4000 s
-1

 had a significant effect on the antigen 

expression levels compared to the static control (p < 1.4 x 10
-6

), and every subsequent 

2000 s
-1

 increment in shear rate caused further significant activation (p < 1.4 x 10
-3

). At 

a shear rate of ≥ 4000 s
-1

 a pattern emerged where both CD62P antibodies (clone 

KO.2.5 and KO.2.7) reported significantly greater platelet activation compared to both 

GC5 and CAPP2A (p < 1 x 10
-7

).  There was no difference between GC5 and CAPP2A 

at any shear rate. CD62P KO.2.5 reported significantly lower levels of platelet 

activation compared to CD62P KO.2.7 (p < 0.0002) (Figure 3D).  

In porcine blood, a shear rate of ≥ 2000 s
-1

 produced significant platelet 

activation (< 2 x 10
-16

). Activation also significantly increased with each 2000 s
-1

 

increment in shear rate (p < 3.1 x 10
-6

). The two antibodies used to measure porcine 

platelet activation reported significantly different levels of activation from a shear rate 

of ≤ 4000 s
-1

, where the CD62P clone KO.2.5 antibody reported greater platelet 

activation than the fibrinogen antibody (2.6 x 10
-14

) (Figure 3E).  

Since the CD62P (KO.2.5) antibody can distinguish between activated and 

resting platelets for all four species, we used this antibody to compare shear-induced 
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platelet activation in all species (Figure 4). There was a significant species-specific 

difference in the CD62P expression levels (p < 1.92 x 10
-5

). Based on the CD62P 

expression levels, the tested species were divided into three groups: low activation 

(ovine venepuncture), medium activation (human, ovine abattoir and porcine), and high 

activation (bovine). There was no significant difference between human platelet 

activation levels compared to porcine, or between porcine and ovine abattoir. However, 

human platelets were significantly more activated at 8000 s
-1 

than ovine abattoir 

platelets (p = 0.027). Ovine venepuncture platelets were significantly less activated (p < 

0.007), and bovine showed significantly greater activation levels compared to all other 

species (p < 0.008). For all species, a shear rate of 2000 s
-1

 had no effect on activation, 

thereafter every increase of 2000 s
-1 

in the shear rate increased platelet activation 

significantly (p < 1 x 10
-7

). Increase from 6000 s
-1

 to 8000 s
-1

 provided no further effect. 

Specifically for ovine venepuncture platelets, there was no significant difference in 

shear-dependent platelet activation compared to the static control using CD62P 

(KO.2.5).  

HMW vWF multimer degradation and LMW vWF multimer accumulation 

A representative immunoblotting result of vWF multimers from multiple species is 

shown in Figure 5A, and the loss of HMW vWF bands in blood from different species 

exposed to various rates of shear stress compared to the static control in Figure 5B. This 

analysis divided the species into three groups: high loss (ovine abattoir), medium loss 

(human, ovine venepuncture, bovine), and no loss/increase (porcine) (p < 1.03 x 10
-4

). 

Ovine abattoir blood showed a significantly greater loss (p < 4.5 x 10
-6

), and porcine 

blood showed a significantly lower loss of HMW vWF bands (p < 6.25 x 10
-4

) 

compared to all other species. 
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Within the species, shear rate increments of ≥ 4000 s
-1

 had a significant effect on 

the loss of HMW vWF bands (p < 0.05). Differences were not noticeable when 

comparing the loss by increasing shear rates in increments of 2000 s
-1

. The significant 

findings were as follows:  ovine abattoir HMW vWF showed a band loss at shear rates 

of ≥ 4000 s
-1

 compared to its own static control (p < 0.008) and compared to porcine 

blood at the same shear rates (p < 1.7 x 10
-5

). At a shear rate of ≥ 6000 s
-1

, the ovine 

abattoir blood showed a loss compared to all other species (p < 0.036). At 8000 s
-1

, 

human and ovine venepuncture HMW vWF bands were decreased compared to the 

porcine blood (p < 0.05), but not to the static control.  

Another way of analysing damage to the structure of vWF is to consider the 

second lowest LMW vWF band intensity in each lane compared to the static control 

(Figure 5C). The decrease in the HMW vWF band multimers and the increase in LMW 

band intensity may suggest that the HMW vWF bands were cleaved into smaller 

fragments, in a shear-rate dependent manner. The LMW vWF density divided the 

species into two groups: high density (ovine abattoir) and low density (remaining 

species) (p < 0.001). Bovine, ovine venepuncture and porcine blood showed similar 

behaviour to human blood. Within the species, shear rate differences of 4000 s
-1

 resulted 

in significant increases in LMW vWF density (p < 0.03) compared to the static control.  

vWF activity 

The function of vWF was assessed by measuring its collagen binding activity (vWF: 

CBA) (Figure 6). The vWF:CBA activity declined with increasing shear rate in all 

species (p < 2 x 10
-16

). The most drastic decline was seen in ovine venepuncture blood, 

and was significantly lower than ovine abattoir (p < 0.02), porcine (p < 0.0006), and 

bovine (p < 0.0008), but not lower than human.  
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Discussion 

It is important to understand total blood trauma in different test species blood in 

response to shear for in vitro testing of VADs and other blood handling devices. To 

address this issue, we conducted experiments of shear-induced total blood trauma 

comparing blood from humans, sheep (different sources: abattoir and venepuncture), 

cows and pigs (Table 3).   

In our study, we found that ovine abattoir erythrocytes were the most sensitive 

to shear resulting in the highest levels of haemolysis, followed by human > bovine > 

porcine > ovine venepuncture. Ding et al. also collected animal blood from the abattoir 

and showed the same results (ovine abattoir > human > bovine > porcine) [39]. Jikuya 

et al. collected blood via venepuncture with the following haemolysis results: ovine 

venepuncture > human > bovine [25]. One potential explanation for the high haemolysis 

observed in ovine abattoir blood in our and Ding’s study, could be related to the stress 

the animals encounter during the slaughter process. The ovine spleen contracts in 

response to an increase in adrenaline levels [40], and releases stored reserves of 

erythrocytes to enable increased oxygen consumption required for a quick escape. The 

splenic erythrocytes make up about 25% of the total erythrocyte pool [40] and are 

different from those in the circulation. They are younger and larger with a higher water 

content and are recognized by the spleen and removed from the circulation for storage 

[41]. Overhydrated erythrocytes have an increased volume whereas their surface area 

remains unchanged, thereby reducing cell deformability [42]. This, in turn, would 

increase blood viscosity and thereby shear stress [43]. Hence, we hypothesize that the 

increased haemolysis in the abattoir blood is due to the release of young erythrocytes 

with high water content, lower deformability, and therefore more haemolytic.  
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Supporting this theory, we found the baseline erythrocyte levels to be greater in the 

ovine abattoir blood versus the venepuncture blood (11.67 ± 0.81 x 10
12

 /L vs 9.03 ± 

0.76 x 10
12

 /L, p < 0.0001). The ovine venepuncture blood in Jikuya’s study was 

collected from healthy barn bred sheep. Blood collection procedures are known to cause 

stress to sheep resulting in splenic contraction, unless the animals have been well 

socialised and allowed to get used to the procedure [44]. The ovine venepuncture blood 

used in our study was sourced from Ig-Innovations Ltd, a local company developing 

sheep derived polyclonal antibodies for human therapy. Their sheep are used to regular 

blood collections so they endure minimal stress during the procedure.  

Although erythrocyte and leukocyte counts did not change for any species, 

platelet counts decreased for all species with increased shear rates. Again, the ovine 

abattoir blood showed the most damage, i.e. the lowest platelet counts. The reduction in 

platelet counts is likely due to activation, and this is supported by the flow cytometry 

results. Lu et al. showed that the platelet counts for bovine blood did not change 

significantly from the static control level even at high shear condition [29]. The 

discrepancy could be due to the relatively longer exposure time used in our study (15 

min versus 2 min). 

The use of the anti-CD62P clone KO.2.5 enabled direct comparison of the 

species revealing significant changes in platelet activation after exposure to shear rates 

≥ 4000 s
-1

 compared to baseline levels, where bovine platelets showed the highest 

activation (Table 3). These results contradict the results published by Lu et al. who 

demonstrated a relative inactivity of bovine platelets compared to human platelets. We 

hypothesised that this discrepancy could be due to the antibody clone used. Lu et al. 

used the CD62P KO.2.7 clone to compare the platelet activation [29]. We used both the 
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KO.2.5 and the KO.2.7 clone to compare. However, both CD62P antibodies showed 

that the bovine platelet activation was greater than the human platelet activation, and the 

KO.2.7 consistently reported greater levels than the KO.2.5 clone in these two species. 

Instead, the discrepancy could have to do with the level of activation of the platelets 

caused by the longer exposure time used in our study (15 min versus 2 min). There may 

be an exposure time threshold below which bovine platelets are less activated compared 

to human, and above which the pattern is reverse.  

The results we observed for ovine platelets using different sources of blood and 

the CAPP2A versus the CD62P antibodies were interesting. The CAPP2A antibody 

picked up similar levels of chemically induced platelet activation using the positive 

control PMA, as well as similar levels of mechanically induced platelet activation which 

increased with shear. However, the platelet counts differed (lower counts in abattoir 

blood) and the CD62P results differed (greater activation in abattoir blood). Thus, it 

appeared the CD41/CD61 antigen that is detected by the CAPP2A antibody is affected 

by mechanical shear in a robust manner, regardless of the overall condition of the blood. 

To our knowledge, the performance of CAPP2A against CD62P antibodies has not been 

evaluated in ovine or bovine blood before. Other studies using CAPP2A have employed 

it as a platelet marker to distinguish it from red blood cells, and then analysed CD62P 

expression on CAPP2A-expressing platelets [14, 18, 19, 32, 36]. In our protocol, we 

have used red blood cell lysis and a subsequent wash to remove red cell debris. Our 

results showed no difference between the two CD62P antibody clones when used with 

ovine blood, which is consistent with Johnson et al. who used them both to evaluate 

platelet activation in vivo during a paediatric VAD implant [32]. In bovine blood, we 

evaluated GC5 and CD62P antibodies, and we found that the  percent positive platelet 
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levels were greater when CD62P was used compared to GC5. This finding is 

contradictory to Snyder et al. who found the number of activated platelets detected to be 

greater with GC5 when used to analyse in vivo samples from calves implanted with 

VADs, but in this study the antibody used to evaluate CD62P was a different clone 

(#NPL44-10) [14].  

In this study, the results of vWF multimer analysis of four different species 

showed that ovine abattoir blood vWF is the most shear-sensitive; followed by ovine 

venepuncture, human, bovine, and finally porcine. Our results showed a significant loss 

of HMW vWF bands and a significant increase in LMW vWF bands in all species 

(except porcine) at shear rates ≥ 4000 s
-1

 compared to the static control. This 

observation is also consistent with work by Bartoli et al., who found that LMW vWF 

bands increased significantly after exposing human blood to non-physiological shear 

stress [45]. In our previous work, we exposed human PPP to 4000 s
-1

. The damage to 

HMW vWF was not statistically significant until after 4 hours of shearing which is due 

to the poorer resolution of bands of our previous method compared to that presented 

herein [46]. vWF function as assessed by vWF:CBA of human, ovine and bovine blood 

decreases with increasing shear rate, indicating shear stress-induced degradation of 

HMW vWF. However, what we have found in our study is that porcine vWF is the most 

resilient to shear, and possibly even activated by a shear rate of 4000 s
-1

. At this shear 

rate, the HMW vWF multimers and vWF:CBA levels started to increase compared to 

the standard control. One explanation is that there may be an activation in platelets at 

this shear rate causing release of vWF from platelet α-granules [47, 48]. However, 

porcine blood did not show a peak in platelet activation at 4000 s
-1

 (Figure 4) to support 

this. In our study, ovine abattoir blood showed the highest platelet activation, but also 
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the highest vWF damage, thus the increased porcine vWF activity remains unexplained. 

Egger et al. [49], compared human and porcine vWF structure and function in sheared 

plasma, and found that although the functional assay indicated that porcine vWF was 

more resilient to shear stress, there was a similar loss in multimer bands. Since 

immunoblotting is not an easily reproducible assay, it may be difficult to compare 

results between different laboratories, and it could be that the indication of greater 

resilience and preserved function of porcine vWF compared to human are true, but more 

research would be needed to verify this. 

The effect of shear-induced total blood trauma on four species (human, ovine 

[abattoir and venepuncture], bovine and porcine) was measured under the same 

conditions with the same shear rheometer. The reason for using a rheometer was to 

cause enough damage in a controlled manner to allow us to evaluate species-specific 

responses. We have previously tested several extracorporeal centrifugal pumps with 

bovine blood in vitro according to the ASTM guidelines [50]. The haemolysis level 

achieved after 15 min at 2000 s
-1

 matches that of the blood pumps after 6 hours of 

pumping (pfHb of around 10 mg/dL in the CentriMag [51], VentrAssist IRBP [8], and 

Bio-Medicus BPX-80 [3]). Previously, we did not detect platelet activation measured by 

CAPP2A caused by CentriMag pump during testing [51]. In this study, a shear rate of 

6000 s
-1

 was required to detect significant activation. The damage to HMW vWF 

multimers became evident after 3 hours of pumping in the CentriMag whereas the 

rheometer caused a significant loss after 15 min at 4000 s
-1

 [51]. 

To summarise, in this study, bovine blood was the most similar to human blood 

and thus we would recommend it for in vitro testing of VADs. The haemolysis is lower, 

and the platelet activation is greater when CD62P KO.2.5 is used. Porcine blood and 
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ovine venepuncture blood showed less damage and may therefore underestimate the 

impact of the VAD on the blood components. Taking all results in consideration, we 

cannot recommend the use of ovine abattoir blood for in vitro testing due to the overall 

high damage (greater haemolysis, reduced platelet count, high vWF structural damage) 

compared to ovine venepuncture blood. However, this may only reflect the quality of 

blood from the abattoir available to us.  

Cows, sheep, and pigs are all used as in vivo models for VAD testing. However, 

the choice of animal model for preclinical in vivo testing is not only dependent on the 

blood damage but also on practicalities (such as subject size, growth rate and 

temperament). The bovine model includes calves to ensure the heart is as close to 

human size as possible, but the calf’s growth rate makes long-term studies practically 

difficult. The hearts of pigs and large (75-90 kg) sheep resemble human hearts in size, 

and use of adult animals eliminates the issue of growth rate. Unless the power source is 

wearable, the animal needs to be tethered for the duration of the study to prevent 

tangling and damage to wires. Calf and sheep tolerate long-term tethering, but pigs do 

not. Tethering of sows is a banned farm practice throughout the EU for animal welfare 

reasons [52] and the stress it causes has been found to create adaptations of the 

endogenous opioid systems [53]. Since the practical circumstances may limit the choice 

of the animal model for in vivo testing, it may be worth using a combination of species 

during in vitro testing for a translational approach to total blood damage.  

Limitations 

In this study, relatively low shear rates were used to establish the model. The maximum 

shear rate is dependent on the rheometers used, and the researcher may want to select a 

model that spans a high range because the estimated shear condition in a centrifugal 
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pump is >20 000 s
-1

 [49]. Another limitation was the residence time (15 min) of the 

blood which is continuously sheared in the rheometer, whereas the blood passes through 

the VAD in a period of milliseconds. All animals were healthy as they would need to be 

for entering the food chain, but we did not have access to information such as breed, sex 

and age, which may influence the results. Differences in erythrocyte aggregation and 

deformability have been found between male and female rats and dogs [54], so it is 

likely that differences may also exist in the large animals used in this study. We did not 

measure the viscosity and density of the blood although the haematocrit was 

standardised to 30 ± 2% for all species. A few studies have used viscometers to analyse 

species-specific differences in blood with standardised haematocrit [43, 55]. The 

haemorheological behaviour shows that porcine blood is quite similar to human, 

whereas bovine and ovine show a different viscoelasticity pattern compared to porcine. 

This is likely due to the differences in cell size, bovine and ovine erythrocytes are 

smaller compared to human and porcine. Both studies show that the interspecies 

differences in viscosity decrease with increasing shear rate, and if all species’ blood 

behaved in a non-Newtonian manner then the viscosity differences might fully diminish 

at the high shear rates that we are using. However, at 30% HCT, bovine and ovine blood 

behaves almost Newtonian, whereas porcine blood is more shear-thinning [43]. This 

might mean that the viscosity of ovine and bovine blood remains constant around 3.6-

4.6 mPa s and that human and porcine blood viscosity continues to decrease. If this was 

the case, then bovine and ovine blood cells would be subject to the highest shear stress 

and we would expect them to show the highest haemolysis. Interestingly, this was not 

the case and more research is required to analyse the viscosity at higher shear rates 

using rheometers. However, this work provides a simple and accurate way to expose the 
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blood samples to controlled shear rates ranging from physiological to pathological 

levels which allows evaluation of the impact of shear rate on the overall blood damage. 

This is of value to provide further insight into complications in VAD patients. Our 

future work will focus on further exploration of the shear stress, time, flow regimes of 

overall blood trauma, especially at higher ranges of shear stress, shorter exposure times, 

different flow regimes: continuous flow (CF), and pulsatile flow (PF) on overall blood 

trauma responses. 

Conclusion 

Blood compatibility is essential to the successful development of VADs, 

however, there are few studies assessing the differences between animal and human 

blood in response to mechanical stress. In this study, we determined the shear-

dependent differences in haemolysis, complete blood count, platelet activation and vWF 

structure and function between human blood and that from three large animals 

commonly used for in vitro and in vivo VAD testing. We found that bovine blood was 

the most similar to human overall. If ovine venepuncture or porcine blood is used for in 

vitro testing there is a risk that the blood damage could be underestimated as these 

blood types appeared more resilient to shear stress compared to human blood. We 

discourage the use of ovine abattoir blood due to the high level of overall damage. In 

case ovine venepuncture blood is used we recommend that it be collected from animals 

who are well socialised and used to the procedure. No single species tested had a shear-

dependent total blood damage profile that mimicked human blood but we favour bovine 

blood for in vitro testing, at least as a starting point, as it behaved the most similar to 

human blood. Further, this study highlights that choice of antibody clone for evaluating 

platelet activation in bovine blood can influence the interpretation of results from 
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different studies. The multiplicative factors in Table 3 could serve as the basis for 

development of universal standards when extrapolating in vitro VAD total blood trauma 

data to predict its safety and biocompatibility for in vivo testing and further 

development. 
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Tables 

Table 1. Acronyms 

ECMO Extracorporeal membrane oxygenation 

ELISA Enzyme-linked immunosorbent assay 

FC Flow cytometry 

FITC Fluorescein isothiocyanate 

FSC Forward scatter 

HMW High molecular weight 

LMW Low molecular weight 

PE R phycoerythrin 

pfHb Plasma-free Haemoglobin 

PMA Phorbol 12-myristate 13-acetate 

PPP Platelet-poor plasma 

SSC Side scatter 

VAD Ventricular assist device 

vWF Von Willebrand factor 

vWF:CBA Von Willebrand factor collagen binding activity 
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Table 2. Antibodies for flow cytometry and immunoblotting 

Antibodies Human Bovine Ovine Porcine 

Anti-CD62P, clone Psel.KO.2.5  
1 µg/test, PE-conjugate,  

MCA2418, AbD Serotec, Kidlington, UK 

    

Anti-CD62P, clone Psel.KO.2.7 
0.5 µg/test, AlexaFluor647-conjugate,  

MCA2419, AbD Serotec, Kidlington, UK 

    

Anti-fibrinogen, clone 51G22  

0.2 µg/test, FITC-conjugate,  

IMS09-038-335, Agrisera, Sweden 

    

anti-CD42b,  clone HIP1 

0.2 µg/test, FITC-conjugate, 

11-0429-41, eBioscience, Hatfield, UK 

    

GC5 

0.1 µg/test 

Monoclonal Antibody Centre, Washington State 

University, Pullman, WA, US 

    

CAPP2A 

0.1 µg/test 

Monoclonal Antibody Centre, Washington State 

University, Pullman, WA, US 

    

PE-conjugated F(ab’)2 fragment of goat anti-

mouse IgG (H+L) antibody* 

0.25 µg/test 

Life Technologies Ltd., Paisley, UK 

    

* Secondary antibody used with GC5 and CAPP2A 
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Table 3. The ratio of haemolysis, platelet count, platelet activation, HMW/ LMW vWF 

and vWF collagen binding activity of blood trauma in bovine, ovine and porcine blood 

compared to human blood after being subjected to a shear rate of 8000 s
-1

 for 15 min at 

+37°C in a rheometer. The ovine blood evaluated came from two sources: obtained via 

gravity-collection from sheep at the abattoir, or via venepuncture from live sheep. 

Species Haemolysis 
Platelet 

count 

Platelet 

activation 

(CD62P) 

HMW 

vWF 

band 

loss 

LMW 

vWF 

band 

density 

increase 

vWF:CBA 

Human 1.00 1.00 1.00 1.00 1.00 1.00 

Ovine – 

abattoir 
1.27 0.71 0.63 0.73 2.46 1.83 

Ovine – 

venepuncture 
0.32 1.05 0.11 0.96 1.23 0.85 

Bovine 0.48 0.95 1.34 1.03 1.32 1.12 

Porcine 0.41 0.99 0.75 1.25 0.95 1.18 
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Figure Legends 

Figure 1. Shear-dependent haemolysis in multiple species. Human, ovine (abattoir and 

venepuncture), bovine and porcine whole blood exposed to increasing shear rates (0-

8000 s
-1

) for 15 min at +37°C in a rheometer. Haemolysis measured by the Harboe 

assay and plasma free haemoglobin release measured as mg/dL. Results expressed as 

mean ± SD, relative to the 0 s
-1 

static control.  

Figure 2. Shear-dependent changes in complete blood counts in multiple species.  

Human, ovine (abattoir and venepuncture), bovine and porcine blood subjected to 

increasing shear rates for 15 min at +37°C in a rheometer and thereafter measured by 

automatic haematology analysis. Results expressed as mean ± SD, % relative to the 0 s
-1

 

static control. 

Figure 3. Shear-dependent platelet activation in multiple species. Whole blood 

subjected to increasing shear rates (0-8000 s
-1

) in a rheometer for 15 min at +37°C and 

analysed by flow cytometry for changes in platelet activation markers. Human: two 

antibodies for CD62P (Psel.KO.2.5 and Psel.KO.2.7) compared to CD42b. Ovine from 

abattoir and venepuncture: the CD62P-antibodies compared to CAPP2A. Bovine: the 

CD62P-antibodies compared to CAPP2A and GC5. Porcine: CD62P (Psel.KO.2.5) 

compared to an anti-fibrinogen antibody. Results expressed as mean ± SD, % relative to 

the 0 s
-1

 static control. 

Figure 4. Shear-dependent platelet activation in multiple species. Whole blood 

subjected to increasing shear rates in a rheometer (0-8000 s
-1

) for 15 min at +37°C was 

analysed by flow cytometry for changes using CD62P (Psel.KO.2.5). Results expressed 

as mean ± SD, % relative to the 0 s
-1 

static control. 
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Figure 5. Measurement of vWF multimers from multiple species by immunoblotting. 

Whole human, ovine (abattoir and venepuncture), bovine and porcine blood subjected to 

increasing shear rates (baseline blood, BL, and 0-8000 s
-1

) in a rheometer for 15 min at 

+37°C. Platelet-poor plasma was prepared from sheared blood and von Willebrand 

Factor (vWF) multimer expression analysed by immunoblotting. A) Representative 

immunoblot gel image. B) Loss of high molecular weight (HMW) vWF bands (analysed 

by counting). Results expressed as relative to the 0 s
-1 

static control. C) The increase in 

density in the 2nd lowest molecular weight (LMW) vWF band (analysed by 

densitometry) and normalised to total vWF. Results expressed as mean ± SD, % relative 

to the 0 s
-1 

static control.  

Figure 6. Shear-dependent vWF:CBA in multiple species. Whole blood subjected to 

increasing shear rates in a rheometer (0-8000 s
-1

) for 15 min at +37°C was analysed by 

vWF:CBA ELISA. Results normalised to total vWF (measured by densitometry) and 

expressed as mean ± SD, % relative to the 0 s
-1 

static control.  

Supplemental figure 1. Gating strategy for platelet activation antibodies.  

Left panel) untreated blood from various species. Right panel) blood treated with 5 µM 

PMA for 60 min at room temperature from various species. All ungated events were 

displayed on forward scatter (FSC) versus side scatter (SSC) density plots on 

logarithmic scale (A-B) to identify and gate the platelet population, here exemplified 

with human blood. Gated platelets were displayed on density plots with fluorescence on 

logarithmic axes versus SSC on logarithmic axes (C-N). Human platelets single-stained 

with either of two anti-CD62P antibodies (CD62P-PE, clone Psel.KO.2.5, or CD62P-

AlexaFluor647, clone Psel.KO.2.7) or CD42b-FITC (C-H). Bovine platelets single-

stained with CAPP2A or GC5, then further stained with PE-conjugated F(ab')2 
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fragment goat anti-mouse IgG (H+L) antibody (I-L). Porcine platelets single-stained 

with anti-fibrinogen-FITC (M-N). Note that CD62P and fibrinogen expression is up-

regulated on activated platelets whereas CD42b, CAPP2A and GC5 expression is down-

regulated on activated platelets. 
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Supplement 1. 

Buffers and solutions 

Antibiotic and antimycotic solution:  

50 mg/dL Gentamycin and 10 mL/L Antibiotic antimycotic solution (A9909), both from 

Sigma-Aldrich, Poole, UK. 

Flow cytometry (FC) buffer: 

Dulbecco’s phosphate-buffered saline, Life Technologies; 0.2% bovine serum albumin, 

and 0.05% sodium azide, both Sigma-Aldrich. 

Non-reducing sample buffer: 

0.01 M Trizma Base, 1 mM EDTA disodium salt dehydrate, 2% SDS (w/v), 0.05% 

Bromophenol blue (w/v) and 10% Glycerol (v/v), pH 8.0, all chemicals from Sigma-

Aldrich. 

Blocking buffer: 

5% non-fat dry milk made in Tris-buffered saline/Tween-20 (T5030, Sigma-Aldrich). 


