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Localized component filtering for electroencephalogram artifact

rejection

MARCOS DELPOZO-BA ~NOS CHRISTOPH T. WEIDEMANN

Department of Psychology, Swansea University, Swansea, Wales, UK
Swansea University Medical School, Swansea, Wales, UK Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA

Blind source separation (BSS) based artifact rejection systems have been extensively studied in the

electroencephalogram (EEG) literature. Although there have been advances in the development of techniques capable

of dissociating neural and artifactual activity, these are still not perfect. As a result, a compromise between reduction

of noise and leakage of neural activity has to be found. Here, we propose a new methodology to enhance the

performance of existing BSS systems: Localized component filtering (LCF). In essence, LCF identifies the artifactual

time segments within each component extracted by BSS and restricts the processing of components to these segments,

therefore reducing neural leakage. We show that LCF can substantially reduce the neural leakage, increasing the true

acceptance rate by 22 percentage points while worsening the false acceptance rate by less than 2 percentage points in a

dataset consisting of simulated EEG data (4% improvement of the correlation between original and cleaned signals).

Evaluated on real EEG data, we observed a significant increase of the signal-to-noise ratio of up to 9%.

Measurements of natural processes are inevitably contaminated by

extraneous signals (henceforth “noise”) from various sources. Such

noise can pose serious problems for the interpretability of the sig-

nal, especially when its magnitude rivals or exceeds that of the sig-

nal. For almost 100 years, researchers and clinicians have been

able to noninvasively record brain activity through EEG. These

recordings are especially vulnerable to contamination by noise,

because the neural signals recorded at the scalp are considerably

smaller than other electrical activity that is regularly picked up by

the sensors (e.g., due to muscle activity or interference from elec-

tric activity in the vicinity of the recordings). Advances in record-

ing technology have increased the signal-to-noise ratio (SNR) of

EEG recordings, but contamination by noise is still a major concern

(Muthukumaraswamy, 2013; Fatourechi, Bashashati, Ward, &

Birch, 2007).

Because noise in EEG recordings is typically considerably larg-

er than the neural signal, it can be quite obvious when a particular

epoch is contaminated by noise. It is often desirable to remove the

noise from the signal rather than simply to discard contaminated

epochs. Common approaches to separate signal from noise in EEG

recordings involve the application of blind source separation (BSS)

techniques, and in particular independent component analysis

(ICA; Hyv€arinen et al., 2004). These outperform other methods in

rejecting high amplitude noise, such as contamination from eye

movements (Daly, Nicolaou, Nasuto, & Warwick, 2013).

Activity recorded at each EEG sensor represents a combination

of multiple sources, some of which are based on brain activity (sig-

nals) and some of which are not (noise). BSS algorithms transform

the EEG recordings with the aim to have each dimension (compo-

nent) of the data correspond to an individual source. To the extent

that this separation of sources is successful and that artifactual sour-

ces can be identified, eliminating the corresponding dimensions

and projecting the remaining components back into EEG-sensor

space will produce a clean signal (Makeig, Bell, Jung, & Sejnow-

ski, 1996).

The steps involved in this approach are summarized in the left

panel of Figure 1. The data are initially pre-processed, for example

by applying filters and by rejecting sensors and/or epochs with

exceptionally high levels of noise that could interfere with the fol-

lowing BSS step. Often the next step is to classify each extracted

component as either neural or artifactual, and to process artifactual

components (usually by completely rejecting them). Finally a

cleaned EEG signal is reconstructed by inverting the projection

from the BSS step using the clean(ed) components, followed by

any processing procedures that work better on the cleaned signal.

The literature contains a great variety of architectures following

the described procedure. For example, the classification of compo-

nents into clean and artifactual can be manual or automatic. Auto-

matic classifiers can be trained on (usually manually) labeled sub-

sets of the data (supervised techniques), or set up to achieve the

classification without training examples of contaminated and

uncontaminated data (unsupervised techniques). Due to the
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inconvenience of labeling the data, unsupervised algorithms are

more common in the EEG literature, but instances of systems inte-

grating supervised classifiers can also be found (Shao, Shen, Ong,

Wilder-Smith, & Li, 2009). Some systems lack a classification

stage entirely, treating each of the components equally (Castellanos

& Makarov, 2006) and hybrid approaches differentially process

both clean and artifactual components (Vorobyov & Cichocki,

2002).

Unsupervised systems use a variety of rules to classify individu-

al components as noisy. To this end, topological templates of arti-

facts (Li, Ma, Lu, & Li, 2006, Viola et al., 2009) and statistical

properties of their temporal and frequency representations

(Delorme, Sejnowski, & Makeig, 2007; Greco, Mammone, Mora-

bito, & Versaci, 2007) have been extensively used, and the most

successful approaches use combinations of some or all of such fea-

tures (Nolan et al. 2010; Mognon et al., 2010; Winkler, Haufe, &

Tangermann, 2011).

The BSS step is particularly crucial for the system’s success, and

a comparative study by Romero, Ma~nanas, & Barbanoj (2008)

shows that, for all surveyed systems, some neural activity is rejected

along with artifacts (i.e., “neural leakage”; Castellanos and

Makarov, 2006; Joyce, Gorodnitsky, & Kutas, 2004). Increasing the

threshold for identifying a component as artifactual would reduce

neural leakage at the cost of increasing the level of remaining noise.

We propose a novel methodology to improve the balance

between artifact rejection and retention of neural activity by focus-

ing the processing of BSS components: localized component filter-

ing (LCF). The presented algorithm localizes time segments within

components contaminated by artifacts, and directs the processing to

these segments, keeping the remaining parts of the component in

their original forms. This removes the need for a conservative

threshold on the identification of artifactual components, because

components identified as containing noise undergo further scrutiny

and are not generally removed entirely, reducing the probability of

neural leakage (i.e., the removal of neural signal).

Furthermore, we have designed LCF to be easily integrated

within existing BSS-based artifact rejection systems. The LCF

component can be directly embedded before the BSS21 step, with-

out any modification to the other steps (Figure 1, central panel).

Alternatively, LCF can also be used by itself, without a separate

artifact rejection method (Figure 1, right panel). LCF is a general

approach to the problem of neural leakage. In this paper, we

Figure 1. Diagrams of feature rejection systems based on blind source separation (BSS). Left: the common architecture of existing systems. The actu-

al BSS component can be seamlessly interchanged and therefore it has been left out of the “Artifact Rejection Method” box, which defines how the

output of BSS is processed. Center: A combination of the common architecture and the proposed LCF method. Right: How LCF can be used without

any artifact rejection method. The labels of the inputs and output of the LCF step are explained in the caption of Figure 2.
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develop a deliberately simple implementation in an effort to assess

the method, but the same framework can be used with more sophis-

ticated approaches for identifying and eliminating artifacts.

Localized Component Filtering

Even though the different components identified by BSS techni-

ques generally do not perfectly separate signal and noise, separat-

ing the signal into different components does facilitate

identification of artifacts. We therefore propose to apply LCF as an

additional step after BSS to optimize both detection of noise and

reduction of leakage of neural activity. However, LCF is an inde-

pendent processing step that can be integrated with a wide range of

artifact rejection systems as illustrated below. LCF consists of the

following steps (Figure 2):

Feature Extraction

Instantaneous measurements (i.e., measures that are defined for

each time instant n), which are characteristic of noisy activity, are

extracted from the original component. Because blink, muscle, and

pop-off artifacts are localized in time, components carrying them

are characterized by bursts of activity. In this case, the component’s

voltage can be used to locate these artifacts. Similarly, high fre-

quency noise, when localized in time, translates in a sudden

increase of the amplitude of the component’s time derivative. Non-

instantaneous measurements could also be used by windowing the

components. Windows with abnormal values of variance, Hurst

exponent, and voltage range could indicate the presence of noise.

When noise is localized in frequency or has a well-defined power

distribution, it may be easier to detect within the frequency domain.

The short-time Fourier transform or the discrete wavelet transform

are two examples of tools that could be used to obtain instantaneous-

like frequency representations of the BSS components. The result of

the feature extraction step is a list of features, with Fi½c; n� represent-

ing the i-th feature obtained from component c at time instant n.

Integrator

Because instantaneous features are noisier than those based on the

whole signal, the application of an integration window around each

time instant is useful to stabilize the extracted features (Figure 3).

The list of integrated features Fi½c; n� is defined as follows:

Fi½c; n�5
Fi½c; n� �WIX

k2K
WIðkÞ

; (1)

where WI is a window of length NI, * is the convolution operator,

and K is the integration range defined as

K5½maxð0;NI=22nÞ;minðNI21;NI=21NC2nÞ�; (2)

with NC the length of the component. This range covers the entire

integrating window except when it reaches the beginning or end of

the component. The denominator of Equation 1 is a normalizing

factor that effectively transforms the integration to a weighted

Figure 2. Diagram of the LCF step. The inputs and output are (C) the

original BSS components, (L) the control signal pointing to the compo-

nents that will be mixed, (P) the processed or alternative components,

and (R) the resulting mixed components.

Figure 3. Examples of F1 and F2 defined in the implemented (LCF) block. Their integrated version Fi is smoother, allowing for a more robust detec-

tion of Ai (in the figure we expanded the amplitude of Ai to the length of the ordinate). For illustrative purposes, we set b 5 0 for the calculation of Ai

(see Equation 8) in this figure.

LCF for EEG artifact rejection 3



average around each time instant. It also counteracts the boundary

effect of the convolution, so that artifacts at the beginning and end

of components can be correctly detected.

Decision Logic

Once features are extracted and integrated, we need to create a vec-

tor that signals the presence of noise for each component c at each

time instant n: A½c; n�5f ðfFi½c; n�j8igÞ, where f is the decision log-

ic function and Fi½c; n� is the integrated feature vector described

above. Similar to the classification block of a traditional artifact

rejection tool, the decision logic function can take many forms.

The simplest implementation would be a fixed threshold. More

advanced approaches include supervised and unsupervised learning

algorithms, such as support vector machines or expectation maxi-

mization. Overall, these are generally more accurate options at the

expense of higher computational costs and complexity. In the deci-

sion logic, we default to a simple binary logical vector that indi-

cates the presence or absence of artifacts at each time instance.

Mixer

The final step requires the output of the artifact rejection system,

the processed components P½c; n�, to be mixed with the original

unprocessed components C½c; n� (in the absence of a separate arti-

fact rejection system, P½c; n� can be simply set to zeros). The mix-

ing is governed by a mixing signal M defined as follows:

M½c; n�5A½c; n� �WM; (3)

where WM is a window of length NM and
P

WM½n�51, used to

round the edges of detected areas, which, in turn, smooths the tran-

sitions in the mix. A½c; n� refers to the decision vector defined

above, and * is the convolution operator. The resulting (cleaned)

component is defined as

Q½c; n�5P½c; n� �M½c; n�1C½c; n� � ð12M½c; n�Þ: (4)

Q thus is a mixed vector that consists of either C (where the deci-

sion logic indicates an absence of artifacts), P (where the decision

logic indicates the presence of artifacts), or a mix of both (around

transitions between samples with and without artifacts) that

smooths the transition to avoid discontinuities (Figure 4).

The resulting components can then be back-projected to the

original signal space. For each component, only those samples that

have been identified to either contain artifacts or to lie near artifacts

are affected by these processing steps. This should reduce the leak-

age of neural activity and thus produce superior results to methods

that eliminate entire components whenever components do not sep-

arate signal and noise sufficiently well.

Although we suggest here that LCF could be used without a

separate artifact rejection method, its integration within a tool

that classifies each component with respect to the noise it con-

tains has some important benefits. Specifically, cleaning only

those components that have been identified as containing arti-

facts allows for more aggressive LCF detection of artifacts by

reducing the risk of false positives. Moreover, if the classifica-

tion tool differentiates between types of artifacts (blinks, pop-

off, white noise, electrocardiogram, etc.), LCF could be adapted

to exploit this information to more accurately detect the differ-

ent kinds of artifacts.

Limitations of LCF

When applied to components identified as containing artifactual

activity, LCF serves to focus the artifact removal on specific

instances of artifactual activity within these components. Thus,

LCF can only decrease the amount of reduced noise relative to

the complete removal of the affected component. To the extent

that LCF is successful, any reduction in the amount of removed

noise should be small relative to the preserved neural activity

that would otherwise have been removed along with the noise.

It is important to note that LCF is aimed at improving the clean-

ing of components with localized artifacts, such as blinks, muscle,

or pop-off artifacts. Components with continuous contamination,

such as continuous white noise, or line noise cannot be effectively

tackled by LCF. Such components should be either removed entire-

ly or appropriately filtered.

Example Implementation of LCF

We now present applications of LCF to both simulated and real

EEG data sets. In an effort to illustrate the principles of LCF, we

kept the implementation deliberately simple, but note that the

choices at each processing step can and should be adapted to best

fit the aims of the particular application.

Feature extraction. Because, within (mainly) artifactual compo-

nents, absolute voltage of artifactual EEG activity often exceeds

the amplitude of activity from neural sources, a threshold on abso-

lute voltage can provide a simple instantaneous indicator for the

presence of noise. Likewise, because artifactual activity is often

associated with sudden changes, large absolute values of the first

time derivative of the voltage can also be a simple and instanta-

neous indicator for the presence of noise.

We normalized both of these features as follows:

HðXÞ5X2mX̂

sX̂

; (5)

where m and s respectively refer to the mean and standard devia-

tion of the variable denoted in the subscript. X̂ is a trimmed version

of the vector X that excludes those samples that deviate more than

three sX from mX.

Thus, features are formally defined as

Figure 4. Mixing of the component C whose features are depicted in

Figure 3 when its processed version P is all zeros. Transitions between

C and P are smoothed to avoid discontinuities (to facilitate the figure’s

representation, we modified the amplitude of M to match that of the

ordinate such that the shaded proportion of the ordinate below M
denotes the proportion of P in Q).
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F15HðjCjÞ (6)

and

F25HðjdC=dtjÞ (7)

for each component C determined in the BSS step1.

Integrator. We used a Hamming window of 0.2 s as the integra-

tion window WI (Figure 3).

Decision Logic. We used a simple threshold (s) to determine

whether a given feature indicated the presence of noise (which cor-

responds to a value of 1 in the decision vector A), so that

Ai½c; n�5
1 if maxð½Fi½c; n2b�; . . . ;Fi½c; n1b��Þ > s

0 otherwise;

(
(8)

where b corresponds to a buffer around each time point to allow

samples directly adjacent to samples identified as noise to also be

classified as noise. We found that a buffer of 0.1 s produced contin-

uous noise regions that were well separated from adjacent noise

regions and we used this value throughout unless otherwise noted.

For the sake of simplicity, and because features were normalized to

z-scores, we used a single threshold (manually set to s 5 1) for all

features.

To produce an overall decision vector that combines the

information from all features, we simply combined the individ-

ual decision vectors for each feature with the logical “or” opera-

tor �:

A½c; n�5
_

i

Ai½c; n�:

Furthermore, whenever more than 75% of a trial was labeled as

noise, we rejected the entire trial. Likewise, any component where

more than 75% of the samples were classified as noise was rejected

entirely.

Mixer. We used a Hamming window of 0.1 s as the mixer window

WM (Figure 4).

Materials

We evaluated (LCF) using an artificial data set created by Nolan

et al. (2010), as well as an unpublished data set recorded by us.

Figure 5. Examples of the simulated data set created by Nolan et al. (2010). Contaminated channels and blink artifacts are particularly prominent.

1. If components are classified as clean or noisy by the artifact rejec-
tion method, only artifactual components need to be processed by the
LCF block.

LCF for EEG artifact rejection 5



The artificial data set consists of 100 epochs of simulated EEG

data to which artifacts were randomly added following the proce-

dure described in Delorme et al. (2007). In addition, a random

number of channels were contaminated with white noise, and some

of the epochs were also corrupted by a high-amplitude (30–150

lV) low frequency (1–3 Hz) signal. A total of 47 files were created

following the described procedure. Figure 5 shows two example

epochs from this simulated data set.

We also evaluated LCF using a real data set recorded from 18

participants while they were engaged in a recognition memory

task. We recorded a total of 133 channels (128 scalp channels, 2

mastoid channels, and 3 EOG channels) using a BioSemi Active

Two system and a sampling rate of 500 Hz. We partitioned the data

from each participant into 576 epochs starting 0.5 s before the onset

of a test item and extending to 1 s after stimulus onset. Figure 6

shows two example epochs from this data set.

Method

We assessed the proposed LCF methodology, using three different

BSS-based algorithms. All systems shared the structure shown in

Figure 1 and only differed in the artifact rejection step.

We first high-pass filtered the EEG data at 0.5 Hz using a finite

impulse response (FIR) filter of order 99 and Hamming window.

We chose a FIR filter to avoid distorting the phase of the signal or

introducing any ripple in the pass-band. We then removed the base-

line from the signal and rejected highly artifactual channels and

epochs based on the z-scores of several statistics (variance, correla-

tion, and Hurst exponent) following the same pre-processing proce-

dures described in Mognon et al. (2010). Next, we used the

INFOMAX ICA algorithm as the BSS step (Bell & Sejnowski,

1995) and separately applied each of the following artifact rejection

methods:

ADJUST: The automatic EEG artifact detector based on the

joint use of spatial and temporal features (ADJUST; Mognon et al.,

2010) characterizes artifactual independent components (ICs) by

both temporal and spatial features, specifically: kurtosis, variance,

and the spatial distribution of IC activation. These are then automat-

ically classified as clean or artifactual ICs by an expectation maxi-

mization algorithm (Dempster, Laird, & Rubin, 1977). The ICs

identified as artifactual are then set to zero.

FASTER: The fully automated statistical thresholding for

EEG artifact rejection (FASTER; Nolan et al., 2010) uses main-

ly temporal measures to detect artifactual ICs. In particular, this

Figure 6. Examples of the real data set recorded from a memory task. Artifacts are substantially more complex than in the synthesized (EEG).

6 M. DelPozo-Ba~nos and C.T. Weidemann



method relies on temporal correlations with electrooculogram

(EOG) channels, spectral and voltage gradients, Hurst exponent

and spatial kurtosis.

ICAW: (ICAW; Castellanos & Makarov, 2006) processes each

IC by thresholding its discrete wavelet transform (DWT) coeffi-

cients. We manually set a threshold equal to the 99.5 percentile of

the absolute wavelet coefficients.

Finally, we post-processed the cleaned reconstructed EEG by

correcting the baseline and interpolating the rejected channels

using the spherical spline technique (Perrin, Pernier, Bertrand, &

Echallier, 1989). In addition, we then re-referenced the signal to

common average and interpolated those parts of the signal identi-

fied as artifactual as described in Mognon et al. (2010).

We applied each of the above artifact rejection techniques to

the data sets twice: once with and once without the LCF step. This

allowed us to assess the effectiveness of LCF under different sce-

narios. We also tested LCF in isolation (i.e., without using a sepa-

rate artifact rejection method). For this case, we set the processed

signal that is fed to the LCF step to zeros and processed all ICs.

Analysis of Simulated EEG Data

The simulated data set has the advantage of offering fully con-

trolled testing conditions. Specifically, the artifactual activity, Z,

can be extracted from the artificial EEG by subtracting the simulat-

ed signal, X, from the simulated signal that is contaminated by

noise (Y): Z5Y2X. Similarly, the rejected signal, R, is defined as

the difference between the contaminated signal and the output of

the particular artifact rejection method.

A simple difference between original and cleaned signals is

insufficient to properly assess the performance of LCF. Because

LCF aims specifically at reducing neural leakage, we need to be

able to differentiate between the amount of noise rejected, the

true rejection rate (TRR), and the amount of neural activity lost,

the false rejection rate (FRR). In order to do so, we define the

following measurements to be used with the artificial data set:

TRR: The TRR is the proportion of the artifactual activity that

has been successfully removed. It is defined as

TRR5

X
n2XminðZðnÞ;RðnÞÞX

8nZðnÞ
; (9)

where X5fn j 8sgnðZðnÞÞ5sgnðRðnÞÞg and sgn is the sign function

(cf. Figure 7).

FRR: The FRR quantifies the amount of neural activity that is

removed in the artifact rejection effort and is defined as

FRR5

X
n2ðX\WÞðRðnÞ2ZðnÞÞ1

X
n=2XRðnÞX

8nXðnÞ
; (10)

with W5fn j jZðnÞj < jRðnÞjg (cf. Figure 7).

It is sometimes more convenient to reframe the performance of the

artifact rejection system in terms of the true acceptance rate (TAR),

which corresponds to 12FRR, and the false acceptance rate

(FAR), which corresponds to 12TRR. Note that the TAR relates to

the amount of neural signal retained, in other words, the inverse of

the neural leakage (i.e., higher TARs reflect lower levels of neural

leakage). Similarly, the FAR relates to the amount of noise

retained, the inverse of the rejection of noise (i.e., lower FARs

reflect higher levels of noise rejection). If necessary, an overall

measurement of the error of the method can be computed as

ðFRR1FARÞ=2.

To isolate the performance of LCF, we extracted the simulated

signal, X, and the simulated signal contaminated with noise, Y, after

the pre-processing stage and calculated the rejected activity R from

the output of the BSS21 step (cf. Figure 1).

ERP Analysis of EEG Data

A common way to analyze EEG data is to average EEG activity

across events to produce event related potentials (ERPs). To

reduce the complexity of the data set, we partitioned the 128

EEG channels into nine regions of interest (ROI; Figure 8): a

central ROI (RC) surrounded by eight ROIs labeled R0, R45,

R90, R135, R180, R225, R270, and R315 starting with the mid-

frontal region, centered around 0�, and going clockwise in 45�

increments. We averaged the sensors within each region, com-

puted the ERP for each region, and averaged those ERPs across

participants.

In real data sets, without labeled artifacts, the quantities we

used to assess performance on the simulated data set are not readily

available. Because the baseline period of each event in the real data

set lacked external stimuli that were synchronized across events,

we expect the average ERP to be fairly constant and close to 0 lV

for clean EEG data. However, a small proportion of artifacts (such

as those produced by motion) can cause significant deviations from

that mean due to their large amplitude.

Events were locked to a stimulus presentation, which should

produce ERP deflections reflecting its processing. Noise, however,

can obscure these synchronous effects of stimulus processing in the

EEG and attenuate the resulting ERP. On the other hand, removal

of neural activity will also reduce the SNR and attenuate the ERP.

We quantify the SNR as the ratio between the mean signal

amplitude (l) and the standard error of the mean (SE) across events

(Gonzalez-Moreno et al., 2014). Note that this results in a normal-

ized mean as a function of time:

SNRðtÞ5 lðtÞ
SEðtÞ ; (11)

We averaged this measure over an 800 ms time window starting at

stimulus onset. We directly compared SNR for artifact rejection

Figure 7. Graphic representation of the true and false rejection and false

acceptance concepts.

LCF for EEG artifact rejection 7



pipelines with and without LCF and also calculated the difference

between these measures

Df5SNRf1LCF2SNRf (12)

Figure 8. Regions of interest for the ERP analysis. We refer to the central ROI as RC and to the eight surrounding regions starting with the mid-

frontal region (centered around 0
�
) and going clockwise in 45

�
increments as R0, R45, R90, R135, R180, R225, R270, and R315.

Figure 9. Mean percentage and SE of the Pearson’s correlation (r)

between the original and cleaned signal for the different methods

applied to the artificial data set with and without LCF. Fisher’s trans-

form was applied before computing mean and SE and back-transformed

to obtained the presented results.

Table 1. Mean Percentage (SE) of Processed Independent Com-
ponents (ICs) and Pearson’s Correlation (r) Between the Origi-
nal and Cleaned Signal for the Different Methods Applied to
the Artificial Data Set.

ICs (%) r

None 0.77 (0.07) t(46)510.530
None1LCF 100.00 (0.00) 0.95 (0.07) SE 5 0.08
Difference (%) 123.73% p< .001

ADJUST 0.97 (0.07) t(46)5-1.744
ADJUST1LCF 2.05 (0.20) 0.96 (0.07) SE 5 0.01
Difference (%) -0.14% p 5 .088

FASTER 0.93 (0.06) t(46) 5 8.639
FASTER1LCF 10.57 (0.36) 0.97 (0.06) SE 5 0.05
Difference (%) 14.39% p< .001

ICAW 0.87 (0.05) t(46)514.401
ICAW1LCF 100.00 (0.00) 0.91 (0.05) SE 5 0.01
Difference (%) 14.26% p< .001

Note. Fisher’s transform was applied before computing mean and SE
and back-transformed to obtained the presented results. The right most
column lists the results of dependent t-tests between the correlations of
the methods with and without LCF.
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and the improvement percentage driven by LCF

D%
f 51003

Df

SNRf
%; (13)

with f indicating the artifact rejection method.

These measures, however, can only provide rough estimates of

the real SNR. A visual examination of the ERPs complements the

assessment of the effects of LCF. To facilitate this assessment, we

examined the differences between ERPs corresponding to each of

the artifact rejection methods with and without the LCF step. To

the extent that LCF successfully reduces only neural leakage, LCF

should increase the amplitude for these differential ERPs in the

period after stimulus onset.

Results and Discussion

Results for Simulated EEG Data

Figure 9 and Table 1 show the correlations between the original

and the cleaned synthetic signal, while Figure 10 and Table 2 show

the percentages of TARs and FARs. In general, the addition of

LCF resulted in an improved correlation between the original and

cleaned signal, as well as in an increase in TAR without corre-

sponding increases in FAR (differences in FAR were small relative

to the associated standard deviations). In other words, it reduced

the neural leakage (increase in TAR) without heavily penalizing

the rejection of artifacts (small increase in FAR).

The different methods varied greatly with respect to the propor-

tion of ICs they processed, ranging from just over 2% on average

for ADJUST to 100% for ICAW. Because LCF is only applied to

tagged ICs, the conservative classification of ADJUST limited the

possible impact of LCF.

While the neural leakage of FASTER and ICAW was similar

(76% and 72% of TAR, respectively), the introduction of LCF had a

smaller (yet still substantial) effect on the latter. ICAW cleans tagged

components through DWT thresholding and provides an alternative

signal P, instead of fully rejecting them as ADJUST and FASTER

do. The effectiveness of this cleaning process constraints the poten-

tial improvements on neural leakage from LCF. For both FASTER

and ICAW, however, the addition of LCF resulted in a substantial

increase of the TAR (reduction of neural leakage) with comparative-

ly small increases in FAR (noise rejection penalization). Surprising-

ly, the application of LCF in isolation resulted in relatively good

performance with a TAR 4 percentage points lower than that of

ICAW1LCF and the lowest FAR of all techniques.

In some cases, we observed that the addition of LCF increased

the proportion of removed artifactual activity (i.e., it reduced the

FAR). This may seem counter-intuitive given that LCF limits how

much of an IC is removed. However, removing non-artifactual

parts of an IC, produces noise, which can result in an increase of

either FRR or FAR.

These results suggest that the proposed approach works as

expected: it reduces the neural leakage while preserving the ability

Figure 10. Mean percentage and SE of true acceptance rate (TAR), and false acceptance rate (FAR) for the different methods applied to the artificial

data set with and without LCF. Higher TARs reflect lower levels of neural leakage, while lower FARs reflect higher rejection of noise.

Table 2. Mean Percentage (SE) of True and False Acceptance Rates for the Different Methods Applied to the Artificial Data Set

TAR (%) FAR (%)

None 100.00 (0.00) t(46) 5 -26.293 100.00 (0.00) t(46) 5 -43.113
None1LCF 80.79 (0.00) SE 5 0.73 14.79 (0.00) SE 5 1.98

p< .001 p< .001

ADJUST 96.84 (0.47) t(46) 5 6.652 30.19 (4.77) t(46) 5 11.661
ADJUST1LCF 99.04 (0.47) SE 5 0.33 34.83 (4.77) SE 5 0.40

p < .001 p< .001

FASTER 75.97 (2.10) t(46) 5 10.745 22.63 (2.48) t(46)51.897
FASTER1LCF 97.63 (2.10) SE 5 2.02 24.10 (2.48) SE 5 0.77

p< .001 p 5 .064

ICAW 71.74 (0.93) t(46) 5 29.168 34.72 (1.62) t(46) 5 8.186
ICAW1LCF 84.97 (0.93) SE 5 0.45 35.85 (1.62) SE 5 0.14

p< .001 p< .001

Note. The third and last columns lists the results of dependent t-tests comparing the acceptance rates of the methods with and without LCF shown in
the respective previous column.
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to reject artifacts. When the system performs conservatively, tag-

ging very few components in a bid to reduce the probability of neu-

ral leakage, the scope for improvement by LCF is reduced. With

LCF, the system can be tuned to be more aggressive in the tagging

of components, rejecting more noise, without corresponding

increases in neural leakage.

Results for EEG Data

The results for the real EEG data set are comparatively noisier, but

they tend to mirror those from the simulated data. On average,

ADJUST only tagged 5.57% ICs as artifactual, limiting the scope

for improvement that could be gained by LCF. In fact, this average

is substantially inflated by three outliers rejecting 22, 30, and 33

ICs. Without these outliers, the average drops to only 2%. In five

out of 18 cases, ADJUST did not tag any IC for rejection.

FASTER, on the other hand, rejected 15.45% of ICs on average,

resulting in a higher potential to reject noise, but also increased

propensity for neural leakage and hence bigger scope for improve-

ment by LCF. ICAW processes all ICs, which maximizes the

potential effectiveness of LCF, but at the same time uses a proc-

essed (“cleaned”) version of the ICs as alternative signal.

Figure 11 shows the SNR for each method with and without

LCF, while Figure 12 and Table 3 show the comparative results

in the form of D and D%. The addition of LCF to a given system

resulted in improvements of the SNR for all cases, with an aver-

age increase of 7% for ADJUST, 9% for FASTER, and 4% for

ICAW.

The increase in SNR should be interpreted together with two fac-

tors: First, the LCF prototype used here as a proof of concept is a rath-

er simple one. It applies the same analysis to all tagged components,

including those with continuous noise, such as white-noise. These

have no salient time instants, and therefore LCF retains the compo-

nent in its original form. Second, the heterogeneity of the signal quali-

ty within the real data set introduces great variability in the results. In

cases where the signal quality is particularly good, BSS performs bet-

ter, reducing the scope for improvement by LCF, while the opposite

is true for poor signal quality instances. This can also be observed in

the range of the results. LCF improves SNR by a maximum of 4.00

points, 2.62 points, and 0.85 points for ADJUST, FASTER, and

ICAW, respectively, while in the worst cases it only decreases it by

0.51, 1.88, and 0.50, respectively.

When looking at the differential ERPs, comparing methods

with and without LCF (Figure 13), the differences are largely

confined within the ERP in response to stimulus onset—no big

differences in amplitude are discernible in the baseline periods

or more than about 500 ms past stimulus onset. This effectively

means that LCF increased the amplitude of the stimulus locked

activity (neural activity) while maintaining the rejection of

noise. This figure also illustrates the total amount of noise and

neural activity removed by LCF when it is used without a sepa-

rate artifact rejection method as well as the distortion intro-

duced by ICAW’s alternative signal. Overall, LCF by itself

(None1LCF), performed better than we anticipated, despite the

simplicity of the current implementation. The LCF-only imple-

mentation rejected a good amount of noise while retaining most

of the ERP.

Figure 11. Mean and SE of the SNR for all channel clusters combined

obtained with the different methods applied to the real data set with and

without LCF.

Figure 12. Mean and SE of the difference D for each channel cluster and method. Highlighted in red and blue, cases where the nominal difference is

lower and higher than 0 respectively.
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Noise Rejection versus. Preservation of Neural Activity

The right balance between the rejection of noise and preservation

of neural activity depends on the particular application. Consider-

ations such as the prominence of the targeted signal, the quality of

the recordings, as well as the prevalence and nature of noise, deter-

mine both the effectiveness of the BSS artifact removal and, in

turn, the benefit (or lack) of an additional LCF step. Additionally,

the trade-offs between failing to reject artifactual activity and

removing signal vary. With LCF, we provide a tool that can reduce

neural leakage at a given level of noise rejection.

Conclusion

We propose LCF as a novel methodology to boost the performance

of existing EEG artifact rejection systems that are based on BSS

techniques. The method takes the original and processed compo-

nents as inputs, and mixes them so that the processed (cleaned)

components replace the original ones only when an artifact is

detected. Quantitative and qualitative analyses on simulated and

real data sets demonstrated benefits of LCF, especially in the

reduction of neural activity leakage.

Benefits of LCF were more pronounced in cases where the

BSS algorithm found a particularly bad solution to the problem

of neural activity and noise dissociation (see Appendix). LCF

can thus function to guard against inadequate levels of noise

rejection and/or excessive neural leakage in cases where signal

and noise are not well separated by the BSS algorithm. Indeed,

we demonstrated that the application of LCF by itself (i.e., with-

out a previous BSS step) can substantially reduce the noise while

limiting neural leakage.

We designed LCF to be compatible with any of the existing

systems based on BSS. Moreover, its integration is straight for-

ward and requires no substantial changes to the system itself,

facilitating its adoption. LCF’s ability to retain neural activity

allows for more stringent classification components (i.e., for

more liberally labeling components as artifactual), while at

the same time limiting the danger of signal loss. The implemen-

tation of LCF used here as a proof of concept is a very simplis-

tic one, based on the voltage amplitude and its speed of change.

More sophisticated artifact detection methods are likely to yield

better results and, in turn, would allow for even more sensitive

artifact rejection systems.

Figure 13. Difference between the ERPs, averaged across subjects, for multiple artifact rejection methods without and with LCF. ERPs for methods

without LCF are subtracted from ERPs for methods with LCF. Lines correspond to the ERP difference of each brain region specified in Figure 8, so

that the top line is RC and subsequent ones are R0, R45, R90, . . ., R315. The scale of the y-axes differs between panels as indicated.

Table 3. Mean, SE, and Range of the Difference D for all Channel Clusters Combined and Each Method, Together with the Corre-
sponding LCF Improvement D%

None ADJUST FASTER ICAW

Mean (SE) -0.25 (0.04) 0.23 (0.05) 0.28 (0.06) 0.13 (0.02)
[min, max] [-2.73, 0.75] [-0.51, 4.00] [-1.88, 2.62] [-0.50, 0.85]
D% -7.06% 6.81% 8.86% 3.90%
t-test t (161) 5 -6.428 t (161) 5 4.700 t (161) 5 4.383 t (161) 5 8.474

SE 5 0.04 SE 5 0.05 SE 5 0.06 SE 5 0.02
p< .001 p< .001 p< .001 p< .001
q< .001 q< .001 q< .001 q< .001

Note. Refer to Table A1 for results for individual channel clusters. The last four rows show results for dependent t-tests comparing the SNR for each
method with and without LCF along with associated (uncorrected) p-values and False Discovery Rate q-values.
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