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Abstract

Variationally consistent phase-field methods have been shown to be able to predict com-
plex three-dimensional crack patterns. However, current computational methodologies
in the context of large deformations lack the necessary numerical stability to ensure
robustness in different loading scenarios. In this work, we present a novel formulation
for finite strain polyconvex elasticity by introducing a new anisotropic split based on
the principal invariants of the right Cauchy-Green tensor, which always ensures poly-
convexity of the resulting strain energy function. The presented phase-field approach is
embedded in a sophisticated isogeometrical framework with hierarchical refinement for
three-dimensional problems using a fourth order Cahn-Hilliard crack density functional
with higher-order convergence rates for fracture problems. Additionally, we introduce for
the first time a Hu-Washizu mixed variational formulation in the context of phase-field
problems, which permits the novel introduction of a variationally consistent stress-driven
split. The new polyconvex phase-field fracture formulation guarantees numerical stabil-
ity for the full range of deformations and for arbitrary hyperelastic materials.

Keywords: Phase-field, fracture mechanics, polyconvexity, finite deformations, isogeo-
metric analysis.

1. Introduction

The numerical prediction of fracture patterns is one of the most challenging problems
in computational solid mechanics. In classical fracture mechanics, Griffith and Irwin
[16, 23] formulated the propagation of brittle fracture by assuming that the material
fails locally upon the attainment of a specific fracture energy related to a critical energy-
release rate. However, due to the complexity of the evolving fracture surfaces in three-
dimensional scenarios, the evaluation of appropriate interface conditions is an extremely
challenging task in the context of finite element discretisations.

∗Corresponding author. E-mail address: christian.hesch@kit.edu
†Corresponding author. E-mail address: a.j.gil@swansea.ac.uk
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A straightforward minimisation of the fracture energy is not feasible for finite defor-
mations. Therefore, more generalised numerical formulations have been introduced to
avoid the algorithmical tracking of discontinuities within the solid. In particular, phase-
field methods provide a framework to formulate variational fracture models based on
regularised energy functionals embedded within a global minimizer, cf. Francfort and
Marigo [12]. In contrast to classical discontinuous methods, such as interface element
formulations [10, 33, 34] or local enrichment strategies [36, 18], phase-field approaches
introduce a non-local diffusive crack zone. Embedded within a continuum mechanical
framework, the order parameter s of the phase-field allows to easily characterise the cur-
rent state of fractured material within an arbitrary shaped three-dimensional structure.
As a consequence of the evolution of the fracture pattern, the material is degenerated
by the phase-field, see Miehe et al. [28].

Regarding the actual formulation employed to describe the anisotropic split in tension
and compression (see, e.g. the textbook of Gross & Seelig [17]) various approaches are
established. These classical formulations used to characterised the non-linear phase-
field fracture are not able to capture the degeneration of the material in a numerically
stable manner. Such problems become apparent in the simulation of large deformation
problems. Here, the constitutive model must fulfil appropriate convexity criteria which
imply material stability. A well-established material stability criterion is polyconvexity
in the sense of Ball [2]. This concept has been adapted in a large variety of mechanical
problems, see [19, 35, 31] and is here extended to the case of phase-field fracture.

To this end, we introduce a novel formulation of phase-field fracture with polyconvex
energy functionals based on an anisotropic tension-compression split in terms of the
principle invariants. Our formulation satisfies the polyconvexity criteria for the mechan-
ical field regardless of the current state of fracture. We compare this new split with a
previously introduced formulation based on an anisotropic split of the eigenvalues, with
both formulations in the full non-linear regime. Alternative splits, e.g. in Ambati et al.
[1] and Miehe et al. [27] are specifically designed either for the linear case or based on
the eigenvalues of the stresses.

A fourth-order crack energy density functional for the phase-field is chosen in this paper,
see Borden et al. [8] and Weinberg and Hesch [38]. In conjunction with the newly
proposed anisotropic split, this approach will improve the accuracy and the convergence
properties of finite deformation phase-field fracture. An isogeometric finite element
framework with hierarchical refinement (see Hesch et al. [20, 21]) has been applied for
the discretisation of the geometry and the phase-field.

Moreover, a mixed variational formulation of Hu-Washizu type (see, among many other,
Zienkiewicz & Taylor [39]) is introduced in this paper for the first time in the context of
phase-field problems. Crucially, the classical Rankine condition of brittle fracture (max-
imum of principal stresses) can now be formulated with primary variables of solution,
i.e. in strains and stresses. For the numerical implementation, a local static conden-
sation procedure is carried out, such that we obtain a formulation with computational
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cost comparable to that of the classical two-field formulation (i.e. displacement and
phase-field).

For the ease of derivation and implementation of polyconvex phase-field fracture we fol-
low the concept of Bonet et al. [3, 4, 5], which makes use of a tensor cross product
operation that helps redefining the area and volume maps, two of the arguments which
define polyconvexity. This tensor cross product operation as defined in [5] and its as-
sociated algebra simplifies dramatically the directional derivatives of these two strain
measures, featuring heavily in the formulation.

An outline of the present work is as follows. A brief revision of relevant aspects of
nonlinear continuum mechanics in the context of polyconvex elasticity is carried out in
Section 2. In Section 3, different phase-field approaches to brittle fracture are introduced.
The coupled system of weak forms associated with the two-field formulation (in terms of
displacements and the phase-field parameter) is also presented in Section 3. In Section
4 a Hu-Washizu type mixed variational principle is proposed, which is similar to the one
presented in Reference [3] and extended to the context of phase-field fracture. The spatial
discretisations of the coupled weak forms both for the two-field and the Hu-Washizu
mixed formulations are outlined in Section 5, followed by a variety of representative
numerical examples in Section 6. Finally, conclusions are drawn in Section 7.

2. Basics and fundamentals

2.1. Geometry and kinematics

Let us consider the motion of a continuum which, in its initial or material configuration,
is defined by a Lipschitz bounded domain B0 ⊂ R3 of boundary ∂B0 with outward unit
normal N . After the motion, the continuum occupies a spatial configuration defined by
a domain Bt ⊂ R3 of boundary ∂Bt with outward unit normal n. The motion of the
continuum B0 ⊂ R3 is defined by a pseudo-time t dependent mapping field

ϕ(X, t) : B0 × I → R3, (1)

which links a material particle from material configuration X to spatial configuration
x at the pseudo-time t ∈ I = [0, T ], where T ∈ R+, according to x = ϕ(X, t). The
two-point deformation gradient tensor F : B0 × I → R3×3, which relates a fibre of
differential length from the material configuration dX to the spatial configuration dx,
namely dx = F dX, is defined as the material gradient of the mapping ϕ [6], i.e,

F := ∇X ϕ = ∂ϕ

∂X
. (2)

Infinitesimal area vectors are mapped from initial dA (colinear with N) to final da

(colinear with n) configuration by means of the two-point cofactor or adjoint tensor
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H : B0 × I → R3×3 as da = H dA, which is related to the deformation gradient F via
the so-called Nanson’s rule [6], i.e,

H := cof F = (detF ) F −T . (3)

Finally, J : B0×I → R represents the Jacobian or volume-map of the deformation, which
relates differential volume elements in the material dV and spatial dv configurations as
dv = J dV and is defined as

J := detF . (4)
With the help of the definition of the tensor cross product operation presented in [3], it
is possible to rewrite the area map H (3) and the volume map J (4) as follows

H := 1
2(F F ), J := 1

6(F F ) : F , (5)

where the application of the tensor cross product operation on any two-point second
order tensor A is defined in indicial notation as (A A)iI = EijkEIJKAjJAkK , with Eijk

(or EIJK) denoting the third order alternating tensor components and where the use of
repeated indices implies summation, unless otherwise stated. The alternative definition
of the area map in equation (5) based on the tensor cross product operation enables a
dramatic simplification of the first and second directional derivatives of the cofactor H

with respect to virtual and incremental variations of the geometry, namely δϕ and ∆ϕ,
as

D H [δϕ] = F ∇X δϕ, D2 H [δϕ, ∆ϕ] = ∇X δϕ ∇X ∆ϕ, (6)
where use of

D F [δϕ] = ∇X δϕ (7)
has been made in equation (6). Additionally, the first and second directional derivatives
of J based on the definition in equation (5) with respect to virtual and incremental
variations δϕ and ∆ϕ are obtained as

D J [δϕ] = H : ∇X δϕ, D2 J [δϕ, ∆ϕ] = F : (∇X δϕ ∇X ∆ϕ). (8)

2.2. Linear momentum balance equation

Let us consider the continuum B0 defined in Section 2.1. Dirichlet and Neumann bound-
ary conditions can be prescribed on boundaries ∂Bu

0 ⊂ ∂B0 and ∂Bσ
0 ⊂ ∂B0, respectively,

complying with
∂Bu

0 ∪ ∂Bσ
0 = ∂B0; ∂Bu

0 ∩ ∂Bσ
0 = ∅. (9)

The space Vϕ of virtual or admissible test functions for the mapping ϕ in (1) is defined
as

Vϕ = {δϕ ∈ H1(B0)|δϕ = 0 on ∂Bu
0 }. (10)
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The balance of linear momentum for the continuum can be expressed in a total La-
grangian setting as
∫

B0

ρ0δϕ · ϕ̈ dV +
∫

B0

P : ∇X δϕ dV =
∫

B0

δϕ · B̄ dV +
∫

∂Bσ
0

δϕ · T̄ dA, ∀δϕ ∈ Vϕ, (11)

where ρ0 represents the material density, (•̈) denotes double differentiation with respect
to time of the variable (•) and P denotes the first Piola-Kirchhoff stress tensor. The
external contributions, namely the right hand side of above equation (11), include the
traction force per unit of undeformed area T̄ defined as P N = T̄ on ∂Bσ

0 and the body
force per unit of undeformed volume B̄ in B0.

Remark 1 : For the remaining of the article we omit inertia terms and thus, we do
not specify initial conditions. All results can easily be transferred to transient fracture
problems, investigated in detail in Borden et al. [9] and in Hesch & Weinberg [22].
Further investigation in the context of impact mechanics can also be found in Hesch et
al. [20].

2.3. Polyconvexity of the strain energy density function

The variational statement in above equation (11) requires a suitable constitutive law
in order to relate the first Piola-Kirchhoff stress tensor P to the deformation gradient
tensor ∇X ϕ. As it is customary in the case of hyperelasticity, this constitutive law can
be given in terms of a strain energy density function Ψ per unit of undeformed volume,
defined as

Ψ = Ψ (∇X ϕ) . (12)
Computation of the directional derivative of Ψ leads to an expression for the first Piola-
Kirchhoff stress tensor P as

D Ψ[δϕ] = P : ∇X δϕ; P = ∂Ψ (∇X ϕ)
∂∇X ϕ

. (13)

where δϕ represents virtual variations of the deformation. Appropriate constitutive
restrictions on Ψ are necessary to obtain well-defined, physically admissible solutions.
An accepted constitutive restriction is ellipticity (or rank-one convexity) of the strain
energy density, with very important physical implications. In particular, satisfaction of
this constitutive restriction is intimately related to the existence of material stability
and it automatically guarantees the existence and propagation of real wave speeds in
the material in the vicinity of an equilibrium configuration (also known as Legendre-
Hadamard condition), see Truesdell & Noll [37].
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Strict convexity of the strain energy density function with respect to the deformation gra-
dient tensor ∇X ϕ satisfies the Legendre-Hadamard condition. However, this condition
is too stringent and it is incompatible with the principle of material frame indifference,
see Marsden & Hughes [24] for details. It precludes the onset of buckling and the require-
ment that det(∇X ϕ) → R+. In contrast, polyconvexity in the sense of Ball [2] is now
well accepted as a fundamental mathematical requirement that should be satisfied by
admissible strain energy functions used to describe elastic materials in the large strain
regime. Polyconvex energy functionals satisfy the Legendre-Hadamard condition and
do not suffer the inherent unphysical behaviour associated with strictly convex energy
density functionals. Essentially, the strain energy density must be a function of the
deformation gradient via a convex multi-variable functional W as

Ψ(∇X ϕ) pol= W (F , H , J), (14)

where W : R3×3 × R3×3 × R → R is convex for all material points X with respect to
the 19 variables of F , H and J . Moreover, the requirement for objectivity or material
frame indifference implies that W must be independent of the rotational components of
F and H and hence, must be a function of these tensors via symmetric tensors such
as F T F (also known as the right Cauchy-Green tensor C) and HT H . For the case of
isotropic hyperelasticity, the strain energy density Ψ is usually defined as

Ψ(∇0ϕ) pol= W (F , H , J) iso= w(IIF , IIH , J), (15)

where II• denotes II• = (• : •) [6]‡. As an example, the strain energy density function
of a compressible Mooney-Rivlin material can be simply expressed as

wMR(IIF , IIH , J) = α (IIF − 3) + β (IIH − 3) + f(J), (16)

where f(J) must be a convex function of J . Moreover, α and β are two positive material
parameters. A possible definition of the convex function f(J) is

f(J) = −2 (α + 2β) ln(J) + λ

2 (J − 1)2 , (17)

which guarantees that the energy and the stresses at the origin (i.e. undeformed con-
figuration) vanish. In above expression (17), λ represents another positive material
parameter.

In this paper, an additive decomposition of the strain energy density function into its
isochoric and volumetric contributions will be followed. As explained in forthcoming
sections, this split proves physically convenient for the proposed formulation of coupled

‡Notice that the invariants {IIF , IIH , J} can be related to the well known principal invariants of the
right Cauchy-Green deformation tensor C, namely {I1, I2, I3} (refer to [35]) as

IIF = I1; IIH = I2; J2 = I3.
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phase-field fracture problems developed in this paper. This additive split, also very
typical in the context of truly and nearly incompressible elasticity, requires the strain
energy W to be defined as [5, 3, 13, 14]

W (F , H, J) = W̄ (F , H, J) + U(J), (18)

where U must be a convex function of J accounting for the volumetric component of the
deformation and W̄ (F , H, J) must be a polyconvex function of {F , H , J} which must
lead to a pure deviatoric stress tensor. The latter can be guaranteed if the function is
defined in terms of the isochoric components of {F , H}, defined as F̄ = J−1/3F and
H̄ = J−2/3H , respectively. More specifically, for the case of isotropic elasticity, W̄ can
be expressed as

W̄ (F , H , J) iso= w̄ (IIF̄ , IIH̄) . (19)
As an example, the isochoric strain energy density function of a nearly incompressible
Mooney-Rivlin material can be defined as

w̄MR (IIF̄ , IIH̄) = γ (IIF̄ − 3) + ζ
(

(IIH̄)3/2 − 33/2
)

, (20)

where γ and ζ represent positive material parameters. In addition, a possible definition
of the convex function U(J) could be

U(J) = κ

2 (J − 1)2 , (21)

where κ represents another positive material parameter. As above, material parameters
{γ, ζ, κ} can be obtained from a suitable material characterisation [3, 15].

Remark 2 : In the special case of two-dimensional plane strain§, the deformation gradient
tensor adopts the following expression

∇X ϕ =






F 2D 0

0T 1




 , (22)

where F 2D denotes the deformation gradient tensor in the plane of the deformation. In
this case, polyconvexity of the strain energy can be postulated as

Ψ(∇X ϕ) = W (F 2D, j), (23)

where W : R2×2 × R → R must be convex for all material points X with respect to
the 4 independent variables of F 2D and the Jacobian in the plane of the deformation,
denoted as j := detF 2D. In this case, the cofactor is no-longer an independent variable
and can be related to both F 2D and j as

H =






H2D 0

0T j




 ; H2D = trF 2DI2D − F T

2D, (24)

§Plane stress problems will not be considered in this paper.
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where I2D denotes the 2 × 2 identity matrix. Combination of equations (5) and (24)b

enables the two-dimensional Jacobian j for the case of plane strain to be related to the
two-dimensional deformation gradient tensor F 2D as

j = J = 1
3 (H : F ) = 1

3 (H2D : F 2D + j) ⇒ j = 1
2
(

(trF 2D)2 − tr (F 2DF 2D)
)

. (25)

Based on the above identity (24), it is possible to rewrite the invariants IIF , IIF̄ , IIH

and IIH̄ as

IIF = IIF 2D
+ 1; IIH = IIF 2D

+ j2, (26a)
IIF̄ = j−2/3 (IIF 2D

+ 1) ; IIH̄ = j−4/3IIF 2D
+ j2/3. (26b)

Therefore, for instance, the compressible polyconvex constitutive model in equation (16)
can be reduced for plane strain as

w2D
MR(IIF 2D

, j) = (α + β) (IIF 2D
− 2) + β

(

j2 − 1
)

+ f(j)
︸ ︷︷ ︸

f̃(j)

. (27)

Similarly, the polyconvex constitutive model in equation (20) can be reduced for plane
strain problems as well

w2D
MR (IIF 2D

, j) = γ
(

j−2/3 (IIF 2D
+ 1) − 3

)

+ ζ
((

j−4/3IIF 2D
+ j2/3

)3/2
− 33/2

)

. (28)

2.4. Conjugate stresses and elasticity tensors

As shown in References [3, 5, 15, 30, 29, 32], the definition of polyconvexity enables a
one-to-one and invertible relationship between the three strain measures F , H and J
and their respective work conjugates ΣF , ΣH and ΣJ , defined as

ΣF := ∂W

∂F
; ΣH := ∂W

∂H
; ΣJ := ∂W

∂J
. (29)

For instance, for the compressible Mooney-Rivlin constitutive law defined in equation
(16), the work conjugates are

ΣF = 2αF ; ΣH = 2βH ; ΣJ = f ′(J). (30)

Similarly, for the constitutive model defined by equations (20) and (21), the work con-
jugates are now defined as

ΣF = 2γJ−2/3F ; ΣH = 3ζJ−2IIHH ; ΣJ = −
2
3γJ−5/3IIF − 2ζJ−3II

3/2
H + U ′(J).

(31)
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As already presented in [4, 3, 5], a relationship can be established between the above
work conjugates and the first Piola-Kirchhoff stress tensor P following the computation
of the directional derivative of the strain energy density W with respect to virtual or
admissible variations of the geometry δϕ, namely

D W [δF , δH , δJ ] = ΣF : δF + ΣH : δH + ΣJ δJ

= (ΣF + ΣH F + ΣJH) : ∇X δϕ,
(32)

where use of equations (6), (7) and (8) have been made in equation (32). Comparison of
equation (32) and (13)a enables to finally re-define the first Piola-Kirchhoff stress tensor
P in terms of the work conjugates in (29) as

P = ΣF + ΣH F + ΣJH . (33)

With a Newton-Raphson type of solution process in mind, it is useful to derive the
tangent elasticity operator. Using equation (33) for the first Piola-Kirchhoff stress tensor
it is now possible to derive a physically insightful representation of the tangent elasticity
operator as

D2 W [δϕ; ∆ϕ] = [Sδ]T [HW ] [S∆] + [ΣH + ΣJF ] : (∇X δϕ ∇X ∆ϕ), (34)

with the operators [Sδ]T and [S∆] defined as

[Sδ]T = [∇X δϕ : ∇X δϕ F : ∇X δϕ : H ] ; [S∆] =










: ∇X ∆ϕ

: ∇X ∆ϕ F

∇X ∆ϕ : H










, (35)

and where the Hessian operator [HW ] in equation (34) is defined as

[HW ] =










∂2W
∂F ∂F

∂2W
∂F ∂H

∂2W
∂F ∂J

∂2W
∂H∂F

∂2W
∂H∂H

∂2W
∂H∂J

∂2W
∂J∂F

∂2W
∂J∂H

∂2W
∂J∂J










. (36)

As discussed in [3, 5], polyconvexity dictates that the first (constitutive) term on the
right hand side of equation (34) is necessarily positive for a virtual field δϕ = ∆ϕ and
thus, buckling can only be induced by the second (geometrical) term. As also presented
in References [3, 5], the representation of the tangent operator in (34) enables to appre-
ciate the relationship between polyconvexity and ellipticity (or rank-one convexity). For
instance, the Hessian operator for the constitutive model in equation (16) is obtained
as

[HW ] =










2αI 0 0

0 2βI 0

0 0 f
′′(J)










, (37)
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where I denote the fourth order identity tensor with indices IiIjJ = δiIδjJ . It is easy
to observe the positive definite nature of the Hessian operator provided that the con-
stants α and β are positive and that the function f(J) is convex, as that in equation
(17). Alternatively, for the constitutive model in equation (16), a more involved Hessian
operator [HW ] reads

[HW ] =










2γJ−2/3I 0 −4/3γJ−5/3F

0 3ζJ−2(II
−1/2
C H ⊗ H + II

1/2
C I) −6ζJ−3II

1/2
C H

−4/3γJ−5/3F T −6ζJ−3II
1/2
C HT WJJ










, (38)

where WJJ = 10/9J−8/3γIC +6ζJ−4II
3/2
C +U ′′(J). A proof of the positive definiteness of

the Hessian operator [HW ] in equation (38) is outlined in Schröder & Neff [35], Appendix
C.

3. Phase-field fracture models

3.1. Phase-field fracture description

This section describes the formulation of classical brittle fracture problems employing
the phase-field method. More sophisticated constitutive models including thermal effects
and/or plasticity for the modelling of ductile fracture can be considered, as shown in
[27, 25]. However, without loss of generality, this paper focuses on the modelling of
elastic brittle fracture. With this in mind, the propagation of the fracture pattern,
initially localised at an internal boundary Γcr

0 ⊂ B0, is described by an auxiliary field s
defined as the crack phase-field. A Lagrangian description of this phase-field variable s

is followed, where s is related to each material particle X as

s(X, t) : B0 × I → R, s ∈ [0, 1], (39)

where the value s = 0 refers to the undamaged state and s = 1 to the fully broken state
of the material. The unknowns {ϕ, s} form a configuration space in R4, representing
the primal degrees of freedom to be found for all pseudo-times of interest. In the phase-
field approach, the crack interface is regularised and the evolution of the phase-field is
governed by the partial differential equation associated with the regularised profile of
the crack. The fracture energy Ecr is defined as

Ecr =
∫

Γcr

0

gc dΓ, (40)

where gc denotes the critical local fracture energy density, which can be approximated
using the crack surface density function γ(s) (related to the regularised profile of the
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crack)
∫

Γcr
0

gc dΓ ≈
∫

B0

gcγ(s) dV. (41)

This approach postulates that the material fails locally upon the attainment of a specific
fracture energy, represented by gc. A commonly used expression for γ(s) is given by the
second order Allen-Cahn energy density functional, defined as

γ(s) = 1
2l

s2 + l

2∇X s · ∇X s, (42)

where the intrinsic length scale parameter l controls the regularisation zone¶. Alterna-
tively, a higher order regularisation of the crack topology can be utilised to obtain better
accuracy and convergence rates of the numerical solution (see Weinberg & Hesch [38]
and Borden et al. [8] for details), such as the fourth order Cahn-Hilliard type profile
regularisation, defined as

γ(s) = 1
4l

s2 + l

2∇X s · ∇X s + l3

4 (∆Xs)2 , (43)

where ∆X(•) represents the material Laplacian operator of the field •.

Remark 3 : Notice the material character of the gradient ∇X • and Laplacian ∆X• op-
erators in expressions (42) and (43). This is in contrast to the case of small strains,
where, logically, no distinction between spatial or material operators is necessary. Al-
though their spatial counterparts could have also been used (e.g. ∇x • and ∆x•), this
would lead to cumbersome contributions (via pull-back and push-forward operations)
to the tangent operator (necessary in case of using a Newton-Raphson solution type
approach).

3.2. Variational formulation of coupled phase-field model of fracture

Next, we present the set of governing equations (in a weak or variational sense) emerging
in the modelling of fracture via the phase-field method. For that purpose, it is useful
to introduce the coupled total potential energy Etot(ϕ, s) of the continuum, defined in a
total Lagrangian manner in B0, as

Etot(ϕ, s) =
∫

B0

Ψs(∇X ϕ, s) dV +
∫

B0

gcγ(s) dV + Πext(ϕ), (44)

¶The length scale parameter l has a substantial impact on the crack initialisation and can be regarded
as a material parameter, see Miehe et al. [27].
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where the first term on the right hand side represents the possibly damaged phase-field
dependent strain energy, the second term denotes the regularised fracture energy and
the third term symbolises the external work acting on the system. A suitable definition
of the phase-field dependent strain energy density function Ψs(∇X ϕ, s) will be provided
in forthcoming sections.

The set of weak forms for the coupled phase-field problem in consideration is now ob-
tained by computing the directional derivative of the total potential energy Etot in
equation (44) with respect to admissible variations δϕ and δs, yielding

D Etot[δϕ] =
∫

B0

P : ∇X δϕ dV −
∫

B0

δϕ · B̄ dV −
∫

∂Bσ
0

δϕ · T̄ dA = 0, ∀δϕ ∈ Vϕ,

D Etot[δs] =
∫

B0

Hδs dV +
∫

B0

gc D γ(s)[δs] dV = 0, ∀δs ∈ Vs
i ,

(45)
with

P := ∂Ψs(∇X ϕ, s)
∂∇X ϕ

; H := ∂Ψs(∇X ϕ, s)
∂s

, (46)

where P represents the first Piola-Kirchhoff stress tensor and H contains the driving
force of the phase-field. Moreover, the space of admissible test functions Vϕ has already
been defined in equation (10) and Vs

i denotes the space of admissible test functions
for the phase-field, which depends on the choice of crack energy density γ(s) under
consideration (refer to the previous Section). In particular, the set of admissible test
functions for the second order Allen-Cahn crack energy functional reads

Vs
1 = {δs ∈ H1(B0)|δs = 0 on Γcr

0 }, (47)

i.e. the fully broken state on Γcr
0 is treated as a Dirichlet-type constraint. Alternatively,

the set of admissible test functions Vs
2 for the fourth order Cahn-Hilliard crack energy

density functional (43) is defined as

Vs
2 = {δs ∈ H2(B0)|δs = 0 on Γcr

0 }. (48)

Provided that a suitable alternative definition of the phase-field dependent strain en-
ergy density Ψs(∇X ϕ, s) is given in terms of the strain measures {F , H , J} (as will be
shown in forthcoming sections), it is possible to re-write P as in equation (33), with
the conjugate stresses ΣF , ΣH and ΣJ also depending upon the phase-field parameter
s. Particularisation of equation (45)b to the Allen-Cahn density functional (42) yields

D Etot[δs] =
∫

B0

Hδs dV +
∫

B0

(

δs
gc

l
s + gcl (∇X δs) · (∇X s)

)

dV = 0, ∀δs ∈ Vs
1. (49)

Analogously, particularisation of equation (45)b to the Cahn-Hilliard crack energy den-
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sity functional (43) yields

D Etot[δs] =
∫

B0

Hδs dV +

∫

B0

(

δs
gc

2l
s + gcl (∇X δs) · (∇X s) + gcl

3

2 (∆Xδs) (∆Xs)
)

dV = 0, ∀δs ∈ Vs
2.

(50)

3.3. Constitutive crack strain energy density functional

The objective of this section is to propose a suitable definition of the damaged strain en-
ergy density Ψs(∇X ϕ, s). The simplest approach consists of multiplying the undamaged
strain energy density Ψ(∇X ϕ) by a degradation function g(s) as

Ψs(∇X ϕ, s) := g(s)Ψ(∇X ϕ). (51)

This approach is usually referred to as isotropic degeneration, as it is sensitive to both
tension and compression components. The degradation function g(s) is defined as a
monotonically decreasing function complying with the following restrictions, i.e. g(0) =
1, g(1) = 0 and g′(1) = 0. The simplest function g(s) satisfying the aforementioned
constraints is g(s) = (1 − s)2. Alternatively, a more sophisticated definition of g(s) is
the following cubic function

g(s) = (ag − 2) (1 − s)3 + (3 − ag) (1 − s)2; ag ≥ 0, (52)

which complies with the above restrictions and with ag an arbitrary modelling parameter
in the range (0, 2]. Note that the above cubic degradation function (52) degenerates to
the simpler quadratic degradation function (1 − s)2 by setting ag = 2. In order to avoid
that small strains, even far from a crack, contribute noticeably to the computed fracture
energy (cf. Borden [7]), we advocate in this paper the cubic degradation function (52)
in conjunction with the use of small values of the modelling parameter ag.

In contrast to (51), a more reasonable formulation from the physical standpoint would
require the fracture propagation to be exclusively sensitive to a tension state of deforma-
tion. This tension sensitive approach is usually referred to as anisotropic split [28, 22].
A novel anisotropic split is presented in the following section.

3.3.1. Proposed anisotropic split in terms of the principal invariants

In this section, a novel anisotropic split of the damaged strain energy density Ψs is
introduced following a polyconvex representation of the undamaged strain energy density
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Ψ as that formulated in equation (14) and a further additive split of this energy density
as that proposed in equation (18). Specifically, Ψs is rewritten as

Ψs(∇X ϕ, s) = W s(F , H , J, s) = W̄ s(F , H , J, s) + U s(J, s), (53)

where W s is a polyconvex function with respect to the strain measures {F , H, J} (for
any value of the phase-field s) and W̄ s and U s its isochoric and volumetric contributions,
respectively. For the definition of a suitable anisotropic split, we further introduce the
tensile and compressive parts of the invariant arguments of such decomposition, namely
IIF̄ , IIH̄ and J , as

II±

F̄
:= J−2/3

(

(IIF − 3) ± |IIF − 3|

2 + 3
)

,

II±

H̄
:= J−4/3

(

(IIH − 3) ± |IIH − 3|

2 + 3
)

,

J± := (J − 1) ± |J − 1|

2 + 1,

(54)

where the superscripts + and − refer to the tensile and compressive components, re-
spectively. In this case, the strain energy density contributions W s and U s in (53) can
then be formulated as

W̄ s(F , H , J, s) = w̄s
(

II±

F̄
, II±

H̄
, s
)

; U s(J, s) = us(J±, s), (55)

with w̄s and us suitable functions. Please note that this additive decomposition of the
strain energy into volumetric and isochoric components is essential as the volumetric
components of the first and second invariants, i.e. IIF and IIH , might contradict the
anisotropic split of the Jacobian J , resulting in a non-physical behaviour of the formu-
lation. This justifies the use of the isochoric invariants IIF̄ and IIH̄ instead. Regarding
the form of the functions w̄s and ūs, these could be defined as

w̄s
(

II±

F̄
, II±

H̄
, s
)

= g(s)w̄
(

II+
F̄

, II+
H̄

)

+ w̄
(

II−

F̄
, II−

H̄

)

,

ūs
(

J±, s
)

= g(s)U
(

J+
)

+ U
(

J−
)

.
(56)

Application of the proposed anisotropic split in (54) in conjunction with the definition
of the functions w̄s and ūs in equation (56) for the specific constitutive model defined in
equations (20)-(21) leads to

ws
MR(IIF̄ , IIH̄ , J, s) = ΛF̄ (F̄ , s)w̄F̄ (IIF̄ ) + ΛH̄(H̄ , s)w̄H̄(IIH̄)

︸ ︷︷ ︸

w̄s
MR

(II
F̄

,II
H̄

,s)

+ ΛJ(J, s)U(J)
︸ ︷︷ ︸

us(J,s)

,
(57)

where

w̄F̄ = γ (IIF̄ − 3) ; w̄H̄ = ζ
(

(IIH̄)3/2 − 33/2
)

; U = κ

2 (J − 1)2 , (58)
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and with ΛF̄ , ΛH̄ and ΛJ defined as‖

ΛF̄ =







g(s) if IIF̄ > 3,

1 otherwise.
ΛH̄ =







g(s) if IIH̄ > 3,

1 otherwise.
ΛJ =







g(s) if J > 1,

1 otherwise.

(59)
Note that an anisotropic split of the volumetric term in (58)3 using U(ΛJJ) can be
applied as well. However, in the case of a logarithmic definition of volumetric term,
polyconvexity cannot be ensured. For this energy functional, it is now possible to derive
the expression for the work conjugates ΣF , ΣH and ΣJ which now depend upon the
phase-field parameter s as∗∗

ΣF (F , J, s) = 2γΛF̄ J−2/3F , (60a)
ΣH(H , J, s) = 3ζΛH̄J−2(IIH)1/2H , (60b)

ΣJ(F , H, J, s) = −
2γΛF̄ J−5/3IIF

3 − 2ζΛH̄J−3 (IIH)3/2 + ΛJκ (J − 1) . (60c)

With a Newton-Raphson type solver in mind, the tangent operator of the total energy
potential Etot in (44)†† is obtained as

D2 Etot[δϕ, δs; ∆ϕ, ∆s] = [[Sδ]T δs][HW s ]






[S∆]

∆s




+ [ΣH + ΣJF ] : (∇X δϕ ∇X ∆ϕ)

+ gcD
2γ(s)[δs; ∆s],

(61)
with [S

δ
]T and [S∆ ] defined in equation (35) and with the Hessian operator [HW s ] defined

as

[HW s] =













∂2W s

∂F ∂F
∂2W s

∂F ∂H
∂2W s

∂F ∂J
∂2W s

∂F ∂s

∂2W s

∂H∂F
∂2W s

∂H∂H
∂2W s

∂H∂J
∂2W s

∂H∂s

∂2W s

∂J∂F
∂2W s

∂J∂H
∂2W s

∂J∂J
∂2W s

∂J∂s

∂2W s

∂s∂F
∂2W s

∂s∂H
∂2W s

∂s∂J
∂2W s

∂s∂s













. (62)

‖An alternative expression for the function Λ
F̄

is Λ
F̄

(F̄ , s) = 1 − (1 − g(s)) H(II
F̄

− 3), where H(•)
is the Heaviside step function. Similar expressions can be derived for Λ

H̄
and ΛJ .

∗∗In (60), use of the following identities has been made

∂Λ
F̄

∂F̄
(II

F̄
− 3) = 0; ∂Λ

H̄

∂H̄
(II

H̄
− 3) = 0; ∂ΛJ

∂J
(J − 1) = 0.

††Note that for the case of pure elasticity, the tangent operator exclusively concerns the internal energy
(if no follower loads are considered), namely D2 W [δϕ; ∆ϕ], refer to equation (34). In the more
general context of coupled phase-field approaches for the modelling of fracture, as that considered
in this section, it is the tangent operator of the total energy potential Etot that must be considered,
namely D2 Etot[δϕ, δs; ∆ϕ, ∆s], refer to equation (61).
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For the particular energy functional in equation (57)-(59), the above Hessian operator
adopts the following expression

[HW s
MR

] =













2∂w̄s
MR

∂IIF

I 0 2 ∂2w̄s
MR

∂IIF ∂J
F 2∂2w̄s

MR

∂IIF ∂s
F

0 2∂w̄s
MR

∂IIH

I + 4 ∂2w̄s
MR

∂IIH∂IIH

H ⊗ H 2 ∂2w̄s
MR

∂IIH∂J
H 2∂2w̄s

MR

∂IIH∂s
H

2 ∂2w̄s
MR

∂J∂IIF

F T 2 ∂2w̄s
MR

∂J∂IIH

HT ∂2(w̄s
MR

+us)
∂J∂J

∂2(w̄s
MR

+us)
∂J∂s

2∂2w̄s
MR

∂s∂IIF

F T 2∂2w̄s
MR

∂s∂IIH

HT ∂2(w̄s
MR

+us)
∂s∂J

∂2(w̄s
MR

+us)
∂s∂s













. (63)

It is important to emphasise that the Hessian operator [Hs
W ] in (62) and (63) is, in

general, positive definite, because it is not necessarily possible to guarantee the convexity
of the total energy Etot in (44) or of its purely elastic contribution W (refer to (44)). In
order to identify those contributions in the above tangent operator (61) strictly related
to material stability and those responsible for geometrical and material instabilities, the
above tangent operator D2Etot[δϕ, ∆ϕ; δs, ∆s] can be conveniently re-arranged as

D2 Etot[δϕ, δs; ∆ϕ, ∆s] = [Sδ]T [HW s
m

][S∆]
︸ ︷︷ ︸

Material stability

+ [[Sδ]T δs]T [HW s
s
]






[S∆]

∆s






︸ ︷︷ ︸

Material instability

+ gcD
2γ(s)[δs; ∆s]

︸ ︷︷ ︸

Regularising/Stabilising term

+ [ΣH + ΣJF ] : (∇X δϕ ∇X ∆ϕ)
︸ ︷︷ ︸

Geometrical buckling

,

(64)
where the Hessian operator [HW s

m
] accounts exclusively for the derivatives of the strain

energy (3 × 3 upper-left block in equation (63)) with respect to F , H and J and is
defined as in equation (36) and with the Hessian contribution [HW s

s
] accounting for the

coupled second derivatives of the model, defined as

[HW s
s
] =













0 0 0 ∂2W s

∂F ∂s

0 0 0 ∂2W s

∂H∂s

0 0 0 ∂2W s

∂J∂s

∂2W s

∂s∂F
∂2W s

∂s∂H
∂2W s

∂s∂J
∂2W s

∂s∂s













. (65)

It is possible to verify that the Hessian operator [HW s
m

] (first term on the left hand side
of (64)) is positive definite for the proposed anisotropic split based on (54) and (56), as
each term is pre-multiplied by either 1 (undamaged state) or g(s) (damaged state). This
can be ensured by introducing a small positive parameter ǫ ≈ 0 such that g(1) = ǫ and
a full degradation of strain energy at a fully broken state s = 1 is prevented. The fourth
term on the right hand side of above equation (64) plays the same role as the second
term on the right hand side of (34) for the purely mechanical case, and is responsible
for geometrical instabilities as buckling. The second term on the right hand side of (64)
brings additional instabilities into the problem as this term is responsible for material
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instabilities. Finally, the third term on the right hand side of (64) can be understood
as a stabilising term which regularises the effect of the second term.

Remark 4. A different anisotropic split to that proposed in this paper, has been previ-
ously presented in Hesch & Weinberg [22] in the context of large strains, based upon a
multiplicative split in terms of the principal eigenvalues. In this approach, the elastic,
fracture insensitive part of the deformation gradient tensor is expressed as

F e =
3∑

a=1
(λ+

a )g(s)λ−

a na ⊗ N a, (66)

where λ± = [(λ − 1) ± |λ − 1|]/2 + 1. Introducing the abbreviation λe
a = (λ+

a )g(s)λ−
a , it

is possible to redefine any strain energy functional as follows

Ψs(ϕ, s) = ωs
λ(λe

1, λe
2, λe

3, s). (67)

Following Hartmann & Neff [19], Appendix C, and also Dacorogna [11], it is possible
to check the rank-one convexity of any energy functional expressed in its eigenvalue
representation if the following inequality is verified, i.e,

∂2ωs
λ(λ1, λ2, λ3)

∂λ2
i

≥ 0, 1 ≤ i ≤ 3. (68)

In order to check above inequality (68), the principal stresses are initially obtained as

∂ωλ
s

∂λa

= ∂ωλ
s

∂((λe
a)2)

∂((λe
a)2)

∂λa

. (69)

The second derivative with respect to the principal eigenvalues of the principal stresses
follows immediately by applying the chain rule as

∂2ωs
λ

∂λa∂λa
= ∂2ωs

λ

∂((λe
a)2∂((λe

a)2)

(

∂((λe
a)2)

∂λa

)2

+ ∂ωs
λ

∂((λe
a)2)

∂2((λe
a)2)

∂λa∂λa
. (70)

For instance, for the first invariant of the compressible Mooney-Rivlin model in equation
(16), re-written in terms of the eigenvalues λe

a as

α(IIF e − 3) = α((λe
1)

2 + (λe
2)2 + (λe

3)
2), (71)

where the first term on the right hand side of (70) is clearly zero. The term ∂2((λe
a)2)

∂λa∂λa
on

the right hand side of equation (70) is written as

∂2((λe
a)2)

∂λa∂λa
= 2g(s)(2g(s) − 1)(λa)(2g(s)−2). (72)

Hence, ∂2ωs
λ

∂λa∂λa
in (70) becomes negative (as ∂ωs

λ

∂((λe
a)2) is always positive for α(IIF e − 3)

provided α > 0) for g(s) < 0.5 and the invariant α(IIF e − 3) is then not rank-one
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convex. Therefore, unlike the proposed anisotropic split in equations (54) and (56), this
eigenvalue-based split does not reflect the material stability of the mechanical part of
the energy. In particular, the Hessian operator in the first term on the left hand side of
equation (64) is not always positive definite irrespectively of the value of the parameter
s, and hence material instabilities could be induced by this term, too. This indicates
that this approach (eigenvalue-based split) should be numerically more unstable than
the one proposed in this paper (invariant-based split).

4. Mixed variational principles in phase-field problems

Most important for fracture mechanics is the definition of the failure criteria. As already
stated in the 19th century by St. Venant and C. Bach, a crack propagates if a critical
value of the principal stretches is reached. Alternatively, Rankine, Lamé and Navier
assumed that a crack propagates if a critical value of the principal stresses is reached, see
the textbook of Gross & Seelig [17] for a comprehensive review on this topic. Independent
of the chosen definition in terms of stresses or strains, it is favourable for a variationally
consistent construction of the phase-field approach to obtain the strain as well as the
stress field as primary variables in the energy function, as provided in a mixed Hu-
Washizu type formulation.

4.1. Hu-Washizu mixed variational principle

Following the work of Bonet et al. [3, 5] in the context of polyconvex large strain defor-
mations, it is possible to derive an eight field mixed variational principle where not only
displacements ϕ and the phase-field s are part of the unknowns of the problems, but also
the kinematic entities {F , H , J} and their respective work conjugates {ΣF , ΣH , ΣJ},

ΠHW (ϕ, s, F , H, J, ΣF , ΣH , ΣJ) =
∫

B0
W s(F , H , J, s) dV +

∫

B0
gcγ(s) dV

+
∫

B0
ΣF : (Fx − F ) dV +

∫

B0
ΣH : (Hx − H) dV

+
∫

B0
ΣJ (Jx − J) dV + Πext(ϕ).

(73)
Here, the external contribution Πext(ϕ) is defined as

Πext(ϕ) = −
∫

B0

ϕ · B̄ dV −
∫

∂Bσ

0

ϕ · T̄ dA, (74)
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and {Fx, Hx, Jx} denote the compatible strain measures, namely

F x := ∇Xϕ; Hx := 1
2∇Xϕ ∇Xϕ; Jx := 1

6 (∇Xϕ ∇Xϕ) : ∇Xϕ. (75)

An alternative but similar mixed variational principle in terms of {F̄ , H̄ , J} and their
work conjugates {ΣF̄ , ΣH̄ , ΣJ}, tailor-made for the anisotropic split proposed in this
paper, can be defined as

Π̄HW (ϕ, s, F̄ , H̄ , J, ΣF̄ , ΣH̄ , ΣJ) =
∫

B0

(

W̄ s(F̄ , H̄, J, s) + U s(J, s)
)

dV +
∫

B0
gcγ(s) dV

+
∫

B0
ΣF̄ :

(

F̄ x − F̄
)

dV +
∫

B0
ΣH̄ :

(

H̄x − H̄
)

dV

+
∫

B0
ΣJ (Jx − J) dV + Πext(ϕ).

(76)

Remark 5. For two-dimensional plane strain, the above mixed variational principle is
degenerated into the following eight-field mixed variational principle as

Π̄2D
HW (ϕ, s, F̄ 2D, F̄33, j, Σ2D

F̄ ,ΣF̄33 , Σj)

=
∫

B0

(

W̄ s(F̄ 2D
, F̄33, s) + U s(j, s)

)

dV +
∫

B0
gcγ(s) dV

+
∫

B0
Σ2D

F̄ :
(

F̄ x2D − F̄ 2D

)

dV +
∫

B0
ΣF̄33

(

j−1/3
x − F̄33

)

dV

+
∫

B0
Σj (jx − j) dV + Πext(ϕ),

(77)
where the compatible strain measures {F̄ x2D, j} are defined as

F̄ x2D := j−1/3
x F x2D; jx = 1

2
(

(trF x2D)2 − tr
(

F T
x2DF x2D

))

, (78)

with F x2D = ∇Xϕ.

For the constitutive model defined in equations (57)-(59) the Hu-Washizu mixed varia-
tional principle presented in equation (76) can be alternatively written as

Π̄HW (ϕ, s, F̄ , H̄ , J, ΣF̄ , ΣH̄ , ΣJ) =
∫

B0
(ΛF̄ w̄F̄ + ΛH̄w̄H̄ + ΛJU) dV +

∫

B0
gcγ(s) dV

+
∫

B0
ΣF̄ :

(

F̄ x − F̄
)

dV
∫

B0
ΣH̄ :

(

H̄x − H̄
)

dV

+
∫

B0
ΣJ (Jx − J) dV + Πext(ϕ).

(79)
Note that we have applied the anisotropic split analogues to the two-field ϕ − s formu-
lation, i.e. we follow the geometric definition of Λ• as outlined in equation (59).
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4.1.1. Directional derivatives

The directional derivatives of the above mixed variational principle (79) with respect to
virtual variations of the deformation ϕ and virtual variations of the phase-field parameter
s yield

D Π̄HW [δϕ] =
∫

B0

P HW : ∇X δϕ dV −
∫

B0

δϕ · B̄ dV −
∫

∂Bσ
0

δϕ · T̄ dA = 0,

D Π̄HW [δs] =
∫

B0

HHW δs dV +
∫

B0

gc D γ(s)[δs] dV = 0,
(80)

where the first Piola-Kirchhoff stress tensor P HW and the driving force term HHW are
evaluated as

P HW = J−1/3
x ΣF̄ + J−2/3

x ΣH̄ Fx +
(

ΣJ −
1
3J−4/3

x (ΣF̄ : Fx) −
2
3J−5/3

x (ΣH̄ : Hx)
)

Hx,

HHW = ∂ΛF̄

∂s
w̄F̄ + ∂ΛH̄

∂s
w̄H̄ + ∂ΛJ

∂s
U.

(81)
The directional derivatives of the mixed variational principle in (79) with respect to vir-
tual variations of the fields {F̄ , H̄ , J} yield the weak form of the constitutive equations,
namely

D Π̄HW [δF̄ ] =
∫

B0

(

ΛF̄

∂w̄F̄

∂F̄
− ΣF̄

)

: δF̄ dV,

D Π̄HW [δH̄ ] =
∫

B0

(

ΛH̄

∂w̄H̄

∂H̄
− ΣH̄

)

: δH̄ dV,

D Π̄HW [δJ ] =
∫

B0

(

ΛJ
∂U

∂J
− ΣJ

)

δJ dV.

(82)

Finally, the directional derivatives of the mixed variational principle in (79) with respect
to virtual variations of the fields {ΣF̄ , ΣH̄ , ΣJ} lead to the weak form of the compatibility
equations, namely

D Π̄HW [δΣF̄ ] =
∫

B0

(

F̄ x − F̄
)

: δΣF̄ dV,

D Π̄HW [δΣH̄ ] =
∫

B0

(

H̄x − H̄
)

: δΣH̄ dV,

D Π̄HW [δΣJ ] =
∫

B0
(Jx − J) δΣJ dV.

(83)

For the extended set of variables, the corresponding set of admissible test functions is
defined as

V [F,H,J ] = {[δF̄ , δH̄ , δJ ] ∈ L2(B0)}, (84)
and

V [ΣF ,ΣH ,ΣJ ] = {[δΣF̄ , δΣH̄ , δΣJ ] ∈ L2(B0)}. (85)
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4.1.2. Linearisation

In this Section, the consistent linearisation of the set of weak forms in equations (80),
(82) and (83) is described.

Directional derivatives of D Π̄HW [δϕ]. The directional derivative of the weak form in
equation (80)a with respect to incremental variations ∆ϕ is obtained as

D2 Π̄HW [δϕ; ∆ϕ] =

−
∫

B0

J
−4/3
x

3 [(ΣF̄ : ∇0δϕ) (Hx : ∇0∆ϕ) − (ΣF̄ : ∇0∆ϕ) (Hx : ∇0δϕ)] dV

−
∫

B0

2J
−5/3
x

3 [((ΣH̄ Fx) : ∇0δϕ) (Hx : ∇0∆ϕ) + (Hx : ∇0δϕ) ((ΣH̄ Fx) : ∇0∆ϕ)] dV

+
∫

B0
J−2/3

x (ΣH̄ : (∇0δϕ ∇0∆ϕ)) dV

+
∫

B0

(

ΣJ −
J

−4/3
x

3 (ΣF̄ : Fx) −
2J

−5/3
x

3 (ΣH̄ : Hx)
)

(Fx : (∇0δϕ ∇0∆ϕ)) dV

+
∫

B0

4J
−7/3
x

9 (ΣF̄ : Fx) (Hx : ∇0δϕ) (Hx : ∇0∆ϕ) dV

−
∫

B0

10J
−8/3
x

9 (ΣH̄ : Hx) (Hx : ∇0δϕ) (Hx : ∇0∆ϕ) dV.

(86)

The incremental variation of the weak form in equation (80)a with respect to incremental
variations {∆ΣF̄ , ∆ΣH̄ , ∆ΣJ} is obtained as

D2 Π̄HW [δϕ; ∆ΣF̄ ] =
∫

B0

[

J−1/3
x (∆ΣF̄ : ∇0δϕ)

−
1
3J−4/3

x (∆ΣF̄ : Fx) (Hx : ∇0δϕ)
]

dV,

D2 Π̄HW [δϕ; ∆ΣH̄ ] =
∫

B0

[

J−2/3
x ∆ΣH̄ Fx : ∇0δϕ

−
2
3J−5/3

x (∆ΣH̄ : Hx) (Hx : ∇0δϕ)
]

dV,

D2 Π̄HW [δϕ; ∆ΣJ ] =
∫

B0
∆ΣJ (Hx : ∇0δϕ) dV.

(87)
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Directional derivatives of D Π̄HW [δs]. The incremental variation of the weak form in
equation (80)b with respect to incremental variations {∆s} is obtained as

D2 Π̄HW [δs; ∆s] =
∫

B0

δs

(

∂2ΛF̄

∂s2 w̄F̄ + ∂2ΛH̄

∂s2 w̄H̄ + ∂2ΛJ

∂s2 U

)

∆s dV +

∫

B0

gc D2 γ(s)[δs; ∆s] dV = 0.

(88)

The incremental variation of the weak form in equation (80)b with respect to incremental
variations {∆ΣF̄ , ∆ΣH̄ , ∆ΣJ} is obtained as

D2 Π̄HW [δs; ∆ΣF̄ ] =
∫

B0

δs
∂ΛF̄

∂s

(

∂w̄F̄

∂F̄
: ∆ΣF̄

)

dV,

D2 Π̄HW [δs; ∆ΣH̄ ] =
∫

B0

δs
∂ΛH̄

∂s

(

∂w̄H̄

∂H̄
: ∆ΣH̄

)

dV,

D2 Π̄HW [δs; ∆ΣJ ] =
∫

B0

δs
∂ΛJ

∂s

(

∂U

∂J
∆ΣJ

)

dV.

(89)

Directional derivatives of D Π̄HW [δF̄ ], D Π̄HW [δH̄ ] and D Π̄HW [δJ ]. The incremen-
tal variation of the weak form in equation (82) with respect to incremental variations
{∆F̄ , ∆H̄ , ∆J} is obtained as

D2 Π̄HW [δF̄ ; ∆F̄ ] =
∫

B0
δF̄ : ΛF̄

∂2w̄F̄

∂F̄ ∂F̄
: ∆F̄ dV,

D2 Π̄HW [δH̄ ; ∆H̄ ] =
∫

B0
δH̄ : ΛH̄

∂2w̄H̄

∂H̄∂H̄
: ∆H̄ dV,

D2 Π̄HW [δJ ; ∆J ] =
∫

B0
δJΛJ

∂2U

∂J2 ∆J dV.

(90)

Finally, the incremental variation of the weak form in equation (82) with respect to
incremental variations {∆ΣF̄ , ∆ΣH̄ , ∆ΣJ} is obtained as

D2 Π̄HW [δF̄ ; ∆ΣF̄ ] = −
∫

B0
δF̄ : ∆ΣF̄ dV,

D2 Π̄HW [δH̄ ; ∆ΣH̄ ] = −
∫

B0
δH̄ : ∆ΣH̄ dV,

D2 Π̄HW [δJ ; ∆ΣJ ] = −
∫

B0
δJ∆ΣJ dV.

(91)

Notice that although a larger number of directional derivatives and associated linearisa-
tions is obtained with respect to the classical two-field formulation presented in Section
3.2, the level of non-linearity of the different terms is dramatically reduced. For exam-
ple, if a staggered scheme is applied between the displacement/stress/strain fields and
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the phase/stress/strain fields, the non-linearity of the latter term solely depends on the
degeneration function g(s) and the second derivative of the strain energy with respect
to the strain and stresses in (89) and (90).

5. Spatial discretisation

The finite element implementation of the two weak forms introduced in the previous
sections will be presented next. For that purpose, as customary in finite elements, the
domain B0 featuring in the integrands of the weak forms in (45) must be subdivided into
a finite set of non-overlapping elements e ∈ E, such that

B0 ≈ Bh
0 =

⋃

e∈E
B0e. (92)

Note that the unknowns associated to the weak forms in (45) are the displacement field ϕ

and the phase-field parameter s. In this paper, the same approximation will be used for
both the displacement field ϕ and phase-field parameter s. Polynomial approximations
employ either Lagrangian shape functions, when the second-order Allen-Cahn crack
energy functional in (42) is considered, or non-uniform rational B-splines (NURBS) for
the Cahn-Hilliard like crack energy function to achieve the necessary C1 continuity.

5.1. Finite element implementation of the two-field (ϕ − s)
formulation

The approximations of the displacement field ϕ and its virtual variation δϕ are obtained
as

ϕh =
∑

A∈ω

NA(X)qA and δϕh =
∑

A∈ω

NA(X)δqA, (93)

where, A ∈ ω = {1, . . . , n}, with n the number of nodes used to discretised the displace-
ment field and with qA ∈ R3 denoting the nodal values of the displacement field and
NA(X) : B0 → R, the global shape functions. Similarly, the phase-field is discretised
using the same polynomial basis as in equation (93) in order to avoid the application of
transfer matrices, i.e.

sh =
∑

A∈ω

NA(X)sA and δsh =
∑

A∈ω

NA(X)δsA, (94)

where sA ∈ R denotes the phase-field parameter at node A ∈ ω = {1, . . . , n}. Intro-
duction of the discretised expressions for both the displacement field ϕ in (93) and the

23



phase-field parameter s in (94) into the weak forms in equation (45) yields

D Etoth[δqA] = δqA ·






∫

B0

P h∇X

(

NA(X)
)

dV −
∫

B0

NAB̄(X) dV −
∫

∂Bσ
0

NAT̄ dA




 = 0,

D Etoth[δsA] = δsA

∫

B0

NAHh dV +
∫

B0

gc D γ
(

sBNB
)

[δsA] dV = 0,

(95)
where Etoth, P h and Hh denote the discrete total energy (44), the discrete first Piola-
Kirchhoff stress tensor and the discrete driving force of the phase-field. Particularisation
of equation (95)b to the Allen-Cahn energy crack density in (42) yields

D Etoth[δsA] =δsA






∫

B0

NAHh dV +

∫

B0

(
gc

l
NANBsB + gcl

(

∇X NA
)

·
(

∇X NB
)

sB

)

dV




 = 0.

(96)

Finally, particularisation of equation (95)2 to the Cahn-Hilliard energy crack density in
(43) yields

D Etoth[δsA] = δsA






∫

B0

NAHh dV +
∫

B0

(
gc

l
NANBsB

+gcl
(

∇X NA
)

·
(

∇X NB
)

sB + gcl
3

2
(

∆XNA
) (

∆XNB
)

sB

)

dV

]

= 0.

(97)

5.2. Finite Element discretisation of directional derivatives of the
Hu-Washizu mixed variational principle

The directional derivatives of the above mixed variational principle (79) with respect to
virtual variations of the deformation ϕ and virtual variations of the phase-field parameter
s give

D Π̄HW [δϕ] =
nx∑

A=1
RA

x · δqA; RA
x =

∫

B0

P h
HW NA

x dV −
∫

B0

NA
x B̄ dV −

∫

∂Bσ

0

NA
x T̄ dA = 0,

D Π̄HW [δs] =
nx∑

A=1
RA

s · δsA; RA
s =

∫

B0

Hh
HW NA

s δs dV +
∫

B0

gc D γ(s)[δsA] dV = 0,

(98)
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where P h
HW and Hh

HW are the discrete counterparts of P HW and HHW (refer to equation
(81)). Next, we have to define suitable interpolation spaces for the strains and stresses.
Inside each element (i.e. element piecewise interpolation) we define shape functions NA

F̄
,

NA
H̄

and NA
J (bilinear for the 2D and trilinear for the 3D case), and obtain

F̄
h =

∑

A∈ω
F̄

NA
F̄ F̄ A; H̄

h =
∑

A∈ω
H̄

NA
H̄H̄A; Jh =

∑

A∈ωJ

NA
J JA,

δF̄
h =

∑

A∈ω
F̄

NA
F̄ δF̄ A; δH̄

h =
∑

A∈ω
H̄

NA
H̄δH̄A; δJh =

∑

A∈ωJ

NA
J δJA,

(99)

and
Σh

F̄ =
∑

A∈ω
F̄

NA
F̄ ΣF̄ A; Σh

H̄ =
∑

A∈ω
H̄

NA
H̄ΣH̄ A; Σh

J =
∑

A∈ωJ

NA
J ΣJ A,

δΣh
F̄ =

∑

A∈ω
F̄

NA
F̄ δΣF̄ A; δΣh

H̄ =
∑

A∈ω
H̄

NA
H̄δΣH̄ A; δΣh

J =
∑

A∈ωJ

NA
J δΣJ A,

(100)

i.e. identical interpolation spaces are used for strain and stress fields and with A ∈ ω• =
{1, . . . , n•} and n• the number of nodes per element associated with the discretisation of
the field •. For both, displacement and phase-field interpolations NA

x and NA
s , quadratic

shape functions (either Lagrange or NURBS) are used. Then, the discretisation of
equation (82) yields

DΠ̄HW [δF̄ , δH̄, δJ ] =
n

F̄∑

A=1
RA

F̄ : δF̄ A +
n

H̄∑

A=1
RA

H̄ : δH̄A +
nJ∑

A=1
RA

J δJA, (101)

where the different residuals associated with the weakly enforced constitutive equations
are

RA
F̄ =

∫

B0

(

ΛF̄

∂w̄F̄

∂F̄
h − Σh

F̄

)

NA
F̄ dV,

RA
H̄ =

∫

B0

(

ΛH̄

∂w̄H̄

∂H̄
h − Σh

H̄

)

NA
H̄ dV,

RA
J =

∫

B0

(

ΛJ
∂U

∂Jh − Σh
J

)

NA
J dV.

(102)

Finally, discretisation of equation (83) leads to

DΠ̄HW [δΣF̄ , δΣH̄ , δΣJ ] =
n

F̄∑

A=1
RA

Σ
F̄

: δΣF̄ A +
n

H̄∑

A=1
RA

Σ
H̄

: δΣH̄ A +
nJ∑

A=1
RA

ΣJ
δΣJ A,

(103)
where the different residuals associated with the weakly enforced compatibility equations
are

RA
Σ

F̄

=
∫

B0

(

F̄
h
x − F̄

h)
NA

F̄ dV,

RA
Σ

H̄

=
∫

B0

(

H̄
h
x − H̄

h)
NA

H̄ dV,

RA
ΣJ

=
∫

B0

(

Jh
x − Jh

)

NA
J dV,

(104)
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where the subscript x indicates the dependency of the corresponding variable with re-
spect to the actual displacement.

5.2.1. Static condensation procedure for the Hu-Washizu mixed variational
principle

The use of discontinuous interpolation spaces across elements for the fields {F̄ , H̄ , J}
and {ΣF̄ , ΣH̄ , ΣJ} enables to carry out a static condensation procedure similar to that
presented in Reference [3], where the local degrees of freedom associated with these
variables are condensed locally, leading to a formulation with a computational cost
comparable to that of the two-field ϕ−s presented in Section 5.1. For notational conve-
nience, let us introduce the vector D representing the Voigt notation of the set of strains
{F̄ , H̄ , J} and ΣD the Voigt notation of the conjugate set of stresses {ΣF̄ , ΣH̄ , ΣJ}.
Discretisation of the weak forms and linearisations in Section 4 leads to the following
system of equations at each element:













Ke
xx 0 0 Ke

xΣD

0 Ke
ss Ke

sD
0

0 Ke
Ds Ke

DD̄
Ke

DΣD

Ke
ΣDx 0 Ke

ΣDD
0

























∆xe

∆se

∆De

∆ΣD,e













= −













Re
x

Re
s

Re
D

Re
ΣD













, (105)

where the subscript e is used to indicate the local character of a residual or stiffness
at a particular element. The exact definitions of the discrete tangent operators Ke

••

corresponding to the continuous functions in (86), (87), (88), (89), (90) and (91) are
presented in detail in Appendix A. It is possible to prove that in this formulation, the
static condensation procedure will not introduce numerical difficulties, depending on
how the static condensation procedure is carried out.

Let us focus on the fourth row in above linear system of equations, from which it is
possible to obtain ∆D

e as

∆De = −
(

Ke
ΣDD

)−1 (
Re

ΣD
+ Ke

ΣDx∆xe

)

. (106)

Finally, from the third row in above linear system of equations (105), it is possible to
obtain ∆Σe

D
as

∆ΣD,e = −
(

Ke
DΣD

)−1
(Re

D
+ Ke

Ds∆se + Ke
DD

∆De) , (107)

with ∆De defined in (106). Therefore, in order to be able to carry out the static
condensation procedure, it is crucial that both stiffness matrices Ke

DΣD
and Ke

ΣDD

are invertible. In this particular formulation, it is clear that these matrices are always
invertible. Introduction of the expressions for ∆De (106) and ∆Σe

D (107) into the first

26



and second rows of the linear system of equations in (105) enables the local algebraic
system of equations to be formulated exclusively in terms of the unknowns ∆ϕe and
∆se as






K̃
e

xx K̃
e

xs
(

K̃
e

xs

)T
K̃

e

ss











∆xe

∆se




 = −






R̃
e

x

R̃
e

s




 , (108)

where the modified stiffness matrices K̃
e

xx, K̃
e

xs and K̃
e

ss are obtained as

K̃
e

xx = Ke
xx + Ke

xΣD

(

Ke
DΣD

)−1
Ke

DD

(

Ke
ΣDD

)−1
Ke

ΣDx,

K̃
e

xs = −Ke
xΣD

(

Ke
DΣD

)−1
Ke

Ds,

K̃
e

ss = Ke
ss.

(109)

Finally, the modified residuals R̃
e

x and R̃
e

s are obtained as

R̃
e

x = Re
x − Ke

xΣD

(

Ke
DΣD

)−1
Re

D + Ke
xΣD

(

Ke
DΣD

)−1
Ke

DD

(

Ke
ΣDD

)−1
Re

ΣD
,

R̃
e

x = Re
s − Ke

sD

(

Ke
ΣDD

)−1
Re

ΣD
.

(110)

An alternative static condensation procedure is given in Appendix B.

Remark 6. It is worth emphasising that in this procedure, the invertibility of matrices
Ke

DΣD
and Ke

ΣDD
has enabled to obtain the modified matrices and residuals K̃

e

xx, K̃
e

xs

and K̃
e

ss, R̃
e

x and R̃
e

s without introducing any additional numerical difficulty. However,
the different scales of the mechanical and phase-field problems, related to the first and
second rows of the final elemental system of equations in (108) might introduce an overall
ill-conditioning which must be efficiently tackled via a suitable pre-conditioner or via a
staggered solution approach.

6. Examples

In this section we evaluate the accuracy and performance of the newly proposed methods
in the context of large strains. Moreover, a comparison of the new anisotropic split is
carried out against the split in terms of principal eigenvalues as given in Reference
[22]. In particular, we focus on static two-dimensional (2D) and three-dimensional (3D)
benchmark problems.
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Figure 1: Geometry and boundary conditions for the tension problem (left) and the shear problem
(right).

6.1. 2D Tests

The following two-dimensional benchmark examples have been presented in Reference
[22] (see also [26] for further details). The objective of these examples is to address the
following points:

I Comparison of the solution obtained by using linear Lagrange shape functions to
that obtained by using quadratic NURBS for the interpolation of the displacement
and the phase-field.

II Comparison of the second order Allen-Cahn crack density functional (42) and the
fourth order Cahn-Hilliard crack density functional (43) using quadratic NURBS
basis functions in both cases. Note that the second order Allen-Cahn type approach
will in general produce different results as the fourth order Cahn-Hilliard type
approach, since the predefined length scale parameter controls the regularisation
zone differently in both approaches. However, we expect at least results which do
not differ significantly.

III Study of the performance of the cubic degradation function g(s) defined in equation
(52) examining the solution of the problem.

IV Comparison of the solution obtained with the proposed anisotropic split based on
principal invariants with that obtained based on the principal eigenvalues of the
deformation proposed in Reference [22].

V Study of the effect of mesh refinement upon the solution.

VI Comparison of the solution obtained with the two-field ϕ−s formulation presented
in Section 5.1 and the Hu-Washizu mixed formulation in Section 5.2.
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Figure 2: Tension problem: Phase-field results for displacements of uy = [4.73, 4.83, 4.98] × 10−6 m
using the cubic degradation function with ag = 0.1 (upper row) and for displacements of
uy = [4.47, 4.69, 4.83]×10−6 m using the quadratic degradation function (lower row). Results
for the Neo-Hookean model with anisotropic split of the invariants are presented. Results
obtained with the two-field (ϕ − s) formulation.

In order to investigate each of the aforementioned points, a fixed value of the length
parameter l = 7.5 × 10−6 m (interpreted as a material parameter) and a critical energy
release rate gc = 2.7 × 103 J/m2 will be chosen. Moreover, a Neo-Hookean material
model (in two-dimensional problems, both invariants IIF and IIF̄ are computed as in
equation (26)) defined as

W (F , J) = µ

2 (IIF − 3) − µln(J) + λ

2 (J − 1)2, (111)

has been considered for all the simulations in which the anisotropic split based on the
principal eigenvalues is employed. Alternatively, for those simulations in which the
newly proposed invariant split is used, this model is conveniently modified in terms of
the isochoric-volumetric split defined in equation (19), yielding

W (F , J) = µ

2 (IIF̄ − 3) + κ

2 (J − 1)2. (112)

The material parameters have been chosen to be compatible with a Young’s modulus of
E = 2.1 × 1011 N/m and a Poisson’s ratio of ν = 0.3. For that purpose, the following
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Figure 3: Load-deflection curves for the tension problem using an eigenvalue split (left) and an invariant
split (right). Results obtained with the two-field (ϕ − s) formulation.

choice of material parameters is required

µ = 80.769 × 109 N/m2; λ = 121.154 × 109 N/m2 (113)

The bulk modulus κ in (112) can then be calculated in a straightforward manner.

Tension test A well-established benchmark problem is that of a symmetric tension test
consisting of a squared plate with a horizontal notch (area with initialised fracture) with
the geometry depicted in Figure 1 (left). The lower boundary is completely constrained
as shown in Figure 1 (left), whereas the upper boundary is incrementally stretched in
the (vertical) y-direction reaching a total accumulated displacement of u = 5.6 × 10−6

m. An initial incremental displacement ∆u = 10−8 m is applied on the upper boundary
until a total accumulated displacement of u = 4 × 10−6 m is reached. Subsequently, the
incremental displacement is reduced by a factor of 10. Notice that this variably applied
incremental displacement is necessary from the numerical standpoint. A more effec-
tive computational implementation would involve the use of an arc-length methodology,
which can cope more efficiently with this type of problems near the verge of snap-through
instabilities.

Two structured meshes of 256 × 256 and 512 × 512 quadrilateral elements are employed,
yielding a uniform ratio between the element size and the length scale parameter l of
h ≈ l/2 and h ≈ l/4, respectively. Snapshots depicting the contour plot of the phase-
field variable s at different values of the total accumulated displacement are shown in
Figure 2, where the proposed anisotropic split based on the principal invariants has been
used. As already noted in Section 3.3.1, different anisotropic splits for the volumetric
term U s(J, s) are possible. Here, we use U s(ΛJJ, s) instead of ΛJU s(J, s), since the latter
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Figure 4: Load-deflection curves for the tension problem for the second and the fourth order regulari-
sation profile. Results obtained with the two-field (ϕ − s) formulation.

formulation does not compare accordingly with the original anisotropic split in terms of
eigenvalues.

Figure 3 shows a comparison of the results provided by the anisotropic split based
on principal eigenvalues (left) and that based on principal invariants (right). In both
approaches, the two-field (ϕ − s) formulation in Section 5.2 has been used. For each
approach displayed in Figure 3, it is possible to observe that the solution obtained
for both meshes, namely 256 × 256 quadrilateral elements and 512 × 512 quadrilateral
elements are nearly identical, which indicates that for the coarser mesh the solution
is already converged. Note that this addresses point V above. Regarding point I,
these two Figures show that for both anisotropic splits, the results obtained using linear
Lagrange shape functions match exactly those obtained using quadratic NURBS when
the second order Allen-Cahn crack density functional (42) is employed. Notice that this
is expected for a sufficiently fine mesh with a converged solution.

Concerning point IV, we observe that the solution provided by both anisotropic splits
(for the same choice of interpolation spaces, degradation function and crack density
functional) differs noticeably regarding the initialisation of the crack. This is due to
the fact, that different formulations of the elastic strain energy density functions are
applied. Regarding point III, it is possible to observe the different influence of the
cubic degradation function for a choice of the parameter ag = 0.1. Regarding point
II, the results obtained when the fourth order Cahn-Hilliard crack density functional
in (43) is used (in conjunction with quadratic NURBS) are slightly different from those
obtained with the second order Allen-Cahn functional. Note that this was expected,
as the fourth order functional regularises the transition zone differently, i.e. the same
length scale parameter l yields a different constitutive behaviour in the material.
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Figure 5: Load-deflection curves for the tension problem. Study of different ag parameters for the cubic
degeneration function. Results obtained with the two-field (ϕ − s) formulation.

In Figure 4, a more extensive comparison of the results of the second order Allen-Cahn
crack functional and those obtained with the fourth order Cahn-Hilliard functional is
presented. For each choice of crack density functional (second order (Figure 4a) and
fourth order (Figure 4b)), both anisotropic splits have been employed using the cubic
degradation function g(s) (52) with a choice of ag = 0.1. For completeness, a linear
degradation function g(s) = 1−s has also been considered for the anisotropic split based
on eigenvalues‡‡. Notice that this linear degradation function was used in Reference [22].
It can be observed that the cubic degradation function seems to be numerically more
stable.

This numerical stability is dramatically affected for the particular choice of ag = 2,
degenerating in a quadratic degradation function (refer to equation (52)), as observed in
Figure 5, where a mesh of 256 × 256 quadrilateral elements and linear Lagrange shape
functions were employed for all the simulations. In contrast to the cubic degeneration
function, the choice of the quadratic degeneration function leads to a softening before
crack initialization for both anisotropic splits. Note that several curves for the eigenvalue
split stop before a full breakthrough is even reached. Since we do not use a trust-region
or any other similar numerical optimisation strategy, the additional material instability
of this approach (refer to Remark 4) becomes apparent in this case. In contrast, the
new approach based on principal invariants is numerically more stable.

Furthermore, the performance of the Hu-Washizu mixed variational formulation is in-
vestigated. A second order Allen-Cahn functional is used, for two spatial discretisations
of 128 × 128 and 256 × 256 elements. A value of ag = 0.1 is used for the (cubic) de-
generation function. The Lamé and the length parameter are the same as in (113) to

‡‡The linear degeneration function is only considered within the exponent of the principal stretches.
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Figure 6: Tension problem, upper row: Load-deflection curve for the tension problem and phase-field
results for the fully broken state. Results obtained with the Hu-Washizu mixed variational
formulation. Lower Row: von Mises stress distribution at the crack tip. Left: Two-field
(ϕ − s) formulation, right: Hu-Washizu mixed variational formulation. Note the different
colorbar ranges.

ensure a realistic comparison with previous results. The incremental displacements on
the upper boundary are also prescribed in accordance to the previous examples.

Figure 6 demonstrates the general applicability of the proposed Hu-Washizu formulation
to phase-field problems. In particular, the phase-field as well as the von Mises stress
field calculated from the independently approximated stress fields are displayed along
with the load deflection curve. Moreover, the von Mises stress distributions of the two-
field (ϕ − s) formulation as well as the Hu-Washizu mixed variational formulation are
displayed for the evolving crack tip. The stress distributions are extremely similar,
although the Hu-Washizu approach initiate the crack on a slightly higher value, which
corresponds to the higher von Mises stress values in the colorbar on the right hand
side.

As it is well-known for phase-field methods in statics, a large broken area can lead to
numerical instabilities if a node is completely stress free. This has been avoided in
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Figure 7: Shear problem: Phase-field results for displacements of ux = [8.5, 10.5, 1.22] × 10−6 m using
the Neo-Hookean model with an anisotropic split of the principal invariants (upper row)
and for displacements of ux = [8.5, 10.5, 11.05] × 10−6 m using the Neo-Hookean model
with an anisotropic split of the principal eigenvalues (lower row). In both a parameter of
ag = 0.1 is used for the cubic degradation function. Results obtained with the two-field
(ϕ − s) formulation.

the previous examples by applying a sufficient small length-scale parameter. Here, we
observe in the von Mises stress distribution that the crack introduced by the phase-
field within the Hu-Washizu formulation using the same length-scale parameter leads
to a broader area with reduced stresses compared to the two-field (ϕ − s) formulation.
Hence, a smaller length-scale parameter is required for the mixed variational formulation
to obtain the same results as for the irreducible approach. As it is well-known, a smaller
length-scale parameter reduces the necessary energy to initiate the crack, which would
lead to coinciding results for both formulations, see Miehe et al. [27] for a detailed
discussion on the influence of the length-scale parameter.

Shear test The geometry and boundary conditions of the shear test example are de-
picted in Figure 1 (right). The difference with respect to the previous example (tension
problem) resides on the application of a (horizontal) x-direction displacement on the
upper boundary of the body, yielding a shear type deformation. In contrast to the pre-
vious example, a uniform incremental displacement of ∆u = 10−8 m is now applied on
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Figure 8: Load-deflection curves for the shear problem for the different splits using an eigenvalue and a
decomposition of the invariants. Results obtained with the two-field (ϕ − s) formulation.

this boundary. The material parameters are exactly the same as those for the tension
problem.

Figure 7 shows a series of snapshots for the contour plot of the phase-field variable s,
where the two-field (ϕ−s) formulation has been used. The load-deflection curves for the
two anisotropic splits are presented in Figure 8, yielding analogous conclusions to the
tension test. As can be observed, the results for the mesh using 256 × 256 quadrilateral
elements are nearly identical compared with the results of the mesh using 512 × 512
quadrilateral elements. Additionally, the newly proposed anisotropic split based on the
principal invariants initialises slightly differently with respect to the anisotropic split
based on the principal eigenvalues. Eventually, Figure 9 shows the load-deflection curves
for the second and fourth order crack density functionals yielding similar conclusions to
those obtained for the tension test in Figure 4.

6.2. Large deformation test

The objective of this example is to illustrate the applicability of the formulation to sce-
narios where large deformations are obtained in the entire computational domain. With
that in mind a Neo-Hookean constitutive model is considered with material parameters
defined as follows

µ = 8000 N/m2; λ = 4000 N/m2, (114)
which correspond to a Young’s modulus of E = 1.0667 × 104 and a Poisson ratio of
ν = 0.333. The reference configuration is given in Figure 10; the outer length of the
beams comprising the L-shape is 10 m and the thickness 2 m. A structured mesh of
99435 elements with a total number of 301464 degrees of freedom is considered. A
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Figure 9: Load-deflection curves for the shear problem for the second and the fourth order regularisation
profile. Results obtained with the two-field (ϕ − s) formulation.

value of ag = 0.1 is used for the degradation function g(s) and a critical energy release
rate of gc = 2.7 × 103 J/m2. The length scale parameter has been adapted to the
mesh using l = 0.0381 m, such that l = h/2. A force per unit undeformed area of
T̄ = [0, −200 × t] N/m2 has been applied to the upper surface, controlled by a quasi
time-step size of ∆t = 0.001 for each load increment. The L-shaped domain is completely
constrained on the right hand side boundary.

Figure 11 displays the phase-field as well as the stress field after crack initialisation at
t = 1.302 s. As can be seen, the crack evolves as expected. Note that all the broken
elements have been removed for post-processing purposes.

q

Figure 10: Reference configuration of the large deformation test. A coarse mesh is displayed for visual-
isation purposes.
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Figure 11: Results of the large deformation test. Upper picture: Phase-field, lower: von Mises stress
distribution. Broken elements are removed.

6.3. 3D Tests

The objective of this Section is to demonstrate the applicability of the newly proposed
anisotropic split, in conjunction with the use of the fourth order Cahn-Hilliard crack
functional (43), the cubic degradation function (52) and the use of hierarchical re-
fined NURBS for the numerical simulation of fracture using phase-field models in three-
dimensional applications. In particular, we consider a horizontal notched plate of size
1m × 0.2m × 1m. The classical fracture modes I, II and III (depicted in Figure 12) are
considered in this example, representing the crack propagation due to an unidirectional
stretch (mode I), in-plane shear (mode II), and out-of-plane shear (mode III) loadings
(see also Hesch et al. [21]).

For the three models, a mesh of 20 × 4 × 20 quadratic B-spline elements on level zero
has been used. Additionally, the finite element mesh is locally refined to capture the
different crack path for each specific fracture mode as:

Mode I: Three local refinement levels are used for the pure tension test, see Figure
13, left. In total 46288 elements with overall 275354 degrees of freedom are
employed. The displacement increment is set to ∆u = 0.5 × 10−4m.
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Figure 12: Boundary conditions for mode I (left), mode II (middle) and mode III (right) crack propa-
gation.

Figure 13: Initial meshes of mode I (left), mode II (middle) and mode III (right)

Mode II: Two local refinement levels are used for the in-plane shear test, see Figure
13, middle. In total 21900 elements with overall 102807 degrees of freedom
are employed. The displacement increment is set to ∆u = 0.5 × 10−4m.

Mode III: Two local refinement levels are used for the out-of-plane shear test, see Figure
13, right. In total 29040 elements with overall 135732 degrees of freedom are
employed. The displacement increment is set to ∆u = 1 × 10−4m.

The constitutive behaviour is assumed to be governed by the Mooney-Rivlin model in
(57) with the volumetric functional U defined as in (21), where the parameters corre-
spond to a steel-like material with γ = 26.923GPa, ζ = 13.462GPa and κ = 175GPa.
In addition, the phase-field parameters are set to gc = 2.7 × 103J/m2, l = 0.0081m and
ag = 0.085 for mode I, whereas l = 0.0138m and ag = 0.05 are used for modes II and
III. The two-field (ϕ − s) formulation has been used in this example.

Figure 14 shows the von Mises stress distribution for the three modes at a specific
displacement increment. The contour plot of the phase-field variable s is depicted using
isosurfaces for s = 0.8 in Figure 15, displaying detailed snapshots of the crack progression
for the different modes. Note that the NURBS meshes have been created using condensed
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Figure 14: Von Mises stress results of mode I (left, for displacement uz = 0.26 × 10−3m), mode II
(middle, for displacement ux = 0.37 × 10−3m) and mode III (right, for displacement uy1 =
−uy2 = −1.74 × 10−3m). Results obtained using the two-field (ϕ − s) formulation

higher order domain decomposition constraints between two rectangular blocks starting
at the center up to the right hand boundary, such that we obtain an initial crack from
the left hand boundary to the center. The meshes in Figure 15 indicate this construction
by displaying the internal interface.

Summarised, the fourth order Cahn-Hilliard crack functional (43) in conjunction with
cubic degradation function (52) and the proposed polyconvex anisotropic split based
upon the principal invariants has been used in this example. The effective prediction
of arbitrary three-dimensional crack propagation patterns, with special mention to the
mode III shear test, is extremely complex in the sense that three-dimensional patterns
have been obtained as shown in Figure 15c. Note that the mode III example does not
produce a perfect crack path as expected for the linear theory. We conducted additional
tests with different boundary conditions (e.g. by constraining all degrees of freedom of
the front surfaces) and obtain results analogues to the presented ones, i.e. the complex
fracture patterns emanate from the non-linear theory used in this example.

7. Conclusions

In this paper, a framework for polyconvex non-linear elasticity in the context of phase-
field fracture is presented. The phase-field methodology is based upon a novel anisotropic
split in terms of the principal invariants of the right Cauchy-Green deformation tensor.

The novel formulation based on principle invariants improves the numerical stability
of the non-linear fracture problem tremendously. Numerical stability, related to the
material stability of the Hessian operator [HW s

m
], is one of the major issues for a stable
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Figure 15: Final phase-field results of mode I (left, for displacement uz = 0.26 × 10−3m), mode II
(middle, for displacement ux = 0.37 × 10−3m) and mode III (right, for displacement uy1 =
−uy2 = −1.74 × 10−3m). Results obtained using the two-field (ϕ − s) formulation.

simulation of crack propagation. An insightful decomposition of the Hessian operator
is presented in this paper, which allows to identify the possible sources of instability as
fracture propagates.

Furthermore, for the first time in the context of phase-field fracture mechanics, a Hu-
Washizu type of mixed variational principle is presented. This principle allows for a
direct access of the strains and stresses as primary variables of the system and opens
the door for novel variationally consistent formulations of the phase-field methodology.
The mixed formulation considers an extended set of variables including the kinematic
entities {F̄ , H̄ , J} and their work conjugates {ΣF̄ , ΣH̄ , ΣJ}. This formulation, in con-
junction with the use of the tensor cross product in [3] simplifies the algebra drastically
in comparison with the two-field (ϕ − s) formulation. Additionally, a static condensa-
tion procedure has been carried in order to condense out the discontinuous strain-stress
fields, leading to a formulation with a computational cost comparable to that of the
two-field formulation.

Finally, a Hu-Washizu type mixed variational principle is applied for the first time to
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higher order Cahn-Hilliard crack energy density functionals in conjunction with the
use of NURBS based shape functions with hierarchical refinement in two and three-
dimensional applications. This demonstrates the applicability as well as the generality
of the chosen approach. Future work will extend this formulation to transient large-scale
multi-physical simulations.
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A. Finite Element discretisation of linearisations

Directional derivatives of D Π̄HW [δϕ] The discretisation of equation (86) enables to
define the stiffness matrix contribution Kxx as

KAB
xx =

−
∫

B0

J
−4/3
x

3
[(

ΣF̄ ∇0NA
x

)

⊗
(

Hx∇0NB
x
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x
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dV

−
∫

B0

2J
−5/3
x

3
[(

(ΣH̄ Fx) ∇0NA
x

)

⊗
(

Hx∇0NB
x

)

+
(

Hx∇0NA
x

)

⊗
(

(ΣH̄ Fx) ∇0NB
x

)]

dV

+ E :
∫

B0
J−2/3

x

(

ΣH̄

(

∇0NA
x × ∇0NB

x

))

dV

+ E :
∫

B0

(

ΣJ −
J

−4/3
x

3 (ΣF̄ : Fx) −
2J

−5/3
x

3 (ΣH̄ : Hx)
)
(

Fx

(

∇0NA
x × ∇0NB

x

))

dV

+
∫

B0

4J
−7/3
x

9 (ΣF̄ : Fx)
(

Hx∇0NA
x

)

⊗
(

Hx∇0NB
x

)

dV

−
∫

B0

10J
−8/3
x

9 (ΣH̄ : Hx)
(

Hx∇0NA
x

)

⊗
(

Hx∇0NB
x

)

dV.
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The stiffess matrix contributions {KxΣ
F̄
, KxΣ

H̄
, KxΣJ

} arising from the discretisation
of the expressions in equation (87)
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xΣ
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=
∫
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x NB
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(116)

Directional derivatives of D Π̄HW [δs] The discretisation of the expression in equation
(88) for the Allen-Cahn density functional (42) yields the stiffness contribution Kss,
defined as

KAB
ss =

∫

B0

NA
s

(

∂2ΛF̄
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Analogously, for the Cahn-Hilliard crack energy density functional (43), the stiffness
matrix contribution Kss adopts the following expression

KAB
ss =

∫
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(118)
The incremental variation of the weak form in equation (80)b with respect to incremental
variations {∆ΣF̄ , ∆ΣH̄ , ∆ΣJ} is obtained as

KAB
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=
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(119)
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Directional derivatives of D Π̄HW [δF̄ ], D Π̄HW [δH̄ ] and D Π̄HW [δJ ] The stiffness
matrix contributions associated to the discretisation of equation (90) are

KAB
F̄ F̄ =

∫

B0
NA

F̄ NB
F̄ ΛF̄

∂2w̄F̄

∂F̄ ∂F̄
dV ;
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dV ;
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∂2U

∂J2 dV.

(120)

Finally, the incremental variation of the weak form in equation (82) with respect to
incremental variations {∆ΣF̄ , ∆ΣH̄ , ∆ΣJ} are obtained as

KAB
F̄ Σ

F̄

= −
∫

B0
NA

F̄ NB
F̄ I dV ;

KAB
H̄Σ
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= −
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KAB
ΣJ ΣJ

= −
∫

B0
NA

J NB
J dV.

(121)

B. Alternative static condensation for Hu-Washizu.

Alternatively to the static condensation procedure as proposed in Section 5.2.1, it would
have been possible to obtain the incremental value ∆De from the third row in equation
(105) as

∆De = − (Ke
DD

)−1
(

Re
D

+ Ke
Ds∆se + Ke

DΣD
∆ΣD,e

)

. (122)
Substitution of the above expression (122) for ∆De into the remaining rows renders the
following system of equations (prior to static condensation in the unknown ∆ΣD,e)
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, (123)

where the modified stiffness matrices K̃
e

ss, K̃
e

sΣD
and K̃

e

ΣDΣD
are defined as
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(124)

The modified residuals R̃
e

s and R̃
e

ΣD
can be expressed as

R̃
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s = Re
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sD (Ke
DD)−1

Re
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= Re
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.
(125)
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Elimination of the last row in above equation (123) yields to local algebraic system of
equations in terms of the local unknowns ∆xe and ∆se as
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 , (126)

where the final stiffness matrices Ke⋆
xx, Ke⋆

xs and Ke⋆
ss are defined as
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Finally, the modified residuals Re
x

⋆ and Re
s
⋆ can be expressed as
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Remark 6. In contrast to the first approach described in order to carry out the static
condensation procedure, this second approach introduces further numerical difficulties.
In addition to the possible scaling issue between the mechanical and phase-field problem
(first and second rows of the system in (126)), an additional numerical difficulty has been
introduced when arriving at the intermediate local system of equations in (123). Notice
that the computation of the modified stiffness matrices in that system of equations
require the inversion of the local matrix contribution Ke

DD
(refer to equation (120)),

comprising the individual matrices Ke
F̄ F̄ , Ke

H̄H̄ and Ke
JJ . For tensional states, namely

IIF̄ > 3, IIH̄ > 3 and J > 1, the invertibility of these matrices is compromised for the
fully damaged state, i.e, s → 1, as these matrices vanish Ke

DD → 0. A possible solution
to overcome this drawback is the redefinition of the functions ΛF̄ , ΛF̄ and ΛJ via the
introduction of a small parameter ε as

ΛF̄ =







g(s) + ε if IIF̄ > 3;

1 otherwise.
ΛH̄ =







g(s) + ε if IIH̄ > 3;

1 otherwise.
ΛJ =







g(s) + ε if J > 1;

1 otherwise.

(129)
(cf. Section 3.3.1). However, if the parameter ε is very small, numerical instabilities
associated with ill-conditioning of the associated stiffness matrix might still arise. These
are typically solved by the use of an appropriate pre-conditioner. A plausible solution
that works as a pre-conditioner and that can efficiently solve the numerical difficulties
associated to the Hu-Washizu mixed variational principle requires a slight modification of
the residuals in equation (102). The local character of these equations (a discontinuous
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interpolation of each of the fields in {D, ΣD} is considered) enables to modify those
equations (pre-dividing them by the appropriate function Λ•) as

RA
F̄ =

∫

B0

1
ΛF̄

(

ΛF̄

∂w̄F̄

∂F̄
h − Σh

F̄

)

NA
F̄ dV ;

RA
H̄ =

∫

B0

1
ΛH̄

(

ΛH̄

∂w̄H̄

∂H̄
h − Σh

H̄

)

NA
H̄ dV ;

RA
J =

∫

B0

1
ΛJ

(

ΛJ
∂U

∂Jh − Σh
J

)

NA
J dV.

(130)

It is worth pointing that this modification leads to non symmetries in (105) as (Ke
Ds) 6=

Ke
sD and

(

Ke
DΣD

)T
6= Ke

ΣDD.
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