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Abstract

In this paper, a novel optimal adaptive radial basis function neural network (RBFNN) control has been investigated for
a class of multiple-input-multiple-output (MIMO) nonlinear robot manipulators with uncertain dynamics in discrete
time. To facilitate digital implementations of the robot controller, a robot model in discrete time has been employed. A
high order uncertain robot model is able to be transformed to a predictor form, and a feedback control system has been
then developed without noncausal problem in discrete time. The controller has been designed by an adaptive neural
network (NN) based on the feedback system. The adaptive RBFNN robot control system has been investigated by a
critic RBFNN and an actor RBFNN to approximate a desired control and a strategic utility function, respectively. The
rigorous Lyapunov analysis is used to performed to establish uniformly ultimate boundedness (UUB) of closed-loop
signals, and the high-quality dynamic performance against uncertainties and disturbances is obtained by appropriately
selecting the controller parameters. Simulation studies validate that the control scheme has performed better than
other available methods currently, for robot manipulators.

Keywords: Discrete-time system; Neural networks; Robot manipulator; Adaptive control; Dynamics uncertainties

1. Introduction

Robot manipulators are typically modelled as MIMO
systems with high nonliearity, and they are usually sub-
ject to unmodelled dynamics and uncertainty [1, 2, 3].
Control signals of nonaffine nonlinear robot manipula-
tors have nonlinear inputs with coupling effect,uncertain
parameters and unknown nonlinear functions, and thus,
it is still a challenging problem to design reliable con-
trol for general uncertain robot manipulators. With ad-
vances of robot technologies, application of manipula-
tors in industry and other fields become increasingly
popular, and the researches on control design for robot
manipulators have attracted much attention, e.g., feed-
back linearization method [4, 5], sliding mode control
methods [6, 7, 8, 9], have been investigated for robot
trajectory tracking control and optimal control. Further-
more, intelligent control methods and complex control
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schemes have been proposed or extended for robot sys-
tem control, e.g., adaptive control, adaptive and fuzzy
complex control, and adaptive with sliding complex
control [10, 11, 12, 13, 14] for robot manipulators. To
compensate for the effects caused by robot uncertain dy-
namics, adaptive neural network (ANN) researches have
been extensively exploited, due to its capacity of online
learning and universal approximation of smooth nonlin-
ear functions in [15, 16, 17].
In recent years, adaptive RBFNN methods have been
developed to be more powerful to deal with dynamics
uncertainties that are more complex in practical applica-
tion, In [18], an adaptive RBFNN algorithm based con-
trol guaranteeing stability of closed-loop robot system
online, has been investigated. In [19, 20], the robust
controller with a adaptive RBFNN has been presented
for the effects caused by dynamics uncertainties. The
closed-loop control systems achieve UUB stability for
robot manipulators, and their stability analysis has been
well established in continuous time. At the same junc-
ture, the controllers of robot manipulators using digi-
tal control technology and high-speed data transmission
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based on digital computers are playing important roles
and have more convenient in practice. Hence, recent
research works for robot manipulators gradually focus
on discrete-time control. In [21, 18], a robot dynam-
ics model and a robot control method are applied in
discrete time, these approaches to on-line control using
acceptable discrete-time robot models seem to be very
convenient. In [22], by combination of one-step-ahead
control and ANN, a stable ANN approach has been de-
veloped for a class of nonlinear MIMO robot system in
discrete time. In [23], an ANN control is presented for a
class of MIMO nonlinear robot systems with block tri-
angular structure in discrete time, and the systems can
be separated into n subsystems in pure-feedback form,
and which has unknown control directions and complex
couplings. In [24], a stable adaptive controller employ-
ing neuro-fuzzy method as an estimator for a class of
robot manipulators has been proposed in discrete time.
In [25], by employing an adaptive fuzzy estimator, a
discrete-time model-free control law has been devel-
oped to compensate for dynamics uncertainties of robot
manipulators. These approaches have performed well
to guarantee robot stability, and most of them mainly
concern in stability of robot manipulators in discrete
time. However, the researches can well guarantee stabil-
ity of closed-loop robot systems, but realizing trajectory
tracking optimal control are seldom. Thus, an optimal
control scheme proposed in discrete time for a class of
robot manipulators with uncertain dynamics is the main
research objective in this paper.
To address the optimal trajectory tracking performance
based on stability closed-loop robot control systems, we
develop a novel discrete-time optimal adaptive RBFNN
control for a class of robot manipulators with uncertain
dynamics. To predict control output, the output feed-
back control is first studied by extending our previous
research works [26] for the robot manipulators in dis-
crete time, and an output-feedback system is investi-
gated by transforming the discrete-time robot dynamics
into a two-step ahead predictor form, the model relates
to the inputs and the outputs of robot systems. Further-
more, based on the output-feedback system, a novel op-
timal adaptive neural control is investigated by extend-
ing our recent research results [27], which uses deter-
ministic learning technique for a class of SISO nonlin-
ear systems. The proposed control method includes an
actor RBFNN as an approximation to the desired con-
trol input, and a critic RBFNN as an approximate to the
desired strategic utility function to optimize the control
process. And the weight rule is designed by applying
the output of the critic RBFNN and trajectory track-
ing error. And stability of the closed-loop robot sys-

tems is rigorously proved by Lyapunov theory. Finally,
the novel optimal adaptive RBFNN control is applied to
robot systems with uncertainty dynamics, whether ex-
isting larger or smaller external disturbances or not, to
achieve supreme control performance.
The main contributions of this paper are highlighted as
follows:

i. Transformation of a high order discrete-time robot
model to a two-step ahead predictor form, to en-
able output-feedback system design without non-
causal problem

ii. Investigation of optimal performance based on the
predictor form of robot dynamics, and RBFNN ap-
proximation.

iii. To achieve optimal trajectory tracking perfor-
mance, an utility function is defined, and a critic
RBFNN is designed to approximate the function.

iv. The actor RBFNN update law is designed using
both the strategic utility function and tracking er-
ror.

Throughout this paper, the following notations used are
detailed in Table 1

2. Problem Formulation and Preliminaries

In this paper, we consider a class of n-degrees of free-
dom (DOF) rigid robot manipulators with uncertain dy-
namics. The dynamics model is described as follows,

M(q)q̈ +C(q, q̇)q̇ +G(q) = τ + τd (1)

where q ∈ ℜn denotes the joint position, and q̇ ∈ ℜn is
the joint velocity, q̈ ∈ ℜn denotes the joint acceleration,
M(q) ∈ ℜn×n is the symmetric positive definite iner-
tia matrix, C(q, q̇) ∈ ℜn×n is the Coriolis-Centrifugal
torque matrix, G(q) ∈ ℜn denotes the gravity torque
vector; τ ∈ ℜn is the vector of control input torque,
τd ∈ ℜn is the external force torque caused by robotic
uncertainty.
According to [1], the following properties hold for the
rigid robot manipulators described in (1):

Property 1. The matrix 2C(q, q̇) − Ṁ(q) ∈ ℜn×n is a
skew-symmetric matrix, such that

xT [Ṁ(q) − 2C(q, q̇)]x = 0,∀x ∈ ℜn (2)

Property 2. The M(q), a symmetric and positive defi-
nite inertia matrix, is uniformly bounded, there m > 0

2



Table 1: NOMENCLATURE
Notation Description
∥ · ∥ the Euclidean norm of vectors and in-

duced norm of matrices
a := b a is defined as b
[ ]T the transpose of a vector or a matrix
[ ]−1 the inverse of a n-order reversible matrix
0[p] p-dimensional zero vector
I[m] m-dimensional identity matrix
W∗ the ideal neural net weight matrix at the

kth step
Ŵk the estimate of W∗

W̃k Ŵk −W∗, the weight estimate error
q the n-dimensional joint position
q̇ the n-dimensional joint velocity
q̈ the n-dimensional joint acceleration
qd the n-dimensional ideal joint position
M(q) the n × n dimensional symmetric posi-

tive definite inertia matrix
C(q, q̇) the n × n dimensional Coriolis-

Centrifugal torque matrix
G(q) the n-dimensional gravity torque vector
τ the n-dimensional vector of control in-

put torque
τd the n-dimensional external force torque
T the sampling time interval
tk the sampling time, and tk = kT
pk the sampled joint angle at time tk, and

pk = q(tk)
vk the sampled joint velocity at time tk, and

vk = q̇(tk)
τk the sampled joint force at time tk
τk

d the sampled external disturbance force
at time tk

pk
d the sampled ideal joint position at time

tk
ξk ξk is defined as pk + Tvk

ek the trajectory error, ek is defined as pk −
pk

d
τ∗n the ideal control input
Qk the strategic utility function
Γd the diagonal critic learning rate matrix
Γτ the diagonal action learning rate matrix
kp the scaling factor, the proportion param-

eter
kd the scaling factor, the integral parameter
kpd the scaling factor, kpd is defined as kp +

kd

ek
1 the new error function

and m̄ > 0 are constants, and thus, M(q) satisfies the
following inequality

m ≤ ||M(q)|| ≤ m̄ (3)

Property 3. The matrix C(q, q̇) and the vector G(q) are
bounded by ||C(q, q̇)|| ≤ kc||q̇||, and ||G(q)|| ≤ kg, respec-
tively, where kc and kg are positive constants.

2.1. RBFNN Constructure

The RBFNN is able to approximate any nonlinear
function, and it has good generalization ability and fast
learning convergence speed. The RBFNN structure is
described as follows [28]:

F(W, z) = WT S (z), W ∈ ℜNs×No , S (z) ∈ ℜNs (4)

where z = [z1, z2, · · · , zNn ] ∈ ℜNn in Ωz is input vector,
Nn is control input dimension, Ns is neuron node num-
ber and No is output dimension, W = [w1,w2, · · · ,wNo ]
is weight matrix with wi ∈ ℜNs , i = 1, 2, · · · ,No,
S (z) = [s1(z), s2(z), ..., sN s (z)]T with hidden layer out-
put function si(z) is RBFNN function, and the Gaussian
function is chosen as follows,

si(z) = e−||bi−ci j ||/2b2
i (5)

where i = 1, 2, · · · ,Nn, j = 1, 2, · · · ,Ns, ci j is the cen-
ter of the jth neuron node for the ith input signal, and bi

is the width of the jth neuron.
Numerous results indicate that for any continuous
smooth function φ(z) : Ωz → R over a compact set
Ωz ⊂ RNn , applying RBFNN (4) to approximate φ(z),
if Ns is sufficiently large, a set of ideal bounded weights
W∗ exist, and we have

φ(z) = W∗T S (z) + µ(z) (6)

Considering the basis functions of RBFNN in (4), we
use the following property to select relevant design pa-
rameter:

S (z)T S (z) < Ns (7)

Noting that the ideal network weight W∗ is unknown in
(6). We often use the estimated weight Ŵ to replace
W∗ to approximate a unknown, continuous, nonlinear
function, and Ŵ can be trained by a weight learning law,
and thus,

φ(z) ≈ ŴT S (z) or φ̂(z) = ŴT S (z) (8)
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2.2. Discretization for Robot Manipulator Model
Designing a robot controller is very important and

meaningful in discrete time. We set the sampling time
interval be T , and the sampled angle at time tk = kT is
pk for the n−DOF rigid robot manipulators in (1).
Define pk = q(tk) ∈ ℜn and vk = q̇(tk) ∈ ℜn, the dy-
namic equation (1) in the continuous-time can be dis-
cretized [29, 30, 24] as

(M(ξk)/T )(vk+1 − vk) = (M(ξk) − M(pk))vk

− f (pk, vk) + τk + τk
d

(9)

where M(ξk) ∈ ℜn×n is an inertia matrix with ξk =

pk + Tvk ∈ ℜn, f (pk, vk) = C(pk, vk)vk + G(pk) ∈ ℜn,
C(pk, vk) ∈ ℜn×n is Coriolis-Centrifugal torque matrix
and G(pk) ∈ ℜn is gravitational synthetic torque vector.
According to Property 1 and Property 2, M(ξk) is also
a symmetric, positive definite inertia matrix, and it is
bounded as m ≤ ||M(ξk)|| ≤ m̄ with m > 0 and m̄ > 0 is
able to be satisfied.

3. Robot Manipulator Feedback system

To avoid the possible noncausal problem in robot
control, we extend our previous research works [26] to
the MIMO robot systems in discrete time. The discrete-
time robot dynamics in (9) is transferred into an output-
feedback control system, and thus,

pk+1 = pk + Tvk

vk+1 = [(1 + T )I[n] − T M−1(ξk)M(pk)

− T M−1C(pk, vk)]vk − T M−1(ξk)G(pk)

+ T M−1(ξk)τk + T M−1(ξk)τk
d

(10)

where τk ∈ ℜn and pk ∈ ℜn are system input and out-
put in discrete time, respectively. τk

d is bounded by an
unknown constant τ̄d which makes ||τk

d || ≤ τ̄d.
It is easy to know M−1(ξk) is also bounded, there m∗ > 0
and m̄∗ > 0 are constants, and thus, the inequality
m∗ ≤ ||M−1(ξk)|| ≤ m̄∗ is satisfied.
The control objective of this paper is to synthesize an
adaptive RBFNN control τk for system (10), then, all
signals of the closed-loop robot system are bounded,
and the joint position output pk well tracks a bounded,
ideal, reference trajectory pk

d ∈ Ωk
pd

, finally, the optimal
control performance is able to be obtained, where Ωpd is
a compact set.
Noting (10), for the future states at the (k+1)th step, the
last state vk+1 depends on the control output τk, while
pk+1 is associated with pk and vk.
We rewrite the first equation of the robot model (10)

as pk+1 − pk − Tvk = 0[n], and vk is designed as vk =
1
T (pk+1 − pk). For the prediction (k+ 2) step of the robot
manipulator system, we can obtain

pk+2 = pk+1 + Tvk+1

= [(2 + T )I[n] − T M−1(ξk)M(pk)

− T M−1(ξk)C(pk, vk)]pk+1

− [(1 + T )I[n] − T M−1(ξk)M(pk)

− T M−1(ξk)C(pk, vk)]pk

− T 2M−1(ξk)G(pk)

+ T 2M−1(ξk)τk + T 2M−1(ξk)τk
d

(11)

To predict the output at the (k + 2)th step, we move the
(k + 2)th step back the (k + 1)th step in (11), such that
we get the pk+1 using the output-feedback method as
follows

pk+1 = [(2 + T )I[n] − T M−1(ξk−1)M(pk−1)

− T M−1(ξk−1)C(pk−1, vk−1)]pk

− [(1 + T )I[n] − T M−1(ξk−1)M(pk−1)

− T M−1(ξk−1)C(pk−1, vk−1)]pk−1

− T 2M−1(ξk−1)G(pk−1)

+ T 2M−1(ξk−1)τk−1 + T 2M−1(ξk−1)τk−1
d

(12)

Substituting (12) to (11), we see that no future output
is necessary to compute the control input. For conve-
nience, let us define that

Lk = (2 + T )I[n] − T M−1(ξk)M(pk) − T M−1(ξk)C(pk, vk)

Rk = (1 + T )I[n] − T M−1(ξk)M(pk) − T M−1(ξk)C(pk, vk)

Mk
τ = T 2M−1(ξk), Gk = G(pk)

Then, by getting the values of current the k step and past
the k − 1 step, we can obtain the output pk+2 as

pk+2 = (LkLk−1 − Rk)pk − LkRk−1 pk−1

− Lk Mk−1
τ Gk−1 − Mk

τG
k + Lk Mk−1

τ τk−1

+ Mk
ττ

k + Lk Mk−1
τ τk−1

d + Mk
ττ

k
d

(13)

and we can define

Lk
p = (LkLk−1 − Rk)pk − LkRk−1 pk−1 + Lk Mk−1

τ τk−1

Lk
G = Lk Mk−1

τ Gk−1 + Mk
τG

k

Lk
d = Lk Mk−1

τ τk−1
d + Mk

ττ
k
d

Furthermore, we rewrite (13) as

pk+2 = Lk
p − Lk

G + Mk
ττ

k + Lk
d

= ψ(pk−1, pk, vk, vk−1, τk, τk−1, τk−1
d , τk

d)
(14)
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Noting that ψ(·, ·, ·, ·, 0, 0) is continuous, such that all the
arguments and continuously differentiable with respect
to τk is continuous.

Lemma 1. According (9) and (10), Mk
τ is symmetric,

positive definite matrix, there mτ = T 2m∗ and m̄τ =

T 2m̄∗ are positive constants, then, Mk
τ is bounded with

mτ ≤ ||Mk
τ || = T 2||M−1(ξk)|| ≤ m̄τ.

Therefore, it is easy to obtain that ||Lk
d || ≤ (3 + 2T +

Tm̄∗kc)m̄ττ̄d := τ̄∗d.

4. Adaptive NN Control Design

4.1. Desired Control

The system ideal tracking output is pk+2
d , the dynam-

ics of tracking error ek+2 ∈ ℜn can be obtained by

ek+2 = pk+2 − pk+2
d = Lk

p − Lk
G +Mk

ττ
k + Lk

d − pk+2
d (15)

It is noted that a ideal force torque control input τ∗n
k [31],

such that

Lk
p − Lk

G + Mk
ττ
∗
n

k − pk+2
d = 0 (16)

or
τ∗n

k = Mk−1

τ (pk+2
d − Lk

p + Lk
G) (17)

Lemma 2. There m∗τ = 1/m̄τ and m̄∗τ = 1/m are posi-
tive constants, Mk−1

τ is bounded with m∗τ ≤ ||Mk−1

τ || ≤ m̄∗τ.
Then, the two-step predictor for trajectory error ek+2 can
be constrained as

||ek+2|| = ||Lk
d || ≤ τ̄∗d (18)

We know the desired control τ∗kn is not obtained with
the unknown Mk−1

τ , Lk
p and Lk

G. Applying RBFNN to

approximate the desired input by adaptive learn τ∗n
k will

make tracking error ek+2 = 0 after 2 steps, if τk
d = 0 and

τk−1
d = 0 in (15).

4.2. Actor RBFNN Control

From Section 2.1, the ideal weight matrix W∗τ exists,
we use a Gaussian function S τ(z̄k) to approximate τ∗n

k as
follows

τ∗n(z̄k) = W∗Tτ S τ(z̄k) + ϵτ(z̄k) (19)

where the vector z̄ is RBFNN input signal, and it is de-
signed as

z̄ = [pkT
, pk−1T

, vkT
, vk−1T

, τk−1T
, pk+2T

d ]T ∈ Ωz̄

Ωz̄ is a sufficient large compact set and corresponds to
Ωpd . The number of neuron in hidden layer of RBFNN
is Nτ, and the ideal weight matrix W∗τ =∈ ℜNτ×n is given

W∗τ = [w1,w2, · · · ,wr, · · · ,wn]

=



w11 w12 · · · w1 j · · · w1n

w21 w22 · · · w2 j · · · w2n
...

...
...

...
...

...
wi1 wi2 · · · wi j · · · win
...

...
...

...
...

...
wNτ1 wNτ2 · · · wNτ j · · · wNτn


where i = 1, 2, · · · ,Nτ, j = 1, 2, · · · , n, wr is the weight
vector from all hidden layer neurons to the rth output
τr, r = 1, 2, · · · , n, the S τ(z̄k) ∈ ℜNτ is the regressor
matrix, ||ϵτ(z̄k)|| ≤ ϵ∗τ , ϵτ∗ > 0 is an approximation error.
We known the ideal control τ∗n(z̄k) can easily be
bounded.
Noticing (15) and (17), we use RBFNN as an approxi-
mation of τ∗n(z̄k) with proportion integral (PD) control to
optimize control performance. Then, the system control
input is given as:

τk = −kpek − kd(ek − ek−1) + τ̂n(z̄k)

or τk = −kpdek + kdek−1 + τ̂n(z̄k)

τ̂n(z̄k) = ŴkT

τ S τ(z̄k)

(20)

where, kp > 0 and kd > 0 are scaling factors, kpd = kp +

kd > 0. Ŵk
τ ∈ ℜNτ×n is used to approximate unknown

function τ∗n(z̄k) in (19) with compact set Ωz̄.
According to the equation (16), we have pk+2

d = Lk
p −

Lk
G + Mk

ττ
∗
n

k.
The equation (15) is rewritten as follows

ek+2 = Lk
p − pk+2

d = Mk
τ(τ

k − τ∗nk) + Lk
d (21)

For convenience, we define:

S k
τ = S τ(z̄k), ϵk

p = ϵp(z̄k)

From Lemma 1, it is obvious that Mk
τ is bounded with

mτ and m̄τ. Noting W̃k
τ = Ŵk

τ − W∗kτ , and substituting
(19) and (20) into (21), we obtain

ek+2 = Mk
τ(−kpdek + kdek−1) + Mk

τW̃
kT

τ S k
τ + τ

k
dp (22)

where τk
dp = −Mk

τϵ
k
τ + Lk

d.
It is easy to show that ||τk

dp|| ≤ ||Mk
τϵ

k
τ || + ||Lk

d || ≤ m̄τϵ
∗
τ +

τ̄∗d := τ∗dp
The error equation in (22) can be converted to:

ek+2 + Mk
τkpdek − Mk

τkdek−1 = Mk
τW̃

kT

τ S k
τ + τ

k
dp (23)
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There defines a new error function as below

ek+2
1 = ek+2 + Mk

τkpdek − Mk
τkdek−1

and thus, the new error function equation is obtained

ek+2
1 = Mk

τW̃
kT

τ S k
τ + τ

k
dp (24)

To improve tracking performance, the neural net weight
adaptive law ∆Ŵk

τ = Ŵk+1 − Ŵk is tuned using both a
tracking error and a critic signal, therefore, critic control
algorithm is introduced in the next subsection.

4.3. Critic RBFNN Control
To achieve optimal control performance and high-

quality trajectory tracking performance, we extend our
recent research results [27] from SISO nonlinear con-
trol using neural networks method to MIMO nonlinear
control using a novel adaptive RBFNN mehod. And the
adaptive RBFNN controller in (20) is designed for the
robot manipulators in (10),
Based on tracking error ek = pk − pk

d and error func-
tion ek+2

1 , we define an utility function vector rk ∈ ℜn

represented the current system-performance index as

rk = βdek+2
2 (25)

where ek+2
2 = ek+2 +g1ek −g2ek−1, g1 > 0 and g2 > 0 are

error coefficients.
The long-term system-performance measure or the
strategic utility function Qk is defined using

Qk = βNa
0 rk+1 + βNa−1

0 rk+2 + · · · + βk+1
0 rNa + · · · (26)

where 0 < β0 < 1 is a system design parameter, Na is a
horizon.
Thus, the equation (26) can also be expressed as

Qk = minτk [β0Qk−1 − βNa+1
0 rk]

The RBFNN in (6) is applying to approximate the
strategic utility function vector Qk as

Qk = W∗k
T

d S d(zk) + ϵd(zk) (27)

where W∗d ∈ ℜNd×n is weight matrix, Nd is num-
ber of neuron in hidden layer of the critic RBFNN,
S d(zk) ∈ ℜNd is regressor matrix, ||ϵd(z̄k)|| ≤ ϵd

∗, ϵd
∗ > 0

is a critic approximation error, and Ωz is a sufficient
large compact set.

zk = [pkT
, pk−1T

, vkT
, vk−1T

, τk−1T
]T

Because there is a mapping between the states pk, vk

and zk, such that the vector zk is selected as the critic

RBFNN input in (27). The approximation matrix Ŵk
d ∈

ℜNd of the critic weight W∗d is estimated as

Q̂k = Ŵk
d

T S d(zk) (28)

where Q̂k ∈ ℜNd×n is the critic signal, and we select the
desired critic signal Q̂k

d = 0[n] at each step.
For convenience, S k

d = S d(zk).
To further analyze the strategic utility function Qk, we
define a prediction error vector as

ek
d = Q̂k − β0Q̂k−1 + βNa+1

0 rk (29)

To minimize the prediction error, we design the critic
RBFNN weight matrix update rule ∆Ŵk

d in (28) as fol-
lows

Ŵk+1
d = Ŵk

d + ∆Ŵk
d = Ŵk

d − ΓdS k
dekT

d (30)

where Γd = γdI[Nd] ∈ ℜNd×Nd is a diagonal critic learn-
ing rate matrix with γd > 0.
Substitute (28) and (29) into (30), the approximation
matrix of the (k + 1) step is updated as

Ŵk+1
d = Ŵk

d + ∆Ŵk
d

= Ŵk
d − ΓdS k

d(ŴkT

d S k
d

− β0Ŵk−1T

d S k−1
d + βNa+1

0 rk)T

(31)

Noting that the adaptive neural net algorithm in (24) is
tracking error of the (k + 2)th step, then, we can derive
the kth step error by defining k2 = k − 2 that

ek
1 = Mk2

τ W̃k2
T

τ S k2
τ + τ

k2
dp (32)

where mτ ≤ ||M
k2
τ || ≤ m̄τ according Lemma 1, and

ek
1 = ek + Mk2

τ kpdek2 − Mk2
τ kdek2−1

Based on the error ek
d = Qk − Qk

d and the tracking error
ek

1, the actor RBFNN update rule for (20) is given by

Ŵk+1
τ = Ŵk2

τ + ∆Ŵk2
τ

= Ŵk2
τ − ΓτS k2

τ [ek
1 − Q̂k

τ]
T (33)

where Γτ = γτI[Nτ] ∈ ℜNτ×Nτ is a diagonal action system
learning rate matrix with γτ > 0, and Q̂k

τ = βdβ
Na+1
0 Q̂k.

4.4. Stability Analysis
It has been shown that there exists an ideal control

input τ∗n(z̄k), which can guarantee the predictor error
ek+2 = 0, if the unknown disturbance τk

dp = 0. Because
all assumptions are only valid in compact setΩz̄, all out-
puts and inputs of the robot system must be proved that
they will remain in these compact sets in all the time
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indeed. Therefore, we can suppose that all past control
inputs τk−1 are in Ωτ, all current output pk and all past
outputs pk−1 are in Ωp, all future outputs pk+1 are also
in Ωp, all past RBFNN weight errors ∆Ŵk−1

d ,∆Ŵk2
τ are

in Ωwd and Ωwτ
, respectively.

In this subsection, we will focus on to prove that all
these conditions still hold after time instant T , and fur-
ther prove the trajectory tracking error converges into a
small neighbourhood of zero.
For analysing the system stability in (14), the theo-
rem is presented to show how the controller parameters
and adaptive parameters can appropriately be chosen to
achieve the satisfied performance and optimality of the
closed-loop robot system.
Choose a positive definite Lyapunov function Vk for the
system (14) as

Vk = Vk
1 + Vk

2 + Vk
3

= tr[W̃kT

d Γ
−1
d W̃k

d]

+
1
ρd

(W̃k−1T

d S k−1
d )T (W̃k−1T

d S k−1
d )

+
1
ρτ

n∑
j=0

tr[W̃k−2+iT
τ Γ−1

τ W̃k−2+i
τ ]

(34)

where Γd and Γτ are diagonal learning rate matrices for
critic RBFNN and actor RBFNN in (30) and (33), re-
spectively. W̃k

d = Ŵk
d −W∗kd , W̃k

τ = Ŵk
τ −W∗kτ , ρd and ρτ

are positive design constants.
Noting the Lyapunov function Vk in (34) is consisted
of Vk

1 , Vk
2 and Vk

3 . According to the kth error function in
(32), we know that Vk contains the system tracking error
ek, the strategic utility function error ek

d and the design
parameters.
The first difference of (34) is given by

∆Vk = ∆Vk
1 + ∆Vk

2 + ∆Vk
3 (35)

Note (31), the first term of (35) is given by

∆Vk
1 = tr[W̃k+1T

d Γ−1
d W̃k+1

d − W̃kT

d Γ
−1
d W̃k

d]

= tr[−2W̃kT

d S k
dS kT

d Ŵk
d

+ 2W̃kT

d S k
dβ0S k−1T

d Ŵk−1
d

− 2W̃kT

d S k
dβ

Nl+1
0 rk

− 2ŴkT

d S k
dS kT

d ΓdS k
dβ0S k−1T

d Ŵk−1
d

+ 2ŴkT

d S k
dS kT

d ΓdS k
dβ

Nm+1
0 rkT

− 2β0Ŵk−1T

d S k−1
d S kT

d ΓdS k
dβ

Nm+1
0 rkT

+ ŴkT

d S k
dS kT

d ΓdS k
dS kT

d Ŵk
d

+ β0Ŵk−1T

d S k−1
d S kT

d ΓdS k
dβ0S k−1T

d Ŵk−1
d

+ βNm+1
0 rkS kT

d ΓdS k
dβ

Nm+1
0 rkT

]

(36)

where Ŵk
d = W̃k

d +W∗d and Ŵk−1
d = W̃k−1

d +W∗d .
For convenience to analyse, we define

Ak = W̃kT

d S k
d, Bk = W∗

T

d S k
d − β0W∗

T

d S k−1
d

Ck = β0W̃k−1T

d S k−1
d , Dk = Mk2

τ W̃k2
T

τ S k2
τ

Ek = βdβ
Na+1
0 , F k = Ekek+2

2 , S kT

d ΓdS k
d = c

(37)

then, the equation (36) is rewritten as

∆Vk
1 = −2Ak(Ak + Bk + F k − Ck)T

+ c(Ak + Bk + F k − Ck)T

× (Ak + Bk + F k − Ck)

≤ −(1 − c)(Ak + Bk + F k − Ck)T

× (Ak + Bk + F k − Ck) −AkTAk

+ 3BkTBk + 3CkTCk + 3F kTF k

(38)

According the equation (25), we have

F k = Ekek+2
2 = Ek(ek+2 + g1ek − g2ek−1)

Noting that

F k = Ekek
2 = Ek(ek + g1ek2 − g2ek2−1)

Considering (32), we define a new vector F k
e ∈ ℜn as

F k
e = Ekek

1 = Ek(ek + Mk2
τ kpdek2 − Mk2

τ kdek2−1) (39)

Analyzing vector F k
e and vector F k, it is easy to obtain

F kTF k = Ek2
ekT

2 ek
2 ≤ Ek2

(3g2
1ek2

T
ek2

+ 3g2
2ek2−1T

ek2−1 + 3ekT
ek)

F kT

e F k
e = Ek2

ekT

1 ek
1

≤ Ek2
(3k2

pdek2
T
Mk2

e ek2

+ 3k2
dek2−1T

Mk2
e ek2−1 + 3ekT

ek)

(40)

where Mk2
e = Mk2

T

τ Mk2
τ .

We see Mk2
e is a symmetric positive definite matrix, and

it is bounded with m2
τ ≤ ||M

k2
e || ≤ m̄2

τ.

Theorem 1. According the properties of symmetric
positive definite matrix, the eigenvalues λe

i of Mk2
e are

positive values, let us define λe
max = max(λe

i ) and λe
min =

min(λe
i ), i = 1, 2, · · · , n. According matrix norm prop-

erty, we have nλe2

min ≤ ||M
k2
e ||2 =

∑n
i=1 λ

1
i (Mk2

T

e Mk2
e ) ≤

nλe2

max
Define

Gk2
1 = k2

pd Mk2
e − g2

1I[n], Gk2
2 = k2

d Mk2
e − g2

2I[n]
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It is noted that F kTF k ≤ F kT

e F k
e can be satisfied, when

the error coefficients g1 and g2 are given

g2
1 ≤

k2
pdmτ√

n
, g2

2 ≤
k2

dmτ√
n

Substituting (32) to F kT

e F k
e = Ek2

ekT

1 ek
1 in (40), we get

F kTF k ≤ F kT

e F k
e = Ek2

ekT

1 ek
1 = Ek2DkTDk

+ 2Ek2DkT
τk2

dp + E
k2
τk2

T

dp τ
k2
dp

≤ 2Ek2DkTDk + 2Ek2
τ∗

2

dp

(41)

Substituting (41) to (38), we can obtain

∆Vk
1 ≤ −(1 − c)(Ak + Bk + F k − Ck)T

× (Ak + Bk + F k − Ck) −AkTAk

+ 3BkTBk + 3CkTCk

+ 6Ek2DkTDk + 6Ek2
τ∗

2

dp

(42)

Taking the second term difference ∆Vk
2 of (35), we get

∆Vk
2 =

1
ρd

[(W̃kT

d S k
d)T × (W̃kT

d S k
d)

− (W̃k−1T

d S k−1
d )T × (W̃k−1T

d S k−1
d )]

=
1
ρd

(AkTAk − 1
β2

0

CkTCk)

(43)

The third difference ∆Vk
3 of (35) along (28), (30) and

(33) is given by

∆Vk
3 = −

2
ρτ

(ek
1 − Q̂k

τ)
T W̃k2

T

τ S k2
τ

+
b
ρτ

(ek
1 − Q̂k

τ)
T (ek

1 − Q̂k
τ)

(44)

where b = S k2
T

τ ΓτS
k2
τ . It is noted that

Q̂k
τ = βdβ

Na+1
0 Q̂k = EkW̃kT

d S k
d + EkW∗

T

d S k
d

DefiningUk = τk2
dp−EkW∗

T

d S k
d and substituting (32) into

(44), we have

∆Vk
3 ≤ −

1
ρτ

(Dk +Uk − EkAk)T

× (Mk2
−1

τ − bI[n])

× (Dk +Uk − EkAk)

−DkT 1
ρτ

Mk2
−1

τ Dk

+ 2UkT 1
ρτ

Mk2
−1

τ Uk

+ 2Ek2AkT 1
ρτ

Mk2
−1

τ Ak

(45)

Combining equations (42), (43) and (45) in (35), we fur-
ther obtain that

∆Vk ≤ −AkT
(I[n] −

1
ρd

I[n] − 2Ek2 1
ρτ

Mk2
−1

τ )Ak

− (
1

ρdβ
2
0

− 3)CkTCk −DkT
(

1
ρτ

Mk2
−1

τ

− 6Ek2
I[n])Dk

− (1 − c)(Ak + Bk + F k − Ck)T

× (Ak + Bk + F k − Ck)

− 1
ρτ

(Dk +Uk − EkAk)T (Mk2
−1

τ − bI[n])

× (Dk +Uk − EkAk) + ||J||2

(46)

where

||Jk ||2 = 3BkTBk + 6Ek2
τ∗

2

dp + 2UkT 1
ρτ

Mk2
−1

τ Uk

We see that

c = S kT

d ΓdS k
d = γdS kT

d S k
d < γdNd

b = S kT

τ ΓτS
k
τ = γτS

kT

τ S k
τ < γτNτ

And thus,

||Jk ||2 ≤ ||Jk
τ ||2 = (6 + 6β2

0 +
4Ek2

β2
d

ρτm∗τ
)||W∗d ||2Nd

+
4τ∗

2

dp

ρτm∗τ
+ 6Ek2

τ∗
2

dp

Note Theorem 1 and Lemma 2, we know Mk2
−1

τ is also
a symmetric positive definite matrix, and is bounded
with m∗τ ≤ ||M

k2
−1

τ || ≤ m̄∗τ. Then, we define the eigen-
values of Mk2

−1

τ are λk2
i , i = 1, 2, · · · , n. It is obvious

that λk2
i > 0. We define λk2

max = max(λk2
i ) and λk2

min =

min(λk2
i ), i = 1, 2, · · · , n, then, nλk2

2
min ≤ ||M

k2
−1

τ ||2 =∑n
i=1 λi(Mk2

−1T

τ Mk2
−1

τ ) ≤ nλk2
2

max.
Define

Hk = (1 − 1
ρd

)In − 2Ek2 1
ρτ

Mk2
−1

τ

Ik =
1
ρτ

Mk2
−1

τ − 6Ek2
I[n]

Ok = Mk2
−1

τ − bI[n]

The matrices Hk, Ik and Ok are symmetric positive
definite, and they need satisfied the following condi-
tions:
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(1 − 1
ρd

) − 2Ek2 1
ρτ

m̄∗τ√
n
> 0

1
ρτ

m∗τ√
n
− 6Ek2

> 0, 1 − b
m̄∗τ√

n
> 0

Theorem 2. The optimal adaptive RBFNN control in
(20) with RBFNN weight adaptation law (30) and (33)
for the robot manipulators in (10). All signals in the
closed-loop system are UUB, we provide the design pa-
rameters selected as follows:

0 < ρd ≤
1

3β2
0

0 < β0 <

√
3

3
2Ek2

m̄∗τ
(1 − 1

ρd
)
√

n
< ρτ <

m∗τ
6Ek2 √n

0 < γd <
1

Nd

0 < γτ <
√

n
Nτm̄∗τ

(47)

Assuming that the condition set above are satisfied, we
have

∆Vk ≤ −AkT
((1 − 1

ρd
)I[n] − 2Ek2 1

ρτ
Mk2

−1

τ )Ak

− (
1

ρdβ
2
0

− 3)CkTCk −DkT
(

1
ρτ

Mk2
−1

τ

− 6Ek2
I[n])Dk + ||Jτ||2

(48)

Existing invertible matrixPH andPI makeHk = PT
HPH

and Ik = PT
I PI , accordingly, ∆Vk ≤ 0 can be well sat-

isfied under the following conditions:

||Jk
τ ||2 < (PHAk)T (PHAk)

||Ak ||2 > ||Jk
τ ||||PH ||(−1)

or

||Jk
τ ||2 < (PIDk)T (PIDk)

||Dk ||2 > ||Jk
τ ||||PI ||(−1)

(49)

Introducing a discrete-time delay factor z−1 into (24),
we have

ek = (I[n] + Mk
τkpdzk−2 − Mk

τkdzk−3)−1ek
1 (50)

Noting (49) and (50), we know there exists a finite run-
ning step Kτ, which makes ||Ak ||2 ≤ ||Jk

τ ||||PH ||(−1) or
||Dk ||2 ≤ ||Jk

τ ||||PI ||(−1), and makes ||ek || ≤ ||ek
1|| under

(I[n]+Mk
τkpdzk−2−Mk

τkdzk−3)−1 being Hurwitz-stable for
all k > Kτ.
From the definition of Ak and Dk, the boundedness of
W̃kT

d S k
d and W̃kT

τ S k
τ can be deduced. W̃∗

T

d S k
d and W̃∗

T

τ S k
τ

are bounded, then, ŴkT

d S k
d and ŴkT

τ S k
τ are also bounded.

We see that the boundedness of ŴkT

d S k
d and ŴkT

τ S k
τ fur-

ther implies that Ŵk
d and Ŵk

τ are bounded. with the
boundedness of Mk

τ and τ∗dp, we know the tracking er-
ror ek

1 is bounded as

||ek
1||2 = ekT

1 ek
1 ≤ 2DkTDk + 2τk2

T

dp τ
k2
dp

< 2||Jk
τ ||||PI ||(−1) + 2τ∗

2

dp

(51)

or, we can get

||ek || ≤ ||ek
1|| <

√
2||Jk

τ ||||PI ||(−1) + 2τ∗2dp (52)

the proof is complete.

5. Simulation Studies

To verify the efficacy of the above developed control
approach, a 2-DOF rigid robot manipulator as a testing
example, is put foreword in this section.

5.1. Robot Manipulator Dynamics Model
The following parameters of the robot manipulator

are given as follows: The mass are m1 = m2 = 1.0kg,
the length are l1 = l2 = 0.2m, the inertia are I1 = I2 =

0.003kgm2, the distance are lc1 = lc2 = 0.1m.
The dynamics of the robot manipulator with G(q) = 0[2]
is given as follows:

M(q) =
[

M11 M12
M21 M22

]
C(q, q̇) =

[
C11 C12
C21 C22

] (53)

where

M11 = m1l2c1 + m2(l21 + l2c2 + 2l1lc2cos(q2)) + I1 + I2

M12 = M21 = m2(l2c2 + l1lc2cos(q2) + I2

M22 = m2l2c2 + I2

C11 = −m2l1lc2sin(q2)q̇2

C12 = −m2l1lc2sin(q2)(q̇1 + q̇2)
C21 = m2l1lc2sin(q2)q̇1 C22 = 0

The external disturbance may be a smaller or a larger
amplitude force torque τds or τdb in testing, respectively.
They are assumed as

τds = [0.05cos(0.01t)cos(q1), 0.05cos(0.01t)cos(q2)]T

τdb = [40cos(0.01t)cos(q1), 40cos(0.01t)cos(q2)]T
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The desired trajectory qd is assumed as

qd = [q1d, q2d]T =

[
1.5 + 0.5(sin(0.3t) + sin(0.2t))
1.5 + 0.5(cos(0.4t) + sin(0.3t))

]
5.2. Test Results

The initial states of the robot manipulate is assumed
in (53), q(0) = [0, 0]T and q̇(0) = [0, 0]T . We construct
the critic RBFNN ŴkT

d S k
d approximating the strategic

utility function by using Nd = 1024 with all the cen-
tres of Gaussian function are evenly in [−1; 1] and the
widths=1, while the actor RBFNN ŴkT

τ S k
τ approximat-

ing the system tracking error using Nτ = 4096 with
all the centres of Gaussian function evenly in [−1; 1],
and the widths=1. The design parameters are chosen as
γd = 0.0005, γτ = 0.0001, βd = 0.8, Na = 3, β0 = 0.5,
kp = 0.5, kd = 120, The initial weights Ŵd(0) = 0[2×Nd],
Ŵτ(0) = 0[2×Nτ], and we choose the controller sampling
interval T = 0.01s..
To show the effectiveness, we have done the relevant
comparative analysis for trajectory tracking accuracy
and capability for the robot manipulator with τds and
τdb, e.g., PD control and robust control in Figs. 1-10.
In contrast with PD control, the PD controller τk =

−kpek − kd(ek − ek−1) is applied.
And in contrast with robust control based on bounded
observer, the controller τk = sat(K1ek + K2 f̂ (k)) is ap-
plied , where K1 and K2 are gain matrices, and f̂ (k) is
the estimation of all uncertain terms f (k). The parame-
ters K1 = [K11K12] and K2 obtained by using LMIs the-
ory as K11 = [−10−5;−5−22], K12 = [−10−5;−2−10],
and K2 = [0.0150.025; 0.0350.05], respectively.
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Figure 1: Position trajectory tracking curves of q1 and q2 for a small
disturbance

Fig.1-2 show tracking curves of joint positions q1 and
q2, Fig.3-4 show control input curves of control inputs
τ1 and τ2, Fig. 5-6 show the proposed method can be
depicted by designing the critic utility function Q̂, Fig.
7-8 shows critic RBFNN weight norm ||Wd || and actor
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Figure 2: Position trajectory tracking curves of q1 and q2 for a large
disturbance
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Figure 3: Control input curves of τ1 and τ2 for a small disturbance
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Figure 4: Control input curves of τ1 and τ2 for a large disturbance

time(second)
0 10 20 30 40 50 60 70 80 90 100T

h
e
st
ra
te
g
ic

fu
n
ct
io
n
Q̂

1

-1

0

1

2

3

time(second)
0 10 20 30 40 50 60 70 80 90 100

T
h
e
st
ra
te
g
ic

fu
n
ct
io
n
Q̂

2

-1

0

1

2

3

Figure 5: The strategic utility functions Q̂1 and Q̂2 for a small distur-
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Figure 7: The Euclidean norm curves of critic RBFNN ||Wd || and actor
RBFNN ||Wτ || for a small disturbance
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Figure 8: The Euclidean norm curves of critic RBFNN weight ||Wd ||
and actor RBFNN weight ||Wτ || for a large disturbance
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Figure 9: Tracking error curves of e1 and e2 for a small disturbance
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Figure 10: Tracking error curves of e1 and e2 for a large disturbance

RBFNN weight ||Wτ||, and Fig. 9-10 show tracking er-
ror curves of e1 = q1−qd1 and e2 = q2−qd2 with a small
external disturbance τds or a large external disturbance
τdb, respectively.
Analyzing all above simulation results, the proposed op-
timal adaptive RBFNN control, in comparison to the PD
control and the robust control, is applied for robot tra-
jectory tracking.
It is obvious that the first joint has an small initial error,
and the position value q1 deviates from the desired joint
position trajectory q1d for less than 5s, but the controller
is able to regulates quickly the joint position q1 to track
the desired trajectory q1d, and make overall control op-
timization by using the proposed control system. The
second joint has the excellent performance for a small
external disturbance torque in Fig. 1. The method also
is able to achieve satisfied control performance for ex-
isting a large external disturbance in Fig 2.
The control inputs τ1 and τ2 are well bounded in Fig.
3-4, and the critic utility function Q̂ converge to a small
of neighbourhood of zero in Fig. 5-6.
Most of the adaptive RBFNN weight norm ||Ŵτ|| esti-
mates remain in or converge to a small neighbourhood
of zero for a small disturbance, and also can gradually
converge to 0.1 for a large disturbance in Fig. 7-8.
Therefore, the effectiveness and optimal performance of
the proposed control algorithm has been successfully
demonstrated despite the presence of the external force
torque and a wide range of uncertain disturbances.

6. Conclusion

In this paper, the adaptive RBFNN control has been
investigated for a class of rigid robot manipulators with
uncertain dynamics to optimize control performance in
discrete time. The control system is designed with the
actor RBFNN and the critic RBFNN to eliminate the
strategic utility function and system tracking error. Con-
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trol laws are real-time adaptive are tuned online. Based
on the output feedback method, the control method to
compensate for the influences of dynamics uncertain-
ties and external disturbance, not only guarantees the
system is Lyapunov stability, but also achieves the opti-
mal trajectory tracking performance.
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