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ABSTRACT
Model order reduction (MOR) is an important technique that allows reduced order models
(ROMs) of physical systems to be generated that can capture the dominant dynamics, but
at lower cost than the full order system. One approach to MOR that has been successfully
implemented in fluid dynamics is the Eigensystem Realization algorithm (ERA). This method
requires only minimal changes to the inputs and outputs of a CFD code so that the linear
responses of the system to unit impulses on each input channel can be extracted. One of the
challenges with the method is to specify the size of the inputpulse. An inappropriate size
may cause a failure of the code to converge due to non-physical behaviour arising during
the solution process. This paper addresses this issue by using piston theory to estimate the
appropriate input pulse size.
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NOMENCLATURE
a local speed of sound
a the position vector of a point on the aerofoil surface
ax is the position vector of the centre of pitch rotation
A,B,C,D continuous linear state-space system matrices
Ã, B̃, C̃ discrete linear state-space system matrices
Ãr, B̃r, C̃r reduced discrete linear state-space system matrices
b the position vector of a point on the flap surface
bx is the position vector of the flap hinge centre of rotation
c aerofoil chord
Cd drag coefficient
Ch flap hinge moment coefficient
Cl lift coefficient
Cm pitching moment coefficient
f,h vector functions
fg, gg functions linking mesh positions and speeds to input vector
h heave displacement
H̃k discrete Markov parameter
H̃ ls(k) block Hankel matrix
M freestream Mach number
n̂ unit normal vector on surface
p pressure
t time
u input vector
U∞ freestream speed
V unperturbed surface fluid velocity vector
Vp wall velocity of an equivalent inviscid, irrotational flow
v2 wall normal surface velocity
x continuous state vector
xk discrete state vector
xg mesh position
y continuous output vector
ym

k modified discrete output vector

Greek Symbol

α pitch angle
γ ratio of specific heats
δ flap angle
κ reduced frequency
ω frequency

1.0 INTRODUCTION
Accurate fluid models for prediction of unsteady flow features for aeroelastic calculations
require solution of the full unsteady non-linear Euler or Navier-Stokes equations. The



Griffiths et al. Pulse Size Estimation for ROMs . . . 3

drawback of implementing such methods is the high number of degrees of freedom, coupled
with the thousands of parameter variations that must be investigated, which makes them
too computationally expensive for routine use in industry.Therefore historically simpler
methods which are not able to predict all the features encountered in the flight regime of
modern aircraft have been used e.g. Doublet Lattice Methods(DLMs). Recent research has
therefore focussed on the application of Model Order Reduction (MOR) schemes to unsteady
Computational Fluid Dynamics (CFD) codes as this approach offers a potential increase in
accuracy over methods such as DLM.

The objective of MOR schemes is to produce a computationallyefficient Reduced
Order Model (ROM) from the Euler or Navier-Stokes system that captures the dominant
dynamic behaviour of the full order system. Whilst MOR of thecontinuous time Euler or
Navier-Stokes equations is possible, in most CFD implementations either a discrete time or
discrete frequency domain is used. Thus in many cases a discrete time or frequency domain
ROM is produced, which can be used in some cases to obtain a continuous time domain
ROM. The term, reduced order modelling, is widely used and covers a large number of quite
different methods. Reviews of the various approaches are available in Dowell and Hall(1) and
Antoulas(2), but are not covered here since this paper focuses purely on an improvement to
one MOR method.

The focus of this paper is the Eigensystem Realisation System Algorithm (ERA) method
for MOR(3,5,6,7,8,9), which builds on the work of Kung(4). This is an efficient approximately
balanced method(8) that can be applied to CFD with only minor modifications to theinputs
and outputs of the code. The truncated responses to input pulses are then sufficient for the
MOR process. However there is one important question that arises with this method, namely
what is an appropriate size for the input pulse for a CFD code.As explained in(10) poor pulse
size specification can cause non-physical behaviour to arise during the CFD iterations causing
the CFD code not to converge. Experience has shown that the maximum change in pressure
usually occurs on the first time step of the CFD scheme and a newand efficient method based
on piston theory for estimating this pressure change and hence sizing the input pulses for both
Euler and Navier-Stokes codes is described here.

2.0 TIME-CONTINUOUS NONLINEAR AND LINEAR
STATE-SPACE SYSTEMS

In this work, the unsteady Euler or RANS equations are solvedusing a standard Jameson
cell-centred finite-volume scheme code(11,12), that is modified to be time accurate and allows
moving meshes(13,14,15). After spatial discretisation the CFD equations for the motion about a
non-linear baseline Euler or RANS solution can be written(10) in non-linear state space form
as:

dx (t)
dt

= f (t, x (t) , u (t)) ,

y (t) = h (t, x (t) , u (t)) , . . . (1)

where (u) is the input vector, (x) is the state vector and (y) is the output vector, containing
quantities of interest such as changes to force coefficients or surface pressures. For example,
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for an aerofoil undergoing linearised perturbations in pitch (∆α), heave (∆h) and flap (∆δ)
motions; where the outputs of interest are the changes to theintegrated coefficients of lift
(∆Cl), drag (∆Cd), pitching moment (∆Cm) and flap hinge moment (∆Ch) compared to the
initial mean values obtained from the steady nonlinear CFD solver then

u =
[

∆α,∆α̇,∆h,∆ḣ,∆δ,∆δ̇
]T
,

y = [∆Cl,∆Cd,∆Cm,∆Ch]T .
. . . (2)

It should be noted here that the use of moving meshes with ERA is straightforward since
the mesh positionsxg and mesh speedsẋg that arise in the differential equations are functions
of the inputs:

xg = fg (u (t)) ,

ẋg = gg (u (t)) . . . . (3)

. . . (4)

Hence the mesh positions and speeds do not appear explicitlyin the functionf in equation
(1)as they can be written in terms ofu.

If the dynamic behaviour of the non-linear Euler or Navier-Stokes system (1) about the
non-linear mean or steady flow solution is approximately linear then the non-linear system
can be approximated by a linear time-continuous state-space system given by:

dx (t)
dt

= Ax (t) + Bu (t) ,

y (t) = Cx (t) + Du (t) , . . . (5)

where the system matricesA, B, C andD are independent of time(16). The linear responses
of the unsteady CFD form the basis for the ERA approach. The linear responses are found
either directly by linearising the CFD code(17) so the system is truly linear (though it may not
be written in the form (5)) or as the linear part of a non-linear response, which requires two
non-linear unsteady simulations to be calculated(5,16).

3.0 DISCRETE LINEAR STATE-SPACE SYSTEM
The CFD code used in this work is actually implemented in the discrete time domain and
hence MOR is implemented to obtain a discrete-time ROM. In order to obtain the terms
needed by the ERA algorithm to build a discrete ROM directly from the output responses
without further manipulation(18), a first order implicit finite difference scheme is used for the
time derivative in (5) to give the discrete linear system(16):

xk = Ãxk−1 + B̃uk,

ym
k = C̃xk, . . . (6)

where the subscriptk denotes the value of a quantity at time levelk△t and the discrete
system output has been modified toym

k = yk−Duk, sinceD in the output equation is known
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and small for most problems of interest. The discrete systemtime-step dependent matrices
are as follows

Ã = (I − ∆tA)−1 ,

B̃ = (I − ∆tA)−1 B∆t,

C̃ = C .

It should be noted that the corresponding continuous systemoutput is then modified to be
ym(t) = y(t)−Du(t). Further, it is important to emphasise that the first order discretisation
should be seen as a low pass filter, as it highly damps high frequency terms allowing the eas-
ier identification of the usually more important low frequency terms in the discrete ROM. It
should be noted that the discrete ROM is for a fixed time step; this is acceptable for many
applications. However, if for example the ROM is to be used within a continuation algo-
rithm(19) then the time step must be able to vary. The discrete ROM is mapped back to the
continuous space by inverting the transformation (7). The continuous time ROM produced
from the discrete ROM can be put into discrete form with a different time step and using any
finite difference approximation; hence the resulting ROM is not fixed asfirst order in time.

4.0 EXPLANATION OF ROLE OF PULSE RESPONSES
WITHIN ERA

A discrete reduced order system is obtained from (6) using the ERA method(4,3). ERA re-
quires terms of the form

H̃k = C̃ÃkB̃, . . . (7)

to be identified fork ≥ 0. These terms are equal to the Markov parametersH̃k of (6). The
matricesH̃k can be directly constructed as each column is the output response to aunit sample
pulse input on one of the system inputs separately(20,16). Once these terms are known thel× s
block generalised Hankel matrix can written as:

H̃ ls(k) =


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
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. . . . (8)

If it is assumed that the system hasp outputs andm inputs then the Markov parameters will
each have a sizep × m, hence the size of the Hankel matrix islp × sm. The parametersl and
s must be chosen to ensure that enough terms are retained in thetruncated responses. The
partitioned singular value decomposition (SVD) for the Hankel matrix withk = 0 is given by

H̃ ls(0) = UΣVT , . . . (9)

whereΣ is ansm × sm diagonal matrix of singular values which are either positive or zero,
with the singular values arranged in size order. The ERA process then determines the rank of
the reduced order model of the system based on the number of elements ofΣ which are larger
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than some desired accuracy or by including only ther largest singular values inΣ, wherer is
prescribed. Then matrix̃H ls(0) is partitioned and approximated(10) as

H̃ ls(0) ≈ UrΣrVr
T , . . . (10)

where unnecessary columns and rows of the matricesU,Σ,V have been deleted to reduce
their size. The reduced matrix fromU is Ur : lp × r, the reduced matrix fromΣ is Σr : r × r
and the reduced matrix fromV is Vr : sm × r.

Then following(3) it can be shown that one possible realisation of this reducedsystem is

Ãr = Σr
−1/2Ur

T H̃rs(1)VrΣr
−1/2,

B̃r = Σr
1/2Vr

T Em,

C̃r = ET
p UrΣr

1/2,

. . . (11)

whereEp = [I p, 0p, 0p, ..., 0p] has sizep × lp andET
m = [Im, 0m, 0m, ..., 0m] has sizem × sm.

This realisation [̃Ar, B̃r , C̃r] is not unique, because any non-singular matrixT can be used to
obtain another valid realisation [TÃrT−1,TB̃r, C̃rT−1].

The ERA method is implemented to obtain a discrete-time ROM of the CFD code, which
is limited to the order of accuracy of the time-stepping scheme used in obtaining pulse
responses and also to a fixed real time step. Consequently thediscrete ROM cannot be
accurately applied to problems involving structural models with discrete non-linearities
(for example control surface freeplay) as the aerodynamic model could not capture the
“switching” points between discrete regions(21). This problem can lead to non-physical limit
cycle behaviour arising in the solution(22). A time continuous ROM [Ar,Br,Cr] does not
have this restriction, since it can be solved for any time step size. The consistent method
to obtain a continuous-time ROM is to invert the transformation used to obtain the discrete
system matrices from the continuous system matrices(23).

Further it should be noted that the basic ERA scheme applied to short pulse response his-
tories does not guarantee the stability of the resulting discrete-time ROM. A skilled user is
usually able to specify a size of Hankel matrix and reduced model size to find a discretely
stable scheme. There is a further stability issue in respectof continuous-time models obtained
via the inverse of the first order implicit finite difference scheme, which means that not all sta-
ble discrete-time ROMs map to stable continuous-time ROMs.Recent work by Waleset al (18)

means that these stability issues can be overcome using an automated restarting approach.

5.0 PULSE INPUT SIZING
The sizing of the input pulses is a major consideration when using the ERA method for ROM
generation. In most implementations this has been based on user experience gained via an
expensive process of trial and error. Whilst inputting adiscrete unit sample pulse on an input
channel of a CFD code would directly output a column of the Markov parameter needed for
ROM construction this can, for some input channels, lead to poorly converged solutions and
in some cases solution breakdown. However, since the dynamic response of the system is
approximated as linear (see equations (3) and (4)) a smallerinput pulse can be used and the
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output response scaled to give the response to a unit pulse and hence a column of the Markov
parameter.

If the pulse size chosen is too large then during the solutionprocess at each real-time step,
the Euler and RANS equations may encounter non-physical solutions (before convergence
is achieved). One area that this issue often arises is where there are supersonic velocities
away from the aerofoil, which can lead to zero or negative pressures that prevent convergence
and limiters fail to prevent this issue retarding convergence(10). If the pulse size chosen is
too small then the response may quickly approach the order ofaccuracy of the CFD scheme
(maximum user specified residual) due to the exponential decay of the response.

The method for pulse sizing described here is based on pistontheory (a tool more frequently
used for supersonic and hypersonic aeroelastics) and is applicable to flows around subsonic
and transonic aerofoils. The closed form of the piston theory equations yields a robust method
of selecting a sample pulse size for ROM generation that overcomes the difficulties outlined
above. This approach has minimal implementation costs and does not require any modifica-
tion of the core CFD code.

5.1 Numerical Procedure

An a priori estimate of the response of the unsteady CFD about a baselinesteady solution,
can be found using the baseline pressure and velocity together with 1D piston theory, which
considers a point on a moving surface as being analogous to a piston moving through a one
dimensional channel(25,26,27). Then using Bernoulli’s equation and isentropic relationsit can
be shown that the pressure on the face of a one dimensional piston at the cell adjacent to the
boundary is:

p2

p1
=

(

1+
(γ − 1)

2
v2

a1

)
2γ

(γ−1)

, . . . (12)

where subscripts 1 and 2 refer to a quantity before and after the perturbation respectively.
p is the local static pressure,a is the local speed of sound,γ is the adiabatic index (assumed
here to be 1.4) andv is the wall normal surface fluid velocity due to the perturbation. The wall
normal surface fluid velocityv2 can be described in terms of the surface normals as:

v2 = ∆V · n̂2 + V · (n̂2 − n̂1), . . . (13)

wheren̂ is a unit normal vector on the body surface.V is the unperturbed surface fluid velocity
vector and∆V is the change in the surface fluid velocity vector due to the aerofoil motion,
which in this case equals the prescribed surface velocity. Note that this formulation follows
the approach of Zhanget al (28) who apply piston theory around the local pressure at each cell
adjacent to the boundary, rather than the free stream conditions.

5.2 Extension to Viscous Flows

The extension of the piston theory approach to the RANS equations is complicated by the fact
that the no slip boundary condition for a non porous wall means thatV = 0 and hence piston
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theory (12) cannot be directly applied. Instead, the velocity VP at the wall of an equivalent
inviscid, irrotational flow is approximated by assuming that a surface bounding streamline
exists and that the pressure distribution is that of the viscous flow wall boundary. Then using
simple Bernoulli’s equation (but allowing density to change) gives:

|VP| =

√

2(p∞ − pB)
ρB

+
ρ∞

ρB
(V∞)2,

wherepB, ρB are the prescribed pressures and densities at the boundary of the viscous wall
andp∞, ρ∞ are the free stream pressures and densities. The velocity vectorVP becomes:

VP = ŜL · |VP| ,

whereŜL is the unit direction vector of the equivalent surface boundstreamline.

5.3 Time Step Size

One dimensional piston theory has been shown to give good results for periodic pitching so
long as any of the conditions (14), (15) and (16) below are true(25,29).

M2 ≫ 1, . . . (14)

κM2 ≫ 1, . . . (15)

κ2M2 ≫ 1, . . . (16)

whereM is the freestream Mach number andκ = ω · c/U∞ is a non-dimensional reduced
frequency. Hereω is the circular frequency,c is the chord andU∞ is the freestream speed.
Within the context of the subsonic high frequency oscillation condition (16) becomes:

(

ω · c · M
U∞

)2

≫ 1. . . . (17)

For the pulse response however, there is no circular frequency condition. For the pulse es-
timations used here, the circular frequencyω is replaced with1

∆t . Consequently, the piston
approximation for pulse sizing is expected to give best results when

(

c · M
U∞ · ∆t

)2

≫ 1. . . . (18)

In this research, it has been found that this condition is adequate and that while piston
theory is traditionally only valid at very high Mach numbersor very high frequencies, for
subsonic pulse responses the time step which satisfies (18) may be significantly larger than
the time step required to resolve the high frequencies required to satisfy (16).

5.4 Results of Input Sizing Tests

5.4.1 2D Euler Results

The accuracy of the pressure predicted by piston theory on the first time step directly after a
pulse is tested by comparing to non-linear Euler simulations for three test cases. Only results
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from the first time step are considered as the instantaneous response produced by a sample
pulse input at this time has been found to be the key factor in ensuring: that solutions do
not encounter non-physical behaviour which prevents convergence and that the pulse is large
enough to ensure a response beyond the accuracy specified forthe CFD code. The test cases
all use the NACA0012 aerofoil with a 25% flap, which can undergo heave and pitch (about
quarter chord) motions. The mesh used has 139x15 cells (Figure 1) and the flow solver is
an implicit cell centred finite volume dual time Euler schemebased on the standard Jameson
scheme. The mean flow solutions for the inviscid test cases are shown in Figure 2.

The velocity expansion (13) can be expressed for the pulse inputs as:

v2 =



















































V · (n̂2 − n̂1) ∆̄α Pitch pulse
(a− ax) α̇ · n̂2 ∆̄α̇ Pitch rate pulse,
0 ∆̄h Heave pulse,
ḣ · n̂2 ∆̄ḣ Heave rate pulse,
V · (n̂2 − n̂1) ∆̄δ Flap Pulse,
(b − bx) δ̇ · n̂2 ∆̄δ̇ Flap rate pulse.

. . . (19)

The component of normal velocity in the expansion for heave displacement is predicted to
be zero as the normals do not change. The results in the following sections will show that the
nonlinear response to a pure heave displacement, although non zero, remains very small.

Tables 1 and 2 give an overview of the steady flow conditions and pulse sizes used in the
test cases. In Table 1 a baseline set of pulse input sizes is defined asscale=1. These pulse
size values are then scaled by a factorscale=5n to allow a simple rescaling of the results to
check for linearity.

The unsteady pulse responses (Figures 3-8) are shown as a change in pressure and integral
force from the nonlinear mean solution

∆̄p = p2 − p1, . . . (20)

∆̄CF = [CF ]2 − [CF ]1 , . . . (21)

where p is the non-dimensional static pressure andCF is the respective integral force
coefficient (F = L,M,H for lift, pitching moment and hinge moment). Again, subscripts 1
and 2 represent the values before and after the first time stepwhen the pulse is applied. The
pressure change results are shown for the four different pulse sizes (from Table 1), with the
values rescaled usingscale to demonstrate the approximate linearity of the response.

In interpreting the results the key measures are:

1. The maximum pressure change predicted by piston theory for unit input should be of
the same order of magnitude as the maximum pressure change from CFD scaled for unit
pulse input. It should be noted that precise accuracy is not required as piston theory is
only being used to select a pulse size.

2. The change in integral force coefficients predicted by piston theory should also have a
similar order of magnitude to the CFD values for the same sizeof input. Again precise
accuracy is not required.
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This is discussed further in Section 6.

For test case 1,κ2M2 = 16 which is much greater than 1; for test case 2κ2M2 is close to
the limiting value of 1 and for test case 3 the criteria forκ2M2 is violated. For test cases 1
and 2 the initial integral values for lift and pitching moment are accurately predicted by the
piston theory. As can be seen from the pressure responses, the piston theory cannot capture
the merging of the trailing edge pressure with the wake and hence hinge moment coefficients
are less accurately predicted. Test case 3 is run at an unrealistically high time step which
would not normally be encountered for aeroelastic simulations. However even here (case
3) the correct order of magnitude of the integral forces and the maximum/minimum surface
pressures is captured by piston theory. The largest pulse size (scale = 125) is selected to be
unfavourably large. Many of the responses for the large pulse inputs are seen to be nonlinear.
For test case 3, the responses to pitch (α) and heave rate (ḣ) include the influence of shock
waves which were not present in the steady flow. In general these large pulse inputs struggled
with convergence and were accompanied by very large changesin the integral force values.

Table 1
Pulse Inputs

Pulse [units] scale= 1 scale= 5 scale= 25 scale= 125

∆̄α deg 0.08 0.4 2 10

∆̄α̇ deg/s 0.4 2 10 50

∆̄h c 0.001 0.005 0.025 0.125

∆̄ḣ c/s 0.008 0.04 0.2 1.0

∆̄δ deg 0.08 0.4 2 10

∆̄δ̇ deg/s 0.4 2 10 50

Table 2
Test Cases

Case α0 M ∆tREAL κ2M2

1 0.0 0.8 0.2 16

2 2.0 0.3 0.2 2.25

3 0.0 0.7 2.0 0.1225

5.4.2 2D Viscous Results

As for the Euler simulations of the previous section, the pressure and the integrated forces for
the first time step directly after the pulse is compared with the piston theory. The test cases
used are as described for the Euler simulations with the addition that the Reynolds number
for all cases is 1× 107. The mesh and steady flow solution are shown in Figures 9 and 10for
the RANS solver.
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The results for the RANS/piston comparisons are shown in Figures 11 to 16. Unlike the
Euler comparisons, where the pressure distribution was still well predicted for Case 2, the
piston theory only produces accurate pressure distributions for case 1 where condition (18) is
valid. However the accuracy of the integrated coefficients is still excellent, even for the hinge
moment if it is remembered that only an order of magnitude analysis is required.

6.0 PRACTICAL APPLICATION
When running CFD codes to obtain the pulse responses needed for ERA ROM generation,
piston theory is applied to size the pulses to avoid convergence issues. The following work
flow process is applied:

1. Generate nonlinear mean flow solution

2. Apply local one-dimensional piston theory using equation (12) to find the change in force
coefficients from the mean values for a unit pulse input.

(a) The required pulse size to achieve a prescribed integralforce change△CF is achieved
by scaling the linear integral force change from the piston theory. The resulting
scaling factor defines the pulse input magnitude for the CFD solver.

(b) Check that equation (12) does not predict very low or negative surface pressures for
the rescaled pulse size.

3. Check the mesh integrity when deformed for pulse input of the size determined in step 2.

4. Apply the pulse input to the CFD solver.

5. Check the final response is as expected and fully captured within the accuracy of the
converged solution.

It should be noted that the prescribed integral force change△CF depends heavily on the
precision of the output and the control the user has over it. One of the main advantages of
using an ERA based ROM is that little or no change to the CFD code is required, however
this means that the accuracy constraints of the output files of the code may be fixed and varies
from code to code. Further if the output forces are not the change from mean values, but
absolute values then the accuracy is also impacted by the relative ratio of the change in force
coefficients to the mean force coefficient values. Thus absolute guidelines are not possible as
it will depend on the specific application.

7.0 CONCLUSIONS
The work described here has found that prescribing a required change in the integral forces
and using piston theory to estimate the required pulse size for the Euler and RANS equations
in most cases leads to an appropriate pulse size. However forrobustness: the pressures are
checked to ensure low or negative values are avoided, and if appropriate, the size of the pulse
is reduced and the displaced mesh integrity for the maximum pulse displacements is checked
before simulations are commenced. It has been found that forour CFD code prescribed values
of △CF = 0.01. . .0.1 (for F=L,M,H) are suitable for most cases depending on the steady state
pressure distribution. For the case of the heave pulse sizing, where piston theory gives a zero
response, an amplitude ofh = O (0.01c) has been found to be suitable for all cases considered.
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Figure 1. Finite volume Euler mesh used for all 2D Euler pulse sizing test cases
(139x15 cells, 99 cells over the aerofoil)
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Figure 2. Nonlinear mean flow solutions
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Figure 3. Test case 1 - Scaled pressure response ∆̄P, from Eqn 20 using the viscous wall condition.
Responses are shown for (a) α; (b) α̇; (c) h; (d) ḣ; (e) δ; (f) δ̇ , the pulse magnitudes are given in Table 1.
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Figure 4. Test case 1 - Integral response (Cl,Cm,Ch). Each row corresponds to the pulse of a row in Table 1
and the points on each plot correspond to the four scales in Table 1
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Figure 5. Test case 2 - Scaled pressure response ∆̄P, from Eqn 20 using the viscous wall condition.
Responses are shown for (a) α; (b) α̇; (c) h; (d) ḣ; (e) δ; (f) δ̇ , the pulse magnitudes are given in Table 1.
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Figure 6. Test case 2 - Integral response (Cl,Cm,Ch). Each row corresponds to the pulse of a row in Table 1
and the points on each plot correspond to the four scales in Table 1



Griffiths et al. Pulse Size Estimation for ROMs . . . 19

-2.2e-003

0

2.2e-003

 0  0.5  1

— ∆p
 /

 s
ca

le

x/c(a)

-6.8e-004

0

6.8e-004

 0  0.5  1

— ∆p
 /

 s
ca

le

x/c(b)

-1.9e-006

0

1.9e-006

 0  0.5  1

— ∆p
 /

 s
ca

le

x/c(c)

-1.9e-003

0

1.9e-003

 0  0.5  1

— ∆p
 /

 s
ca

le

x/c(d)

-1.4e-003

0

1.4e-003

 0  0.5  1

— ∆p
 /

 s
ca

le

x/c(e)

Euler pulse (scale=001)

Euler pulse (scale=005)

Euler pulse (scale=025)

Euler pulse (scale=125)

Piston theory

-2.2e-004

0

2.2e-004

 0  0.5  1

— ∆p
 /

 s
ca

le

x/c(f)

Figure 7. Test case 3 - Scaled pressure response ∆̄P, from Eqn 20 using the viscous wall condition.
Responses are shown for (a) α; (b) α̇; (c) h; (d) ḣ; (e) δ; (f) δ̇ , the pulse magnitudes are given in Table 1.
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Figure 8. Test case 3 - Integral response (Cl,Cm,Ch). Each row corresponds to the pulse of a row in Table 1
and the points on each plot correspond to the four scales in Table 1
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Figure 9. Finite volume Navier-Stokes mesh used for all 2D Navier-Stokes pulse sizing test cases
(401x50 cells, 301 cells over the aerofoil)
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Figure 10. Nonlinear mean flow solutions
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Figure 11. Test case 1 - Scaled pressure response ∆̄P, from Eqn 20 using the viscous wall condition.
Responses are shown for (a) α; (b) α̇; (c) h; (d) ḣ; (e) δ; (f) δ̇ , the pulse magnitudes are given in Table 1.
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Figure 12. Test case 1 - Integral response (Cl,Cm,Ch). Each row corresponds to the pulse of a row in Table 1
and the points on each plot correspond to the four scales in Table 1
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Figure 13. Test case 2 - Scaled pressure response ∆̄P, from Eqn 20 using the viscous wall condition.
Responses are shown for (a) α; (b) α̇; (c) h; (d) ḣ; (e) δ; (f) δ̇ , the pulse magnitudes are given in Table 1.
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Figure 14. Test case 2 - Integral response (Cl,Cm,Ch). Each row corresponds to the pulse of a row in Table 1
and the points on each plot correspond to the four scales in Table 1
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Figure 15. Test case 3 - Scaled pressure response ∆̄P, from Eqn 20 using the viscous wall condition.
Responses are shown for (a) α; (b) α̇; (c) h; (d) ḣ; (e) δ; (f) δ̇ , the pulse magnitudes are given in Table 1.
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Figure 16. Test case 3 - Integral response (Cl,Cm,Ch). Each row corresponds to the pulse of a row in Table 1
and the points on each plot correspond to the four scales in Table 1


