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ABSTRACT

Model order reduction (MOR) is an important technique tHkivwes reduced order models
(ROMs) of physical systems to be generated that can capteredminant dynamics, but
at lower cost than the full order system. One approach to M@ has been successfully
implemented in fluid dynamics is the Eigensystem Realinaigorithm (ERA). This method

requires only minimal changes to the inputs and outputs oFB Code so that the linear
responses of the system to unit impulses on each input cheamée extracted. One of the
challenges with the method is to specify the size of the imquige. An inappropriate size
may cause a failure of the code to converge due to non-physeteviour arising during

the solution process. This paper addresses this issue hy piston theory to estimate the
appropriate input pulse size.
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NOMENCLATURE

a local speed of sound

a the position vector of a point on the aerofoil surface
ax is the position vector of the centre of pitch rotation
A,B,C,D continuous linear state-space system matrices
A,B,C  discrete linear state-space system matrices
A;,B,.C, reduced discrete linear state-space system matrices
b the position vector of a point on the flap surface

by is the position vector of the flap hinge centre of rotation
c aerofoil chord

Cq drag codicient

Ch flap hinge moment cdicient

C lift coeflicient

Cnm pitching moment cocient

f,h vector functions

fg. Oy functions linking mesh positions and speeds to input vector
h heave displacement

Hy discrete Markov parameter

His(k) block Hankel matrix

M freestream Mach number

f unit normal vector on surface

p pressure

t time

u input vector

U freestream speed

\% unperturbed surface fluid velocity vector

Vp wall velocity of an equivalent inviscid, irrotational flow
Vo wall normal surface velocity

X continuous state vector

Xk discrete state vector

Xg mesh position

y continuous output vector

Y modified discrete output vector

Greek Symbol

a pitch angle

vy ratio of specific heats
1 flap angle

K reduced frequency

w frequency

1.0 INTRODUCTION

Accurate fluid models for prediction of unsteady flow featufer aeroelastic calculations
require solution of the full unsteady non-linear Euler orvMa-Stokes equations. The
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drawback of implementing such methods is the high numbeegfeks of freedom, coupled
with the thousands of parameter variations that must bestigaged, which makes them
too computationally expensive for routine use in industijherefore historically simpler

methods which are not able to predict all the features erteoed in the flight regime of

modern aircraft have been used e.g. Doublet Lattice MetfibtMs). Recent research has
therefore focussed on the application of Model Order Redn¢MOR) schemes to unsteady
Computational Fluid Dynamics (CFD) codes as this approdidra potential increase in
accuracy over methods such as DLM.

The objective of MOR schemes is to produce a computationefigient Reduced
Order Model (ROM) from the Euler or Navier-Stokes systent ttegptures the dominant
dynamic behaviour of the full order system. Whilst MOR of ttantinuous time Euler or
Navier-Stokes equations is possible, in most CFD impleatants either a discrete time or
discrete frequency domain is used. Thus in many cases @tligane or frequency domain
ROM is produced, which can be used in some cases to obtaintmwouns time domain
ROM. The term, reduced order modelling, is widely used angtra large number of quite
different methods. Reviews of the various approaches are aesiteDowell and Half) and
Antoulas?, but are not covered here since this paper focuses purely imgrovement to
one MOR method.

The focus of this paper is the Eigensystem Realisation 8ystgorithm (ERA) method
for MOR®@56.7.8.9) which builds on the work of Kun§). This is an icient approximately
balanced methd® that can be applied to CFD with only minor modifications to imguts
and outputs of the code. The truncated responses to inpsggate then slicient for the
MOR process. However there is one important question tliggsawith this method, namely
what is an appropriate size for the input pulse for a CFD cégeexplained ift® poor pulse
size specification can cause non-physical behaviour te dtigng the CFD iterations causing
the CFD code not to converge. Experience has shown that tkenua change in pressure
usually occurs on the first time step of the CFD scheme and anewficient method based
on piston theory for estimating this pressure change andehgining the input pulses for both
Euler and Navier-Stokes codes is described here.

2.0 TIME-CONTINUOUS NONLINEAR AND LINEAR
STATE-SPACE SYSTEMS

In this work, the unsteady Euler or RANS equations are soli@dg a standard Jameson
cell-centred finite-volume scheme cdtle'?), that is modified to be time accurate and allows
moving meshed31419) After spatial discretisation the CFD equations for theiproabout a
non-linear baseline Euler or RANS solution can be writt®rin non-linear state space form
as:

*O ~ taxm.u0).
y® = htx®,u(), (1)
where (1) is the input vector,X) is the state vector ang)(is the output vector, containing
quantities of interest such as changes to forcéfmients or surface pressures. For example,
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for an aerofoil undergoing linearised perturbations irtlpi(Aa), heave Ah) and flap AS)
motions; where the outputs of interest are the changes tintbgrated cofficients of lift
(AC)), drag (ACy), pitching moment4Cy,) and flap hinge momen®AC;,) compared to the
initial mean values obtained from the steady nonlinear Céles then

U = [Ae,Ad Ah AR AG A
y = [AC,ACq, ACm, ACH].
It should be noted here that the use of moving meshes with ERAraightforward since

the mesh positions; and mesh speedg that arise in the dierential equations are functions
of the inputs:

. (2)

Xg fg(u(t),
Xg = gg(u(t)). )
(4

Hence the mesh positions and speeds do not appear exglicitlg functionf in equation
(1)as they can be written in terms wf

If the dynamic behaviour of the non-linear Euler or Navi¢okes system (1) about the
non-linear mean or steady flow solution is approximatelgdinthen the non-linear system
can be approximated by a linear time-continuous stateespgatem given by:

dxd_t(t) = Ax()+Bu(t),
y({t) = Cx(t)+Du(t), ...(5)

where the system matricés B, C andD are independent of timM¥). The linear responses
of the unsteady CFD form the basis for the ERA approach. Tealiresponses are found
either directly by linearising the CFD cod® so the system is truly linear (though it may not
be written in the form (5)) or as the linear part of a non-linessponse, which requires two
non-linear unsteady simulations to be calcul&té®).

3.0 DISCRETE LINEAR STATE-SPACE SYSTEM

The CFD code used in this work is actually implemented in tiserdte time domain and
hence MOR is implemented to obtain a discrete-time ROM. blepto obtain the terms
needed by the ERA algorithm to build a discrete ROM directbnf the output responses
without further manipulatioft®), a first order implicit finite dference scheme is used for the
time derivative in (5) to give the discrete linear syst&n

Xk = AXk,1+éUk,
v = Cx ...(6)

where the subscrigt denotes the value of a quantity at time lekelt and the discrete
system output has been modifiedyp = yx—Du, sinceD in the output equation is known
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and small for most problems of interest. The discrete sysier-step dependent matrices
are as follows

A = (I-AtA)™?,
B = (I-AtA)™!BAt,
c = C.

It should be noted that the corresponding continuous systéput is then modified to be
y™(t) = y(t)-Du(t). Further, it is important to emphasise that the first ordecretisation
should be seen as a low pass filter, as it highly damps higlhiémzy terms allowing the eas-
ier identification of the usually more important low freqegrerms in the discrete ROM. It
should be noted that the discrete ROM is for a fixed time steig;is acceptable for many
applications. However, if for example the ROM is to be usethinia continuation algo-
rithm@® then the time step must be able to vary. The discrete ROM ipethpack to the
continuous space by inverting the transformation (7). Téwtiouous time ROM produced
from the discrete ROM can be put into discrete form with féedéent time step and using any
finite difference approximation; hence the resulting ROM is not fixditstsorder in time.

4.0 EXPLANATION OF ROLE OF PULSE RESPONSES
WITHIN ERA

A discrete reduced order system is obtained from (6) usieg®RA method*3. ERA re-
quires terms of the form
Hi = CA*B, ..(7)

to be identified fok > 0. These terms are equal to the Markov paraméigrsf (6). The
matricesHy can be directly constructed as each column is the outpubnssgto anit sample
pulse input on one of the system inputs separé&tehf). Once these terms are known thes
block generalised Hankel matrix can written as:

~|:|k |E|k+1 |E|k+2 |:|~k+s—1
Hk+l Hk+2 Hk+3 Hk+s
His(k) = : : : : . ...(8)
|:|k+l—l |:|k+l |:|k+l+l |:|k+s+l—2

If it is assumed that the system hasutputs ananinputs then the Markov parameters will
each have a sizp x m, hence the size of the Hankel matriX sx sm. The parametersand
s must be chosen to ensure that enough terms are retained fruttoated responses. The
partitioned singular value decomposition (SVD) for the Kammatrix withk = 0 is given by

His(0) = UZVT, ...(9)

whereX is ansmx smdiagonal matrix of singular values which are either positiv zero,
with the singular values arranged in size order. The ERAgBsthen determines the rank of
the reduced order model of the system based on the numbemoéats o which are larger
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than some desired accuracy or by including onlyrttergest singular values i, wherer is
prescribed. Then matrid;(0) is partitioned and approximaté8 as

|:|Is(0) ~ UrZrVrT, ...(10)

where unnecessary columns and rows of the mattit&s vV have been deleted to reduce
their size. The reduced matrix frobhis U; : Ip x r, the reduced matrix fro® isX; : r xr
and the reduced matrix fromMis V, : smxr.

Then following® it can be shown that one possible realisation of this redsgstém is

'§\r = 2:r_l/zur-r|:|rs(]-)vrzr_1/2,
@r = Z:rl/ZVrTEm, .. .(11)
Cr = E;UrZrl/z,

whereE, = [Ip, 0p, Op, ..., Op] has sizep x Ip andE] = [Im, Om, O, ..., Om] has sizem x sm.
This realisation A\, By, C] is not unique, because any non-singular mafrigan be used to
obtain another valid realisatiomp, T, TB,;, C, T™1].

The ERA method is implemented to obtain a discrete-time R@te® CFD code, which
is limited to the order of accuracy of the time-stepping sebeused in obtaining pulse
responses and also to a fixed real time step. Consequentlgisbeete ROM cannot be
accurately applied to problems involving structural medelith discrete non-linearities
(for example control surface freeplay) as the aerodynanmadehcould not capture the
“switching” points between discrete regidfi. This problem can lead to non-physical limit
cycle behaviour arising in the soluti®. A time continuous ROMA, By, C;] does not
have this restriction, since it can be solved for any time stiee. The consistent method
to obtain a continuous-time ROM is to invert the transfolioratised to obtain the discrete
system matrices from the continuous system matfiées

Further it should be noted that the basic ERA scheme apmistidrt pulse response his-
tories does not guarantee the stability of the resultingrdie-time ROM. A skilled user is
usually able to specify a size of Hankel matrix and reducedehsize to find a discretely
stable scheme. There is a further stability issue in resfectntinuous-time models obtained
via the inverse of the first order implicit finitefterence scheme, which means that not all sta-
ble discrete-time ROMs map to stable continuous-time RCR&ent work by Walest al (*8)
means that these stability issues can be overcome using@nated restarting approach.

5.0 PULSE INPUT SIZING

The sizing of the input pulses is a major consideration wieiingithe ERA method for ROM
generation. In most implementations this has been based@menperience gained via an
expensive process of trial and error. Whilst inputtingjgcrete unit sample pulse on an input
channel of a CFD code would directly output a column of the hdamparameter needed for
ROM construction this can, for some input channels, leacbtwrly converged solutions and
in some cases solution breakdown. However, since the dyngesponse of the system is
approximated as linear (see equations (3) and (4)) a smiafiat pulse can be used and the



GRIFFITHS ET AL. PuLse Size EstimatioN FoR ROMs . . . 7

output response scaled to give the response to a unit puldeegate a column of the Markov
parameter.

If the pulse size chosen is too large then during the solytiogess at each real-time step,
the Euler and RANS equations may encounter non-physicatisnk (before convergence
is achieved). One area that this issue often arises is where fire supersonic velocities
away from the aerofoil, which can lead to zero or negativequees that prevent convergence
and limiters fail to prevent this issue retarding converg?. If the pulse size chosen is
too small then the response may quickly approach the ordecafracy of the CFD scheme
(maximum user specified residual) due to the exponentiaydetthe response.

The method for pulse sizing described here is based on gistony (a tool more frequently
used for supersonic and hypersonic aeroelastics) and Igalple to flows around subsonic
and transonic aerofoils. The closed form of the piston thequations yields a robust method
of selecting a sample pulse size for ROM generation thatoovees the dficulties outlined
above. This approach has minimal implementation costs ard dot require any modifica-
tion of the core CFD code.

5.1 Numerical Procedure

An a priori estimate of the response of the unsteady CFD about a bas&diagy solution,
can be found using the baseline pressure and velocity tegeiith 1D piston theory, which
considers a point on a moving surface as being analogousitian pnoving through a one
dimensional chann&P26:27) Then using Bernoulli’s equation and isentropic relatiresan
be shown that the pressure on the face of a one dimensiomah gisthe cell adjacent to the
boundary is:

P1
where subscripts 1 and 2 refer to a quantity before and dféepérturbation respectively.
p is the local static pressura,is the local speed of soungl,is the adiabatic index (assumed
here to be 1.4) andis the wall normal surface fluid velocity due to the pertuidrat The wall
normal surface fluid velocity, can be described in terms of the surface normals as:

...(12)

2y

— o-1)

P2 _ (1+ b 1>2) ,
2 ai

Vo = AV-ﬁ2+V-(ﬁ2—ﬁ1), (13)

wherefi is a unit normal vector on the body surfaséis the unperturbed surface fluid velocity
vector andAV is the change in the surface fluid velocity vector due to thefaé motion,
which in this case equals the prescribed surface velocibie khat this formulation follows
the approach of Zharg al ?® who apply piston theory around the local pressure at eath cel
adjacent to the boundary, rather than the free stream ¢onslit

5.2 Extension to Viscous Flows

The extension of the piston theory approach to the RANS @&psis complicated by the fact
that the no slip boundary condition for a non porous wall nsghatV = 0 and hence piston
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theory (12) cannot be directly applied. Instead, the v&yoéi at the wall of an equivalent
inviscid, irrotational flow is approximated by assumingtthasurface bounding streamline
exists and that the pressure distribution is that of theouisdlow wall boundary. Then using
simple Bernoulli's equation (but allowing density to chahgives:

2 o T o]
|VP| — J (p pB) + p (Voo)Z,
rB rB

wherepg, pg are the prescribed pressures and densities at the bourfdhgnascous wall
andp.., p. are the free stream pressures and densities. The veloctiyr¥ becomes:

Vp = SL-|Vel,

whereSL is the unit direction vector of the equivalent surface bosingamline.

5.3 Time Step Size

One dimensional piston theory has been shown to give goadisder periodic pitching so
long as any of the conditions (14), (15) and (16) below are#A#®),

M2 > 1, ...(14)
kM?Z > 1, ...(15)
KM? > 1, ...(16)

whereM is the freestream Mach number and= w - ¢/U,, is a non-dimensional reduced
frequency. Herew is the circular frequency; is the chord andJ., is the freestream speed.
Within the context of the subsonic high frequency osciflattondition (16) becomes:

2
(‘”'UC'M) ST ..(17)

For the pulse response however, there is no circular frexyueondition. For the pulse es-
timations used here, the circular frequeneys replaced withﬁ. Consequently, the piston
approximation for pulse sizing is expected to give bestltesvhen

2
(UC.NLt) > 1 ...(18)

In this research, it has been found that this condition iqjade and that while piston
theory is traditionally only valid at very high Mach numbensvery high frequencies, for
subsonic pulse responses the time step which satisfies @gpmsignificantly larger than
the time step required to resolve the high frequencies redquo satisfy (16).

5.4 Results of Input Sizing Tests
5.4.1 2D Euler Results

The accuracy of the pressure predicted by piston theory efirt time step directly after a
pulse is tested by comparing to non-linear Euler simulation three test cases. Only results
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from the first time step are considered as the instantanesp®nse produced by a sample
pulse input at this time has been found to be the key factongueng: that solutions do
not encounter non-physical behaviour which prevents agarece and that the pulse is large
enough to ensure a response beyond the accuracy specifi@ 6FD code. The test cases
all use the NACA0012 aerofoil with a 25% flap, which can undengave and pitch (about
quarter chord) motions. The mesh used has 139x15 cellsr@-iuand the flow solver is
an implicit cell centred finite volume dual time Euler schelased on the standard Jameson
scheme. The mean flow solutions for the inviscid test cagestewn in Figure 2.
The velocity expansion (13) can be expressed for the pujsesras:

V- (A2 - Ay) &;x Pitch pulse
(a—ay)a-hy A« Pitch rate pulse

: 0 Ah Heave pulsg
V2 = h- A, Ah Heave rate pulse ---(19)
V - (fiz — fi) A Flap Pulse
(b—by)6-hA2  AS Flap rate pulse

The component of normal velocity in the expansion for heaspldcement is predicted to
be zero as the normals do not change. The results in the faljposections will show that the
nonlinear response to a pure heave displacement, altharghemo, remains very small.

Tables 1 and 2 give an overview of the steady flow conditiomsarise sizes used in the
test cases. In Table 1 a baseline set of pulse input sizedimedeasscale=1. These pulse
size values are then scaled by a faciale=5" to allow a simple rescaling of the results to
check for linearity.

The unsteady pulse responses (Figures 3-8) are shown asgedhagressure and integral
force from the nonlinear mean solution

_&p = Pz2- P ... (20)
ACe = [Cel2-[Ckly, ..-(21)

where p is the non-dimensional static pressure &g is the respective integral force
codficient (F = L, M, H for lift, pitching moment and hinge moment). Again, subgtgil
and 2 represent the values before and after the first timengdtep the pulse is applied. The
pressure change results are shown for the foffiedint pulse sizes (from Table 1), with the
values rescaled usiragale to demonstrate the approximate linearity of the response.

In interpreting the results the key measures are:

1. The maximum pressure change predicted by piston theoryrfio input should be of
the same order of magnitude as the maximum pressure chamgeZfiFD scaled for unit
pulse input. It should be noted that precise accuracy isemuired as piston theory is
only being used to select a pulse size.

2. The change in integral force dfieients predicted by piston theory should also have a
similar order of magnitude to the CFD values for the same gideput. Again precise
accuracy is not required.
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This is discussed further in Section 6.

For test case &*M? = 16 which is much greater than 1; for test cas€®? is close to
the limiting value of 1 and for test case 3 the criteria #6K? is violated. For test cases 1
and 2 the initial integral values for lift and pitching momeme accurately predicted by the
piston theory. As can be seen from the pressure responseagiston theory cannot capture
the merging of the trailing edge pressure with the wake amddéinge moment céigcients
are less accurately predicted. Test case 3 is run at an istiegly high time step which
would not normally be encountered for aeroelastic simosti However even here (case
3) the correct order of magnitude of the integral forces &mdnbaximuryminimum surface
pressures is captured by piston theory. The largest pulsgssiale = 125) is selected to be
unfavourably large. Many of the responses for the largeginisuts are seen to be nonlinear.
For test case 3, the responses to piighdnd heave ratehj include the influence of shock
waves which were not present in the steady flow. In generaktlarge pulse inputs struggled
with convergence and were accompanied by very large chamgfes integral force values.

Table 1
Pulse Inputs

Pulse [units] scale=1 scale=5 scale=25 scale=125

Aa deg 0.08 0.4 2 10

Ad degs 0.4 2 10 50

Ah c 0.001 0.005 0.025 0.125
Ah c/s 0.008 0.04 0.2 1.0
AS deg 0.08 0.4 2 10

A6 degs 0.4 2 10 50

Table 2
Test Cases

Case ap M AtreaL K2 M?

1 00 08 0.2 16
2 20 03 0.2 2.25
3 00 07 20 0.1225

5.4.2 2D Viscous Results

As for the Euler simulations of the previous section, thespuee and the integrated forces for
the first time step directly after the pulse is compared with piston theory. The test cases
used are as described for the Euler simulations with thetiaddhat the Reynolds number
for all cases is & 10°. The mesh and steady flow solution are shown in Figures 9 affior 10
the RANS solver.



GRIFFITHS ET AL. PuLse Size EstimatioN FOR ROMs . . . 11

The results for the RAN®iston comparisons are shown in Figures 11 to 16. Unlike the
Euler comparisons, where the pressure distribution wésnatll predicted for Case 2, the
piston theory only produces accurate pressure distribsifior case 1 where condition (18) is
valid. However the accuracy of the integratedf@ioeents is still excellent, even for the hinge
moment if it is remembered that only an order of magnitudédyaisais required.

6.0 PRACTICAL APPLICATION

When running CFD codes to obtain the pulse responses need&RA ROM generation,
piston theory is applied to size the pulses to avoid convergéssues. The following work
flow process is applied:

1. Generate nonlinear mean flow solution

2. Apply local one-dimensional piston theory using equafit®) to find the change in force
codficients from the mean values for a unit pulse input.

(@) The required pulse size to achieve a prescribed intéagal changeCr is achieved
by scaling the linear integral force change from the pistoeoty. The resulting
scaling factor defines the pulse input magnitude for the Célizes.

(b) Check that equation (12) does not predict very low or tiegaurface pressures for
the rescaled pulse size.

3. Check the mesh integrity when deformed for pulse inputhefsize determined in step 2.
4. Apply the pulse input to the CFD solver.

5. Check the final response is as expected and fully captuithéhwhe accuracy of the
converged solution.

It should be noted that the prescribed integral force char@e depends heavily on the
precision of the output and the control the user has over iite & the main advantages of
using an ERA based ROM is that little or no change to the CFDedsdequired, however
this means that the accuracy constraints of the output filkeeacode may be fixed and varies
from code to code. Further if the output forces are not thexghdrom mean values, but
absolute values then the accuracy is also impacted by thtveetatio of the change in force
codficients to the mean force cffieient values. Thus absolute guidelines are not possible as
it will depend on the specific application.

7.0 CONCLUSIONS

The work described here has found that prescribing a redjginange in the integral forces
and using piston theory to estimate the required pulse siziné Euler and RANS equations

in most cases leads to an appropriate pulse size. Howeveoliastness: the pressures are
checked to ensure low or negative values are avoided, apgibariate, the size of the pulse

is reduced and the displaced mesh integrity for the maximulsedisplacements is checked
before simulations are commenced. It has been found thatufd€FD code prescribed values

of ACg = 0.01...0.1 (for F=L,M,H) are suitable for most cases depending on the steady state
pressure distribution. For the case of the heave pulsegsizihere piston theory gives a zero
response, an amplitude o= O (0.01c) has been found to be suitable for all cases considered.
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Figure 13. Test case 2 - Scaled pressure response A_P, from Eqn 20 using the viscous wall condition.
Responses are shown for (a) «; (b) @; (c) h; (d) h; (e) 6; (f) 6 , the pulse magnitudes are given in Table 1.
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Figure 14. Test case 2 - Integral response (Cj,Cn, Cn). Each row corresponds to the pulse of a row in Table 1

and the points on each plot correspond to the four scales in Table 1



26 THE AERONAUTICAL JOURNAL
3.5¢-003 | 7.76-003
D D
Ei Ei i
2 0 2 0
(=" (="
K K
-3.5¢-003 | 7.7e-003
(a) )
2.3e-005 2.0e-002 [
D D
= =
< 1]
Z 0 Z 0
& '~ &
2.3e-005 2.0e-002
0 0.5 1
© xlc )
il
2.0e-003 - f -]
/t N\ 2.6e-003
‘yfi‘ i. ‘\
L
%) f/ : \ -
= o g ] =
g p— : g
s EEg Lo
N ,
1 s,
\ 1 -2.6e-003 Y
-2.0e-003 - \ s
| Y !
0 0.5 1 0 0.5
(e) x/c ) x/c

RANS pulse (scale=001)
RANS pulse (scale=005)
RANS pulse (scale=025)
RANS pulse (scale=125)

Piston theory

Figure 15. Test case 3 - Scaled pressure response A_P, from Eqn 20 using the viscous wall condition.
Responses are shown for (a) «; (b) @; (c) h; (d) h; (e) 6; (f) 6 , the pulse magnitudes are given in Table 1.
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Figure 16. Test case 3 - Integral response (Cj,Cn, Cn). Each row corresponds to the pulse of a row in Table 1

and the points on each plot correspond to the four scales in Table 1



