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Abstract 

Temozolomide (TMZ), a monofunctional alkylating agent was selected as a model 

compound to determine its quantitative genotoxic dose-response relationship in different 

tissues (blood, liver, jejunum) and endpoints (Pig-a -, comet- and micronucleus assay (MNT)) 

in male rats. TMZ was administered p.o. over 5 consecutive days (day 1-5), followed by a 

treatment free period of 50 days (day 6-56) and a final administration prior to necropsy (day 

57-59). 

TMZ showed a dose-dependent increase in DNA damage in all interrogated endpoints. A 

statistically significant increase in Pig-a mutant phenotypes was observed on day 44 starting 

at 3.75 mg/kg/d for mutant reticulocytes (for RETCD59-) and at 15 mg/kg/d for mutant red blood 

cells (RBCCD59-), respectively. In addition, a statistically significant increase in cytogenetic 

damage, as measured by micronucleated reticulocytes, was observed starting at 3.75 

mg/kg/d on day 3 and 1.5 mg/kg/d on day 59. DNA strand breaks, as detected by the comet 

assay, showed a dose dependent and statistically significant increase in liver, blood and 

jejunum starting at doses of 3.75, 3.75 and 7.5 mg/kg/d, respectively.  

The dose-response relationships of the Pig-a, MNT and comet data were analyzed for 

possible points of departure (PoD) using the benchmark-dose (BMD) software PROAST with 

different critical effect sizes (CES) (BMD0.1, BMD0.5, BMD1; BMD1SD). Overall, PoD values 

show a high concordance between different tissues and endpoints, underlining the suitability 

of this experimental design to explore quantitative dose response relationships in a variety of 

different tissues and endpoints, while minimizing animal use.  

 

Keywords: temozolomide, Pig-a, dose-response relationship, multiendpoint 



3 

 

Introduction 

Temozolomide (TMZ) is a monofunctional alkylating agent widely used in various cancer 

therapies. Its cytotoxic mechanism is mainly due to the methylation of O6 guanine, but also 

of N7-guanine and N3-adenine (Zhang et al. 2012), leading to various types of DNA lesions, 

such as mutations (mainly point mutations) as shown in bacteria and in rats (Bodell et al. 

2003; Geiger et al. 2006) as well as chromosomal aberrations in vitro (Vernole et al. 2003). 

Therefore, TMZ was chosen as a model monofunctional alkylating agent to determine its 

quantitative genotoxic dose-response relationship in different tissues and endpoints in vivo, 

and to expand on the dose-response data for this compound class that is predominantly 

represented by ethyl- and methyl methanesulphonate (EMS, MMS) and their corresponding 

nitrosoureas, summarized by Guérard et al. (Guérard et al. 2015). In recent years, several 

working groups and consortia acknowledged the need for quantitative data and 

recommendations on different approaches and the integration of such information to 

minimize the genotoxic risk have been made (Gollapudi et al. 2013; Guérard et al. 2015; 

MacGregor et al. 2015b). Recently, the IWGT Working Group on Quantitative Approaches to 

Genetic Toxicology Risk Assessment (QWG) recommended the use of benchmark dose (BMD) over 

no observed genotoxic effect level (NOGEL) for quantitative genotoxic risk assessment. In this 

context, the QWG also highlighted the importance of the selection of endpoints and tissues in vivo, 

considering metabolism, exposure and genotoxic mode of action (MacGregor et al. 2015a) 

Overall, the experimental design of this study was chosen in alignment with previously 

performed studies (Zeller et al. 2015). In brief, male Wistar rats were treated with TMZ over 

five consecutive days, followed by a treatment-free period, then a second treatment over 

three consecutive days, prior to tissue sampling (Figure 1). This experimental scheme was 

chosen to allow the combination of several endpoints determining DNA damage within one 

experiment: Pig-a assay, Micronucleus test (MNT) and Comet Assay. We chose six closely 

spaced dose levels to study the dose-response relationship of respective endpoints and to 
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determine points of departure (PoD). The combination of the different endpoints within one 

experiment is in line with recommendations of 3-R (replace, reduce and refine animal 

experiments) and further allows a more precise comparison of different DNA lesions in 

different tissues not only between individual animals but even within the same animal. Due 

to the known toxicity of TMZ, the treatment was limited to five days and the top dose of 15 

mg/kg/d.  

The dose-response relationships of the Pig-a, MNT and comet data were analyzed for 

possible PoDs using the benchmark-dose (BMD) software PROAST. The choice of critical 

effect size (CES) is crucial for the results obtained through PROAST. Several ways of 

deriving CES, such as CES 0.1, 0.5 and 1 (corresponding to 10, 50 and 100% increase over 

control) as well as CES 1SD (i.e. an increase of one standard deviation of the concurrent 

controls) were used. In addition, the No Observed Genotoxic Effect level (NOGEL), 

expressed as the highest not statistically significant dose level was evaluated and compared 

to PROAST results. 
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Material and methods 

Chemicals and dose volumes 

Temozolomide (TMZ, CAS 85622-93-1) was purchased from AK Scientific with a purity of 

99.4% and HPMC (0.18 % methylparaben, 0.02% propylparaben, 1.25 % 

hydroxypropylmethylcellulose, 0.10% docusate sodium) was used as a vehicle with fresh 

formulation preparations on each administration day.   

TMZ were administered via oral gavage at a volume of 5 ml/kg body weight, based on most 

recent recorded body weight. Body weights were determined daily during the treatment period 

and once weekly during the treatment-free time. 

Animal husbandry, treatment and dose-levels 

Eight week old Male Wistar rats (stock RccHan:WIST (SPF)) were purchased from Harlan, 

Netherlands and were acclimatized for approximately one week. The study was performed in 

conformity with the Swiss Animal Welfare Law (Swiss Animal Welfare Law (Tierschutzgesetz) 

(Tierschutzgesetz 2005) and in accordance with Roche-internal SOPs and guidelines for care 

and use of laboratory animals.  

Two males per cage had ad libitum access to pelleted standard rodent diet and tap water 

from the domestic supply. Animals were kept in an air-conditioned animal room under periodic 

bacteriological control, at 22°C  2°C with monitored 40% - 80% humidity, a 12-hour light/dark 

cycle and background radio sound coordinated with light hours. They were assigned 

randomly and identified by cage card, color code for group and individually by marking the 

head, back or tail.  

As shown in Figure 1, TMZ was administered once per day to 6 animals per dose group at 

dose levels of 0.375, 0.75, 1.5, 3.75, 7.5 and 15 mg/kg/d over 5 consecutive days, followed by 

a treatment-free period of 50 days (day 6 to 56). The dose levels were chosen based on a 

previously performed dose range finding experiment, where a single animal was given a dose 
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of 30 mg/kg/d over 5 consecutive days, followed by a treatment-free period of 10 days. At this 

dose, no clinical signs of toxicity were observed. On day 14 after the first administration, blood 

samples analyzed for the induction of Pig-a mutant phenotypes revealed a strong response, 

both in red blood cells and reticulocytes (data not shown). Thus, it was decided to limit the 

high dose for the main experiment to 15 mg/kg/d and the administration period to 5 

consecutive days.  

For the main study, blood for the Pig-a assay was sampled before (day -5) and after (day 29, 

44) the administration period. Furthermore, comet assay and micronuclei induction was 

assessed in peripheral blood on day 3 (blood sampling around 1h post-dose). For an 

additional determination of micronuclei as well as comet assay in liver and jejunum, TMZ 

was administered 48, 24 and 1h (day 57-59) prior to necropsy on day 59. The 1h time point 

corresponds approximately to the Cmax observed in rat following oral administration of TMZ 

(Reyderman et al. 2004).  

Tissue collection 

During the study, blood was sampled sublingually into EDTA tubes from rats under light 

isoflurane anesthesia. During necropsy, blood was taken directly from the heart, following 

asphyxiation with CO2. For the micronucleus test approximately 50 µl of blood were diluted 

with anticoagulant (1:7) from which 100 µl were immediately transferred into ultra-cold 

methanol, mixed and stored at approximately -70°C until further processing for FACS 

analysis. For the analysis of Pig-a mutation, approximately 80 µl of blood were diluted with 

100 µl anticoagulant and immediately processed according to instructions of the Prototype 

Stage III MutaFlow® kit. Blood (approximately 50 µl) for the comet assay was collected in K-

EDTA tubes and directly diluted (1:1) with 5 mg/ml Heparin, immediately embedded into 

agarose and further processed for the assay.  
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Liver and jejunum for comet assay were sampled during necropsy in Hank’s Balanced Salt 

Solution (1xHBSS), containing 25 mM EDTA and 10 % DMSO, and stored on ice until a 

single cell suspension was prepared (mincing with a pair of tweezers).  

For histopathological evaluation, the left lateral lobe of the liver, as well as samples from 

jejunum (longitudinal and transversal sections), bone marrow (femur), thymus and testes 

were collected and fixed in 10 % neutral buffered formalin for approximately 24 h. The 

samples were then embedded in paraffin, cut at 4 μm and stained with haematoxylin and 

eosin. 

Pig-a assay (blood, flow cytometry) 

As described previously (Zeller et al. 2015) and in accordance with Rat MutaFlow kit 

instructions (Litron 2009), Pig-a analyses were performed on blood samples collected on 

days −5, 29 and 44. ‘Precolumn’ samples consisted of a small aliquot of each fully labelled 

and stained sample that was analyzed for approximately 1 min in order to provide % RET 

measurements as well as RBC to counting bead and RET to counting bead ratios. The 

majority of each sample was then used for an immunomagnetic separation procedure that 

utilized Miltenyi MACS LS columns and anti-PE Microbeads. The resulting ‘post-column’ 

eluates were analyzed for approximately 3 min to provide mutant phenotype RBC to 

counting bead and mutant phenotype RET to counting bead ratios. As described previously, 

pre- and post-column data were used to calculate mutant erythrocyte (RBCCD59−) and mutant 

reticulocyte (RETCD59−) frequencies. For the current study, this typically provided for the 

evaluation of >2 × 106 RET and approximately 150 × 106 RBC equivalents per rat per time 

point. An Instrument Calibration Standard was generated on each day of data acquisition. As 

approximately one half of these erythrocytes were not incubated with anti-CD59-PE, these 

samples contained a high prevalence of mutant-mimic cells and provided a means to define 

the location of GPI anchor-deficient erythrocytes. A Becton-Dickinson FACSCanto II flow 
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cytometer running Diva 6.1.2 software (BD Biosciences, San Jose, CA, USA) was used for 

Pig-a data acquisition and analysis.  

The baseline levels (day -5) of each individual animal were subtracted (on the logarithmic 

scale) from the respective number of mutant RBCs and RETs at study days 29 and 44. 

Baseline corrected values (log fold changes) were then modelled as a function of TMZ dose 

by linear models. The model assumptions were verified and statistical comparisons of 

interests (all study doses versus vehicle control) were done via one degree of freedom 

contrasts with Dunnett multiple comparison correction. Analyses were done with PROC 

MIXED in SAS v9.2. 

Micronucleus test (blood) 

For the micronucleus assay in peripheral blood, the test methodology was in accordance with 

requirements of the OECD Guideline 474 (OECD 474 2014) and current literature (Hayashi et 

al. 1994; MacGregor et al. 1987; Mavournin et al. 1990).  

The Rat MicroFlow® Plus kit from Litron Laboratories, Rochester, NY, USA was used to 

perform the micronucleus test in peripheral blood via flow cytometry. After at least one week 

following the sampling of blood specimens in ultra-cold methanol, cells were washed with 

PBS buffer, followed by centrifugation at 400  g for 10 min. After removal of the supernatant, 

cells were resuspended and labeled with fluorescent antibodies against CD71 and platelets. 

RNA was degraded enzymatically; DNA was stained with propidium iodide. Flow cytometric 

measurement was performed on a Becton-Dickinson FACS Canto II flow cytometer using 

FACS Diva software. A target of 20,000 reticulocytes (RETs) was interrogated for the 

presence of micronuclei. Results are given as percentage of RETs containing micronuclei 

(MN-RET). All steps were performed on kit-supplied negative-, positive- and calibration-

controls (i.e., calibration via malaria-infected rodent blood samples).  

The number of micronucleated cells showed substantial over-dispersion both on day 3 and 

59. Micronuclei readouts were thus analyzed by generalized linear models, where the 
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number of MN cells was assumed to follow a negative binomial distribution with an offset 

equal to the log of the total number of cells evaluated. Risk ratios of MN cells at each dose 

with respect to vehicle were obtained as a measure of risk of genetic damage. Statistical 

analyses were implemented in R v3.02. 

Comet assay 

The standard protocol for sampling of liver tissues, preparation of a single cell suspension 

and slides, followed by DNA unwinding, electrophoresis and staining of slides being used 

follows recommendation given by several expert committees (Burlinson et al. 2007; Hartmann 

et al. 2003; JaCVAM January 14, 2013; Tice et al. 2000). Isolated cells were embedded into 

agarose on a slide, lysed overnight, followed by alkaline unwinding for 20 minutes. 

Electrophoresis was performed at approximately 26 V (corresponding to 1 V/cm), 300 mA for 

40 minutes at approximately 4°C. Coded slides were analyzed by Metafer/Relosys 4 

(Metasystems, Germany). A total of 150 comets per slide were measured. After rejections of 

artefacts, the median of the first 100 cells per slide was calculated. Two slides per animal and 

tissue were analyzed. The median value of each replicate was calculated for each animal and 

from these two slides the mean value of the dose group was calculated. The number of 

'clouds' or hedgehogs (a morphology indicative of highly damaged cells often associated with 

severe cytotoxicity, necrosis or apoptosis (Burlinson et al. 2007)) out of 100 cells was scored 

manually for each replicate. The statistical analysis of the Comet data was performed by 

transforming individual tail intensity values using the arcsine of the square root, and based on 

this, the median was calculated per slide, followed by calculating the mean per animal across 

replicates (Zeller et al. 2015). Linear mixed-effects models in combination with contrasts were 

used to test treated versus vehicle control groups. In addition, the treatments were compared 

with the negative control using the Dunnett’s test. The analysis was performed in a 

PipelinePilot-R (v2.10.1) implementation with the package ‘nlme’ (non-linear mixed effects 

model). 
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Determination of points of departure (PoD)  

The terms BMD, BMDL and BMR should – in a strict sense – only be used in conjunction 

with the US EPA’s benchmark-dose software while CED, CEDL and CES should be used in 

conjunction with RIVM’s PROAST software. For the present manuscript we used BMD and 

BMDL despite calculations being performed in PROAST,  but keep “CES” because “BMR” is 

often used in the context of standard deviation of controls.  

Various means of deriving PoD were used, such as BMDL (lower boundary of BMD), which 

is gaining support as the preferred PoD metric (Johnson et al. 2014; MacGregor et al. 

2015b). For the dataset with TMZ, PoD values using critical effect sizes (CES) of 0.1, 0.5 

and 1; 1SD) were calculated by using PROAST (v38.9, described in more detail in (Slob and 

Setzer 2014)). The CES is used as a small effect size, in order to define a lower bound 

(CEDL) for use as a PoD, and an upper bound (CEDU) where the ratio of CEDL:CEDU is a 

measure of precision of the CED estimate. If data points with value zero occurred, a 

constant of 0.01 was added to all values to enable log transformation. Covariates were not 

taken into account for the PROAST analysis. Further, the No Observed Genotoxic Effect 

level (NOGEL), expressed as the highest non-statistically significant dose level was 

determined. 

Tolerance intervals as well as the 95 % percentiles of historical negative controls were 

determined using available data from our laboratory, including: 254 specimens for the Pig-a 

assay; 89 specimens for the micronucleus assay; 151 specimens for the liver -, 63 for the 

blood- and 123 for the jejunum- comet assay. The functions ‘nptol.int’ or ‘normtol.int’, from 

the R package ‘tolerance’ were used to estimate one-sided tolerance limits, where 95 % of 

the historical negative control population lies with a confidence of 95 % (Hahn-Meeker or 

Howe’s method respectively). Although the Shapiro-Wilk test rejected the normality 

assumption for the micronucleus assay in peripheral blood, a residuals inspection showed 

that historical negative control residuals were highly symmetric and in strong agreement with 
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the theoretical normal quantiles (qq-plot) despite the presence of only a few outliers. We 

thus estimated Normal Tolerance Intervals for micronucleus assay historical control data.  
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Results 

TMZ was administered p.o. at dose levels of 0.375 to15 mg/kg/d over 5 consecutive days, 

which was generally well tolerated without any clinical signs of toxicity. The highest dose 

was chosen based on a previously performed dose range finding experiment that revealed a 

strong response for the induction of mutant phenotype in RBC and RET, following p.o. 

administration of TMZ at 30 mg/kg/d over the same duration (data not shown) .  

Animals treated with 0-3.75 mg/kg/d showed a slight increase in body weight gain, while 

animals treated with 7.5-15 mg/kg/d showed no increase in body weight gain over the five-

days of treatment period.  

Histopathological evaluation of the vehicle control and the two highest dose levels (7.5 and 

15 mg/kg/d) was done from several highly proliferating tissues (liver, jejunum, bone marrow, 

thymus and testes) of three animals per group. In none of the tissues and dose levels, a 

compound related effect was seen (see Suppl. info). Therefore, the observed genotoxic 

effects described in the following are judged to be not impacted by cytotoxicity.  

Pig-a assay 

The percentage of reticulocytes (%RET) as well as the frequencies of Pig-a mutant 

phenotype cells (i.e. RBCCD59- and RET CD59-) were evaluated before (day -5) and after (day 

29 and 44) the administration of TMZ. A decrease in the proportion of %RET was observed 

over time in animals treated with the vehicle control, and similarly in all animals treated with 

TMZ (Figure 3). This is in line with previous observations (Zeller et al. 2015), and is related 

to the ageing process of the animals. Overall, no compound related effect on the %RET was 

observed.  

Frequencies of RBCCD59- and RET CD59- determined before the treatment (day -5) were within 

the 95 % percentile and tolerance interval of historical solvent controls. The same is true for 

all control animals sampled on study day 44. Three control animals sampled on day 29 



13 

 

showed RBCCD59- and RET CD59- frequencies that exceeded the 95% tolerance interval of 

historical solvent controls. Following treatment with TMZ, two sampling timepoints were used. 

On day 29, no relevant increase of mutant frequencies was observed (no statistical 

significance, marginally exceeding the reference range of historical solvent controls). On day 

44, a statistically significant increase in the frequency of RBCCD59- was observed at 

≥ 3.75 mg/kg/d and for RETCD59- at ≥ 7.5 mg/kg/d, respectively (i.e. NOGELRBC: 1.5 mg/kg/d; 

NOGELRET : 3.75 mg/kg/d, Figure 3). The effect on RBCCD59- was dose-related, with a low 

variability of mutant phenotype frequencies for the vehicle control groups of both cell types 

(Figure 3). Most of animals showed RBCCD59- mutant frequencies exceeding the historical 

control reference range already at 3.75 mg/kg/d.  Overall, a considerably higher variability for 

both RBCCD59- and RET CD59- was observed within the vehicle controls on day 29 as 

compared to day -5 and day 44. 

For RETCD59- a rather large inter-animal heterogeneity was observed on day 44 with 

increasing dose: for instance at the highest dose level of 15 mg/kg/d three out of six animals 

showed a strong response, (i.e. RETCD59- > 7.5 10-6), while for the other three animals 

RETCD59- frequency was well within the reference intervals and comparable to the concurrent 

negative control.  

Micronucleus test and comet assay 

The determination of micronuclei and DNA strand breaks (comet assay) in peripheral blood 

was performed on day 3 specimens and additionally on day 59. At the latter time point, DNA 

strand breaks were also determined in the liver and jejunum. Therefore, animals were 

exposed approximately 48, 24 and 1 h prior to necropsy. A comparable dose-dependent 

increase in the frequency % MN-RETs was observed at both time points. For instance at 0 

and 15 mg/kg/d, the median %MN-RET were 0.08 % and 0.61 % on day 3, respectively and 

0.05 % and 0.53 % on day 59 respectively (Figure 4). At the highest dose a lower proportion 

of reticulocytes was observed at both time points. On day 3, an increase of MN-RET 
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threefold higher as compared to the concurrent vehicle control was found at 3.75 mg/kg/d of 

TMZ (p < 0.001). On day 59 a highly significant risk ratio of MN-RET (2 fold relative to 

vehicle control) was found already with 1.5 mg/kg/d (p = 0.0018)). The frequency of MN-RET 

was within the 95% percentile historical reference up to and including 1.5 mg/kg/d. Given the 

short life span of reticulocytes and our historical reference of the MN-RET we consider a 

biologically relevant increase for both time points at doses of 3.75 mg/kg/d and above and 

thus, the NOGEL MN, day3, day57 is 1.5 mg/kg/d. 

In the comet assay in blood, a dose dependent increase of %tail intensity was observed on 

day 3 of the study with a statistically significant increase at 7.5 mg/kg/d (p= 0.001) and 

higher (i.e. NOGELblood : 3.75 mg/kg/d ; Figure 5 ). Blood samples for comet assay that were 

taken during necropsy (day 59) had to be invalidated, since some values of the negative 

control group were substantially outside the laboratories’ reference range. For jejunum and 

liver a significant and biological relevant increase of tail intensity was observed starting at 

3.75 mg/kg/d (p<0.001) and 7.5 mg/kg/d (p<0.001), respectively (i.e. NOGELliver: 1.5 mg/kg/d; 

NOGELjejunum: 3.75 mg/kg/d). Generally, the observed levels at doses ≤ 3.75 mg/kg/d in liver, 

and ≤ 1.5 mg/kg/d for jejunum were around or just outside the reference range of historical 

controls. We therefore suggest that the small differences in NOGEL values between 

peripheral blood and jejunum versus liver are rather due to inter-individual differences than 

tissue specific effects. The number of hedgehog cells was generally low for all investigated 

tissues (Table 1).  

Dose-response assessment 

Individual data from the various endpoints and treatment days have been evaluated by the 

NOGEL approach, defined as the highest non-statistically significant treatment dose, as well 

as by the BMD approach using PROAST. To this end, four different CES values were 

chosen: 0.1, 0.5, 1 and 1SD reflecting increases of 10%, 50%, 100% and one SD over mean 
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concurrent solvent controls as critical effect sizes (Table 2). Individual plots of the modeling 

are shown as supplementary information (Link/Ref).  

BMD and BMDL (the lower 90% confidence limit of BMD) with CES set at 0.1, 0.5 and 1 

were always lower than the corresponding NOGELs in the Pig-a endpoint. In the MN and 

Comet endpoints, BMDs calculated with a CES of 1 were greater than the respective 

NOGELs. This was also the case for BMDLs calculated with a CES of 1 in the Comet with 

liver tissue, but not in the other endpoints. Since setting the CES values to 0.1, 0.5 or 1 is a 

rather arbitrary choice, the CES 1SD was also used to calculate PoDs. The BMDCES1SD were 

typically much closer to the NOGEL than those obtained from arbitrarily chosen CES (approx. 

1 – 3 fold lower than NOGEL), in the Comet endpoint in peripheral blood did the BMDCES1SD 

even marginally exceed the NOGEL. For the BMDLCES1SD the situation is similar but they 

never exceeded the corresponding NOGELs (approx. 2 – 15 fold lower). The ratios of 

BMDU/BMDL are usually below approx. 10 with the exception of RBCCD59- on day 44, 

RETCD59- on day 29 (n.a. due to infinity/zero division problem) and %MN-RET on day 59 

(partly), indicating lower BMD precision for these three endpoints. 
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Discussion 

The low dose region of monofunctional alkylating agents has gained attention in recent years, 

and some agents like EMS, ENU and their methyl counterparts (MMS, MNU) have been 

extensively been studied for their genotoxic potential  (Doak et al. 2007; Dobo et al. 2011; 

Gocke and Müller 2009; Guerard et al. 2015; Johnson et al. 2012; Zaïr et al. 2011). Like 

those four agents, TMZ acts by alkylating DNA, such as the highly mutagenic O6-Guanine. 

Nevertheless, each of those compounds differ in their specific pattern of alkylation and 

adduct pattern, depending on the chemical properties, which has been reviewed recently 

(Guerard et al. 2015).  

In this study, TMZ has been evaluated for its genotoxic dose response relationship in 

different tissues (blood, liver jejunum) and different endpoints (Pig-a assay, comet assay and 

micronucleus test). It was administered over 5 consecutive days and blood was taken at 

several occasions during the study for the evaluation of mutagenicity in the Pig-a assay, as 

well as chromosome breaks using the micronucleus test. In addition, DNA strand breaks 

were assessed in several tissues using the comet assay: (1) blood, to compare to the Pig-a 

assay and MNT; (2) jejunum as a first-site of contact organ following p.o. administration of 

TMZ and (3) liver, as the major organ of metabolization. 

A statistically significant and dose-related increase in DNA damage was observed for all 

interrogated endpoints and tissues. While for MNT and comet assay, rather consistent 

effects were observed for any given time point and dose, a higher degree of variability was 

noted in the Pig-a assay for some time points. On day 44, within a given dose group, some 

animals showed a strong response on RETCD59- , while for others, values were only slightly 

above the concurrent vehicle control and well within the historical control range of the 

laboratory (groups treated with 1-15 mg/kg/d). On the same day, the effect in RBCCD59- was 

much more uniform, and all animals of the 3.75 and 15 mg/kg/d dose group exhibited mutant 

phenotype frequencies considerably greater than the concurrent vehicle control while also 
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exceeding the historical control range, which aligns with earlier MMS experiment 

observations (Zeller et al. 2015). We suggest that three non-mutually exclusive factors likely 

contributed to the lower variation and higher resolving power of mutant RBCs compared to 

mutant RET: i) a higher number of RBCs is evaluated for the mutant phenotype relative to 

RETs (approximately 1.5 x 108 versus 2 x 106); ii) the shorter half-life of reticulocytes means 

RETCD59- provide information about mutant frequency over a short period of time (hours to 

days), whereas mutant RBC represents a moving average that integrates mutational events 

over a longer duration, days to weeks; and iii) at late post-exposure time points induced 

RETCD59- frequencies can be reduced as mutated erythroid precursor cells lose their self-

renewal capacity. On day 29, for both RETCD59-  and RBC CD59-  populations, no dose group 

was significantly different from controls. This is possibly related to the relatively high 

variability in the control group of day 29, since both RETCD59- and RBCCD59- frequencies of 

the 15 mg/kd/d group are significantly different from pre-dosing samples (all animals) and 

both arithmetic mean and median of the highest dose groups (15 mg/kg/d) RBCCD59- 

frequency exceed the 95% tolerance interval of the historical solvent control range. It is 

assumed that the stronger response on day 44 may be related to the mean life span (60 

days) of the erythrocyte population (Derelanko 1987) and thus, the time for mutated 

hematopoetic cells to expand and cause a measurable effect in the Pig-a assay. 

A review on how specific genotoxic mechanism of action, including those at play for 

monoalkylating agents, may impact the dose response relationship has been published 

recently (Guerard et al. 2015). The reported non-linear dose-response relationship was 

demonstrated for different monoalkylating agents, which most likely involves DNA repair 

processes such as via O-6-methylguanine-DNA methyltransferase and base excision repair 

(Christmann and Kaina 2013; Kaina et al. 2001; Zaïr et al. 2011). This has also been shown 

for TMZ, which along with EMS, MMS, ENU and MNU has been studied in Salmonella 

typhimurium, including strains with different complements of O6-alkylguanine-DNA-

alkyltransferase genes ogt and ada (Tang et al. 2012). PoD values were either completely 
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abolished (EMS, MMS, ENU) or considerably lower (MNU, TMZ) in ogt- and ada-deficient 

bacteria as compared to the respective proficient bacterial strains. In wildtype (i.e. DNA 

proficient) bacteria, the determined PoD values were comparable between the sulphonates 

EMS, MMS and TMZ, but considerably lower for the nitrosourea compounds ENU, MNU.  

Recently, in a study by Muto and colleagues,(Muto et al. 2016 (in press)) a dose-dependent 

and statistically significant increase in RBCCD59- and RETCD59 following a single oral dose of 

25-100 mg/kg of TMZ was demonstrated. The strongest effect in RBCCD59- was observed on 

day 29 with a maximum response of approximately 300 x 10-6 cells vs. 1-2.3 x 10-6 in the 

control and for RETCD59- on day 15 with a maximum response of approximately 600 x 10-6 

cells vs. 1.5-4.8 x 10-6 in the control. The described effects were much higher as in the 

current study, especially considering that the highest cumulative dose of this study of 

75 mg/kg (5x15 mg/kg/d) is roughly in the same range. This suggests, that TMZ-induced 

mutation, as detected by the Pig-a assay, is not additive, which may be due to the 

involvement of DNA repair processes as demonstrated by the above mentioned experiment 

in bacteria (Tang et al. 2012). The fact that TMZ-induced DNA lesions are not additive could 

further support the hypothesis why there is no increase in mutant frequencies on day 29. 

Only after additional 15 days of a treatment free period (day 44), allowing DNA damaged 

hemaopoetic cells to expand, the mutant frequencies starts to increase.  

Similar observations, such as dose fractionation, resulting in a lower response compared to 

a single high dose administration, have also been made for EMS with the Muta™Mouse gene 

mutation endpoint (Gocke et al. 2009). Further, Muto et al. compared the kinetics and 

potencies of MNU and MMS, with those from TMZ for the induction of RBCCD59- : at 25 and 

50 mg/kg similar responses between the three compounds were observed, but a higher 

number of RBCCD59- and RETCD59- were induced at 100 mg/kg of TMZ, followed by MNU and 

MMS. This is in line with observations made in wild type (i.e. DNA repair proficient) bacteria 

(Tang et al. 2012). In the same study, PoD values of MMS were comparable to those of TMZ. 
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The different PoDs derived from the various tissues and endpoints of TMZ, are in the same 

range as for MMS, derived from a multi-endpoint study with MMS (Zeller et al. 2015), 

previously performed using a similar design in our laboratory.  

Different PoD values, such as BMD at 0.1, 0.5, 1 and1SD over control, as well as the 

NOGEL have been determined. It is still a matter of debate, which CES values should be 

applied to best reflect the dose response relationship for DNA damage in each assay. The 

CES parameter in PROAST is often set to 5% (i.e. 0.05) or 10% (i.e. 0.1) or 1 SD increase 

over controls (AMU 2009; Gollapudi et al. 2013; Johnson et al. 2014), which is primarily 

based on recommendations originally suggested for the assessment of studies outside the 

area of genotoxicity. The CES has a major impact on the derived BMDL metric used for the 

PoD, and is therefore currently a matter of debate. The main point of debate is whether one 

approach is more suitable than others for genotoxicity endpoints, and if the validity of a ‘one 

size fits all’ approach for genotoxicity datasets is meaningful or whether endpoint specif ic 

CES are required. It is certainly questionable that an increase of 5 or 10 % over control (i.e. 

a BMD10) is a useful parameter for all of the assays, considering the huge differences in 

maximum response, background level and variation, and other parameters. Based on the 

presented data, “arbitrary” low CES values (i.e. 5 or 10 % increases over average solvent 

controls) seem to be overly conservative for most genotoxicity endpoints. Therefore, 

endpoint-specific CES values were calculated as well. Continuing the lines of argumentation 

of Sand et al (Sand et al. 2011) and Edler (Edler 2014), a critical effect should be discernible 

from the background noise of a biological assay and take into account its statistical power. 

Deriving CES from the standard deviation of the controls (CES 1SD) inversely correlates this 

parameter to the variability within the study controls. Based on the previous analysis using 

MMS (Zeller et al. 2015), and characteristics of the TMZ data, CES parameters of 0.5 and 1 

could be suitable for BMD calculations for MN, comet or Pig-a assay.  
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The study was designed in a way to allow a most accurate determination of the dose 

response relationship and respective PoD values of TMZ-induced DNA damage, by using six 

closely spaced dose levels and several endpoints. At the same time, this combination is in 

line with recommendations on 3R. The close concordance of the determined PoD for BMD 

0.5 and 1 throughout the different tissues and endpoints is striking and allows a precise 

evaluation of the genotoxic potential of a compound. The comet assay is often referred to as 

an indicator assay that detects mainly primary DNA lesions that could still undergo DNA 

repair, in contrast to the micronucleus test or Pig-a assay that both determine heritable DNA 

damage. Nevertheless, we could demonstrate that the comet assay is a suitable model to 

determine PoD values for TMZ and most likely other monoalkylating agents. Overall, the 

advanced experimental and mathematical approaches used within this study, can 

considerably improve the derivation of PoDs, while supporting the goals of the 3R concept. 
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Tables 

Table 1: Proportion of hedgehog cells (n=6 animals per group; Mean±SD) evaluated in a 

total of 100 cells.  

Dose 

(mg/kg/d) 

Liver (%) 

 

Jejunum (%) Blood (%) 

0 1.75 ±0.87 5.08±4.08 0.17±0.39 

0.375 1.83 ±1.34 3.08±1.38 0.08±0.29 

0.75 4.33±4.60 4.83±0.94 0.33±0.78 

1.5 2.75±1.71 5.17±2.66 0.30±0.48 

3.75 3.83± 3.04 3.00±1.41 0.17±0.39 

7 4.40± 1.51* 9.70±5.42* 0.25±0.45 

15 8.17±4.53 24.25±9.24 3.42±3.42 

*n=5  
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Table 2 Points of departure (benchmark dose, NOGEL) determined for different endpoints and time points (n=6, with the exception of comet 

liver, jejunum at 7.5 mg/kg/d: n=5).  

dose (mg/kg/day)

d29 d44 d29 d44 d3 d59 d59 d59 d59

CES1SD 0.84 0.84 1.54 1.54 0.38 0.61 0.15 0.51 0.35

1SD BMD 10.3 0.55 14.30 6.14 1.15 0.46 0.84 3.85 2.09

1SD BMDL - BMDU 7.5 - 58.4 0.1 - 3.2 0 -  3.8 - 10.4 0.6 - 2 0.1 - 1.3 0.30 - 2.2 2.2 - 5.7 1.2 - 3.5

BMDU/BMDL ratio at CES 1SD 7.7 32.5 - 2.7 3.5 9.6 7.1 2.6 3.0

0.1 BMD 7.60 0.04 10.9 4.54 0.46 0.06 0.58 2.20 0.82

0.1 BMDL - BMDU 1.9 - 13.0 0 - 0.8 0 -  1.4 - 6.3 0.15 - 1.1 0.01 - 0.4 0.2 - 1.8 0.5 - 4.2 0.3 - 2

BMDU/BMDL ratio at CES 0.1 6.9 - - 4.5 7.2 56.1 9.5 7.9 5.7

0.5 BMD 9.27 0.29 12.8 5.4 1.38 0.4 2.49 3.82 2.73

0.5 BMDL - BMDU 6.2 - 65.4 0.04 - 2.3 1.5 -  1.5 - 7.5 0.7 - 2.3 0.1 - 1.1 1.3 - 4.2 2.2 - 5.7 1.6 - 4.1

BMDU/BMDL ratio at CES 0.5 10.6 57.8 - 5.0 3.0 11.5 3.3 2.6 2.6

1 BMD 10.8 0.68 13.70 5.81 2.26 0.81 4.68 5.10 4.58

1 BMDL - BMDU 7.9 - 60.4 0.13 - 3.6 4.3 -  2.1 - 8.8 1.4 - 3.3 0.3 - 1.8 2.9 - 6.8 3.6 - 7.7 3.1 - 6.2

BMDU/BMDL ratio at CES 1 7.7 26.9 - 4.2 2.3 6.3 2.3 2.1 2.0

NOGEL 15 1.5 15 7.5 1.5 1.5 1.5 3.75 3.75

fold diff 1SD BMD vs NOGEL 1.5 2.7 1.0 1.2 1.3 3.3 1.8 1.0 1.8

fold diff 1SD BMDL vs NOGEL 2.0 15 - 2.0 2.5 16.0 5.0 1.7 3.1

Pig-a RBC
CD59- Comet Blood 

%TI

Comet 

Jejunum %TI
Pig-a RBC

CD59-
Pig-a RETCD59-

Pig-a RETCD59- % MN-RET % MN-RET
Comet Liver 

%TI

 

*CES1SD reflects an increase of one standard deviation over the mean study controls
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