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Abstract

Intrinsic to all real structures, parameter uncertainty can be found in material

properties and geometries. Many structural parameters, such as, elastic modu-

lus, Poisson’s rate, thickness, density, etc., are spatially distributed by nature.

The Karhunen-Loève expansion is a method used to model the random field ex-

panded in a spectral decomposition. Once many structural parameters can not

be modelled as a Gaussian distribution the memoryless nonlinear transformation

is used to translate a Gaussian random field in a non-Gaussian. Thus, stochastic

methods have been used to include these uncertainties in the structural model.

The Spectral Element Method (SEM) is used to model the structure. It is also

developed to express parameters as spatially correlated random field in his for-

mulation. In this paper, the problem of structural damage detection under the

presence of spatially distributed random parameter is addressed. An explicit

equation to assess damage is proposed based on the mathematical SEM formu-

lation. Numerical examples in an axially vibrating undamaged and damaged

structure with distributed parameters are analysed.

Keywords: Damage detection, Uncertainties quantification, Random field,

Inverse problem.
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1. Introduction

In general, changes in either global or local structural properties can be

associated with damage parameters. Over the last decades, many works have

been performed to develop vibration-based non-destructive evaluation (NDE)

methods, which allow a damage to be localised and quantified from modal pa-5

rameters and dynamic response [1, 2]. However, these techniques are well suited

to detect large damages rather than small damages like a crack. Structural crack

does not impose appreciable changes at low-frequency and the global structural

behaviour is unaffected. The presence of a crack in a structure introduces a

local flexibility that affects its vibration response. It also generates changes in10

the elastic waves that propagate in the structure. New and recent researches

about damage quantification are concentrated on methods that use elastic wave

propagation in structures at medium and high frequencies [3, 4, 5, 6, 7]. They

use the inherent material property that discontinuities, such as a crack, gener-

ate changes in the elastic waves propagating in the structure. There are some15

particular advantages of elastic wave-based damage quantification, such as their

capacity to propagate over significant distances and high sensitivity to discon-

tinuities near the wave propagation path.

The spectral element method (SEM) [8, 9] is based on the analytical solu-

tion of the displacement wave equation, written in the frequency domain. The20

element is tailored with the matrix ideas of the finite element method (FEM),

where the interpolation function is the exact solution of wave equation. This

approach can be called by different names, such as the dynamic stiffness method

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], spectral finite element method [21, 22]

and dynamic finite element method [23, 24]. Built-up structures with geometri-25

cally uniform members can be modelled by a single spectral element. This can

reduce significantly the total number of degrees of freedom compared to other

similar methods. Since the method is based on the wave equation it performs

well at medium and high-frequency bands. However, there are still some draw-

backs, such as difficulties to model non-uniform members and to apply arbitrary30
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boundary conditions for 2D and 3D elements. To work with the SEM in time

domain is needed to apply the Fast Fourier Transform (FFT), it is largely used

for damage detection studies. Although, in time domain responses is observed

the signal wrap-around behaviour as a consequence of using the discrete inverse

Fourier Transform. To avoid the wrap-around behaviour a useful element is35

considered, the throw-off element. For more details about the throw-off element

and wraparound effects see in Ref. [25, 3, 26]. The treatment of uncertainties

using spectral element method is recent [27, 28], and very few was made re-

lated to detection and assessment of the damage. Recently, researchers have

presented works in damage detection using wave propagation in the context of40

uncertainty quantification and stochastic SEM model [29, 30, 31, 32].

Structural health monitoring (SHM) can be defined as a process that involves

the observation of a structure over time using periodically spaced measurements

[33, 34]. Based on this measurement the current state of the undamaged system

can be determined. The inverse problem approach is a technique where the45

structural model parameters can be identified (or the damage can be detected)

based on the frequency response data [35]. In general, the structural damage

is a local phenomenon and produces a stiffness reduction, which changes the

frequency response of the system [36]. Damage estimation is based on the op-

timisation methods [37, 38], which can be used to solve the inverse problem.50

These techniques consist in minimising the differences between the numerical

model and experimental test responses by using a parameter estimation proce-

dure [39, 40, 41]. In structural dynamic testing, it is common practice to mea-

sure the data in the form of frequency response functions (FRF). The knowledge

about a particular structure is contained in a theoretical model and can be con-55

structed using a numerical method. Many papers written on this subject have

been used with FEM [42] and the experimental modal analysis (EMA) [43].

In order to include parameter variability to damage detection and parameter

estimation methods, recent researchers started with the stochastic approaches.

Some authors [44, 30, 29] have proposed stochastic methods to characterise60

and identify the damage including random parameters based on probabilistic
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approaches. Arda Vanli and Sungmoon Jung [45], and Khodaparast and Mot-

tershead [46] present a probabilistic and stochastic model updating method to

improve damage location and damage quantification prediction of a structural

health monitoring system.65

Damage quantification methods assume that they can provide a numerical

dynamic response very close to that of a real structure. Parameters, modelling,

and measurement uncertainties are inherently involved in the damage quantifi-

cation procedure. The stochastic approach in the framework to understand the

magnitude of uncertainty for simulation results is approached. It can be treated70

in the scope of the random variable, which is understood as a function defined

on a sample space whose outputs are numerical values, and random field cor-

responds to naturally spatially varying properties [47]. The reference and most

widely used method is the Monte Carlo (MC) simulation. It is a sampling

method which can generate independent random variables, based on their prob-75

ability distributions, and solving the deterministic problem for each realisation.

By collecting an ensemble of solutions the statistical moments can be calculated

[48]. Although easy to apply a large number of samples are needed to obtain

convergence, which means high computational costs. The Direct method con-

sists in directly applying the statistical moment equations to obtain the random80

solutions. The unknowns are the moments and their equations are derived by

taking averages over the original stochastic governing equations. The problem

is that a statistical moment almost always requires information about higher

moments. A non-sampling approach, known as Perturbation method, consists

of expanding the random fields in a truncated Taylor series around their mean.85

Its main drawback is the limitation of the magnitude of uncertainties which can-

not be too large, typically less than 10% [49]. Another method widely used as

considering random field is the Karhunen-Loève (KL) expansion [50, 49]. The

KL expansion may be used to discretize the random field by representing it

by scalar independent random variables and continuous deterministic functions.90

By truncating the expansion the number of random variables becomes finite and

numerically treatable. Several authors use the KL expansion to model Gaus-

4



sian random processes, however it is possible to extend the KL expansion to

non-Gaussian processes [51, 52, 53, 54, 55, 56, 57, 58].

This work uses a rod structure modelled by SEM to assess a damage with95

parameter uncertainty related to material property and geometry. A rod struc-

ture was used to avoid the effects of evanescent waves at the first moment.

The cross section area and Young’s modulus were considered as a non-Gaussian

random variable and as non-Gaussian distributed random field expanded by

KL. A non-Gaussian process is expressed as a memoryless transformation of an100

underlying Gaussian process. The proposed stochastic damage quantification

technique combines SEM with the stochastic approaches and Structural Health

Monitoring procedure. Based on the mathematical structure model and the

relation between undamaged and damaged structure an explicit formulation to

estimate the damage depth was developed. This technique allows quantifying105

the damage by using direct structure’s dynamic response and to improve the

control over the numerical model dispersion when it is under a stochastic en-

vironment. One of the main advantage of the proposed spectral approach is

that the analytical formulations are frequency independent. Therefore, unlike

conventional finite element based approaches, there is no theoretical limitation110

on higher frequency ranges.

2. Spectral element method for stochastic systems

The spectral element method is similar to FEM with the exception of two im-

portant aspects. SEM is frequency domain formulation and the spectral element

form function is the exact solution of wave equation. Based on this latter as-115

pect the number of elements required for a spectral model will coincide with the

number of discontinuities in the structure. In this section, it will be presented

the stochastic formulation for undamaged and damaged rod spectral element.

A damage quantification technique considering the stochastic process is pre-

sented. The new contribution consists in to obtain the structural response and120

crack parameters variability based on the uncertainty of structural parameter
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spatially distributed, using the random variable and random field approaches.

The random field is expressed based on Karhunen-Loève expansion. A nonlinear

memoryless transformation is used to express a non-Gaussian random field by

means of a Gaussian random field.125

2.1. Undamaged rod

Deterministic

In this section, the fundamental equations are derived for a longitudinal wave

propagation in an undamaged rod, a more extensive formulation can be found in

[8, 9]. The elementary rod theory considers this structure as long, slender, and130

assumes that it supports only 1-D axial stress. Figure 1 shows an elastic two

nodes rod element with one degree-of-freedom per node, uniform rectangular

cross-section subjected to dynamic forces.

Figure 1: Two nodes undamaged rod spectral element.

The undamped equilibrium equation with deterministic parameters at fre-

quency domain can be written as [8]:

EA0
d2u(x)

dx2
+ ω2ρA0u(x) = q(x), (1)

where A is the cross-section area, ρ is the volume mass density, EA is the

longitudinal rigidity, ρA is the mass per unit of length, u is the longitudinal

displacement, q is the distributed external force, and ω is the circular frequency.

The subscript 0 indicates the mean values. A hysteretic structural damping is

assumed and introduced into the model formulation by adding the damping

factor in the Young’s modulus, in a deterministic case E0 = E0 + E0iη, where

η is damping factor and i =
√
−1 [8]. In a stochastic case E(θ) = E(θ) + E0iη,
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where the random part of the Young’s modulus is real positive defined and

the structural damping factor multiply the Young’s modulus mean value. The

subscripts 1 and 2 denote values at the element rod node numbers 1 and 2,

respectively. The homogeneous solution of eq. (1) is given by,

u(x) = a1e
−ikx + a2e

−ik(L−x) = s(x, ω)a, (2)

where L is the rod element length, k = ω/c is the wavenumber corresponding

to the propagating wave in one direction, and c =
√

ρA/EA is the phase speed.

In this case, the propagation is assumed to be non-dispersive as all frequency

components travel at the same speed, so that the shape of the travelling wave

remains the same, and

s(x, ω) = {e−ikx e−ik(L−x)}, a =







a1

a2






(3)

The spectral nodal displacements of the rod can be related with the displacement

field as,

d =







u1

u2






=







u(0)

u(L)






(4)

By substituting eq. (2) into the right side of eq. (4) it has

d =




s(0, ω)

s(L, ω)



a = G(ω)a (5)

where

G(ω) =




1 e−ikL

e−ikL 1



 (6)

The frequency-dependent displacement within an element is interpolated

from the nodal displacement vector d, by eliminating the constant vector a

from eq. (2) by using eq. (5) it has

u(x, ω) = g(x, ω)d, (7)

where the shape functions are given by,

g(x, ω) = s(x, ω)G−1(ω) = {g1 g2} (8)
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with g1 = csc(kL) sin[k(L − x)] and g2 = csc(kL) sin(kx). A generalized lon-

gitudinal displacement at any arbitrary point in the rod element is given by

u(x) = g1(x)u1 + g2(x)u2, and Γ(ω) = G−1(ω). Mass and stiffness matrices are

obtained as:

K0(ω) = EA0 ΓT (ω)

[
∫ L

0

s′
T
(x, ω)s′(x, ω)dx

]

Γ(ω), (9)

=
EA0k

2




csc2(kL)(2kL+ sin(2kL))/2 −(kL cot(kL) + 1) csc(kL)

−(kL cot(kL) + 1) csc(kL) csc2(kL)(2kL+ sin(2kL))/2



 .

M0(ω) = ρA0 ΓT (ω)

[
∫ L

0

sT (x, ω)s(x, ω)dx

]

Γ(ω), (10)

=
ρA0

2k





(
cot(kL)− kL csc2(kL)

)
(kL cot(kL)− 1) csc(kL)

(kL cot(kL)− 1) csc(kL)
(
cot(kL)− kL csc2(kL)

)



 .

where (•)′ is space first derivative.

Stochastic135

The paper theory treats two different form to consider uncertainty in the

stochastic model. The most used approaches to treat data uncertainty are like

random variables or random processes [49]. When the uncertainty is considered

as the random variable we used the Monte Carlo simulation and as a random

process applied the Karhunen-Loève (KL) expansion decomposition. In the sec-140

tion demonstrate the developed stochastic model for damaged and undamaged

rods in axial vibration combining (KL) expansion and Spectral Element Method.

The random field is discretized in terms of random variables. By doing

this, many mathematical procedures can be used to solve the resulting dis-

crete stochastic differential equations. The procedure applied here is a random

field spectral decomposition using the Karhunen-Loève (KL) expansion. In this

paper, an approach has been applied to structural damage quantification. The

random field is described by various points expressed by random variables, there-

fore, a large number of points is required for a good approximation. This concept

8



is similar to the Fourier series expansion. Assuming that the covariance func-

tion is bounded, symmetric and positive definite, it can be represented by a

spectral decomposition. By using this concept a random field can be expressed

as a generalised Fourier series,

̟(r, θ) = ̟0(r) +

∞∑

j=1

ξj(θ)
√

λjϕj(r) (11)

where ̟(r, θ) is a random field with the covariance function C̟(r1, r2) defined

in a space D. Here θ denotes an element of the sample space Ω, so that θ ∈ Ω;

ξj(θ) are uncorrelated random variables. The subscript 0, ̟0(r), implies the

corresponding deterministic part. The constants λj and functions ϕj(r) are,

respectively, eigenvalues and eigenfunctions satisfying the integral equation

∫

D

C̟(r1, r2)ϕj(r1)dr1 = λjϕj(r2) ∀j = 1, 2, ....

In this paper, one dimensional space is considered. Since a Gaussian random

field is representative of many physical systems and closed form expressions for

the KL expansion may be obtained, then a Gaussian autocorrelation function

with exponential decaying will be used. It can be expressed as,

C(x1, x2) = e−|x1−x2|/b (12)

where (b > 0) is the correlation length, which is an important parameter to

describe the random field. A random field becomes a random variable if the

correlation length is large as compared with the domain under consideration.

An analytical solution in the interval −a < x < a where it is assumed that the

mean is zero, produces a random field as

̟1(x, θ) =

∞∑

j=1

ξj(θ)
√

λjϕj(x) (13)

Defining that c = 1/b, the corresponding eigenvalues and eigenfunctions for odd

j are given by [50],

λj =
2c

ω2
j + c2

; ϕj(x)
cos(ωjx)

√

a+
sin(2ωja)

2ωj

where tan(ωja) =
c

ωj
(14)

9



and for even j are given by,

λj =
2c

ω2
j + c2

; ϕj(x)
sin(ωjx)

√

a− sin(2ωja)
2ωj

where tan(ωja) =
ωj

−c
(15)

for x = L/2. These eigenvalues and eigenfunctions will be used to obtain the

stochastic dynamic stiffness matrices for undamaged and damaged rod spectral

elements.145

For practical applications, the eq. (13) is truncated withN numbers of terms,

which could be selected based on the amount of information to be kept. Its value

is also related to the correlation length and the number of eigenvalues kept, pro-

vided that they are arranged in decreasing order [27]. In KL assumption, the

processes is an underlying Gaussian. However, it is not applicable for most of

the physical systems which, on the contrary, are expected to be characterised

by nonlinear behaviours [53]. In this paper will consider the problem of the

numerical simulation of non-Gaussian. Based on the assumption of the KL

expansion a non-Gaussian process is expressed as a memoryless transforma-

tion of an underlying Gaussian process. The covariance function C(x1, x2) of

the underlying Gaussian process is chosen so that the transformation leads to

a non-Gaussian process with the proposed covariance function Cs(x1, x2). A

non-Gaussian process ̟(x, θ) is expressed as a memoryless transformation of

an underlying standard Gaussian process Z(x, θ) by means of the cumulative

density functions (CDF) of both processes:

̟(x, θ) = F−1
̟x(FZ (Z(x, θ))) (16)

where F̟x(̟)is the marginal CDF of the non-Gaussian process and FZ(z) is

the standard Gaussian CDF. An approximation of the transformation can be

obtained in terms of the one-dimensional Hermite polynomials of order P :

̟(x, θ) ≈
P∑

n=0

an(x)hn(Z(x, θ))) (17)

The coefficients {an(x)}n are obtained based on orthonormality of the Hermite

polynomials {hn(z)}n [59, 60] and a stationary process, it can be expressed as:

an(x) =

∫ ∞

∞

F−1
Y x(FZ(z))hn(z)pZ(z)dz (18)

10



Equating the covariance of eq. 16 leads to:

Cs(x1,x2) ≈
P∑

n=0

an(x1)an(x2)[C(x1,x2)]
n (19)

If ̟(x, θ) is a stationary process, then the covariance can be reduces to:

Cs(∆x) ≈
P∑

n=0

a2n[C(∆x)]n (20)

The same undamaged rod analytical model considered in the deterministic

formulation is used here for the stochastic formulation. Now it is assumed that

cross-section area, mass density, and Young’s modulus are random variables

spatially distributed. Therefore, the longitudinal rigidity (EA) and mass per

unit of length (ρA) are assumed as a random field respectively of the form

EA(x, θ) = EA0[1 + ε1̟1(x, θ)]; ρA(x, θ) = ρA0[1 + ε2̟2(x, θ)] (21)

where the subscript 0 indicates the underlying baseline model and εi are deter-

ministic constants (0 < εi ≪ 1, i = 1, 2). The random fields ̟i(x, θ), i = 1, 2 are

taken to have zero mean, unit standard deviation and covariance Cij(ξ). Since,

EA(x, θ) and ρA(x, θ) are strictly positive, ̟i(x, θ) are required to satisfy the

probability condition P[1 + εi̟i(x, θ) ≤ 0] = 0. To obtain the stiffness and

mass matrices associated with the random components, for each j, two different

matrices correspond to the two eigenfunctions defined in eqs. (14) and (15) as

K(ω, θ) = K0(ω) + ∆K(ω, θ); M(ω, θ) = M0(ω) + ∆M(ω, θ) (22)

where ∆Ke(ω, θ) and ∆Me(ω, θ) are the random part of the stiffness and mass

matrices. From the KL expansion and eqs. (21), this matrices can be conve-

niently expressed as,

∆K(ω, θ) = ε1

N∑

j=1

ξKj(θ)
√

λKjKj(ω); ∆M(ω, θ) = ε2

N∑

j=1

ξMj(θ)
√

λMjMj(ω)

(23)

where N is the number of terms kept in the KL expansion, ξKj(θ) and ξMj(θ)

are uncorrelated Gaussian random variables with zero mean and unit standard
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deviation. The matrices Kj(ω) and Mj(ω) are written as

Kj(ω) = EA0Γ
T (ω)

[
∫ L

0

ϕKj(xe + x)s′(x, ω)T s′(x, ω)dx

]

Γ(ω), (24)

Mj(ω) = ρA0Γ
T (ω)

[
∫ L

0

ϕMj(xe + x)s(x, ω)T s(x, ω)dx

]

Γ(ω), (25)

Substituting eqs. (14) and (15) in eqs. (24) the random part of the dynamic

stiffness element matrix in a closed-form expressions with odd j is

Kodd
j (ω) =

EA0
√

a+
sin(2wja)

2wj

ΓT (ω)

[
∫ L

0

cos(ωj(xe + x))s′(x, ω)T s′(x, ω)dx

]

Γ(ω)

=
EA0

√

a+
sin(2wja)

2wj




Ko11 Ko12

Sym Ko22



 (26)

Modd
j (ω) =

ρA0
√

a+
sin(2wja)

2wj

ΓT (ω)

[
∫ L

0

cos(ωj(xe + x))s(x, ω)T s(x, ω)dx

]

Γ(ω)

=
ρA0

√

a+
sin(2wja)

2wj




Mo11 Mo12

Sym Mo22



 (27)

and for even j it is given by,

Keven
j (ω) =

EA0
√

a− sin(2wja)
2wj

ΓT (ω)

[
∫ L

0

sin(ωj(xe + x))s′(x, ω)T s′(x, ω)dx

]

Γ(ω)

=
EA0

√

a− sin(2wja)
2wj




Ke11 Ke12

Sym Ke22



 (28)

Meven
j (ω) =

ρA0
√

a− sin(2wja)
2wj

ΓT (ω)

[
∫ L

0

sin(ωj(xe + x))s(x, ω)T s(x, ω)dx

]

Γ(ω)

=
ρA0

√

a− sin(2wja)
2wj




Me11 Me12

Sym Me22



 (29)
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The exact closed-form expression of the elements, Koij ,Moij ,Keij,Meij ,

of these four matrices (eqs. 26 to 29) are given in Appendix Appendix A.1.

Substituting eqs. (26 to 29) into the eqs. (22 the stochastic spectral un-

damaged rod element stiffness and mass matrices, K(ω, θ) and M(ω, θ), can be

obtained. And then, the stochastic spectral undamaged rod element dynamic

stiffness matrix is obtained as:

D(ω, θ) = K(ω, θ)− ω2M(ω, θ) (30)

2.2. Damaged rod

Deterministic

This section presents the formulation for a spectral rod element with a trans-150

verse, open and non-propagating crack [3, 61]. Figure 2 shows a two-nodes rod

element with uniform rectangular cross-section, length L, crack position L1,

crack depth α. The crack is modelled as a dimensionless and local crack flexi-

bility, Θ, which is calculated by Castigliano’s theorem and the laws of fracture

mechanics [62].

Figure 2: Two-node damaged rod spectral element

155

The homogeneous displacement solution for eq. (1) applied for this element

must be described in two parts, one for the left-hand side of the crack and other

for the right-hand side of the crack.

uL(x) = a1e
−ikx + a2e

−ik(L1−x) (0 ≤ x ≤ L1) (31)

= sL(x;ω)aL,

13



where sL(x, ω) = [e−ikx e−ik(L1−x)]; and aL = {a1 a2}T .

uR(x) = a3e
−ik(x+L1) + a4e

−ik[L−(L1+x)] (0 ≤ x ≤ L− L1) (32)

= sR(x;ω)aR,

where sR(x, ω) = [e−ik(x+L1) e−ik[L−(L1+x)]; and aR = {a3 a4}T . Writing the

eq. (31) and (32) in matrix form it has,






uL(x)

uR(x)






=




sL(x, ω) 0

0 sR(x, ω)











aL

aR






= sd(x, ω)ad (33)

The coefficients vector ad can be calculated as a function of the nodal

spectral displacements using the element boundary and compatibility condi-

tions at the element left-end uL(0) = u1; at the element non-cracked cross-

sectionuL(L1) − uR(0) = Θ∂u/∂x; at the element non-cracked cross-section

∂uL(L1)/∂x = ∂uR(0)/∂x; and at the element right-end uR(L − L1) = u2

Coupling the damaged element left and right-hand sides (eqs. 31 and 32) and

applying boundary and compatibility conditions it has,










1 e−ikL1 0 0

(ikΘ− 1)e−ikL1 (ikΘ− 1) e−ikL1 e−ik(L−L1)

−ike−ikL1 ik ike−ikL1 −ike−ik(L−L1)

0 0 e−ikL 1











︸ ︷︷ ︸

Gd







a1

a2

a3

a4







=







u1

0

0

u2







(34)

where G−1
dr reduced in the elements nodes is given by

G−1
d =














eikL1 ((kΘ−i) cos(k(L−L1))+sin(k(L−L1)))
kΘ(cos(kL)+cos(k(L−2L1)))+2 sin(kL)

i
kΘ(cos(kL)+cos(k(L−2L1)))+2 sin(kL)

(kΘ+i) cos(k(L−L1))+sin(k(L−L1))
kΘ(cos(kL)+cos(k(L−2L1)))+2 sin(kL) − ieikL1

kΘ(cos(kL)+cos(k(L−2L1)))+2 sin(kL)

− ieikL

kΘ(cos(kL)+cos(k(L−2L1)))+2 sin(kL)

(1+e2ikL1)kΘ+2i

2kΘ(cos(kL)+cos(k(L−2L1)))+4 sin(kL)

i
kΘ(cos(kL)+cos(k(L−2L1)))+2 sin(kL)

eik(L−L1)((kΘ−i) cos(kL1)+sin(kL1))
kΘ(cos(kL)+cos(k(L−2L1)))+2 sin(kL)














(35)

Equation (34) can be rewritten in a compact form as ad = G−1
dr dd as







uL(x)

uR(x)






=




sL(x, ω) 0

0 sR(x, ω)



G−1
dr dd = gd(x, ω)dd (36)
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where Γd(ω) = G−1
dr .

For the damaged rod model, the stiffness matrix must be integrated accord-

ing to the corresponding limits due the spacial reference in damaged model to

be different for left-hand side and right-hand side of the crack position, then

K0d(ω) = EA0 ΓT
d (ω)





∫ L1

0
s′

T
L(x, ω)s

′
L(x, ω)dx 0

0
∫ (L−L1)

0 s′
T
R(x, ω)s

′
R(x, ω)dx



Γd(ω),

=




K0d11 K0d12

sym K0d22



 (37)

Similarly, the damage rod deterministic mass element matrix is obtained as:

M0d(ω) = ρA0 ΓT
d (ω)





∫ L1

0
sTL(x, ω)sL(x, ω)dx 0

0
∫ (L−L1)

0
sTR(x, ω)sR(x, ω)dx



Γd(ω),

=




M0d11 M0d12

sym M0d22 .



 (38)

The exact closed-form expression of the elements, K0dij
and M0dij

, of these two

matrices (eqs. 37 to 38) are given in Appendix Appendix B.1.

Stochastic

Likewise the stochastic undamaged rod formulation, the stochastic dynamic

stiffness element matrix for the damaged rod spectral element, Dd(ω, θ), is devel-

oped. The same damaged rod analytical model considered in the deterministic

formulation is used here for the stochastic formulation. Also, it is assumed that

A,E, ρ are random variables, and EA and ρA are random fields. We can express

the stochastic damaged rod stiffness and mass element matrices, respectively,

as:

Kd(ω, θ) = K0d(ω) + ∆Kd(ω, θ); Md(ω, θ) = M0d(ω) + ∆Md(ω, θ) (39)

From the KL expansion and eqs. (21) it has,

∆Kd(ω, θ) = ε1

N∑

j=1

ξKj(θ)
√

λKjKjd(ω); ∆Md(ω, θ) = ε2

N∑

j=1

ξMj(θ)
√

λMjMjd(ω)

(40)
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where N is the number of terms kept in the KL expansion, ξKj(θ) and ξMj(θ)

are uncorrelated Gaussian random variables with zero mean and unit standard

deviation. By considering different limits of integration (left and right-hand

sides) for the damaged rod model it has,

Kjd(ω) = EA0Γ
T
d (ω)




SkL 0

0 SkR



Γd(ω), (41)

Mjd(ω) = ρA0Γ
T
d (ω)




SmL 0

0 SmR



Γd(ω), (42)

where

SkL =

∫ L1

0

ϕKj(xe + x)s′
T
L(x, ω)s

′
L(x, ω)dx

SkR =

∫ (L−L1)

0

ϕKj(xe + x)s′
T
R(x, ω)s

′
R(x, ω)dx

SmL =

∫ L1

0

ϕMj(xe + x)sTL(x, ω)sL(x, ω)dx

SmR =

∫ (L−L1)

0

ϕMj(xe + x)sTR(x, ω)sR(x, ω)dx (43)

Substituting eqs. (14) and (15) in eqs. (43) the random part of the stiff-

ness and mass matrices as closed-form expressions can be obtained. However,

these are huge closed-form expressions not easily workable. Then, eqs. (41) and

(42) were solved with MATHEMATICA R© software and exported directly to

the MATLAB R© code to obtain the numerical solutions. As a matter of under-

standing and results in reproducibility it is shown here only the matrices form

of SkL,SkR,SmL,SmR for each jth terms respecting the odd and even KL

formulation. By considering odd j it has,

Skodd
L (ω) =

EA0
√

a+
sin(2wja)

2wj




SkLo11 SkLo12

Sym SkLo22





Skodd
R (ω) =

EA0
√

a+
sin(2wja)

2wj




SkRo11 SkRo12

Sym SkRo22




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Smodd
L (ω) =

ρA0
√

a+
sin(2wja)

2wj




SmLo11 SmLo12

Sym SmLo22





Smodd
R (ω) =

ρA0
√

a+
sin(2wja)

2wj




SmRo11 SmRo12

Sym SmRo22



 (44)

and for even j it has,

Sk
even
L (ω) =

EA0
√

a− sin(2wja)
2wj




SkLe11 SkLe12

Sym SkLe22





Skeven
R (ω) =

EA0
√

a − sin(2wja)
2wj




SkRe11 SkRe12

Sym SkRe22





Smeven
L (ω) =

ρA0
√

a− sin(2wja)
2wj




SmLe11 SmLe12

Sym SmLe22





Smeven
R (ω) =

ρA0
√

a− sin(2wja)
2wj




SmRe11 SmRe12

Sym SmRe22



 (45)

The exact closed-form expression of each element, {SkLoij, SmLoij , SkRoij , SmRoij}160

and {SkLeij, SmLeij, SkReij, SmReij}, of these eight matrices are given in Ap-

pendix Appendix B.2.

Crack flexibility

The crack flexibility coefficient (Θ) is calculated using Castigliano’s theorem,

where the flexibility at the crack location for the one-dimensional rod spectral

element is obtained as in [62, 63]. Figure 3 shows the damaged rod element

cross-section at the crack position, including the new geometric definition of

crack depth as α = a/h. The crack flexibility coefficient is written as a function

of crack depth as,

c(α) =
2π

Eb

∫ α

0

αf(α)2dα,

where the function f is given by,

f(α) = 1.122− 0.231α+ 10.550α2 − 21.710α3 + 30.382α4.

17



Figure 3: Damaged rod cross-section at the crack position

It can be shown that the dimensionless local crack flexibility can be written

as

Θ = 2πh

∫ α

0

αf(α)2dα (46)

3. Explicit crack detection

By solving the integral of eq. (46), the crack flexibility coefficient (Θ) can

be expressed as

Θ(α) = 2πh(0.63α2−0.17α3+5.93α4−10.72α5+31.58α6−67.44α7+139.05α8−146.58α9+92.30α10)

(47)

Since the rod crack depth is a variable that physically quantifies the damage,165

it is important to find out an explicit equation to obtain α. Nevertheless, the

dynamic spectral matrix for the damaged rod element (eq. 35) is a function of Θ,

which in turn is a polynomial of degree 10 in α. To obtain a simple and feasible

explicit solution for α, in this study a priori the crack flexibility polynomial is

approximated by its first term. Figure 4 shows the crack flexibility coefficient170

calculated using polynomial with 2, 5, 7 and 10 degrees (eq. 47) versus different

crack depths. For a crack depth until 0.13 the crack flexibility function with

different degrees are practically the same. The divergence among the curves

starts with a crack depth of 0.15 and increase as the crack depth increases.

In structural dynamic testing, it is a common practice to measure the data

in the form of frequency response function (FRF). The knowledge about a par-
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Figure 4: Crack flexibility coefficient versus crack depth for different polynomial degrees.

ticular structure will be contained in an analytical (or numerical) model. The

theoretical FRF obtained from the analytical model here is the inverse of the

dynamic stiffness matrix for structural systems. Many damage quantification

methods use of comparing the undamaged with the damaged response of the

system. One of them, called Damage Index (DI) define the average power re-

duction between the damaged and undamaged state signals [6]. Others authors

[64, 65, 34, 66] proposed the percentage changes in the natural frequencies be-

tween the system undamaged and damaged states. Regarding this principle, we

used a damage indicator defined by a relative change between the damaged and

undamaged FRF’s system

Λ(ω) =
Hd(ω)−Hu(ω)

Hu(ω)
(48)

where Hd(ω) = [Kd0(ω)]
−1 is the damaged rod frequency response function

(FRF), and Hu(ω) = [K0(ω)]
−1 is the undamaged rod frequency response func-

tion, and ω is the frequency domain. Where H(ij) is a FRF with response at

node i and excitation at node j. The rod FRF matrix with respective terms can

be obtained as,

H =




H(11) H(12)

H(21) H(22)



 (49)

To formulate the explicit equation, we started by considering a point receptance

19



FRF, e.g H(21), for a damaged and undamaged rod models. The analytical and

measured FRF are used to calculate the relative change as

Λan(ω) =
H

(21)
dan

−H
(21)
uan

H
(21)
uan

, Λm(ω) =
H

(21)
dm

−H
(21)
um

H
(21)
um

(50)

where measured FRF is the effect data which can be obtained experimentally

or numerically, and the analytical FRF means the symbolic mathematical ex-

pression. The relative change using analytical FRF for a rod with two nodes is

Λan(ω) =
Θk

(
−2 sin2 (k (L− L1))− cos(kL) + cos (k (L− 2L1))

)

(cos(kL)) (Θk (cos(kL)− cos (k (L− 2L1)))− 2 sin(kL))
(51)

Similarly to the model updating approach, the inverse problem will be applied

here as a technique where the structural damage parameter (α) will be quantified

based on the minimization of the difference between analytical and measured

FRF relative change [39, 40, 1] expressed by,

Λan(ω)−Λm(ω) = εΛ (52)

By neglecting modelling and measurements errors, so that εΛ = 0. The crack

flexibility polynomial is approximated by its first term so that Θ = 2πh(0.63α2).

Substituting eq. 51 in 52 and the consideration for εΛ and Θ it has

(2πh(0.63α2))k
(
−2 sin2 (k (L− L1))− cos(kL) + cos (k (L− 2L1))

)

(cos(kL)) ((2πh(0.63α2))k (cos(kL)− cos (k (L− 2L1)))− 2 sin(kL))
−Λm(ω) = 0

(53)

By using eq. (53) and solving into the MATHEMATICA software, the explicit

equation for the crack depth (α(ω)) and crack position (L1(ω)) in function of

the analytical and measured relative change is obtained. It have,

α(ω) =
0.710812

√
Λm(ω) sin(2kL)√

hkΛm(ω)[cos(2kL)−cos(2k(L−L1))−cos(2kL1)]−2hk cos(2k(L−L1))+hkΛm(ω)+2hk

(54)

and crack position as

L1(ω) =

∣
∣
∣
∣
∣

2θk3L(Λm(ω)+1)(cot(kL)−i)±4i csc2(kL)
√

θk3(Λm(ω)+1)e−2ikL sin2(kL)( 1
2 θk(Λm(ω)+1)(cos(kL)−1)−Λm(ω) sin(kL))

4θk3(Λm(ω)+1)(cot(kL)−i)

∣
∣
∣
∣
∣

(55)
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The relative error between the crack depth calculated with the eq. (47) and

with the approximation by its first term and the relative error between the crack

position calculated with the eq. (47) can be expressed by,

εα =

∣
∣
∣
∣

αno(ω)− αC(ω)

αno(ω)

∣
∣
∣
∣
× 100, εL1 =

∣
∣
∣
∣

Lno
1 (ω)− LC

1 (ω)

Lno
1 (ω)

∣
∣
∣
∣
× 100

where nominal crack depth (αno) is a given value at a nominal crack position175

Lno
1 . It is used to obtain a measured FRF relative change (Λm) using the

complete equation of crack flexibility (eq. 47). Then, Λm is substituted into

eq. (54) and calculated the crack depth (α). By substituting αno, α, L
no
1 , and

L1 into the equation ( 56) the crack depth and crack position error in percentage

are calculated.180

3.1. Average crack depth and crack position estimation

In the procedure to estimate the crack depth (eq. 54) and crack position

(eq. 55) presented in the Section 3, it will be required to obtain a measured

FRF relative change. In this paper, the stochastic rod models calculate the

measured FRF’s to obtain Λm(ω, θ) and three statistical approaches are used:185

• Mathematical expectation of the measured FRF relative change, which

can be expressed as,

Λ(1)
m (ω) = E

[
Hdm

(ω, θ)−Hum
(ω, θ)

Hum
(ω, θ)

]

(56)

• Mathematical expectation of the difference between measured damage and

undamaged FRF’s, divided by the mathematical expectation of the mea-

sured undamaged FRF. It can be expressed as,

Λ(2)
m (ω) =

E[Hdm
(ω, θ)−Hum

(ω, θ)]

E[Hum
(ω, θ)]

(57)

• Mathematical expectation of the measured crack depth, E [α(ω)], calcu-

lated by,

Λ(3)
m (ω, θ) =

Hdm
(ω, θ)−Hum

(ω, θ)

Hum
(ω, θ)

(58)

using all samples of Hdm
(ω, θ) and Hum

(ω, θ) generated by the stochastic

process.
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These three different ways to calculate the crack depth and position statistics

were used because this is a non-linear problem. Thus, different results are

expected for each formulation. An illustration of that non-linearity will be

seen in Section 4.0.2, these results change in function of the frequency vary.

Nevertheless, a physical crack reminds a single values, then these formulations

are modified by integrating the measured FRF relative change (Λm) over the

frequency to estimate single value for α and L1. By applying to the eqs. (56-58)

we have:

Λ̄(1)
m =

∫

ω

E

[
Hdm

(ω, θ)−Hum
(ω, θ)

Hum
(ω, θ)

]

dω (59)

Λ̄(2)
m =

∫

ω

E[Hdm
(ω, θ)−Hum

(ω, θ)]

E[Hum
(ω, θ)]

dω (60)

and the third is obtained as
∫

ω E[α(ω)]dω, which is the integral of the mathe-

matical expectation of the measured crack depth, E [α(ω)], calculated by,

Λ̄(3)
m (ω, θ) =

Hdm
(ω, θ)−Hum

(ω, θ)

Hum
(θ)

(61)

Next section shows a series of numerical and experimental cases to test the

efficiency of the present study.

4. Numerical tests190

4.0.1. Deterministic damage detection

The system consists of a free-free rod modelled with a two nodes spectral

element. It is excited by a unit longitudinal harmonic force applied at the rod

element node 1, and the response is obtained at node 2, figure 2. Geometries

and material properties are: L = 1.0 m, h = 0.018 m, b = 0.006 m, E = 71195

GPa, η = 0.01, and ρ = 2700 kg/m3.

To verify the crack depth analytical expression (eq. 54), a measured FRF

relative change (eq. 50) is obtained using the damage model with the crack

flexibility (eq. 47), then substituted in the eq. 54. In pratical application the

nominal crack depth values assumed are αno = {0.02, 0.10, 0.30}, at crack po-200

sition value of L1 = 0.35L. By introducing Λm in eq. 54, a crack depth (α)

22



is estimated. Figure 5 shows the calculated crack depth with the percentage

relative error (eq. 56).
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Figure 5: Estimation of crack depth for αno = {0.02, 0.10, 0.30}. Relative error (εα) are

equals to 0.1%, 2.7% and 21%, respectively.

The results show a good approximation in using the first term of eq. (47).

The crack depth estimation with αno = 0.30 shows an error of 21%, it can205

be related to the reduction of the term in crack flexibility polynomial used to

estimate α. The effect of the simplification adopted to obtain an explicit solution

for α is showed in figure 4, as demonstrated a higher error was expected for crack

depth above than 0.2. Although a crack depth of 30% of the high section is a

quite considerable size, an efficient method such that to quantify a small to high210

crack size with accurate estimation. Based on the engineering point where the

percentage errors (εα) until 20% is considerable acceptable, good crack depth

estimation was obtained an increase of the polynomial degree is not considered.

Similar to crack depth tests, to verify the crack position analytical expression

(eq. 55) and the sensibility of the crack position equation, the same measured215

FRF relative change is used. The nominal crack depth values assumed are

αno = {0.02, 0.10, 0.30} at crack position value of L1 = {0.33L, 0.68L}. By

introducing Λm in eq. 55 the crack positions are obtained. Figure 6 shows the

estimated crack positions with the percentage relative error (eq. 56).

In all cases, good results with small error for L1 were obtained independently220

of the crack depth. With regards to the uncertainty sources that a structure
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Figure 6: Crack position estimation in L1 = 0.33L(left) and 0.68L(right) for α =

{0.02, 0.10, 0.30}. Relative error (εL1
) are equals to 0.24%, 0.25% and 0.25%, respectively.

can contain, the following sections will be dedicated to verifying the efficiency

of the present technique for damage detection considering a stochastic system.

4.0.2. Stochastic damage detection

To start with a numerical test depth crack estimation are considered stochas-225

tic dynamic responses for the undamaged and damage models. It was as-

sumed a rod structure with the same geometries and material properties of

the Section4.0.1. The crack depth value is of αno = 0.10 and crack posi-

tions is L1 = 0.3L), where the rod length (L) now is 35 mm. The variability

will be considered in cross section area and Young’s modulus. For the ran-230

dom variable (RV ) cases, both are assumed as a Gamma distribution with

means, µA = 0.00096 m2 and µE = 71 GPa, and coefficients of variation

COVA = COVE = {0.01, 0.05, 0.1}. For the random field (RF ) cases, the longi-

tudinal rigidity EA(x, θ) has a Gamma marginal PDF. The covariance function

of the random field is exponential with correlation length b = L/3 and 4 modes.235

Monte Carlo simulation is evaluated with 500 samples. For the eqs. (56-58),

Hdm
(ω, θ) = [Kd(ω, θ)]

−1 and Hum
(ω, θ) = [K(ω, θ)]−1.

Figure 7 shows the mean and standard deviation receptance FRF’s for an

undamaged rod, modelled as random variables (RV ) with a damping factor of

0.01 and 0.05, and different COV ’s. Figure 9 shows the mean and standard de-240
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viation receptance FRF’s for an undamaged rod, modelled as random variables

(RF ) with a damping factor of 0.01 and 0.05, and different COV ’s. For RV

and RF cases, the mean responses are slightly different from the deterministic

response. As the frequency and coefficient of variation increase, the stochastic

responses presents an increasing damping behaviour. It comes from the average245

process which flattens curve peaks as the dispersion increases. These results

agree with those presented in the literature by [67].
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Figure 7: Mean receptance FRF (H12) and standard deviation for undamaged rod modelled

by using RV with η = 0.01 (LHS) and η = 0.05 (RHS) for COV = {0.01, 0.05, 0.1}.
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Figure 8: Mean receptance FRF (H12) and standard deviation for damaged rod modelled by

using RV with η = 0.01 (LHS) and η = 0.05 (RHS) for COV = {0.01, 0.05, 0.1}.

For the damaged rod case the results presented similar behaviour as the

undamaged model. Figure 8 shows the mean and standard deviation receptance

FRF’s for the damaged rod, modelled as random variables (RV ) a with damping250

factor of 0.01 and 0.05 with different COV ’s. Figure 10 shows the mean and

standard deviation receptance FRF’s for the damaged rod, modelled as random

variables (RF ) with damping factor of 0.01 and 0.05 and different COV ’s.
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Figure 9: Mean receptance FRF (H12) and standard deviation for undamaged rod modelled

by using RF with η = 0.01 (LHS) and η = 0.05 (RHS) for COV = {0.01, 0.05, 0.1}.
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Figure 10: Mean receptance FRF (H12) and standard deviation for damaged rod modelled

by using RF with η = 0.01 (LHS) and η = 0.05 (RHS) for COV = {0.01, 0.05, 0.1}.

Crack depth detection using random variables

By using the same numerical example, parameters variability, number of255

samples and measured FRF relative change as in the Section 4.0.2, the crack

depth (α) is calculated by using random variable (RV ) model in relation with

Λ
(1)
m , Λ

(2)
m , and Λ

(3)
m (eqs. 56-58). By evaluating the structural damping effects

on the stochastic damage quantification, two values of damping factor η = 0.01

and η = 0.05 are used.260

Figure 11 shows the mean of crack depth for a given frequency band. By

considering a damping factor η = 0.01 (LHS figure) with the low coefficient

of variation (COV = 1%), all approaches present good approximation between

calculated and nominal crack depth. However, as the COV ’s increase α obtained

by all approaches shows high dispersion around the value of αno with Λ
(1)
m and265

lower dispersion when compared to the others. By increasing the damping factor

to η = 0.05 (RHS figure), the α converges to αno much better, although it still

has a moderate dispersion around the αno at high values of COV . This comes
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Figure 11: Mean of crack depth with RV model, for COV = {0.01, 0.05, 0.1} using the

approaches: Λ
(1)
m , Λ

(2)
m , and Λ

(3)
m , with damping factor η = 0.01 (LHS) and η = 0.05 (RHS).

from the fact that damping greatly influences the behaviour of the stochastic

system [68, 69].270

Likewise, figure 11 shows the mean of crack position detection in a given

frequency band. By considering a damping factor η = 0.01 (LHS figure) and

η = 0.05 (RHS figure) for all coefficient of variation values good approxima-

tion between calculated and nominal crack position are observed. The errors

associated with the estimation are summarized in table 2.
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Figure 12: Mean of crack position with RV model, for COV = {0.01, 0.05, 0.1} using the

approaches: Λ
(1)
m , Λ

(2)
m , and Λ

(3)
m , with damping factor η = 0.01 (LHS) and η = 0.05 (RHS).

275

Thus, the result obtained from the RV model shows the influence of the

different COV ’s where the εα increases as the COV increase when crack depth

is estimated. While crack position estimation shows close estimation compared

27



with the nominal. Any influence of damping and small error are associated

with the COV’s increase. By comparing the three FRF relative change, Λ1(ω)280

exhibited the best outcome. With the increasing damping factor reduction of

error is observed in all study cases, following the analogy, the error parameter

increases with a higher coefficient of variation.

Crack depth detection using random field

By supposing that random material properties will change continuously over285

the structural space. In this situation the dynamic stiffness matrix for the two-

node damaged and undamaged rod elements are modelled within the random

field framework. By using the same numerical example, parameters variability,

number of samples and measured FRF relative change as in the Section 4.0.2,

the crack depth (α(ω)) calculated using RF model is based on the approaches290

Λ
(1)
m , Λ

(2)
m , and Λ

(3)
m (eqs. 56-58). Figure 13 illustrates nominal crack depth

values and crack depth mean of the respective COV ’s for two values of damping

factor (η = 0.01 and η = 0.05). In the response with damping factor η = 0.01
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Figure 13: Mean of crack depth with RF model, for COV = {0.01, 0.05, 0.1} using the

approaches: Λ
(1)
m , Λ

(2)
m , and Λ

(3)
m , with damping factor η = 0.01 (LHS) and η = 0.05 (RHS).

(LHS figure), mean of calculated crack depth (α) obtained with Λ
(1)
m (ω) and

Λ
(2)
m (ω) shows better approximation to the nominal crack depth (αno) when295

compared with other approaches. These results become better as the frequency

rises and for small COV ’s. The means obtained with the approaches Λ
(1)
m (ω, θ)

and Λ
(2)
m (ω) present similar results for all values of COV ’s, with the α values

28



varying around (αno) value. Based on the results, it can be seen that the crack

depth estimation presents a great oscillation due to the randomness in wave300

numbers. Also, like the random variable case, as the damping factor increases,

the calculated crack depth responses approximates more to the nominal crack

depth value.
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Figure 14: Mean of crack position with RF model, for COV = {0.01, 0.05, 0.1} using the

approaches: Λ
(1)
m , Λ

(2)
m , and Λ

(3)
m , with damping factor η = 0.01 (LHS) and η = 0.05 (RHS).

Figure 14 illustrates nominal crack position values and crack position mean of

the respective COV ’s for two values of damping factor (η = 0.01 and η = 0.05).305

Like the random variable case, the damping do not have great influence in the

damage location as in damage quantification case. Herein, the damping effects is

lightly visible for small COVs. Crack position estimation using Λ
(1)
m (ω), Λ

(2)
m (ω)

and Λ
(3)
m (ω) show a converge with to the nominal crack position (Lno

1 ) around

5500 Hz. The results for the crack depth and position in this section were310

obtained in the frequency domain. In the first analyse using a deterministic

system, the crack depth and position values were constant along the frequency.

However, in a stochastic model, it presented a random behaviour along the

frequency. The crack depth showed high oscillations in the frequency domain,

which in same cases became difficult to quantify the damage. The crack position315

presented oscillations in the frequency band 0 − 3700Hz and a convergence to

the nominal values after 5500 Hz. in this case the damage location is suitable

for all COV ’s analysed. For this reason, technique to obtain a single value for
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the crack depth is presented in the next section.

4.0.3. Single crack depth detection320

A single crack depth value was estimated using stochastic response obtained

from RV and RF of the same numerical example. Parameter variability and a

number of samples exposed in the previous cases. The measured FRF relative

change are obtained by the eqs. (59-61). Predicted crack depth and crack depth

error obtained for different approaches (Λ̄
(1)
m , Λ̄

(2)
m and Λ̄

(3)
m ) are presented in325

Table 1.

Table 1: Calculated crack depth results using Λ̄
(1)
m , Λ̄

(2)
m , and Λ̄

(3)
m with αno = 0.1, modelled

as RV and RF for different coefficient of variation (COV ) and damping factor (η) values.

COV Calculated crack depth (Error εα [%])

[%] η = 0.01 η = 0.05

RV RF RV RF

1 0.1027 (2.7) 0.1026 (2.6) 0.1016 (1.6) 0.1061 (6.1)

Λ̄
(1)
m 5 0.1046 (4.6) 0.1419 (41.0) 0.1018 (1.8) 0.1277 (27.7)

10 0.1055 (5.5) 0.1890 (89.0) 0.1023 (2.2) 0.1703 (70.3)

1 0.1027 (4.0) 0.1026 (2.6) 0.1023 (2.3) 0.1061 (6.1)

Λ̄
(2)
m 5 0.1055 (7.0) 0.1419 (41.0) 0.1021 (2.2) 0.1277 (27.7)

10 0.1134 (11.0) 0.1890 (89.0) 0.1025 (2.5) 0.1703 (70.3)

1 0.1031 (5.0) 0.1077 (7.66) 0.1030 (3.0) 0.1031 (3.05)

Λ̄
(3)
m 5 0.1084 (11.0) 0.1816 (81.57) 0.1068 (6.8) 0.1588 (58.8)

10 0.1128 (12.0) 0.2437 (143.7) 0.1097 (9.7) 0.2122 (112.2)

In the Table 1, it can be seen that for all COV ’s values with a damping factor

η = 0.01 the calculated crack depths modelled as RV present crack depth error

very low (εα = 4 − 11%). However, for the calculated crack depths modelled330
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as RF , these errors are high (εα = 6 − 86%). For all cases, εα increases as

the coefficient of variation increases. Related with a greater damping factor

(η = 0.05), and the RV model the εα presents almost the same value (4.2−4.4%)

for all COV ’s. For the RF model the εα presents similar results as obtained

with η = 0.01, i.e. very high values for εα. Nonetheless, some conflicting results335

have been founded related with the COV , where with η = 0.05 for a COV = 1%

the εα increases and for COV = 5% and 10% the εα decrease as compared with

the results obtained with η = 0.01. It can be concluded that there are no

significant differences in the approaches calculated with the equations of Λ̄1 and

Λ̄2. Although the values of εα for Λ̄3 are higher than the ones of the other340

approaches. They do not present conflicting results for εα as the COV and

η changes. Also, the results obtained confirms the expected behaviour, where

εα should be increasing as COV increases, and in this case decreasing as η

increases.

The crack position location and its error are also obtained with (Λ̄
(1)
m , Λ̄

(2)
m345

and Λ̄
(3)
m ). The results are presented in Table 2. In all cases the crack position

was located and the damping factor did not have a great influence in final

results. The calculated crack position using the RV model presents low error

(εL−1 = 0.01 − 1.9%) for small COV and (εL−1 = 5.9 − 9.9%) for high COV .

The calculated crack positions using RF model had errors between (εL1 =350

1.2− 29.8%). In all cases, εL1 increases as the coefficient of variation increases.

Finally, there are no significant differences in the approaches calculated with

Λ̄1 and Λ̄2. The values of εL1 for Λ̄3 are lightly different than the ones of the

other approaches but it keeps good results. The results obtained confirms the

expected behaviour, where εL1 should be increasing as COV increases.355

To summarize, the damage quantification point of view crack depth calcu-

lated using the approach Λ̄
(3)
m with RV model presents a good performance. The

α using the approaches Λ̄
(1)
m and Λ̄

(2)
m with RF model present some conflicting

results as the damping factor increases, which requires more investigation. The360
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Table 2: Calculated crack position results using Λ̄
(1)
m , Λ̄

(2)
m , and Λ̄

(3)
m with αno = 0.1, modelled

as RV and RF for different coefficient of variation (COV ) and damping factor (η) values.

COV Calculated crack depth (Error εα [%])

[%] η = 0.01 η = 0.05

RV RF RV RF

1 0.0996 (0.01) 0.0952 (4.4) 0.0976 (1.9) 0.0985 (1.2)

Λ̄
(1)
m 5 0.0968 (2.8) 0.0869 (12.7) 0.0950 (4.6) 0.0876 (12.1)

10 0.0968 (5.9) 0.0698 (29.8) 0.0917 (7.9) 0.0702 (29.5)

1 0.0930 (0.01) 0.0965 (3.1) 0.0976 (1.9) 0.0968 (2.8)

Λ̄
(2)
m 5 0.0997 (2.7) 0.0871 (12.5) 0.0950 (4.6) 0.0881 (11.6)

10 0.0968 (5.6) 0.0699 (29.8) 0.0919 (7.7) 0.0702 (29.5)

1 0.0933 (0.77) 0.0109 (9.5) 0.0979 (1.7) 0.010 (9.2)

Λ̄
(3)
m 5 0.10 (4.5) 0.0115 (15.6) 0.0937 (5.9) 0.011 (14.7)

10 0.0968 (7.77) 0.0128 (28.7) 0.0897 (9.9) 0.012 (24.7)

random field (RF ) model reveals to be unable to estimate the crack depth (α)

for high COV independently of the approach used to calculate the FRF rela-

tive change. Finally, the damage position calculated using the three approaches

showed good performance and able to detect the damage with acceptable errors.

5. Conclusion365

A stochastic damage quantification method is presented, which is developed

combining Spectral Element Method (SEM) together with stochastic approaches

using model parameters as random variables (RV ) and spatially distributed ran-

dom field (RF ). Deterministic formulation for rod spectral element undamaged

and damaged are reviewed and presented. A new formulation using RF ap-370

plied to the damaged rod dynamic stiffness matrix was developed. This allows

obtaining a close-form analytical expressions of crack depth estimation (α(ω))
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and crack position estimation (L1(ω)). It is based on SEM formulation and

measured FRF relative change (Λm) including model parameter as RV and

RF . The RF is expanded in a spectral decomposition known as the Karhunen-375

Loève expansion. Since some parameters cannot be assumed with a Gaussian

marginal, for example, Young’s modulus and KL expansion obeys a Gaussian

distribution, a non-Gaussian translation random field is used based on memo-

ryless nonlinear transformations. All stochastic models are solved using Monte

Carlo simulation. Three different average treatment are proposed to calculate380

crack depth. Considering that the main interest is to obtain a single value for

α and L1, these formulations were modified by integrating the measured FRF

relative change over the frequency band. One of the main advantage of the

proposed spectral approach is that the analytical formulations are frequency

independent. Therefore, unlike conventional finite element based approaches,385

there is no theoretical limitation on higher frequency ranges. However the fre-

quency ranges can affect the longitudinal wave propagation as demonstrated

in [3]. Therefore, the applicability of this work is restricted to rod in specifics

frequency ranges.

All simulated examples were made using a two nodes rod spectral element in390

a free-free boundary condition. A sensitivity analysis of FRF relative change (Λ)

relate with crack depth (α) and crack position (L1) was performed. Crack depth

analytical expression was verified and the percentage errors between nominal

and calculated crack depth where lower then 10 %, using the first term of eq. 47.

Including this analysis showing the influence of the polynomial degree in crack395

flexibility was also presented.

The formulation using parameters as RF and RV applied to the damaged

and undamaged rod spectral element were verified by the mean and standard

deviation of receptance FRFs with different COV s compared with determinis-

tic receptance FRF. Results show that as the frequency and COV increase the400

stochastic responses increase damping behaviour. It agrees with [67] and can

be explained by the average process which flattens curve peaks as the COV val-

ues increases, and at lower frequencies the standard deviation is biased by the
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mean. Crack depth estimation using RV for a frequency band was evaluated for

three statistical approaches to obtain Λm. For η = 0.01 and (COV = 1%), all405

approaches present good approximation between calculated and nominal crack

depth. As the COV ’s increases αC obtained by all approaches show high dis-

persion around the value of αno with Λ
(1)
m showing the lowest dispersion. For

η = 0.05 the αC converges to αno much better, but still keeping a moderate

dispersion around the αno at high COV ’s. This results agrees with [68, 69]410

and comes from the great influence of damping in the stochastic system the be-

haviour. A single crack depth value based on the stochastic response obtained

from RV and RF models is calculated. Calculated crack depth and crack depth

error obtained with approaches Λ̄
(1)
m , Λ̄

(2)
m and Λ̄

(3)
m show that calculated crack

depth using the approach Λ̄3 with RV model presents a good performance. The415

αC using the approaches Λ̄1 and Λ̄2 with RF model present some conflicting

results as the damping factor increases, which requires more investigation. Fi-

nally, random field (RF ) model reveals to be unable to find out a reasonable

result for αC , independently of the approach used to calculate de FRF relative

change. By locating the damage, similar procedure was adopted. A analytical420

expression was developed and the damage detection ia based in relative change.

In all cases independently of COV and damping factor the method was able to

detect the damage with acceptable errors.
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Appendix A. Undamaged rod matrix elements

Appendix A.1. Stochastic425

Ko11 = − e2ikLk2(2e2ikLikwj cos(wjxe)−2ikwj cos(wj(L+xe))+(4k2−(1+e2ikL)wj2) sin(wjxe)+2(wj2−2k2) sin(wj(L+xe)))
(−1+e2ikL)2(wj3−4k2wj)

Ko12 = −k2(e2ikL(2ikwj cos(wj(L+xe))+(4k2−wj2) sin(wjxe)+2(wj2−2k2) sin(wj(L+xe)))−wj(2ik cos(wjxe)+wj sin(wjxe)))
(−1+e2ikL)2(wj3−4k2wj)

Ko21 = Ko12

Ko22 −
e2ikLk2(−2ikwj cos(wjxe)+2e2ikLikwj cos(wj(L+xe))+2(2k2−wj2) sin(wjxe)−(4k2−(1+e2ikL)wj2) sin(wj(L+xe)))

(−1+e2ikL)2(wj3−4k2wj)

(A.1)

Mo11 =
e2ikL(4 sin(wj(L+xe))k2+2e2ikLiwj cos(wjxe)k−2iwj cos(wj(L+xe))k−(4k2+(−1+e2ikL)wj2) sin(wjxe))

(−1+e2ikL)2(wj3−4k2wj)

Mo12 =
e2ikL(4 sin(wj(L+xe))k2+2iwj cos(wj(L+xe))k+(wj2−4k2) sin(wjxe))−wj(2ik cos(wjxe)+wj sin(wjxe))

(−1+e2ikL)2(wj3−4k2wj)

Mo21 = Mo12

Mo22 =
e4ikLwj(2ik cos(wj(L+xe))+wj sin(wj(L+xe)))−e2ikL(4 sin(wjxe)k2+2iwj cos(wjxe)k+(wj2−4k2) sin(wj(L+xe)))

(−1+e2ikL)2(wj3−4k2wj)

(A.2)

Ke11 = − e2ikLk2(((1+e2ikL)wj2−4k2) cos(wjxe)+(4k2−2wj2) cos(wj(L+xe))+2ikwj(e2ikL sin(wjxe)−sin(wj(L+xe))))
(−1+e2ikL)2(wj3−4k2wj)

Ke12 = −k2(wj(wj cos(wjxe)−2ik sin(wjxe))+e2ikL((wj2−4k2) cos(wjxe)+(4k2−2wj2) cos(wj(L+xe))+2ikwj sin(wj(L+xe))))
(−1+e2ikL)2(wj3−4k2wj)

Ke21 = Ke12

Ke22 = − e2ikLk2(2(wj2−2k2) cos(wjxe)+(4k2−(1+e2ikL)wj2) cos(wj(L+xe))−2ikwj(sin(wjxe)−e2ikL sin(wj(L+xe))))
(−1+e2ikL)2(wj3−4k2wj)

(A.3)
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Me11 =
e2ikL((4k2+(−1+e2ikL)wj2) cos(wjxe)+2ik(2ik cos(wj(L+xe))+e2ikLwj sin(wjxe)−wj sin(wj(L+xe))))

(−1+e2ikL)2(wj3−4k2wj)

Me12 =
wj(wj cos(wjxe)−2ik sin(wjxe))+e2ikL(−4 cos(wj(L+xe))k2+2iwj sin(wj(L+xe))k+(4k2−wj2) cos(wjxe))

(−1+e2ikL)2(wj3−4k2wj)

Me21 = Me12

Me22 =
e2ikL(4 cos(wjxe)k2−2iwj(sin(wjxe)−e2ikL sin(wj(L+xe)))k+(−4k2−e2ikLwj2+wj2) cos(wj(L+xe)))

(−1+e2ikL)2(wj3−4k2wj)

(A.4)

Appendix B. Damaged rod matrix elements

Appendix B.1. Deterministic

K0d11 = EAk

{

[

4
(

k
(

Θ
(

k2L1Θ− 1
)

+ 2L
)

+ sin(2kL)
)

+ kΘ
(

4
(

k2L1Θ− 1
)

cos(2k(L− L1))

+ k(Θ(sin(2k(L− 2L1)) − sin(2kL) − 2 sin(2kL1)) + 8L1 sin(2k(L− L1))) + 4 cos(2kL)

+ 4 cos(2kL1)
)]/[

4(kΘ(cos(k(L− 2L1)) + cos(kL)) + 2 sin(kL))2
]

}

K0d12 = EAk

{

(

k2Θ(L− 2L1) sin(k(L− 2L1)) +
(

k2LΘ− 2
)

sin(kL)− 2kL cos(kL)
)

(kΘ(cos(k(L− 2L1)) + cos(kL)) + 2 sin(kL))2

}

K0d21 = K0d12

K0d22 = EAk

{

[

4
(

k3Θ2(L− L1) + 2kL+ sin(2kL) − kΘ
)

+ kΘBigl(4 cos(2kL1)
(

k2Θ(L− L1)− 1
)

− kΘ(sin(2k(L − 2L1)) + 2 sin(2k(L− L1)) + sin(2kL)) + 8k(L− L1) sin(2kL1) + 4 cos(2k(L− L1))

+ 4 cos(2kL)
)]/[

4(kΘ(cos(k(L− 2L1)) + cos(kL)) + 2 sin(kL))2
]

}

(B.1)

M0d11 = ρA

{

[

4k
(

k2L1Θ
2 +Θ+ 2L

)

− 4 sin(2kL) + kΘ
(

−4 cos(2kL) + 4
(

L1Θk2 + 1
)

cos(2k(L− L1))

− 4 cos(2kL1) + 8kL1 sin(2k(L− L1)) + kΘ(sin(2kL)− sin(2k(L− 2L1)) + 2 sin(2kL1))
)]/[

4k
(

kΘ
(

cos(kL)

+ cos(k(L − 2L1))
)

+ 2 sin(kL)
)2]

}

M0d12 = ρA

{

(L− 2L1)Θ sin(k(L− 2L1))k2 − 2L cos(kL)k +
(

LΘk2 + 2
)

sin(kL)

k(kΘ(cos(kL) + cos(k(L− 2L1))) + 2 sin(kL))2

}

M0d21 = M0d12

M0d22 = ρA

{

[

4k
(

k2(L− L1)Θ
2 +Θ+ 2L

)

− 4 sin(2kL) + kΘ
(

−4 cos(2kL) − 4 cos(2k(L− L1))

+ 4
(

(L − L1)Θk2 + 1
)

cos(2kL1) + kΘ(sin(2kL) + sin(2k(L− 2L1)) + 2 sin(2k(L − L1)))

+ 8k(L− L1) sin(2kL1)
)]/[

4k(kΘ(cos(kL) + cos(k(L− 2L1))) + 2 sin(kL))2
]

}

(B.2)
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Appendix B.2. Stochastic

SkLo11 = −
k
2
(

−2ik cos(wjxe)+2e−2ikL1 ik cos(wj(L1+xe))+wj sin(wjxe)−e
−2ikL1wj sin(wj(L1+xe))

)

4k2
−wj2

SkLo12 =
e
−ikL1k

2(sin(wj(L1+xe))−sin(wjxe))
wj

SkLo21 = SkLo12; SkLo22 = −
k
2
(

2e−2ikL1 ik cos(wjxe)−2ik cos(wj(L1+xe))+e
−2ikL1wj sin(wjxe)−wj sin(wj(L1+xe))

)

4k2
−wj2

SmLo11 =
−2ik cos(wjxe)+wj sin(wjxe)+e

−2ikL1 (2ik cos(wj(L1+xe))−wj sin(wj(L1+xe)))

4k2
−wj2

SmLo12 =
e
−ikL1 (sin(wj(L1+xe))−sin(wjxe))

wj

SmLo21 = SmLo12; SmLo22 = −2ik cos(wj(L1+xe))+e
−2ikL1 (2ik cos(wjxe)+wj sin(wjxe))−wj sin(wj(L1+xe))

4k2
−wj2

SkRo11 = −
k
2
(

e
−2ikL1 (wj sin(wjxe)−2ik cos(wjxe))+e

−2ikL(2ik cos(wj(L−L1+xe))−wj sin(wj(L−L1+xe)))
)

4k2
−wj2

SkRo12 = e
−ikL

k
2(sin(wj(L−L1+xe))−sin(wjxe))

wj

SkRo21 = SkRo12; SkRo22 =
k
2
(

2ik cos(wj(L−L1+xe))−ie
2ik(L1−L)(2k cos(wjxe)−iwj sin(wjxe))+wj sin(wj(L−L1+xe))

)

4k2
−wj2

SmRo11 = e
−2ikL1 (wj sin(wjxe)−2ik cos(wjxe))+e

−2ikL(2ik cos(wj(L−L1+xe))−wj sin(wj(L−L1+xe)))
4k2

−wj2

SmRo12 = e
−ikL(sin(wj(L−L1+xe))−sin(wjxe))

wj

SmRo21 = SmRo12; SmRo22 = −2ik cos(wj(L−L1+xe))+e
2ik(L1−L)(2ik cos(wjxe)+wj sin(wjxe))−wj sin(wj(L−L1+xe))

4k2
−wj2

SkLe11 = −
k
2
(

−wj cos(wjxe)+e
−2ikL1wj cos(wj(L1+xe))−2ik sin(wjxe)+2e−2ikL1 ik sin(wj(L1+xe))

)

4k2
−wj2

SkLe12 = e
−ikL1k

2(cos(wjxe)−cos(wj(L1+xe)))
wj

SkLe21 = SkLe12; SkLe22 = −
k
2
(

−e
−2ikL1wj cos(wjxe)+wj cos(wj(L1+xe))+2ik

(

e
−2ikL1 sin(wjxe)−sin(wj(L1+xe))

))

4k2
−wj2

SmLe11 = −wj cos(wjxe)−2ik sin(wjxe)+e
−2ikL1 (wj cos(wj(L1+xe))+2ik sin(wj(L1+xe)))

4k2
−wj2

SmLe12 = + e
−ikL1 (cos(wjxe)−cos(wj(L1+xe)))

wj

SMel21 = SMel12; SmLe22 =
wj cos(wj(L1+xe))+e

−2ikL1 (2ik sin(wjxe)−wj cos(wjxe))−2ik sin(wj(L1+xe))

4k2
−wj2
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SkRe11 = −
k
2
(

e
−2ikL(wj cos(wj(L−L1+xe))+2ik sin(wj(L−L1+xe)))−e

−2ikL1 (wj cos(wjxe)+2ik sin(wjxe))
)

4k2
−wj2

SkRe12 =
e
−ikL

k
2(cos(wjxe)−cos(wj(L−L1+xe)))

wj

SkRe21 = SkRe12; SkRe22 =
k
2
(

−wj cos(wj(L−L1+xe))+e
2ik(L1−L)(wj cos(wjxe)−2ik sin(wjxe))+2ik sin(wj(L−L1+xe))

)

4k2
−wj2

SmRe11 =
e
−2ikL(wj cos(wj(L−L1+xe))+2ik sin(wj(L−L1+xe)))−e

−2ikL1 (wj cos(wjxe)+2ik sin(wjxe))
4k2

−wj2

SmRe12 = e
−ikL(cos(wjxe)−cos(wj(L−L1+xe)))

wj

SmRe21 = SmRe12; SmRe22 = wj cos(wj(L−L1+xe))+e
2ik(L1−L)(2ik sin(wjxe)−wj cos(wjxe))−2ik sin(wj(L−L1+xe))

4k2
−wj2
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