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A B S T R A C T

Analytical solutions to the equations governing shoreline evolution are well-known and have value both as
pedagogical tools and for conceptual design. Nevertheless, solutions have been restricted to a fairly narrow class
of conditions with limited applicability to real-life situations. We present a new analytical solution for a widely
encountered situation where a groyne is constructed close to a river to control sediment movement. The
solution, which employs Laplace transforms, has the advantage that a solution for time-varying conditions may
be constructed from the solution for constant conditions by means of the Heaviside procedure. Solutions are
presented for various combinations of wave conditions and sediment supply/removal by the river. An
innovation introduced in this work is the capability to provide an analytical assessment of the accretion or
erosion caused near the groyne due to its proximity to the river which may act either as a source or a sink of
sediment material.

1. Introduction

1.1. Background

The interaction between nearshore wave climate and a source/sink
of sediment discharge forms a rather complicated coastal system;
meaning that the assessment of sediment transport along the beach
and the consequent morphological changes for such a case is a
challenging task. The sediment exchanges between tidal inlets and
neighbouring beaches is a continuing area of scientific interest (e.g. van
Lancker et al., 2004; Brown and Davies, 2009; Bever et al., 2011), as
well as being of significant practical importance. In this study, an
additional factor was added to this combination; that of an obstacle
causing an abrupt blockage of longshore sediment transport at some
distance from the source or sink. This obstacle could be a headland or a
coastal construction such as a groyne or jetty. Consequently, an
enhanced accretive or erosive trend is expected to occur in the vicinity
of the obstacle due to the presence of a source or sink, respectively. An
example which demonstrates the potentially severe consequences of
this phenomenon is the siltation of ports caused by the presence of a
nearby river source providing a sediment discharge. Clearly, this
phenomenon may have serious navigational and economic impacts.
Historical examples of coastal constructions which faced the adverse
impacts of accretion due to the presence of a river-delta in their vicinity
include the ancient port of Ephesus in Asia Minor and the port of Ostia
near ancient Rome, both of which gradually silted up and became
unusable (De Graauw, 2011). In modern times, the ports of

Montevideo and Buenos Aires, located on the left and right side,
respectively, of the estuary of Rio de la Plata which discharges in the
Atlantic Ocean, need to be periodically dredged due to the sediment
material coming from this estuary, (Sanchez and Wilmsmeier, 2007).
Similarly, the port of Imeros in Thrace, Greece, suffers from sediment
material which comes from the delta of the Lucius River, and is
deposited near its entrance, (Delimani and Xeidakis, 2005). As a result,
the approach of ships for anchorage in the port of Imeros is severely
hindered (Fig. 1).

The description of the coastal phenomenon mentioned above, and
consequently the mitigation of adverse impacts, requires the assess-
ment of the accretion occurring near an artificial or natural obstacle,
considering as primary cause factors the distance of the obstacle from
the river-mouth and the sediment flow rate at the river-mouth.
Therefore, the distance of a coastal structure from a river delta might
be decided during its design phase so as to avoid having to take
counter-measures after its construction. The opposite problem, that of
erosion caused near a coastal structure or a natural obstacle due to the
presence of a sink of sediment material in its vicinity might be expected
near flood-dominated estuaries or estuaries that have been subjected to
dredging operations. For instance, the dredging of the Avilès estuary in
Spain was judged to have caused erosion problems in the neighbouring
Salinas-El Espartal beach, and in addition, serious damage to the
seafront promenade in the same area (Flor-Blanco et al., 2013).

The impact of an artificial blockage of longshore sediment transport
on shoreline evolution has been investigated by Kraus and Harikai
(1983) via numerical modelling. Frihy et al. (1991) identified patterns
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of nearshore sediment transport along the Nile delta in Egypt, taking
into account a complicated system of existing groynes and jetties in this
area. However, the current work focuses on a description of the
shoreline evolution through analytical means. Specifically, to predict
the shoreline evolution which occurs in the vicinity of a coastal
construction (e.g. a groyne) and a source or sink of sediment discharge
considering an irregular sequence of wave events and sediment fluxes
at the river mouth.

It is hypothesised that, in the case of net sediment supply from the
river the time for a groyne to fill, and hence for sediment bypassing to
commence, will be a function of the wave driven longshore transport
rate, the length of the groyne, the rate of sediment supply and the
distance between the groyne and the river. Consequently, one aim of
the new analytical description is to be able to assess the time required
for sediment bypassing to commence as this is a very significant
parameter at the design stage of a coastal scheme. Specifically, once
full, sand will by-pass the tip of the groyne so that sediment transport
from its updrift to its downdrift side will resume.

1.2. Beach model background

A well-known but simplified model for predicting shoreline evolu-
tion is the one-line model. The basic assumption of this model is that
the shape of any beach cross-shore profile is in equilibrium, in other
words all the seabed contours are parallel. The model is formulated by
coupling an equation defining the longshore transport and the equation
for the continuity of sand (Eq. (1)):

y
t D D

Q
x

∂
∂

+ 1
( + )

∂
∂

=0
C B (1)

where y is the cross-shore position of the shoreline, t is time, x is the

longshore distance, DC is the depth of closure, DB is the berm height
and Q is the longshore transport rate (see e.g. Kamphuis, 2000; Dean
and Dalrymple, 2002; Reeve et al., 2004; Bayram et al., 2007).

The longshore transport equations in general use are empirical,
being based on experimental studies. Some of the most well-known
expressions are: the CERC equation (CERC, 1984); Kamphuis' formula
(Kamphuis, 1991) and Bayram's equation (Bayram et al., 2007). In this
study, Kamphuis’ longshore transport equation has been used and this
may be written as:

Q H T m d sin a=7. 3 (2 )k sb p b b
2 1.5 0.75

50
−0.25 0.6

(2)

where mb: beach slope, Tp: peak wave period, d50: median grain size,
Hs,b is the significant wave height at breaking, ab is the wave angle at
breaking.

In particular, the wave angle at the breaking point is given as
follows:

a a= − arctan( ∂y
∂x

)b o (3)

where αο: angle of breaking wave crests relatively to an axis set parallel
to the trend of shoreline, ∂y

∂x
the local shoreline orientation (Fig. 2).

The one-line model can be solved either analytically or numerically.
Analytical solutions are found on the premise of small angles of wave
approach and smooth plan beach profile. In addition, the wave
characteristics (height, period, direction of propagation) are considered
uniform and constant. Under these assumptions, the combination of
Eqs. (1)–(3) leads to a single equation for the evolution of the position
of the shoreline that takes the form of a diffusion equation:

y
t

ε y
x

∂
∂

= ∂
∂

2

2 (4)

where ε=2Qo/D, Qo is the amplitude of longshore transport rate (e.g.
Larson et al., 1987) and is given by the following expression:
Q =2. 7H T m do sb

2
p
1.5

b
0.75

50
−0.25; D=DC+DB.

Through appropriate choices of boundary and initial conditions for
Eq. (4) different shoreline situations can be modelled. The analytical
solutions to Eq. (4) provide insight to the likely shoreline evolution in

Fig. 1. Sediment discharge from Lucius river-mouth causes a littoral drift (desert sand
arrows) towards the port of Imeros, 2.5 km away. Consequently, the sediment material is
accumulated near the entrance of the port, on the right-hand side of the image.

Fig. 2. Geometric characteristics of waves near the breaking point (Reeve, 2006).

Nomenclature

A a parameter proportional to river-mouth's width, govern-
ing the width of the river-delta;

B berm height;
d50 median grain size;
h water depth;
DC depth of closure;
DB berm height;
D the sum of DC and DB
H Heaviside function;
Hb wave height at breaking position;
Hs,b significant wave height at breaking position;
L groyne's length
mb beach slope;
Q longshore transport rate;

Qk longshore transport rate according to Kamphuis’ formula;
Qo amplitude of longshore transport rate;
q sediment transport rate per unit of beach from a source or

a sink;
qR sediment discharge rate from the river or opposite flow

rate in case of a sink;
s the Laplace transform variable;
t time;
Tp peak wave period;
x longshore distance relatively to a reference point;
xo distance of the river-mouth from groyne's position;
y shoreline position;
ab the wave angle at breaking;
αο angle of breaking wave crests relatively to an axis set

parallel to the trend of shoreline;
ε diffusion coefficient;
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each case. The constraints of analytical models (constant and uniform
wave conditions, smooth shoreline shape, and small breaking wave
angle) limit their general applicability. That being said, analytical
solutions have proven to be successful for an increasingly complex
range of cases (e.g. Wind, 1990, Kamphuis, 1993; Larson et al., 1997;
Reeve, 2006) and have demonstrated certain advantages over numer-
ical modelling. Zacharioudaki and Reeve (2008) listed many of them,
for example, the ability of analytical models to provide insight into the
independent contribution of particular physical processes on the
shoreline evolution. Moreover, the quick and accurate evaluation of
analytical solutions is feasible without cumulative numerical errors
related to repeated time stepping or numerical instability. Finally,
analytical modelling can be used for independent validation of numer-
ical codes.

The one-line modelling concept originated from Pelnard-Considère
(1956) for the case of a single groyne, a constant wave forcing
condition, and an initially straight shoreline, parallel to the axis of
longshore distance x. Mathematically these conditions are expressed as
follows:

t y x t y xInitial condition (IC): for = 0, ( , ) = ( , 0) = 0 (5)

xBoundary condition (BC) at = 0(the location of the groyne)

: − ∂(0, t)
∂x

= tan(a ),b (6)

with x ranging in the domain: x ∈ (0, ∞)
By combining Eqs. (4)–(6) the solution to this problem is derived

via Laplace transforms as:

⎛
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⎟⎟

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟y(x, t) = tan(a ) 2 εt

π
exp − x

2 εt
−xerfc x

2 εtb

2

(7)

Additional analytical solutions have been derived by other research-
ers in a similar manner. For instance, Grijm (1961) attempted to
develop a littoral sediment transport equation capable of incorporating
as input-data wave directions almost parallel to the orientation of the
coast; while Le Mèhautè and Soldate (1977) developed Pelnard-
Considere's analytical solution for several different cases. Larson
et al. (1987, 1997) presented analytical solutions for a wide range of
different problems based on Pelnard-Considère's theory while Wind
(1990) used solutions to describe shoreline evolution considering the
impact of coastal constructions.

One significant drawback of analytical models had been the
constancy of wave conditions, a constraint imposed by the solution
techniques. Larson et al. (1997) were partially successful in relaxing
this restriction to a prescribed time variation in their solution for the
cases of a single groyne and groyne compartment considering sinu-
soidally varying wave direction. Dean and Dalrymple (2002) were able
to treat the effects of a sequence of arbitrary wave conditions by
considering a specific form of spatial variation in beach plan (an
individual Fourier component). Subsequently, Reeve (2006) provided a
full analytical solution, via Fourier transform techniques, for a known
arbitrary sequence of wave conditions, arbitrary source distribution
and arbitrary initial shoreline position near a groyne. In general, the
evaluation of the solution required numerical integration over the
arbitrary sequence of driving conditions. The evaluation of this kind of
solution has to be performed through numerical integration for all but
the simplest cases, and is considered to be “semi-analytical”.
Consequently, Zacharioudaki and Reeve (2008) used a similar techni-
que to extended the range of analytical solutions to the cases of groyne
compartment and a managed shoreline where the shoreline is actively
controlled to within a certain tolerance and can be treated as a known
function of time. Walton and Dean (2011) illustrated how a Heaviside-
type technique could be used to emulate time varying wave conditions
without recourse to numerical integration for the case of beach
accretion near a single groyne. While effective for a small number of

consecutive wave conditions the approach becomes unwieldy when
long sequences of wave conditions need to be considered (Valsamidis
et al., 2013).

The assumption of uniform wave conditions still remains. This is a
primary reason for developing computational solutions, which can also
be adapted to include additional processes such as wave refraction and
diffraction, and beach slope variation in an integrated package with a
graphical user interface for ease of use (e.g. Gravens et al., 1991;
Thomas and Frey, 2013).

Here, for the reasons alluded to above, we continue the develop-
ment of analytical solutions that account for time-varying input data,
and present a novel analytical solution to the problem of shoreline
evolution in the vicinity of a groyne and a source of sediment discharge,
considering time-varying wave action and sediment exchange between
the beach and river mouth.

This paper is organised as follows. In Section 2 we describe the
derivation of the new analytical solutions. In Section 3, evaluation of
the analytical solution and results are presented. Section 4 contains a
discussion and conclusions. Moreover, the hypothesis suggested in the
end of Section 1.1. regarding the parameters involved in the assess-
ment of time needed for a groyne to fill and subsequently sediment
bypassing to commence is validated in Section 4.

2. Methodology

2.1. Derivation of the analytical solution

Consider a situation such as shown in Fig. 3, consisting of an
undisturbed and straight initial shoreline, a single impermeable groyne
of infinite length which constitutes its left boundary, a constant
incident wave which propagates towards the shoreline and a source
of sediment discharge. (Sediment extraction can be modelled simply by
considering it as negative discharge).

The following extended version of Eq. (4) describes the consequent
shoreline evolution, (e.g: Hanson, 1987):

∂y
∂t

=ε ∂ y
∂x

+q
2

2 (8)

where q(x,y,t) is the sediment transport rate per unit area from a
source or a sink and has units of m/s. We chose to describe the spatial
distribution of q with a Gaussian function to mirror the approximate
distribution of transport rate that might be seen at a river delta
formation.

Specifically:

q = Be−[ x−xo
A ]2 (9)

D
B=

q
A
R

(10)

Fig. 3. Demonstration of the simplifications made for the derivation of the analytical
solution.
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qR: sediment discharge rate from the river (m3/h);
xo: distance between the river-mouth and the groyne (m);

D D D= +C B

DC: depth of closure (m);

DB: berm height (m);
A: a parameter proportional to the width of the river-mouth (m).

Accordingly, Eq. (8) takes the form:

∂y
∂t

=ε ∂ y
∂x

+Be ⇔ε ∂ y
∂x

+Be − ∂y
∂t

=0
2

2
−[ x−xo

A ]
2

2
−[ x−xo

A ]2 2

(11)

The solution to Eq. (11) was performed via Laplace transforms,
using the following initial and boundary conditions:

• Initial Condition (IC): y(x,0)=0; corresponding to initially undis-
turbed beach;

• Boundary Condition (BC1) at x=0: − = tan(a )∂(0, t)
∂x b ; corresponding to

zero transport, or equivalently an impermeable groyne of infinite
length;

• Boundary Condition (BC2) at x = + ∞: y(+∞, t) = 0; implying
negligible disturbance of the beach far from the groyne.

The Laplace transform of Eq. (11), combined with the initial and
boundary conditions yields Eq. (12):

⎡

⎣
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⎤

⎦

⎥⎥⎥⎥

⎛
⎝⎜

⎞
⎠⎟

s
y(s) =

tan(a )
λ

e + 2x Be
s A λ

e + B
s

ex xb −λ
0

−

2 2
−λ

2
−[ x−xo

A ]

xo
A

2

2

(12)

where y denotes the Laplace transformed variable of y, where: λ= s
ε
; s

is the Laplace transform variable.
The inverse Laplace transform of Eq. (12) yields the solution to Eq.

(11):
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⎠⎟

⎡
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⎤
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y(x, t)=tan (a ) 2 εt
π

e −xerfc x
2 εt

+2x ε B
A

e

(4t) i erfc( x
2 εt

) +Be t

b

1
2 − x

4εt o 2
−(

x
A )

3
2 3 − (x−xo)

A

2 o 2

2

(13)

where in is an integration operator of order n.
A detailed description of the mathematical derivation of the

solution in Eq. (13) can be found in Appendix A. Now, the solution
of Eq. (13) consists of 3 terms. The first one:

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦
⎥⎥y (x, t) = tan (a ) 2 εt

π
e −xerfc x

2 εt1 b

1/2
− x

4εt
2

(14)

is identical to the analytical solution which describes the shoreline
evolution in the vicinity of a groyne due to the impact of constant wave
forcing (Pelnard-Considere, 1956). The second term:

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟y (x, t) = 2x ε B

A
e (4t) i erfc( x

2 εt
)2 o 2

−(
x
A ) 3

2 3o 2

(15)

encapsulates the trend for accretion near the groyne caused by the
blockage of sediment coming from the source of sediment discharge.
The third term describes the growth of the river-delta and reflects the
shape of the source:

⎡
⎣⎢

⎤
⎦⎥y (x, t) = Be t3

− (x−xo)
A

2

(16)

Terms two and three can also describe the erosive trend appearing

near a groyne due to the presence of a sink of sediment material in the
vicinity of the groyne, corresponding to the case where the constant B is
negative.

2.2. Discretization in time of the analytical solution

So far the analytical solution describes the shoreline response to
constant wave forcing and sediment discharge. To modify this solution
to enable us to describe the shoreline evolution to time varying wave
conditions and discharges requires an additional step. For this purpose,
the Heaviside technique may be applied to incorporate time depen-
dence, as described by Walton and Dean (2011). In this procedure a
continuously time varying condition, (for example the incoming waves)
is approximated as a piece-wise constant condition. The solution can be
constructed from the accumulation of the constant conditions acting
over finite time segments. For example, the solution for constant
conditions has been found already in Eq. (13). The solution for the
piece-wise case is found as follows. For the initial time segment the
solution is given by Eq. (13). For the next segment we subtract the
contribution due to the conditions pertaining to the first segment and
add the contribution from the conditions in the second segment. For
the third segment, we subtract the contributions pertaining to the
conditions in the first and second segments and add the contribution
from the conditions in the third segment, and so on. Considering just
the first term in Eq. (13), the solution in the third time segment can
thus be written as:

y x t tan α f ε t t H t t tan α f ε t t H t t

tan α f ε t t H t t tan α f ε t t

H t t tan α f ε t t H t t

( , ) = ( ) ( , − ) ( − ) − ( ) ( , − ) ( − )

+ + ( ) ( , − ) ( − ) − ( ) ( , − )

( − ) + + ( ) ( , − ) ( − )

t t t t

t t t t

t t

(1)
3 1 1 0, 0 0 1 1 1, 1 1

2 1 1, 1 1 2 1 2, 2

2 3 1 2, 2 2 (17)

where α1, α2, α3 are breaking wave angles corresponding to successive
wave conditions during the corresponding time steps, H is the
Heaviside function,
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π

exp − x
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,1 ti,t i
ti,t i

ti,t i

2

ti,t i

(18)

εti,t is the average of ε(t) over the interval ti-1 to ti and is given by:

∫

∫
ε =

ε(t)dt

dt
,simplified to:ε =

∑ ε Δt

t − tti,t
ti

t

ti

t tj,tk
i=j
k

i

k j (19)

in case solutions are desired at the end points of equally spaced time
intervals.

In a similar fashion, Eqs. (15) and (16) may be used to develop
expressions corresponding to the 2nd and 3rd term of Eq. (13)
respectively. Eq. (17) constitutes a solution to shoreline evolution near
a groyne for time varying conditions through the application of the
Heaviside technique. Indeed, Eq. (17), which is Walton & Dean's
solution to the case of an isolated groyne, gives the first part of our
extended solution. To get the full time varying solution we must apply
the Heaviside technique to Eqs. (15) and (16) too. However, the time-
varying parameter which is involved in these terms is not the breaking
wave angle αb but the river sediment discharge rate qR. Thus the
conjunction of Eqs. (10) and (15) yields:
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q
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−
x
A

3
2 3

o
2

(20)

In a manner similar to Eq. (18) we define f2 as:
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Thus, the piece-wise form of Eq. (15) which enables time-varying
conditions to be taken into account is as follows (for 3 consecutive
time-steps):

y x t q f ε H t t q f ε H t t

q f ε H t t q f ε H t t

q f ε H t t

( , ) = ( ) ( − ) − ( , ) ( − ) +
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R t t t t
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3 2 2, , − 2 2 (22)

In the same way, the corresponding piece-wise form of Eq. (16) is:
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where:
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− (x−xo)
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i
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(24)

The sum of Eqs. (17), (22) and (23) provides a piece-wise analytical
solution to the assessment of shoreline evolution in the vicinity of a
groyne and a river, for a sequence of arbitrary wave conditions, and
time-varying sediment discharge from a river.

3. Evaluation of the analytical solution

Without loss of generality, we consider a straight, north-facing
beach whose normal is 0°N, with a shore normal groyne placed some
distance to the west of a river mouth. A random sequence of wave
events at the breaking point has been created for the evaluation of the
analytical solution. This wave time-series consists of hypothetical

weekly average conditions over a span of 10 years corresponding to
521 sequential steps. Specifically, a random sequence of wave heights
(Hb) has been created, varying between: 0 m (calm sea) and 1.30 m, as
well as a random sequence of periods (T) varying between 1.0 s and
12.0 s, and finally, a random sequence of directions (αb) varying
between −0.13 rad and 0.19 rad (creating this way a predominant
littoral drift towards the groyne for positive values of αb). It should be
noted that the conditions so created do not reflect any dependence
structure between wave heights, periods or directions. In a similar
fashion a random sequence of sediment discharges has been created.
Regarding the new random sequences which were created, the average
value of Hb(t) is equal to 0.52 m and its standard deviation is equal to
0.22 m (Fig. 4 – upper panel). The corresponding average value and
standard deviation for the wave direction αb is 0.04 rad and 0.05 rad,
respectively (Fig. 4 – middle panel). Similarly, the average value of T(t)
is equal to 5.93 s and the associated standard deviation is equal to
2.02 s (Fig. 4 – bottom panel). The predominant wave direction will
cause a littoral drift towards the groyne (Fig. 5). Finally, the sediment
discharge rate time-series qR(t) is characterized by an average value
equal to 3.00 m3/h and a standard deviation equal to 3.03 m3/h
(Fig. 6).

The sediment discharge rate (qR) is shown in Fig. 6.
The source of sediment discharge (river-mouth) was placed 1200 m

away from the groyne (at xo=1200 m) and the parameter A which
governs the width of the river-delta was taken equal to 650 m. Finally,
the depth of closure and the berm height were set equal to: DC=7 m;
and DB=1 m, respectively.

Having specified the values of all the parameters involved, the
analytical solution may be evaluated. The results are shown in Fig. 7.

When the solution is evaluated the groyne is positioned at x=0 and
the shoreline distance towards the river is considered as positive.
Fig. 7a–c show the contributions of the first, second and third terms in
Eq. (13) and Fig. 7d shows the combined solution due to the
summation of the three terms. As expected, the predominant wave
direction towards the groyne (Fig. 5) causes accretion in the vicinity of
the groyne (Fig. 7a; and d). The river, acting predominantly as a source
of sediment, contributes to a localised nourishment of the beach which
spreads both updrift and downdrift over time. The downdrift transport
is intercepted by the groyne which causes an enhancement of the
accretion near the groyne.

The same analytical solution can be used for the case that the river
acts mainly as a sink instead of a source of sediment discharge, in
which case the sediment discharge rate qR will be negative. To test this,
the negative of the discharge time series was used with the same wave
conditions as before. The corresponding shoreline evolution is shown
in Fig. 8.

Fig. 8a–c show the contributions of the first, second and third terms
in Eq. (13) and Fig. 8d shows the combined solution due to the
summation of the three terms. In Fig. 8a the illustrated shoreline
evolution is identical to that depicted in Fig. 7a since the same wave
conditions were applied. In Fig. 8b is notable the erosive trend near the
groyne due to the presence of the sink of sediment discharge 1.2 km
away. This is due to the drift towards the sink and the blockage of
sediment transport at the groyne which could otherwise replace the lost
sediment material. Fig. 8d illustrates that in the vicinity of the groyne,
in this particular case, the wave-induced alongshore drift is sufficient to
overcome the erosional tendency of the sink.

The analytical solution which corresponds to the accretive or
erosive trend near the groyne due to the sediment material coming
from the river-mouth or moving towards the river-mouth (Eq. (15))
respectively, constitutes an innovation since to date such an analytical
approach has not been attempted for the description of this phenom-
enon. The solutions presented here show how the combination of a
source/sink and a groyne can trigger a wavelike response in the beach
planshape through simple linear superposition of different contributing
factors.

Fig. 4. Upper panel: Wave height (Hb) time-series; average value of Hb is equal to
0.53 m; standard deviation of Hb is equal to 0.31 m. Middle panel: Breaking wave angle
(αb) time-series; average value of ab is equal to 0.041°; standard deviation of αb is equal
to 0.051°. Lower panel: Wave period (T) time-series; average value of T is equal to 5.93 s;
standard deviation of T is equal to 2.02 s.
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4. Discussion and conclusions

A new analytical solution has been developed and presented in this
paper which provides a mathematical description of the shoreline
evolution in the vicinity of an estuary which acts either as a source or
sink of sediment discharge, and an obstacle such as a groyne, placed
near the estuary, blocking the littoral drift. The shoreline evolution
attributed solely to a source of sediment discharge can be assessed by
the summation of 2 independent terms corresponding to the influence
of the groyne on longshore distribution of sediment from the river and
the growth of the river delta. The impact of the wave action on
shoreline evolution is represented in a separate term familiar from
earlier studies. Since Eqs. (15) and (16) do not incorporate the wave
angle αb, the shoreline evolution solely due to a source or sink of
sediment material near a groyne is independent of the wave direction
and consequently the direction of the littoral drift.

A key element of the new solution is its capability to incorporate
arbitrarily time varying input conditions of both the local wave climate
and the sediment flux at the river-mouth. Consequently, the new
analytical solution can be used as a means to validate computational
models which simulate such cases. It can be evaluated very quickly
since no numerical integrations or loop procedures take place.

Next, the sensitivity of the new analytical solution to the choice of
temporal resolution was tested. Since field data were not available, the
shoreline plan shape obtained using the shortest temporal step, (one
week), was used as a reference. Next, the analytical solution was
evaluated for the following temporal steps: 2 weeks; 4 weeks; and 8
weeks. Finally, the resulting shoreline curves were compared with the
reference solution. The differences between the reference solution and
the other solutions were measured using the root mean square error,
(RMSE), and are presented in Table 1:

The comparison shows that as the temporal step decreases the
resulting shoreline curves converge to the one corresponding to
temporal step equal to 1 week, indicating computational convergence.

In passing it may be noted that, in common with earlier analytical
solutions to the one-line model, wave conditions are considered to be

Fig. 5. Rose diagram showing the time-varying wave direction. The predominant wave
direction has deliberately been chosen to cause littoral drift towards the groyne. The
average wave angle ab is equal to 0.04 rad or 1.2°, and the standard deviation of αb is
equal to 0.05 rad or 1.4°.
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Fig. 6. Sediment discharge rate (qR) time-series; average value of qR is equal to
3.00 m3/h; standard deviation of qR is equal to 3.03 m3/h.

Fig. 7. (a) The impact of wave action on shoreline evolution (Eq. (17)). (b) Accretion caused near the groyne due the impact of the source of sediment discharge (Eq. (22)). (c) The
gradual growth of the river-delta (Eq. (23)). (d) The combined impact of the aforementioned factors is used for the assessment of the final shoreline position.
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spatially uniform. Moreover, the new analytical solution can be
extended to the left-hand side half-plane, for -∞ < x≤0, in the case of
an impermeable groyne of infinite length at x=0. The solution is anti-
symmetric about the line x=0 so the shoreline in the region 0 < x≤+∞ is
the negative of that shown in Fig. 3.

It is also worth noting that the solution given by Eq. (13) can be
used to provide approximate answers to practical problems. For
example, when designing a groyne in such a case it is often required
to estimate the time before the beach reaches the end of the groyne. At
this point, sediment will bypass the end of the groyne and the littoral
drift to the downdrift side will recommence. The time for the groyne to
fill can be estimated from Eq. (13) as follows. Let the groyne have
length L and be positioned at x=0. Substituting these values into Eq.
(13) together with appropriate values for the other parameters yields
an equation that can be solved for time. That is, the time at which the
beach position at x=0 is equal to the length of the groyne. Specifically, if
tL is the time required for the sediment material to fill the updrift side
of a groyne having length L, up to its tip, then at the groyne (x=0) the
application of Eq. (13) gives:
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By setting ω=tL
1/2 and after some rearrangements Eq. (25) may be

expressed as a 3rd order polynomial equation:
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Eq. (26) demonstrates that the hypothesis presented in Section 1.1
about the parameters involved in the assessment of the required time
for a groyne to be filled with sediment material, considering a source of
sediment discharge in the groyne's vicinity, was correct. There are
several ways available (algebraic and numerical) to find the roots of Eq.
(26). For the cases considered here the parameters A, B, x0 and ab are
positive and so the coefficients of the first three terms in Eq. (26) are all
positive. According to Descartes rule of signs, Eq. (26) has only one real
positive root ωο, so that tL=ωο

2, since only one change of signs occurs
between its successive terms. Next an example regarding the evaluation
of Eq. (26) is presented corresponding to the case discussed in Section
3. As far as the time varying parameters are concerned such as the wave
characteristics and the sediment discharge rate at the source, their
mean values were taken into account. Subsequently, by substituting the
following values in Eq. (26): L=200 m, A=650 m, x0=1200 m,
Hb=0.52 m, T=5.93 s, ab=0.04 rad, D=8 m, and qR=3.00 m3/h, the
following 3rd order polynomial expression was derived:

x ω x ω ω0. 0321 10 +3. 2087 10 +0. 1716 −200 = 0−5 3 −5 2 (27)

A numerical solution of Eq. (27) via MATLAB yields: ωo=637, thus
ωt = =637 h = 405, 769 h ≈ 46 yrοL

2 2 . Therefore, about 46 years are
required for the sediment material to fill the updrift side of the groyne
and consequently, to bypass the groyne's seaward tip and start
nourishing its downdrift side. The time tL which was calculated above
is considered reasonable given the fact that the length of the groyne
was taken: L=200 m.

In concluding we note that Eq. (26) demonstrates that our original
hypothesis is indeed correct within the limitations imposed by the
theoretical development leading to Eq. (13). This new analytical
solution represents an advance and an important addition to the range
of cases that can be used to validate numerical models. Although it
cannot treat the case of an initially arbitrary shoreline position, and is
constrained by the usual restrictions of analytical models, it can be
used for the validation of numerical models which simulate simplified
cases of coastal problems. These types of applications are a necessary
step before incorporating the full complexity of a coastal site into a

Fig. 8. (a) The impact of wave action on shoreline evolution (Eq. (17)). (b) Erosion caused near the groyne due the impact of the sink of sediment discharge (Eq. (22)). (c) The gradual
erosion caused by the sink of sediment discharge (Eq. (23)). (d) The combined impact of the aforementioned factors is used for the assessment of the final shoreline position.

Table 1
The RMSE between the reference solution for a temporal step of one week and the
solutions obtained with larger steps.

Temporal Step: 2 weeks 4 weeks 8 weeks
RMSE: 6.04 m 8.72 m 10.69 m
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numerical model (Hanson, 1987). The methods presented here could
be used in the preliminary study of the morphological changes expected
to occur due to the presence of coastal constructions near river deltas
or estuaries.
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Appendix A. Solution for shoreline evolution near an impermeable groyne and source of sediment discharge with the
application of Laplace transforms)

The governing equation may be written as:

ε y
x

Be y
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∂
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+ − ∂
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A
2

2
−[ − ]2

(A1)

where

ε: diffusion coefficient [l2/t]
A: a parameter proportional to river-mouth's width [l]
D: closure depth [l]
qR: sediment transport rate [l3/t]
B = q

DA
R

xo: position of river mouth on the longshore axis

(l: length unit; t: time unit).
The initial and boundary conditions are:

y(x,0)=0 corresponding to initially undisturbed, straight beach;
a− = tan( )t

x b
∂(0, )

∂ ; corresponding to zero transport at x=0;
y t( + ∞, ) = 0 corresponding to zero disturbance far from the domain of interest.

Taking the Laplace transform of (A1) with respect to t yields:
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where s is a Laplace transform variable and y is the Laplace transform of y.
Then the general solution may be written as the sum of the complementary solution yc and a particular solution yp:
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By applying the boundary conditions, the coefficients A1 and A2 may be determined leading to the following solution for y :
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The solution to Eq. (1) is found by taking the inverse Laplace transform of the solution for y . This may be done term by term and from tables
may be shown to be:
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where i erfc z( )3 is the 3rd integral of erfc z( ) and can be written as:
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