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Abstract
This paper addresses the problem of matching erpetal findings*with mumerical prediction for the

extreme experimental levels of pressure-drops wbdein the€4:1 sharp=corner contraction flows, as
reported by Nigen and Walters (2002). In this catioa, we reporten significant success in achigvin
guantitativeagreement between predictions and experiments. Hdssbeen made possible by using a
new swanINNFM model, employing an additional digsiye function. Notably, one can observe that
extremely large pressure-drops may be attained avithitable Selection of the extensional viscaneHi
scale. In addition, and on vortex structure, théyemnd immediate vortex enhancement for Boged8ui
in axisymmetric contractions has also Beenwrgpraduavhich is shown to be absent in planar

counterparts.

Keywords:Pressure-drops, Contraction\{low, Vortex enhancgnssvanINNFM model

1. Introduction

This study addresses thie preblem of matching exyartal findings with numerical prediction for the
extreme experimental/levels of pressure-drops ebdein some contraction flows observed by Nigen
and Walters (2002). There, ‘significant differendesresponse were observed between Boger and
Newtonian fluids, in sSteady-statxisymmetric contractiorflow, which were not apparent in planar
counterpart geometries. Here, the new swanINNFMahptamaddon-Jahrongt al. (2016)] is used,
which has already groved capable of reproducingelaexperimental excess pressure-drogsd(
reported far contraction-expansion flow, within ssttocorner geometries as in Rothstein and McKinley
(2001). Impartantly, contraction flow with sharp cornersaisnore severe problem to address, offering
elevation.n pressure-drops of one-order highen fba contraction-expansion flow. It is shown thgbu
the‘présent predictive solutions how the new swllHM model, with its intrinsic dissipative-factor

contributions, can deliver such high levels of expental pressure-drops faxisymmetriccontraction
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laws, whilst dlsoTelsominspihese arepabsehbysfildha Cidnfigurations.vasengsiderduch findings with
Airﬁas nglow-ratg the corresponding development of flow structuae &lso been investigated
PUb”SIW@IgF present paper, numerical computations haen performed through a finite element/finite
volume (e/fv) algorithm, which draws upon some recent and it@mradvances in computational
solution strategies to derive high deformation-rageoelastic steady-state solutions in complewslo
This includes using compatible stress/velocity-gratirepresentation on parent-subcell discretigatio
ABS-f-functional constitutive correction (for sttuce functional f)f<and a strong centreline
continuity/velocity-gradient enforcement. Thmajor conclusionto/bes drawn from the current
investigation is that, by using an appropriate tituts/e model and4 moedern numerical techniqués it
possible to obtaiguantitativeagreement between experiment/and numerical prediatian important

rheological flow problem.
2. Background

In recent decades, there has been considerabistyaii the fields of Experimental Rheology and
Computational Non-Newtonian Fluid Mechanicss Muelagoess has been made on all fronts. So far as
experiments are concerned, there have, beenunajanees in a number of test problems, most notably
contraction flows, flow past a sphere, splashingl axtrudate swell. However, there has often been a
frustrating lack of agreement between ‘experimemrslilits and numerical predictions for Boger fluids,
and particularly so, on enhanced piessure-dropsrtraction-flows and drags in settling problenesg,s
for example, Tanner 2000, Walters and«Webster, 2B8lips and Williams, 2002; Alvest al, 2004,
Aboubacaret al, 2002; agreementhas however been establishéldwistructure, but not necessarily
at comparable deformatiom rates). This is entirety as regards continuum modelling, though
mesoscopic approaghes have begun to move in thiediigction. So, for example, Castillo-Tejgisal.
(2014) performed simulations on such Boger fluiggngnon-equilibrium molecular dynamiend on
abrupt contragtion-expansion flows. Their molecidtaudies for circular contractions (aspect-ratjo
predicted significant yoressure-drop enhancememt, clbsest to experimentapdfindings of 300%
being recorded as*150%. This certainly aids andhtpdihe way forward for continuum modelling.
Whilst experimental data were being obtained and namerical techniques were being developed,
there was an understandable attitude of toleranmith, disagreements between theory and experiment
belpg“blamed on the constitutive models being eygup or deficiencies concerning the numerical

technigues employed in what is a far more demandiegarch area than the corresponding Newtonian
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id MechanicsTituatinstiiseefocceptathplBhyC RhatiellitD84 -anskOwensiand whiips | 2002). Having
Aﬂ#th it, there has been a growing realizatioh tieatime has come to segkantitativeagreement
P“b"r%llwe&q theoretical predictions and experimentslilte on pressure-drops particularly. Progress has

already been made in some areas (see for exampldinget al 2006; Walters et al 2009a, b; Pérez-
Camachcet al 2015; Gardufiet al 2016a, b; Tamaddon-Jahroetial 2016), and, in the present paper,
we shall attempt to reach agreement in the impbrad demanding area of contraction flows with
sharp corners. We shall consider both planar amslymxnetric configurations and, in particular, we
shall attempt to interpret theoretically the prostdee experimental #esults published by Nigen and
Walters in 2002.

In our earlier work (see, for example, Walters le2809a, b, famadden-Jahrostial. 2011, 2016),
we attempted to make progress by considering aaaiign/expangion ‘geometry with rounded corners.
In that geometry and context, it was possible ttaiobreasonahleq(alitative agreement with the
experimental results of Rothstein and McKinley (BO(However.-we now feel that the time is ripe to
seek @uantitativg agreement between theory an@_experiment on peessaps for the sharp-corner
contraction—flow results of Nigen and Walters(200&hiist covering both planar and axisymmetric
contractions. Of course, the planar case doesmgept-a significant problem, since viscoelastisty

expected to have a negligible effect on flow regise in that case!
3. Governing equations and constitutive moddling
3.1 Viscoelastic flow modelling

Under an isothermal setting _and for viscoelasticompressible flow, the relevant mass, conservation

and momentum equatiens im hon=dimensional formgyaen by:

O =0, 1)
ou _

ReE—DEF—Reu[[Du—Dp (2)

T=1,+1, 3)

where the field variables a(fluid velocity), p (hydrodynamic pressure], extra-stress;  (polymeric
stress§) andrg (solvent stress). Herd=(Vu+Vu")/2 is the rate-of-deformation tensor (where superscrip

T deneies tensor transpose).



Reichimberscrtbyvisodefimedddre= (o Ul 1),

Alsﬁ:h aracteristic scales gf for the fluid densityU for velocity, | for length (/U for time), and a
ublishi

zerv shear-rate viscosity, = u, + u,, for which p is a polymeric viscosity angy, is a solvent

viscosity. Then, the corresponding solvent-fractibacomeg = 1/u . By default, the solvent
contribution S is heavy and taken to be 0.9 (90%), which is cdiblgawith the use of Boger fluids in

the experiments. Here, creeping flow is assumB@<O(10%)) and &S a result, the momentum
convection term contribution is negligible. Yeth& Re can be contrelted through material properties
(kinematic viscosity), this does not imply that Dedh numbersBe, 'see below for definition) are
constrained to being low. There, either the strate-or relaxation-time“ean still be high in thebbeah
number, as commonly encountered for Boger fluidhés Permits ‘the study of response under increasing
elasticity throughDe alone, leading to higbbe and extensional viscosities at larger rates, wigiah
generate significant elastic corner vortex growth.

Existing numerical studies for the Oldroyd B modale fajled to predict the significant increases
observed experimentally in the Couette correetihighyis related to the pressure drop) for Boger
fluids (see, for example, Aboubagatral. 2002; Alyeset.al 2003, Aguaycet al. 2008, Walterset al.
2008, 2009). Moreover, the lack of finite-exienigiprof the Oldroyd-B model, and its over-strong
guadratic response in the first normal stress.@iffeeN;, are both features overcome in subsequent
work, thereby drawing upon FENE-CR functionalitg€sTamaddon-Jahrorei al 2011).

As a consequence, a particularynedel variant, whiehhave called the swanINNFM(q) has been
proposed, arising from the hybrid combination oflswespected White-Metzner and FENE-CR models
(WM-FENE-CR, see developments in Tamaddon-Jahetral. 2011, 2016, and Gardui&b al. 2016b).
Such a model displays_ thesdesiked properties oftaon shear viscosity, finite extensibility (with a
bounded extensional, viscosity reaching an ultimplieteau), and a first-normal stress-difference
ultimately weaker than quadratic. In configuratimmsor form, with configuration tensoiA(), the

swanINNFM(qg) constitutive equation for this hybriebdel may be expressed as:
T=r +1 :@f(Tr(A))Aﬂé) +28¢(£)d (4)
P F " De ’
|
De A#E(THA) (A -1) =0, (5)
[]
where Awrepresents the upper-convected material derivafivedefined as:

R:aa—?+uDDA—(Du)TD\—AmDu). ©6)



Treydissi osh function (see
Publ ﬁli)ﬁgl it and Crochet 1988, Debbaual 1988, Tamaddon-Jahromi al. 2016, Gardufiet al. 2016b),

wnere A, is a material time constant anél is a strain-rate. Following standard convention, a

generalised strain-rafe is that adopted based on the second and thirdriamia of the rate-of-
deformation tensad, viz,

e=3l, /1, @)

wherell =%tr (dz), Il 4 = det(d).

In Eq.(7), & is a generalised rate-of-strain for complex fldased on*the commonly used invariant
form, that of the third invariant divided by thecead invariafit<of the rate-of-deformation terisor
(definition-I; for discussion on choice, see foragple, Debbaui and«Crochet (1988)). Clearly, this
generalised invariant form af has the correct scale and reduces to‘the uswaisahal strain rate in a
uniaxial extensional flow (as in Figure 1, see bgldng notes the collapse of this model (Eqs.di5n

into a FENE-CR base-form wheg(¢)=1, as in pure Shear flow, planar flow (via=0; see also
Appendix-Il), or whenA, =0. In the above, the FENE streteh functibirr(A)) in (4) and (5) depends on

the extensibility parameter L, and is given Qy:

1

(8)

Then, an increasing value lof results in ‘& larger plateau-level of extensiastosity.

One may provide an explanatidor the physical basis and understanding of thesigiative material
time-scale parameterif), which«gubstantiates the stromegtensionaldissipative response. So, for
example, fibre suspensigh addlitives would pointvilag here to such a physical mechanism, providing
dissipative extensional beHhaviour, and hence ststrain-hardening effectget with little impact on
shear properties, séddul-Karem et al. (1993) arBaloch and Webster (19955ince this idea may be
applied under s€ale-feduction, at the mesoscop@l-l® the molecular-level, one can well see how
appropriate physics may be constructed to subatanguch effects. One must emphasize at this point,
that the swanININFM(g) model, with an extension-rdependent viscosity (constant in shear), has
already preven well capable of capturing the leeglsnhanced pressure drop (Tamaddon-Jahetaii
2016) (and.drag in counterpart settling flows (Géa et al. 2016b), observed in experimental

! Or, of regularisation in regions of vanishilligj , division by (1HI 4)- This would occur on the centreline in shear-free
flow.



n?su emenits, Bhiemgosappnadlecapssisyriiysofldefofiratics. ith értogrihisohasordot proved possible
A any other continuum-basedodel. The present modelling work attempts toimtstish differences

Publl&lkl(l;l(g; ted with and boost extensional viscosityabielr (hardening), by introducing extensional
dissipative effects (inactive in shear) through itheorporation of A, and dissipative streswiith its

impact on pressure-drops (see also arguments imsieat & McKinley 1999 on this point). Moreover,
experience would dictate that, it is often founfficlilt to derive a good c::?rameter match and fijtio
both experimental shear and elongational data, I&meously. One notes«the experimergptidata

does not come with a prescribed extensional visc@get to be det m@d); hence from a predictive

viewpoint, one only has the pressure-drop datacidk with. \
e
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——
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The Extensional viscosityd) for the swanINNFM(q) model is plotted in Figur@dainst the product of
extensional strain rat& §, and a single-averaged relaxation tiig)( Then, the data covers a range of

dissipative factors, 0A,<1.2. Recognising that this model only departs frdme conventional

rheological response of the FENE-CR modg| £0) in extensional deformation, such data is ptbtte
6



Etﬂm equiValehis formsriowEENEIERyY ahg. DidiogiBdelso stahe yesivisifigetrénd |in extensional
/& COS

ity is clearly observed for swanINNFM(q),(>0, strain-rates>0.5), when compared to the FENE-
Publishing
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CR(A, 40) base-model form; yet this is considerably thss that attributable to an Oldroyd-B response
for strain-rates 0.5 units and above. Notably, (the=0.1)-curve captures the FENE-CR(=0) base-
model form up to its second limiting-plateau athhigtes; departing in response around strain-iates
O(3) units, rising sharply thereafter. With elewatito A, =0.3 and A,=0.7, such departure occurs
earlier at ~1.5 and ~ 0.7 strain-rate units, rebypsy. In contrast, for&-eonsiderably largés of 1.2,

the departure has shifted to ~0.3 strain-ratessumver a decadegarlier. Then, the associated

rheometrical functions for the swanINNFM(q) moded ghose for-model parametei8=0.9, L=5 and

0<A, <1.2; which can be represented as:

="y,
Nshear = 2’70 (1_ IB)Deyz Nshex = (9)
1 f ’ 2 ’
f 2
=3p(& +3p(€)(1- ,
30(&) 311, + 39 ) ﬁ»{fz_fDeg_ZDezgz}
where y=2Il, is a shear-ratdased on thg“second invariant of the rate-of-dedtion tensod , and

f = f(Tr(A)), as above.

4. Numerical method and discretisation

4.1 Hybrid finite element/finiteyolume scheme

The particular form of the Qiybrid“parent finite mlent/subcell finite volume methode(fv) has been
much reported elsewhere, (See Webster et al. 20@8llahet al. 1998). In essence, this employs a
semi-implicit, time-splitting, “fractional-stagedrfoulation, which invokes finite element discretisat
(on the parent cell)for velocity-pressure partsthod system, and finite volume for stress (on child
subcells). The time-stepping is cast about a Ta@aterkin (TG) discretisation, relying upon a twegs
Lax-Wendroff timae stepping procedure (predictorreotor), grafted upon amcremental pressure-
correction (iIPC)“procedure. Such a pressure-correction impleatientensures second-order temporal
agccuraey under incompressibility conditions. Uitlgs concise semi-discrete time-discretisation, as
described. in Wapperom and Webster (1998), Weledted. (2005) and Belblidieet al. (2008), the

schematic representation of the combined threeeSE&PC structure may be expressed on a single time
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Arp t=[t", t 1] Whikmigritiestinsatessasqepteddsy, Bitys gPidids. Fiokcal -tiorsee Stepasiensiloysdl afe of the order

Publi th ) and a relative-increment time-stepping termirmatiwlerance is selected (by default) of the order
ub I:‘Sf 1|’[]* t0 determine temporal convergence to a steady. state

In summary, a Galerkin discretisation may be apptie the Navier-Stokesian components of the
system; with the momentum equation at Stage 1, ptessure-correction step at Stage 2, and
incompressible correction constraint at Stage 3eilloance stability, theiffusion term is treated in a
semi-implicit manner. This avoids the computationakrhead of a fullycimplicit alternativ@ressure
temporal increments invoke multi-step referenceéhtee successive dimejlevgfs t",t™'] across the
various fractional-stepped equations.

Once spatial discretisation has been condustedin-rate stabilisationSRS-term) may be enforced,
via a deferred-correction difference-factor tefrD.. ThiS“technigue has been well documented
elsewhere, with its basis lying ifie-GLS formalization; (See Guenette and Fortin (19%gaijens
(1998); and Walters and Webster (20030)e weighted-residual form of trerain-rate stabilisation
difference-factor ternd-Dy is

[ #26u00d -d,y'dQ, (10)

with respect to domaif2 and weighting functiong(x). In this expressiong is a stabilisation

parameter,d the fe-discontinuous rate of\defermation tensand d. its continuous and recovered
equivalent, based on a localized velocity-gradienovery procedure (Belblidet al 2008).

Further to the above, two additional*and recertriepies are utilised, termed ABS-f-correction and
VGR-correction. These procedures have been intedletsewhere in Lopez-Aguilat al (2015), in
the context of thixotropicsmoedelling, and in Tamaddlahromiet al. (2016), whilst modelling Boger
fluids in contraction-eXpansion flew. The ABS-f-cection avoids the possibility of the dissipation
function in the constitutive eguation becoming riega thus predicting negative values of the viggos
and structurd -functional dusing flow evolution. The VGR-correati refers to the particular velocity-
gradient recovery-cerrection procedure applied,hwis strong centreline continuity enforcement
through velocity-gradient imposition, which preveriuild-up of spurious numerical noise in solution

evolution!

4.2 Finite-volume cell-vertex discretisation for configuration tensor
Nedal stress values are computed at the verticegach fv-subcell. Cell-vertex finite volume

technigues in the viscoelastic context have beesgmted in detail elsewhere (Matallehal 1998,
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lidia et al 2088mddendg, venlyceplodief Riesdtiptiofliok the enhgrbe theanyoisepsavided, as may be

Publ%ﬂﬂ?g d from the non-conservative configuratiorsée form equation, through time derlvatlvg'?(),

flux (R=ullA,) and source@) terms. Then, cell-vertek-schemes are applied to this differential

equation utilising fluctuation distribution (as th@winding technique of choice), to distribute coht

volume residuals and furnish nodal solution updé@féapperom and Webster 1998). We consider each

scalar configuration tensor componeAt, to act on an arbitrary volum@/= ZQ, , whose variation is
|

controlled through the corresponding fluctuatiomponents of fluxRR)and/source@). Then

%jAdQ:—deijdQ. (11)

Q Q Q

Such integral flux and source variations are evathaver each finite volume triangl€}, and are
allocated proportionally by the selected cell-verdestribution“upwinding) scheme to its three icas$.
The nodal update is obtained by summing all coatidims from its control volume,, composed of all
fv-triangles surrounding nod®.(In addition, these flux*and source residuals tmagvaluated over two
separate control volumes, each associated withveagiode Ij within the fv-cell T. This procedure
generates two contributions: the first contribufisupwinded and governed over fivetriangle T, (R,
Qr); the second contribution is area-averaged “andesdbd over its uniquenedian-dual-cellzone,
(Rmdo Qmad-

In this manner, a generalizédn@dal update equation has been derived, per thitggooation-tensor
component (Websteet al. 2005), ineQrporating appropriate area-weighting ntaintain temporal
consistency. This has led £0 a separate treatnfentividual time derivative, flux and source terms

Once integrated over asSociated control volumesconrespondinfy-nodal update stencil becomes

AA|n+l _ T T mdc
At _DZT:cIraib +3 (1-4; )™, (12)

0 mdc

2.5a]Q+ Y (1-6,)Q]

T, Omdé

where b =(-R; +Q1, B™ =(-R,o*+Quad) » Q; is the area of thév-triangle T, and Q is the area
of its median-dtal-cglinidg. Here, the weighting parameter< J; <1 proportions the balance taken

between centributions from thmedian-dual-celland thefv-triangle 7. The background detail and
notation follow Wapperom and Webster (1998), illashg such detailed aspects as: the

interconneetivity of the selected set foftriangular cells {;) surrounding the sample nod@; (their

subtended set of median-dual-detidg) zones (each within a cell() and linked with sample nodB)



[1355 ociated cOiitainingrgetvof pargat tyidngetheds Ciirid thefheethatiosiodistréoertioh/ upwinding)
A -

parame tersq/ ), fori = 1,2,30on eacHv-cell (T =T,).
Publishing
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Figure 2. Schematic diagrams, flow through 4:1 ptaand axisymmetric contractions

5. Problem specification

A schematic presentation of the flow geometrieprisvided in Figure 2, both planar and circular-
symmetric (axisymmetric), reflecting the relevaritatio, sharp-corner configuration (and defimgo

of length parameters};, R, R, h). Figure 3 displays the triangular structure, mefhent zones and
meshing chosen (with characteristic nombers of efes) nodes, degrees-of-freedom (dof), and
minimum-element size (h-min)). This choice Hustmthe zoomed section around the re-entrant corner
where refinement is based on mesh density in thgaction region. In addition, two summary matrix-
tables of the current situation<and findings forsgnmetric/planar contractions are provided by the
current authors in Table/1 (experimental obsemalicand Table 2 (numerical predictions) for both
shear-thinning and censiant-viscosity (Boger) #uidhese data provide a time-dated snap-shot of
expectation on vortex«enhancement and increasesbymeedrops, with justification for the various
entries in thesedablés being provided in Boger \Afadters (1993); Bogeet al (1986); Walters and
Rawlinson (1982); Walters and Tanner (1992) anevdiere. So, we show in Table 2 the computational
matrix corresponding‘to Table 1. Here and in teoealibrating vortex enhancement, we particularly
report onychange Ih vortex intensity/strength ie fredictions below. We also record counterpart
upstream vortex length, but note that changesisrttetric are much reduced, as overall vortex-size

dees nei tend to alter anything like as much ansity.
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Figure 3. Zoomed mesh sections, 4:1 contractiomgéy €lem tﬁ%ﬁ\

nodes=6220, dof=38937, h-min=0.0063

Planar
Vortex Increased Vort Increased
enhancement | pressuredrop enwe 4 pressuredrop
\I
Constant-
viscosity No No & Yes!
Boger fluids \
y. \S\

Shear-thinning \
polymer Yes A\ Yes Yes
solutions \

Table 2. Numericz?p

e.g. Bindietgal. 2006, Tamaddon-Jahromit al. 2011)

Qﬁ “Planar Axisymmetric
4 ortex Increased Vortex Increased
= hancement] Pressuredrop | enhancement | pressuredrop
S -
Congtant-
viscn$ty No No Yes No
fluids
~
Shear-thinning
polymer Yes Yes Yes Yes
solutions 11




preocclpalignnimikeppreseatpalierPiystdlinge ek Nigan santle Waltersf (2002) éxperiments for
AIBQN luids (Boger 1977/78). Specifically, we wish interpret the provocative experimental data
P“b“r%iﬁts& d in Figure 4 for a Boger fluid in axisymme®:1 contractions. Note that, with the fluid dép
of p ~ 1.4 mg/mm (Nigen and Walters, 2002) in Figure 4, the pressiiop (A P) and flow-rate (Q) are

1.59/s
0.0014 g/ mm

scaled, respectively, byA P,=10° Pa and Q= QO( J The corresponding experimental

measurements for the 4:1 planar contraction arenshio Figure 5, where pressure-drop and flow-rate
are again scaled with\(Po=(4.464*10 )P¢), and [Q=Q, (1 mn? /Q].

Typical forms of Group Deborah number employedha tited references are: in the experiments,

(e.g. axisymmetricDeflx":AlEXP%, AF%=0.16s); and in the' Simulations O™ = A,°"U/L).

Recognising that thenodus operandurhere is to vary.defegrmation rate (from a base-rtefégrence,
increasing flow-rate), hence a single common Ddbgnamber may be established through the ratio
between experimental and simulatigiaxation-timeg(eachiiaken as a single-averaged estimate). So,

for example, in the present circular contexty tioisgtifies a relational scaling factor of 10, which

yieIds:Deflx":lquf‘”. Furthermore, under tQptanar_setting the experimental Deborah number is

Q—)\

TS , Wherey is a mean shear-rate in the constriction-gap @f th
hR; /2

given by: De® =,y =\ \ EF%
contraction, Ris the width of the égntkaction; and h is the hewf the channel (in the third dimension).
This implies that the cross-sectional area of thestriction-gap isfA_ =hR, ), over which the flow-rate
(Q) is determined, with & characteristic length taksnthe half-gap-widthl(=R,/2=R_). Then,

Q

AR U/L ,/n the_plahar context, an equivalent relatiormdliag factor of 3.3 emerges,
c 1

y

where: De** =~3.8De’".
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Publi i(ﬁlé( ular case

Eiiect of constitutive equation parameter (variation in dissipative factord, )

The influence of théissipative material time-scale parametés X on the total pressure-drop is shown
in Figure 6a, with solvent viscosifz0.9. High values of thd, factor correspond to higher extensional
viscosity at ranges beyond|¢ >0.5 (see Figure 1). The effect df on pressure-drop at flow rates of
Q<4 units are insignificant, whilst, for higherWlerates, larger pressure-drops are clearly visasld,
increases. For example, a change frag+0.3 to A, =1.2, at fixed Q=12 units, produce a pressure-drop
of around 5400 units foA, =0.3 and 7350 units fod, =1.2 (~36% in€rease). Furthermore, in Figure 6b,

the total pressure-drop is provided in comparafibren for G<Ap<1.2, the data spanning three different

levels of flow-rate of Q=2.8, 7.2 and 12 units. éjewith “acreasingA,, there is no significant

adjustment in pressure-drop observed at low flows®=2.8 units. However, as flow-rate rises and fo

the higher value of Q=12 units, it is clearly aggyaithat ingrease id, causes considerable elevation in

pressure-drop.

One may consider the impact on vogex enfiancemean elevation inA,, in switching between
A, =0.0 to A, =1.2 for different levels of flow-rate of Q=2.8,27,and 12 units. As such, and at Q=12
units, salient-corner vortex-intensity.rises toward ~220% fromA, =0.3 (ymin=-0.954 units) tol, =1.2

(wmin=-3.08 units). For the correspondipgrange at Q=7.2 units, vortex-intensity rises t@%4 see
Figures 7A, 7B. Then, such vortex enhancement eaassociated with the counterpart generation of

larger extensional visc@sity, arisigg as it doesrirthe increased dissipative factek, for A4£>0.5

units.

It is also interesting, to analyse in Figureh® impact of variation in dissipative factot() at fixed

flow-rate, takef here.at the largest setting (Q=12 unitee position is interpreted through two trend

graphs covering response in pressure-drop andxvortensity. One notes that vanishinlg implies
collapse of the swanINNFM(q) to that of the baséNEECR form. Then for €4,<1.2, one observes
enhaRcement in vortex intensity from ~04} €0) to ~3.2 (1, =1.2), with a counterpart rise in pressure-
drepsdrom™1.0 to ~1.4 (scaled by the represerggiressure value ai, =0). Clearly, such rising trends

are mytually linked.
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e predictive matching for the 4dxisymmetriccontraction data of Nigen and Walters (2002),
PUb”(.Srm&&g pressure-dropA(P-scaled) versus flow-rate (Q-scaled) increas@rasided in summary in

Figure 9. This conveys the sense that both the dlaanm position, with linear rise in the trend cyrve

and non-linear P-enhancement for the Boger Fluidar2 quantitatively captured. Here, the

swanINNFM(q, A,=1.2) has been used, with dissipative extensioisabus time-scale factor of
A, =1.2 to match the Boger Fluid data, which covessgaificant range Of flow-rates. The extensional

response for this selection can be gathered frguréi.

OF O v
18 - () Boger Fluid 2 ‘%Isy}ﬁqetrlc
16F 0] Syrup 2 W

' f — Newtonian (Numerical)
1.4F — —m— — swanINNFM(q), A,=1.2 8
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12 » ; O/,/'
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ol - / “/
B - ’
< 0.8 :— }, N O/
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- 7 N
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0.4F A0 o}
B £ 7
B ~
02fF _#0
0 :( | [ | | | | ) 1 ‘ ‘ |
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Q

Figure 9. Pressure-drop vs flow-rate, Nigen andt¥val(2002) 4:1 experimental vs
swanINNFM(g,Ap=1.2) modelaxisymmetriccontraction

The correspanding’ vortex enhancement trends wdingiflow-rate are charted in Figure 10. This
would indicate that there is indeed significantterrgrowth as Q rises from ~2 to ~12 units. Here, a
large recirculation region is present at flow-ra@es6 units, occupying the whole region, from sdlien
re-entrant cernef. This trend is amplified witherig flow-rateto Q=12 units. Here, salient-corner
vortexsintensity increases some twenty-three-tinfemn Q=2.8 to Q=12 units, and the separation
streamline displays convex shape (from a recesgecperspective). Moreover, in Figure 10 when taken
against increasing flow-rate, evolution is cleafparent in the dimensionless salient-coupstream

vortex-sizgLy). In this data, the vortex-size for Q=12 unitsasne 1.5 times larger than that at Q=2.8
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[Ij The associatedatotatipressutepdidy Pheydoeds CR4 unite b QeRBiamifsedndl.36 units atlQ
A representing a factor-increase of around 5irch consistent correlation in flow response,

PUb“thrlrggf onds to the strong initial strain-harder(see Figure 1, in the range just beyotd>0.5). In

itself, this observation confirms the propositidratt extensional viscosity has a major role to pray

enhancement of both pressure-drop and vortex gctivi

¢ N

Planar
351 \
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Q/Qo
Figure 11. Pressure- %s flow-rate, Nigen andt&(2002) 4:1 experimental vs

6.2 Planar case

Considerin eStherpart predictive matchingtf@r 4:1 planar contraction problem and the same
two fluids Ne nlayi and Boger Fluid 2, one maferdo Figure 11. Here, there is a null response
between hese Swo fluids in the trends of departfrgoressure-drop with rising flow-rate. This is
repligated in the experimentalP-data and the predictions with the swanINNFM(g)JdeioNote,
that under p)anar conditions, through the conveatiaefinition adopted of the generalised strabe-ra
(detinifion:l), the extensional viscosity model @wNNFM(q)) collapses to the base FENE-CR form
(with 25>0.0 andt =0, so thaty£)=1; see above).
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igure 12A displEysrihesassociaiedpudsdifidlyo Aitimariek trendswitk flovierateet@).risk from ~0d. t
A[@urits. The principal salient-corner vortex sise its intensity from 10 to 2.03*10%. Upstream
PUbILSer.)g lengths change negligibly, whilst the vortgsadually grows to cover the front-face of the

contraction-plane (towards the sharp re-entramerdr such coverage is completed between Q=3 and
Q=7 units. The upper trend graph in Figure 12A,veys the planar salient-corner vortex-intensity
trend, shown in contrast to that for the countdrpéicular case. Clearly, the circular case vortex
enhancement is extremely large in comparison. AT Qmits, a miniscule Jip-vortex is also detectatfie
intensity (7.26* 10), compressed tightly within the cap-zone appraagithe ‘re-entrant corner. The
intensity of this lip-vortex then significantly maifies up to (1.1*10)%y Q=9 units. An additional
zoomed lower-graph is provided in Figure 12A, fbe tplanag‘salientscorner vortex-intensity alone,
showing the narrow range of flow-rates in which tigevortex appears. In Figure 12Bhe growth
characteristics of the lip-vortex are tracked betw®=8 and Q=9.% units. This trend is accompanyed b
an increasing salient-corner vort&hen, between Q79.1 and“Q=9.2 units, the saliedtligrvortices
have merged, through fingering of the salient-cou@gteX nto the re-entrant corner region, so tray

a single vortex structure survives.

One notes that the planar flow vortex structurgligtinetly different when compared to its circular

counterpart. Clearly, planar salient-corner “voitexnsity is much smaller than that observed in

axisymmetric flows up to Q=12. For example Agi=0.0 and with flow-rate levels of around Q=7 units,

planar vortex-intensityymin=-0.0072 unjts,_see Figures 12A) is some ten tismaaller than in the
circular caseymin=-0.086 units, see"Rigures 7A).

Moreover, for the planar centraction, one notes tiha pressure-drop data extends out to an expanded
range of flow rates up to80 units, some three gilaeger than that reported in the circular caseefe
strong early vortex agtivity/was, apparent). In filanar case, only linear trends are detected in the
pressure-drop, withdnowdeparture between the visand viscoelastic fluids. Also, vortex enhancement
was not evidentdp to Q~12 units. For consisteragons, we have also checked the position on planar
vortex activity' for the_higher flow rates beyond I2=units up to Q=30 units. This has revealed the
surprising .outceme that in this extended rangeeaddbeyond Q=15 units, an alternative and later
growth trend is predicted in which vortex-enhancen{enainly intensity) now becomes apparent (see
Figure 13, slope of line for vortex growth of ~3 fihe circular configuration and ~8/9 slope for the
planar‘ease). For example, vortex intensity at QeBils (ymin=-0.318 units) is some six times larger
than at @=15 unitsymin=-0.0493 units), which itself is some two timegkrthan at Q=12 unitsin=-
0.0203,units). Note that correspondingly, the sajpam line adjusts in shape - from concave to cenve
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ith_increasing fibismeatectipo wesQeciBeddyPE3Fuiditstikith- o entationsperdpeactize faken from the

A”st corner.

P“b'ﬁmﬁ& an be said about the trends in the theotetmrdex activity in the planar-contraction caset b
here, we do not wish to detract attention from basic message and interest in predicting the
provocative pressure-drop/flow-rate experiment®Nigfen and Walters (2002). (Please see Appendix |

for a fuller discussion on the trends in planartew activity).

7. Conclusions

So far as ‘flow resistance’ is concerned, we amaraged by thguantitativeagreement between the
present numerical predictions for the swanINNFM glaahd the"experimental data provided by Nigen
and Walters (2002). We believe this to be a majep gorward ‘in the much sort-faquantitative
agreement between experimental data and numerieglicions. Notably, one can observe that
extremely high pressure-drops may be attained avibitable selection of the extensional viscougtim
scaleip .

The particular vortex structure was not a majorgeon inithe Nigen and Walters work, but convincing
evidence of early and immediate vortex enhanceffioerBoger fluids in axisymmetric contractions has
been provided. However, there is no such equivaeitience of strong early vortex enhancement in the
planar case.

The numerical solutions we have\provided in Figuéetso 12, for the flow structure in both
axisymmetric and planar contractiens;-are certatolysistent with expectation and the data in Tables
and 2.
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Pumisﬁiirﬂ% in the planar case, there are no pressopedifferences from the viscous case to drive such
vortex response — one must look elsewhere for $titon of this delayeglanar outcome. Hence, one
may interrogate stress response, and in particidaslised extra-stress Nand N-influence$, as
displayed through vortex stress-intensity trencgplgsain Figures 14 (planar), 15 (circular). It isazly
apparent that the planagdtensity graph, in the vortex zone (Figure l4(edyrelates closely with the
vortex intensity findings, both in terms ofortex growth charactegisticsand upturn/onset of
enhancementn addition, the properties displayed in hlanar No-iatensity graph (also, Figure 14(b))
reflect a fairly linear increasing trend (devoidugfturn), only sinitag tothat in Nintensity up to Q~10
units. Trends in vortex area-occupation (identiftadough (L)) “upstream wall length to separation
point), follow and agree through streamlines teifNensity (See third graph, Fig.14(c)). Returniadhe
circular case, to check counterpart statelocdlised Nand N, in-contrast to the planar case, one may
consult Figure 15. Now, we see that ldnd N-intensity graphs follow similar trends, illustragi that in
the vortex zone, circular-Ns almost entirely composed f.NHence, in the circular case, such a trend
now tightly reflects the vortex enhancement obgkmvethe streamline intensity, specifically for the
flow-rate range 12 units.

’For a nofi-Newtoqidn elastic liquid, the polymeriess tensor components, can be written in the
form: Ny=r1,,37,, and N,=r,,-7,. Thus, N is defined in axisymmetric flow as
N, &7, ~Tg; =T, —T,, and in planar flow aN, =7,,=7,, covering both flow contingencies, as
necessary.<Then,;Nind N are the so-called first and second normal strégs-ehces.
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PuinShiIHél ie particular instance of the planar defornmgtishere the conventional definition of generalised

iate-oi-strain (definition-1) yields a null fieldalue, an alternative definition-1 may be proposeased

on the first and second invariants instead, as sig;,=£=0.5trac| q)/(1+\/_lz), where again,

I, :%det(Dz). This version is seen to yield the required formektension, vanishes in shear and is

non-zero yet tractable in complex flow; reflectirgymilar propertie those of the original,
conventional definition in axisymmetric flow. Saa with\/l— y Qessary to render solution
tractability around the re-entrant corner. Imposding absolute rater in“the trace function, extra
the extension rate in pure extension. A field pbbtthe ge 3

_—
(definition-Il), thus generated, is provided in &ig 16 at ﬁe}ia d flow-rate value of Q=20aunit
swanINNFM(g) model, definition-II

Ised. rate-of-strain in planar flow

The corresponding pressure-drop predictions e ith

strain-rate and dissipative factor df =1.2 (as inx rﬁaric), are displayed in Figai®e Here,
-
e

solutions are contrasted against the data pr% with the experimental measurements for a
Boger fluid of Nigen and Walters (2002), n(h\og (q) solutions for definition-1 strain-rate and

.~

dissipative factor ofA, >0. In this fashiony the lity of matching to #wgerimental data is seen to be

upheld, as above.

Figuse 6. Generalised rate-of-strain in planavf(@,, = ¢ = 0.5trace( D) / (1+\/T2 ),

-~ swanINNFM(qg) model, Q=20
(U
w ~
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AF e 1. Experimental observations, (e.g. Nigen\Afadters (2002))

Publishing
Tabie Z. Numerical predictions (e.g. Bindietgal 2006, Tamaddon-Jahrorei al 2011)

Figure 1 Extensional viscosity for Oldroyd-B, FENIR, and swanINNFM(q) modeld,; =[0.0, 1.2]

Figure 2. Schematic diagrams, flow through 4:1 ataand axisymmetric coptractions

Figure 3. Zoomed mesh sections, 4:1 contractionmgéty Eelements=2986,“nodes=6220, dof=38937,
h-min=0.0063

Figure 4. Pressure/flow-rate data (scaled), Nigeh\&alters (2002), 4éxisynmetric contractio
Figure 5. Pressure/flow-rate data (scaled), Nigeh\Walters (2002)/ 4:lanar contraction

Figure 6. Pressure drop\F), swanINNFM(q) model, Q=2.8, ¥.2, 12; variols axisymmetric
contraction

Figure 7A. Streamlines, swanINNFM(q) model, Q=2.2, 122,=[0.0, 1.2],axisymmetric contraction

Figure 7B Salient corner vortex intensity {,)swan!NNFM(q) model, Q=2.8, 7.2, 12; variols,
axisymmetric contraction

Figure 8. Streamlines, saliecbrner vorteX 4atensttyimin), pressure dropAP), swanINNFM(q) model,
Q=12; various\p, axisymmetric contraction

Figure 9. Pressure-drop vs flowgrate, Wigen andt®val(2002) 4:1 experimental vs swanINNFM(q,
Ap=1.2) modelaxisymmetriccontraction

Figure 10. Pressure-drop v§ flowsrate with corresjing streamlines, swanINNFM(q) modek=1.2,
4:1 axisymmetric contraction

Figure 11. Pressure-dropws flow-rate, Nigen andt&ka (2002) 4:1 experimental vs swanINNFM(q)
models planar contréction

Figure 12A. Stréamlines and salient-corner vortgenisity (ymin, planar vs axisymmetric) at various
flow-rates (0.¥Q<12), swanINNFM(q) model, 4:glanar contraction

Figure 12B-Streamlines at various flow-rates £8€9.2), swanINNFM(g) model)5=0.0, planar
contraction

Figure 13. a) Streamlinepléanar contractiof), b) salient corner vortex intensityn, planar vs
axisymmetric); various flow-rates, swanINNFM(q) nebd
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?e 14. a) Salient corner vortex intensifynf), b) Ni, N2 salient-corner intensity, c) JN\salient-
rner. zone-size, swanINNFM(q) mo nar contraction
Publishiitg (@) modeka
Figure.15. a) Salient corner vortex intensipf), b) Ni, N2 salient-corner intensity,swanINNFM(q)
model ,axisymmetric contraction

Figure 16. Generalised rate-of-strain in planavf(@ ., = ¢ = 0.5trace(| D) / (1+\/_I2 )), swanINNFM(q)
model, Q=20

Figure 17. Pressure-drop vs flow-rate, Nigen andté(2002) 4:1 e 1 %\vs swanINNFM(q)
models, planar contraction
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