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Abstract: Interacting theories of N relativistic fermion flavors in reducible spinor rep-

resentations in 2+1 spacetime dimensions are formulated on a lattice using domain wall

fermions (DWF), for which a U(2N) global symmetry is recovered in the limit that the

wall separation Ls is made large. The Gross-Neveu (GN) model is studied in the large-N

limit and an exponential acceleration of convergence to the large-Ls limit is demonstrated

if the usual parity-invariant mass mψ̄ψ is replaced by the U(2N)-equivalent im3ψ̄γ3ψ. The

GN model and two lattice variants of the Thirring model are simulated for N = 2 using a

hybrid Monte Carlo algorithm, and studies made of the symmetry-breaking bilinear con-

densate and its associated susceptibility, the axial Ward identity, and the mass spectrum

of both fermion and meson excitations. Comparisons are made with existing results ob-

tained using staggered fermions. For the GN model a symmetry-breaking phase transition

is observed, the Ward identity is recovered, and the spectrum found to be consistent with

large-N expectations. There appears to be no obstruction to the study of critical UV

fixed-point physics using DWF. For the Thirring model the Ward identity is not recovered,

the spectroscopy measurements are inconclusive, and no symmetry breaking is observed all

the way up to the effective strong coupling limit. This is consistent with a critical Thirring

flavor number Nc < 2, contradicting earlier staggered fermion results.
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1 Introduction

Relativistic field theories of particles moving in the plane have received recent atten-

tion, particularly within the condensed-matter community, because of their potential role

in describing the spin-liquid phase of quantum antiferromagnets [1, 2], the pseudogap

phase of cuprate superconductors [3, 4], and of course low-energy electronic excitations in

graphene [5]. However, they are interesting to study in their own right. Self-interacting

theories of fermions are thought to exhibit an unexpectedly rich variety of ultra-violet renor-

malisation group fixed points [6], each yielding a new interacting continuum theory. One

manifestation of the fixed points is the existence of phase transitions separating massless

fermions from a phase in which a mass gap is dynamically generated; in condensed matter

physics this represents a transition from a metallic to an insulating phase. Different fixed

points fall in different universality classes, which depend on both the pattern of symmetry

breaking and the number of interacting species N . In all cases under discussion, it should

be stressed that the fermion mass is decribed by a parity-invariant term in the Lagrangian,

which is most naturally written in terms of reducible (i.e. four-component) spinor fields.

Because the fixed points occur at strong coupling, they present a calculational chal-

lenge, exemplified by the generic power-counting non-renormalisability of the perturbative

expansion in powers of g2 for spacetime dimensionality d > 2, since for a four-fermi contact

interaction [g2] = 2 − d. At this stage it helps to be more concrete by discussing specific
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examples. The Gross-Neveu (GN) model for interacting fermions in 2+1d is defined by the

continuum Lagrangian density

LGN = ψ̄(∂/ +m)ψ − g2

2N
(ψ̄ψ)2, (1.1)

where ψ is an N -flavor 4 component spinor field. The bare mass and interaction terms

each reduce the global symmetry from U(2N) to U(N)⊗U(N) (see discussion below (1.2));

in addition there is a discrete Z2 symmetry1 ψ 7→ γ5ψ, ψ̄ 7→ −ψ̄γ5 which is broken by

the mass term but not the interaction. Whilst a weak-coupling expansion makes no sense

as stated in the previous paragraph, it is possible to develop an alternative expansion

in powers of 1/N , favouring Feynman diagrams containing closed loops, and suggesting a

resummation [7]. At strong coupling ag2 ≥ ag2
c ∼ O(1) in the limit m→ 0, where a is a UV

regulator length scale, it is found that Z2 symmetry is spontaneously broken by a vacuum

bilinear condensate 〈ψ̄ψ〉 6= 0. There is apparently no obstruction to taking a continuum

limit a → 0 as g2 → g2
c from either phase. In the resummed theory the interaction is no

longer pointlike but rather mediated by exchange of a scalar degree of freedom propagating

as k−1 in the deep Euclidean region k →∞; this anomalous scaling cannot correspond to

a term in a local Lagrangian. This persists at higher order in 1/N . Critical exponents

receive O(1/N) corrections, but always consistent with hyperscaling, a consequence of

1/N -renormalisability [7, 8]. The picture suggested by the 1/N expansion is confirmed by

numerical simulations, which observe the symmetry-breaking transition and extract critical

exponents for N as small as 2 [9]–[12], or even 1 if a honeycomb lattice is used [13].

Another model of interest is the Thirring model, in which the interaction is a contact

between conserved fermion currents, defined by the continuum Lagrangian density

LThir = ψ̄(∂/ +m)ψ +
g2

2N
(ψ̄γµψ)2, µ = 0, 1, 2. (1.2)

The Thirring model has the same global symmetries as N -flavor QED3. The La-

grangian (1.2) is invariant under a U(2N) generated by matrices rotating the N fla-

vors among themselves tensored with the 4 Dirac matrices {1, γ3, γ5, iγ3γ5}. The parity-

invariant mass term mψ̄ψ is not invariant under γ3 or γ5 rotations, so there is an explicit

breaking U(2N) →U(N)⊗U(N). Goldstone’s theorem implies the spontaneous breaking

of this symmetry results in 2N2 massless bosons, whereas there are none for the Z2 GN

model of the previous paragraph. However, like the GN model the Thirring model has a

renormalisable 1/N expansion [14–17], this time with a resummed vector mediating inter-

actions between conserved currents with UV behaviour ∝ k−1. The resummation is not

associated with a phase transition and the expansion can be developed for any g2, implying

the coupling is marginal. As g2 is raised the mass Mv associated with the small-k behaviour

of the vector propagator varies from 2m at weak coupling to M2
v ∼ O(m4−d/g2) at strong

coupling [17]. As g2 →∞ this suggests (1.2) is a theory of conserved currents interacting

via massless vector exchange, in many respects similar to QED3.

However, this may not be the end of the story. Dynamical mass generation through

spontaneous symmetry breaking does not occur to any order in 1/N , but for sufficiently

1Strictly a (Z2)2 symmetry if γ3 is taken into account.
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large g2 and sufficiently small N there are self-consistent solutions of Schwinger-Dyson

equations which do have this property [18]–[20]. In the limit g2 → ∞ there is a critical

Nc below which symmetry breaking occurs: for integer N < Nc we therefore expect to

find fixed points for some finite g2
c (N). The problem has also been studied using the

functional renormalisation group [6, 21, 22], implying the existence of at least two distinct

fixed points in the space of possible fermionic theories; however, this approach suggests the

nature of the fixed-point interaction is more general than the simple “GN” or “Thirring”

forms (1.1), (1.2) discussed so far, and that a more faithful description requires extra

interaction terms consistent with the global symmetries in play. The Thirring model has

also been studied using lattice simulations for 2 ≤ N ≤ 18 [23]–[25] which confirm that

a symmetry-broken phase is indeed present, that Nc ≈ 7 [25], and that critical exponents

extracted from the equation of state close to the fixed point depend sensitively on N , quite

distinct from the behaviour of the GN model. Since none of these properties is accessed

in a systematic weak-coupling method, the 2+1d Thirring model may well be the simplest

fermionic QFT requiring a computational approach.

Almost all lattice feld theory studies of 2+1d fermions to date have employed the

staggered fermion formulation, in which fields are described by Ns-flavor single spinor

component Grassmann fields χ, χ̄ defined at each site, and relativistic covariance in the

long-wavelength limit ensured by including a space-dependent ± sign on each link with

the defining property that the product of such factors around any elementary plaquette

equals -1. Well-known algebraic transformations show that a conventional Dirac action is

recovered as a→ 0 expressed in terms of reducible (i.e. 4-spinor) fields ψ, ψ̄, with ψ defined

not at a site but rather distributed over the 23 sites defining an elementary cube. Hence

ψ is interpreted as describing 2Ns flavors of 4-component spinor [26]. However, for a 6= 0

the staggered formulation does not respect the expected continuum U(4Ns) symmetry but

rather a remnant U(Ns)⊗U(Ns). Within the lattice community it is widely believed that

the full global symmetry is recovered in the weakly-coupled a → 0 limit expected for

QCD: there is no reason to believe this is also the case at a strongly-coupled fixed point.

For instance, with N = 2 the above considerations suggest distinct breaking patterns of

Z2 for the GN model and U(4)→U(2)⊗U(2) for Thirring. Recent simulations performed

with Ns = 1 staggered fermions using an efficient fermion bag algorithm, however, have

found compatible critical exponents for both “GN” [11] and “Thirring” [27] lattice models,

suggesting that for this minimal flavor number the two models describe the same fixed point;

in other words, extra microscopic interactions forced by the lower symmetry of the staggered

action [23] may be pushing both models into the same renormalisation group basin of

attraction. This seems a surprising result when the models are formulated using bosonic

auxiliary fields as in the following section, which is both natural for developing the 1/N

expansion and required for a conventional hybrid Monte Carlo (HMC) algorithm; however

when written purely in terms of χ, χ̄ fields distributed over the vertices of elementary cubes,

the interactions differ by only one, presumably irrelevant, term [11].

The considerations of the previous paragraph suggest staggered fermions are not ade-

quate to capture faithfully the correct physics of a fixed point with g2
c 6= 0. An approach in

which the fermions have the correct global U(2N) symmetry built in is strongly indicated.

– 3 –
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This insight has been shared by the Jena group, who have recently applied a non-local

SLAC derivative operator to the Thirring model [28]. In this paper we will apply domain

wall fermions (DWF), originally devised for the study of light quarks in QCD [29, 30],

and initially studied for 2+1d systems in [31]. The key idea is that a fictitious dimension

x3 is introduced along which fermion propagation is governed by the operator ψ̄∂3γ3ψ.

The third dimension has a finite extent Ls, with open boundaries called domain walls at

each end labelled ±. The only terms coupling the walls are either proportional to the

current mass m or are interactions of the GN form (1.1). Under generic conditions there

are exponentially-localised zero-mode solutions of the 2+1+1d Dirac equation at each wall

which are eigenstates of P± = 1
2(1 ± γ3). It is thus plausible that 2+1d operators and

Green functions constructed from 2+1+1d fields living on the walls retain the properties

of a theory which is invariant under rotations of the form eiαγ3 . On a lattice, if the kinetic

operator is chosen with a Wilson mass M of opposite sign to m, then the doubler modes

generically plaguing lattice fermion formulations do not couple to normalisable modes and

are hence irrelevant [29]. Moreover, in the large-Ls limit it has been shown both numeri-

cally [31] and analytically [32] that full U(2N) symmetry is recovered, i.e. eiβγ5 and e−δγ3γ5

rotations also become invariances. An unanticipated bonus is that the approach to the

large-Ls U(2N)-invariant limit is accelerated if instead of the hermitian mψ̄ψ the physi-

cally equivalent, but antihermitian, mass term im3ψ̄γ3ψ is used. This playoff between the

different forms of parity-invariant mass term available for reducible spinor representations

in 2+1d has also recently been exploited in a lattice study of non-compact QED3 [33].

The remainder of the paper is organised as follows. In section 2 we review the DWF

formulation for 2+1d reducible fermions, setting out the different possible parity-invariant

mass terms and the approach of the corresponding bilinear expectation values to the large-

Ls limit first studied in the context of quenched QED3 in [31]. Lattice versions of the GN

and Thirring models using DWF are then proposed, and their simulation using an HMC

algorithm outlined. While the lattice transcription of the GN model is fairly straightfor-

ward, based on a bosonic scalar auxiliary field confined to the walls [34], there are (at

least) two possible ways to treat the Thirring model, one in which a vector auxiliary field

Aµ is confined to the walls, and one in which Aµ is defined uniformly throughout the bulk

0 ≤ x3 ≤ Ls in analogy with the treatment of gluon degrees of freedom in QCD with DWF.

Next, section 3 examines the GN gap equation in the large-N limit, which predicts

a fixed point and spontaneous dynamical mass generation for g2 > g2
c . We build on the

pioneering work of ref. [34] by generalising their solution to the case of the antihermitian

mass term im3ψ̄γ3ψ and demonstrating an exponential improvement in convergence to

the large-Ls limit as a result. The gap equation also serves as a check to simulations

of the GN model with N = 2 presented in section 4, where results for the dynamically-

generated gap Σ(g2) are used to monitor the approach to the large-Ls limit, and equivalence

of the hermitian and antihermitian mass terms is demonstrated. The essential question

of whether symmetry breaking and critical behaviour can be probed using DWF is also

addressed through studies of the scalar susceptibility peaking in the vicnity of the critical

point, recovery of the axial Ward identity (using a variant of the GN model with a U(1)

axial symmetry), and finally for the first time the fermion propagator obtained with DWF

– 4 –
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is used in an exploratory study of both fermion and meson masses. While no attempt is

made at a full-blown characterisation of the nature of criticality, the results of this section

support the physical scenario outlined above and captured in the large-N expansion [8].

In section 5 we turn attention to the Thirring model with N = 2, presenting results

of HMC simulations of both surface and bulk models. The symmetry-breaking bilinear

condensate is calculated as a function of g2 and evidence presented that physical couplings

all the way up to the strong-coupling limit are probed. Each model shows evidence for

the influence of interactions, as does the auxiliary boson action, but the results differ

in qualitatively important ways. Significantly, the axial Ward identity is not respected,

signalling that the relation of lattice fields and parameters to the putative continuum theory

is not yet under control, and that at this stage it is not yet possible to state whether surface

or bulk approaches is optimal. Fermion spectroscopy in this case is hindered by large

phase fluctuations, whereas meson spectroscopy requires a much larger temporal extent

than the Lt = 24 studied here. A robust finding, however, is that there is no evidence

for spontaneous symmetry breaking, i.e. our results support limm→0〈ψ̄ψ〉 = 0, on volumes

and using lattice parameters where symmetry breaking is clearly observed using staggered

fermions [23]. This strongly suggests that for a theory of the form (1.2), Nc < 2. The results

are summarised and discussed in section 6, and an appendix contains technical details of

the free fermion propagator using DWF, needed for the large-N calculation of section 3.

2 Formulation and simulation

First, let’s define the lattice action to be studied. The fermion kinetic term uses the 2 + 1d

domain wall operator defined in [31, 32]:

Skin = Ψ̄DΨ ≡
∑
x,y

∑
s,s′

Ψ̄(x, s)[δs,s′DW (x|y) + δx,yD3(s|s′)]Ψ(y, s′) +miSi, (2.1)

where the fields Ψ, Ψ̄ are four-component spinors defined in 2+1+1 dimensions. The first

term DW is the 2 + 1d Wilson operator defined on spacetime volume V

DW (M)x,y = −1

2

∑
µ=0,1,2

[
(1− γµ)Uµ(x)δx+µ̂,y + (1 + γµ)U †µ(y)δx−µ̂,y

]
+(3−M)δx,y, (2.2)

with M the domain wall height parameter, and D3 controls hopping along the third di-

mension separating the domain walls at s = 1 and s = Ls:

D3 s,s′ = −
[
P−δs+1,s′(1− δs′,Ls) + P+δs−1,s′(1− δs′,1)

]
+ δs,s′ . (2.3)

Here the projectors P± ≡ 1
2(1±γ3) and the connection link fields Uµ will be specified more

fully later, with Uµ ≡ 1 for free fields. The mass term in (2.1) only involves fields on the

domain walls themselves, and can be chosen as a linear combination of terms which are

either hermitian:

mhSh = mh

∑
x

Ψ̄(x, Ls)P−Ψ(x, 1) + Ψ̄(x, 1)P+Ψ(x, Ls), (2.4)

– 5 –
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or antihermitian:

m3S3 = im3

∑
x

Ψ̄(x, Ls)γ3P−Ψ(x, 1) + Ψ̄(x, 1)γ3P+Ψ(x, Ls); (2.5)

or m5S5 = im5

∑
x

Ψ̄(x, 1)γ5P−Ψ(x, 1) + Ψ̄(x, Ls)γ5P+Ψ(x, Ls). (2.6)

Next consider 2+1d fields ψ, ψ̄ defined on the walls as follows:

ψ(x) = P−Ψ(x, 1) + P+Ψ(x, Ls); ψ̄(x) = Ψ̄(x, Ls)P− + Ψ̄(x, 1)P+. (2.7)

in terms of which the three mass terms are written mhψ̄ψ, im3ψ̄γ3ψ, and im5ψ̄γ5ψ re-

spectively. The three terms are all parity-invariant and define physically equivalent ways

of breaking U(2N) →U(N)⊗U(N). In ref. [31] it was demonstrated, in the context of

quenched QED3, that for sufficiently large Ls the three mass terms yield compatible re-

sults for the corresponding bilinear condensates 〈ψ̄Γiψ〉, with Γi ∈ {1, iγ3, iγ5}, consistent

with the recovery of U(2N)-invariance in this limit. Moreover, while i〈ψ̄γ3ψ〉 and i〈ψ̄γ5ψ〉
are numerically indistinguishable, the finite-Ls errors show a distinct hierarchy, i.e. with

〈ψ̄ψ〉Ls = 〈ψ̄ψ〉Ls→∞ + ∆h(Ls) + εh(Ls);

i〈ψ̄γ3,5ψ〉Ls = i〈ψ̄γ3,5ψ〉Ls→∞ + ε3,5(Ls). (2.8)

then ∆h � εh � ε3 ≡ ε5. The error ∆h is defined by the imaginary part of i〈ψ̄γ3ψ〉
obtained using just Ψ̄(Ls) and Ψ(1): the fields on the opposite walls yield the conjugate.

Therefore ∆h can be estimated using measurements made with mass term m3S3. In

ref. [32] it was shown for a gauge theory that an expansion of the bilinear condensate

〈ψ̄ψ〉Ls in powers of mh/DLs , where DLs is a 2+1d truncated overlap operator propor-

tional to the continuum Dirac operator in the large-Ls long-wavelength limit, for finite Ls
generically contains even powers of mh, whereas the corresponding expansion of i〈ψ̄γ3ψ〉
only contains odd powers of m3, a property shared with the continuum theory. Hence a

residual ∆h(mh, Ls) with only weak dependence on mh as mh → 0 cannot be excluded,

consistent with the hierarchy reported below (2.8).

The Gross-Neveu (GN) model for interacting fermions in 2+1d, defined by the con-

tinuum Lagrangian density (1.1) with ψ an N -flavor 4 component spinor field, exhibits

spontaneous breaking of Z2. The model is readily generalised to exhibit spontaneous

breaking of a continuous symmetry, e.g. U(1), by modifying the contact interaction to

[(ψ̄ψ)2 − (ψ̄γ5ψ)2] — see section 4.2 below. It is convenient to reformulate (1.1) in terms

of a real scalar auxiliary boson field σ:

LGNσ = ψ̄(i∂/ +m+ σ)ψ +
N

2g2
σ2, (2.9)

in which case symmetry breaking is signalled by Σ ≡ 〈σ〉 6= 0. Note that physically

equivalent models are obtained by replacing the contact interaction of (1.1) by the U(2N)-

equivalent forms −(ψ̄γ3ψ)2, −(ψ̄γ5ψ)2, along with masses m3,m5 multiplying the corre-

sponding bilinears.

– 6 –
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Formulation of the GN model on a lattice with DWF proceeds from the observation

that the interaction with the auxiliary in (2.9) formally resembles a mass term [34]. The

DWF formulation follows from (2.2) with Uµ ≡ 1, (2.3), (2.4) with the interaction term

defined solely in terms of fields on the domain walls,

SGNint =
∑
x

σ(x)[Ψ̄(x, Ls)P−Ψ(x, 1) + Ψ̄(x, 1)P+Ψ(x, Ls)], (2.10)

with obvious generalisations based on (2.5), (2.6). An interesting distinction with previous

work is that here the auxiliary field variables are simply defined on the lattice sites; in

the conventional formulation using staggered fermions σ is defined on the sites of the dual

lattice [8].

The other interacting theory considered in this paper is the Thirring model (1.2).

Again, it is convenient to recast the model using a real vector auxiliary field Aµ:

LThir = ψ̄(∂/ + iAµγµ +m)ψ +
N

2g2
A2
µ. (2.11)

In this latter form the formal resemblance of Aµ to an abelian gauge field is manifest,

although the last term in (2.11) spoils gauge invariance. In the 1/N expansion Aµ inter-

polates a massive vector boson of mass Mv; the ratio Mv/m is governed by the coupling

strength g2 [17]. However, symmetry breaking U(2N) →U(N)⊗U(N) via generation of a

bilinear condensate does not occur at any order in 1/N .

There are several variants of lattice formulation of the Thirring model, even when us-

ing staggered fermions [23]. In the so-called non-compact approach the interaction between

fermion bilinears and the vector auxiliary defined on the lattice links is linear; this has the

virtue that only four-fermion terms are generated on integration over Aµ, making the con-

nection with the continuum form (1.2) as transparent as possible. However, as shown

in [23], this regularisation fails to preserve transversity of the vacuum polarisation term

contributing to the Aµ-propagator (i.e. ∂µΠµν = O(a−1)), leading to an additive renormali-

sation of g2 and consequent uncertainty in identifying the strong-coupling limit [25]. In this

paper two non-compact DWF formulations are investigated. First, by analogy with (2.10)

we study a surface formulation with Uµ ≡ 1 in (2.2) and link fields Aµ(x) defined solely on

the walls interacting with point-split bilinears:

Ssurf =
i

2

∑
x,µ

Aµ(x)[Ψ̄(x, 1)γµP−Ψ(x+ µ̂, 1) + Ψ̄(x, Ls)γµP+Ψ(x+ µ̂, Ls)] (2.12)

+Aµ(x− µ̂)[Ψ̄(x, 1)γµP−Ψ(x− µ̂, 1) + Ψ̄(x, Ls)γµP+Ψ(x− µ̂, Ls)].

Notice in this case the interaction couples fermion fields on the same wall. Second, we

push the analogy between the vector auxiliary and an abelian gauge field by defining a bulk

interaction between an s-independent Aµ(x) and the vector bilinear current defined for all s:

Sbulk =
i

2

∑
x,µ,s

Aµ(x)[Ψ̄(x, s)(−1 + γµ)Ψ(x+ µ̂, s)] +Aµ(x− µ̂)[Ψ̄(x, s)(1 + γµ)Ψ(x− µ̂, s)].

(2.13)

– 7 –
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This differs from (2.12) on the walls by the presence of a formally-irrelevant remnant of the

Wilson term (corresponding to the ±1s in (2.13)). The relation with the gauge-invariant

kinetic term (2.2) with Uµ = (1 + Aµ) is clear. If we regard Aµ as a gauge field, then

the distinction between (2.12) and (2.13) is that in the former case the 2+1+1d fields are

exposed to s-like plaquettes carrying non-zero flux at both s = 1 and s = Ls, whereas in the

latter case such plaquettes carry zero flux by construction. At strong coupling the analogy

may be crude; since the effective connection is (1 + Aµ) rather than eiAµ the s-plaquettes

are not constrained by unitarity, and may still fluctuate in magnitude if not in phase.

After introduction of auxiliary bosons both GN and Thirring models with DWF can

be written in the form

S = Skin + Sint + Sbos (2.14)

=
N∑
i=1

∑
x,y

∑
s,s′

Ψ̄i(x, s)M(x, s|y, s′)Ψi(y, s′) + Sbos,

i.e. bilinear in the 2+1+1d fields Ψi, Ψ̄i, where explicit flavor indices are shown. For the

bulk Thirring model interactions are encoded within Skin and there is no separate Sint. The

interaction Sint is one of (2.10), (2.12), (2.13) and the bosonic action Sbos is an obvious

lattice generalisation of the quadratic terms in (2.9), (2.11). On the assumption that M,

M† describe similar physics, then the HMC algorithm may be used to simulate both models

starting from the equivalent pseudofermion action

S =

N/2∑
j=1

∑
x,y

∑
s,s′

Φ†j(x, s)(M†M)−1(x, s|y, s′)Φj(y, s′) + Sbos. (2.15)

The requirement to have a positive definite kernel means that N must be chosen even, and

hence the minimal number of flavors simulable with the HMC algorithm is N = 2. However,

in order to obtain the correct functional measure, in general it is necessary to correct for

the effect of unphysical bulk fermion modes [30], so that the fermion operator coincides

with a 2+1d overlap operator in the large-Ls limit. For U(2N)-invariant fermions this is

done by including for each flavor a term det(D−1(mha = 1)) in the functional measure [32],

which may be thought of as arising from integration over bosonic Pauli-Villars fields with

action ζ†D(1)ζ. It is computationally efficient to use the same pseudofermion fields Φ,Φ†

for both fermions and Pauli-Villars fields, and the following action results:

S =

N/2∑
j=1

∑
x,y

∑
s,s′

[D†(1)Φj ]†(x, s)(M†M)−1(x, s|y, s′)[D†(1)Φj ](y, s′) + Sboson. (2.16)

Since the GN and surface Thirring models are formulated with Uµ = 1 in (2.2), the Pauli-

Villars kernel D(1) has no dependence on the bosonic variables, and so can be dropped

with no dynamical impact. Hence in these cases the simpler form (2.15) may be used, as

pointed out in [34]. For the bulk Thirring model, the action (2.16) is simulated. For all

the results presented in this paper the domain wall height is chosen to be Ma = 1.
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3 Insights from large N

One of the main questions to be addressed in this paper is how critical physics appears

when DWF are used, and what is the resulting dependence on additional non-physical

parameters introduced in the formulation such as Ls. The GN model provides a good

starting point because critical behaviour is already manifest in the large-N approximation,

and can be accessed analytically. This approach was first applied using DWF in [34]; the

corresponding study for staggered fermions was performed in [8].

We start from the continuum GN model defined in (2.9). Spontaneous breaking of

a Z2 global symmetry is signalled by the development of a vacuum expectation Σ = 〈σ〉,
which in the large-N limit is given self-consistently by the gap equation

N

g2
Σ + 〈ψ̄ψ〉 =

N

g2
Σ−Ntr(∂/ +m+ Σ)−1 = 0. (3.1)

For DWF σ is localised on the walls according to (2.10), and the gap equation becomes

Σh

g2
= tr[P−(D†G)(1, Ls) + P+(D†G)(Ls, 1)]; (3.2)

the subscript h denotes that we initially focus on a hermitian interaction term, with the

fermion propagator given by D†G, and the free fermion Green function G(p; s, s′) where p

is a 2+1d momentum is derived in appendix A. Throughout this section units are defined

such that a = 1. The first term in square brackets contains the product D†(1, s)G(s, Ls).

Using (A.9), (A.10) we find

G(p; s, Ls) = Be−α(Ls−s) + (P+A+ + P−A−)e−α(Ls+s−2) (3.3)

+(P+A− + P−A+)e−α(Ls−s) +Am(e−α(s−1) + e−α(2Ls−s−1)),

where

2 coshα =
1 + b2 + p̄2

b
; p̄µ = sin pµ; b(p) = 1−M +

∑
µ

(1− cos pµ). (3.4)

The coefficients B, A±, Am are given in (A.13)–(A.15) with mh replaced by mh+Σh, while

D†(1, s) = θ(s− 1)θ(Ls − s)[−P+δs,2 + (b− ip̄/ )δs,1 + (mh + Σh)P−δs,Ls ]. (3.5)

In calculating P−(D†G)(1, Ls) and P+(D†G)(Ls, 1), terms proportional to p̄/ can be

dropped since they vanish on tracing. The resulting gap equation is

Σh

g2
=

4

V

∑
p

[
(mh + Σh)(B +A+) + bAm

+e−α(Ls−1)[2(mh + Σh)Am + b(B +A+ +A−)]

+e−2α(Ls−1)[(mh + Σh)A− + bAm]

]
, (3.6)

where the mode sum on an LxLyLt lattice runs over px,y = 2πnx,y/Lx,y, p0 = 2π(n0+ 1
2)/Lt.

Note that finite-Ls corrections appear at both O(e−α(Ls−1)) and O(e−2α(Ls−1)). In the limit
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Figure 1. Solution of gap equation Σ(g2) on a 123 lattice for various Ls for both 〈ψ̄ψ〉 (h) and

i〈ψ̄γ3ψ〉 (3) (left), and the region around the critical point enlarged (right). In all cases mi = 0

and M = 1. The red circle denotes g−2
c as given by (3.7).

Ls → ∞, we take first the massless limit mh → 0 and then the limit Σ → 0 to find the

critical coupling, using (A.15):

1

g2
c

=
4

V

∑
p

(
B +A+ −

b

∆

)
. (3.7)

The summand is given, using (3.4), by

B

(
1 +

(eα − b)
∆

)
− b

∆
=

(eα − b)
e2α(b− e−α)

=
z2(p)

p̄2
, (3.8)

where the factor z(p) = 1 − be−α was introduced in [34]. Figure 1 plots the solution

to (3.6) for a 123 spacetime volume for various Ls. The red circle denotes the location of

the transition at g−2
c = 0.408523 from a massless phase to a phase with spontaneous mass

generation given by the solution of (3.7). It can be seen that the finite-Ls corrections are

significant for Ls . 6, and still discernable even for Ls = 12; note that Σh(g2) approaches

the large-Ls limit from above.

With mass term proportional to m3 the gap equation becomes NΣ3/2g
2− i〈ψ̄γ3ψ〉 = 0

and (3.3), (3.5) are replaced by

G(p; s, Ls) = Be−α(Ls−s) + (P+A+ + P−A−)e−α(Ls+s−2)

+(P+A− + P−A+)e−α(Ls−s) (3.9)

+Am3e
−α(s−1) +A∗m3

e−α(2Ls−s−1)

and

D†(1, s) = θ(s− 1)θ(Ls − s)[−P+δs,2 + (b− ip̄/ )δs,1 + i(m3 + Σ3)P−δs,Ls ]. (3.10)
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The result is
Σ3

g2
= itr[(P−D

†G)(1, Ls)− (P+D
†G)(Ls, 1)] (3.11)

with

(P−D
†G)(1, Ls) = [i(m3 + Σ3)(B +A+) + bAm3 ]

+e−α(Ls−1)[i(m3 + Σ3)(Am3 +A∗m3
) + b(B +A+ +A−)]

+e−2α(Ls−1)[i(m3 + Σ3)A− + bA∗m3
], (3.12)

−(P+D
†G)(Ls, 1) = [i(m3 + Σ3)(B +A+)− bA∗m3

]

+e−α(Ls−1)[i(m3 + Σ3)(Am3 +A∗m3
)− b(B +A+ +A−)]

+e−2α(Ls−1)[i(m3 + Σ3)A− − bAm3 ], (3.13)

with Am3 given by (A.24); the full gap equation now reads

Σ3

g2
=

4

V
(m3 + Σ3)

∑
p

(
B +A+ −

b

∆3
(3.14)

+e−2α(Ls−1)

[
2B

∆3

(
e−2α(b− eα) + (m3 + Σ3)2(e−α − b) +A−

)
− b

∆3

])
.

In the large-Ls limit (3.14) coincides with (3.6), (3.7) as it must; remarkably, however, since

B is free of finite-Ls corrections, and from (A.25) ∆3 and hence A± only have corrections of

O(e−2α(Ls−1)), we see that the gap equation (3.14) receives finite-Ls corrections only at this

order; use of the twisted mass in the GN system therefore gives exponential suppression

of finite-Ls corrections, as a result of cancellation of contributions with relative phase ±i
between propagators running in opposite s-senses.

Solutions of (3.14) are also plotted in figure 1. As predicted, the finite-Ls corrections

are much smaller, and essentially under control by Ls = 6. Also note Σ3(g2) approaches

the large-Ls limit from below. This corroborates the improved properties of the “twisted

mass” formulation with respect to approaching the U(2N)-symmetric limit at large Ls,

observed empirically in quenched QED3 in [31], and demonstrated analytically for gauge

theories in [32]. Finally, figure 2 shows the approach to the large volume limit for fixed Ls;

as the volume increases the expected scaling Σ3 ∝ (g−2
c −g−2) is recovered in the symmetry-

broken phase, consistent with the large-N critical exponent β = (d− 2)−1 + O(1/N2) [8].

As expected, finite volume effects become significant for Σ3 . L−1
x .

4 Numerical results for the Gross-Neveu model

For finite N the results of the previous section are subject to quantum corrections. In

principle for the GN model these are calculable via the 1/N expansion, but we will use

numerical simulations to address the question of what critical behaviour of DWF fermions

looks like under these circumstances. The results presented in this section were obtained

using a HMC algorithm based on the action (2.15) with the minimal choice N = 2, and

aM = 1.0 is used throughout.
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4.1 Gap equation

Initially we focus on the GN model with Z2 symmetry defined by the continuum action (2.9).

The order parameter Σ = 〈σ〉 is related to the corresponding single-flavor bilinear conden-

sate by an equation of motion Σh = g2〈ψ̄ψ〉. The bilinear condensate may be estimated

by stochastic means [31] at a significant numerical overhead. We have checked that the

simulation respects the equation of motion, but chose to focus resources on the observable

Σ. Figure 3 shows results for both Σh and Σ3 as functions of g−2 on a 123 × Ls system,

with bare mass am = 0.01. For Ls = 2 Σh is in approximate agreement with the large-N

result of section 3, but as Ls increases the trend is for Σ(g2) to fall below the large-N

prediction as a result of quantum corrections. As before, the finite-Ls artifacts for Σ3 are

clearly smaller than those of Σh, but in this case Σ3 approaches the large-Ls limit from

above. There is fairly rapid convergence to the large-Ls limit: Σh(Ls = 8) ≈ Σ3(Ls = 4).

This can be checked in closer detail in the right panel. The Σ3(Ls = 20) data, shown on

both panels, were obtained from 20 - 30×103 HMC trajectories of mean length 1.0 and can

be taken to define the effective large-Ls limit. The Ls = 12 results for both Σh and Σ3 are

consistent within statistical errors.

The pronounced kink in Σ3(Ls = 20) seen in the right hand panel of figure 3 hints

at a critical point at ag−2
c ≈ 0.32–0.34, well below the large-N value predicted by (3.7)

as expected. Of course, a good estimate of g−2
c requires demonstrable control over finite

volume artifacts and the m→ 0 extrapolation, but such a simulation campaign is beyond

the scope of the current study. We can note, however, that finite-N corrections are large,

being O(50%) in the critical region.

The slight increase in the size of the errorbars in the critical region just discernable

in figure 3 is a signal of critical fluctuations, which are more properly quantified by the

susceptibility χ = 〈(σ − 〈σ〉)2〉, plotted in figure 4. The peak in the critical region signals

divergence in the infinite volume massless limit, where we expect χ ∝ |g−2
c −g−2|−γ with γ =

1 +O(1/N) [8]. The contrast is striking: χh shows no sign of critical behaviour for Ls ≤ 4,

and approaches the large-Ls limit from below, whereas χ3 approaches the limit from above.

The smallest value where the two are plausibly consistent is Ls = 12, but even for Ls = 20

there are small differences in the data. Unfortunately, the calculation is hard to control,

particularly on the strong-coupling side of the transition, due to occasional brief tunnelling

between true and false vacuum states related by Z2 symmetry, which in this context should

be regarded as a finite volume artifact. For this reason the actual peak height in the large-

Ls limit is hard to estimate from figure 4. It appears that near criticality the susceptibility

presents a more stringent challenge to reaching the large-Ls limit than the order parameter.

4.2 Axial Ward identity

Continuous global symmetries in field theories imply the existence of Ward identities re-

lating Green functions. If we wish to check restoration of a symmetry which is formally

broken at the Lagrangian level, it is important to examine the recovery of Ward identities,

to check both the symmetry itself and the applicability of field identifications such as (2.7).

To follow this agenda in the GN model it is necessary to enhance the model by chang-
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ing the broken symmetry from Z2 to U(1), requiring the introduction of a second bosonic

pseudoscalar auxiliary field π. The continuum Lagrangian becomes

LGNU(1)
= ψ̄(i∂/ +m+ σ + iγ5π)ψ +

N

2g2
(σ2 + π2), (4.1)

and the U(1) symmetry

ψ 7→ eiαγ5ψ; ψ̄ 7→ ψ̄eiαγ5 ; Φ ≡ (σ + iπ) 7→ e−2iαΦ. (4.2)

We will focus on the axial Ward identity

〈ψ̄ψ〉
m

= N
∑
x

〈ψ̄γ5ψ(0)ψ̄γ5ψ(x)〉, (4.3)

where all Green functions are normalised to just a single fermion flavor. In a symmetry

broken phase with limm→0〈ψ̄ψ〉 6= 0, the resulting divergence of the r.h.s. signifies the

Goldstone nature of the π field. In the GN model, the Goldstone mode is dominated by

disconnected fermion-line diagrams [35]. However, the auxiliary equations of motion may

be used to recast the identity as

Σ =
Nm

g2
χπ (4.4)

where χπ is the transverse susceptibility 〈(π − 〈π〉)2〉, so all required expectation values

involve solely bosonic fields. Finally, note that if instead the mass term im3ψ̄γ3ψ is

chosen then the interaction in (4.1) takes the form iψ̄(γ3σ − γ5π)ψ, but the same Ward

identity (4.4) results.
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Figure 5 shows data from the N = 2 GN model with U(1) symmetry and mass term

m3S3 on a 122 × 24 spacetime lattice with Ls = 8. The data results from 30000 HMC

trajectories of mean length 1.0. Each side of eq. (4.4) is plotted separately; on this scale the

errors in Σ are hard to discern whereas the χπ data suffer from large fluctuations due to the

Goldstone nature of π, similar to the staggered fermion observations of [35]. Nonetheless,

within the admittedly large errors the data are consistent with the Ward identity (4.4).

4.3 Spectroscopy

Finally we present some exploratory spectroscopy. Since the GN model is not constrained

by Elitzur’s theorem, it is possible to study the propagator of a single fermion. In addition

we will examine the simplest meson correlator formed from connected fermion lines, which

as shown in [31] interpolates states with JP = 0±. This study uses the same ensembles as

section 4.2.

First consider the timeslice propagator of a free fermion with mass mf :

∑
~x

〈ψ(0)ψ̄(x)〉 ∼
∫
dp0

eip0x0

ip0γ0 +mf
= P0±e

−mf |x0|, (4.5)

with P0± ≡ 1
2(1±γ0) and the sign chosen according to the sign of the temporal displacement

x0. Using the identification (2.7) and the identities P±P0+P± = 1
2P±, P∓P0+P± = 1

2γ0P±,
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and Ls = 8.

the corresponding 2+1+1d correlator with mass mh and x0 > 0 is

trP0+

〈
(P−Ψ(0, 1) + P+Ψ(0, Ls))(Ψ̄(x, Ls)P−+̄Ψ(x, 1)P+)

〉
= (4.6)

=
1

2
tr

〈
P−Ψ(0, 1)Ψ̄(x, Ls) + P+Ψ(0, Ls)Ψ̄(x, 1)

+γ0

[
P−Ψ(0, 1)Ψ̄(x, 1) + P+Ψ(0, Ls)Ψ̄(x, Ls)

]〉
.

The generalisation to mass m3 is straightforward. We have measured timeslice correlators

using the first and third terms of the r.h.s. of (4.6) using 5 randomly-located sources on

configurations separated by 5 HMC trajectories (taking care to correct for anti-periodic

temporal boundary conditions when x0sink < x0source). They yield two distinct estimates

of the fermion correlator labelled 1 (formed from 2+1+1d propagators linking the two

domain walls) and Γ0 (formed from propagators starting and ending on the same wall) in

the following. The two should coincide in magnitude if the correlator is dominated by a

simple pole of the continuum form (4.5).

Figure 6 shows the raw correlators CΓ0(x0) and C1(x0) obtained at coupling ag−2 =

0.24 using both a point source and a Gaussian smeared source

ηsmear = (1− c+ cD⊥)Nsmearηpoint, (4.7)

with D⊥ the spatial part of (2.2). We chose c = 0.25 and Nsmear = 10. The essential

feature is that CΓ0 is even about x0 = Lt/2, whereas C1 is odd, so that their linear

combination is not symmetric about the centre of the lattice. Lines are drawn though

the point source data to emphasise this, which also suggest the two channels don’t yield
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unless otherwise indicated. Results with both point (p) and smeared (s) sources are shown. Dashed

lines are simple pole fits. Also shown are Thirring model data described in section 5.

signals of equivalent magnitude. The data obtained with smeared sources has the same

symmetry, but with much larger errors. These originate in the large phase fluctuations of

the background auxiliary Φ field, and render the raw correlators useless for the precision

fitting required by spectroscopy with the available statistics. The fluctuations also afflict

the point-source data; though invisible on the scale of figure 6, the C1 datapoints actually

have the wrong sign near the centre of the lattice.

The pragmatic solution adopted here is instead to study the functions C̃i =
√
C∗i Ci,

effectively ignoring the phase fluctuations. It should be borne in mind that C̃ thus defined is

not a Green function, and that any resulting particle mass estimate must strictly be a lower

bound. It is also worth noting that mass fits to fermion correlators in the U(1) GN model

with staggered fermions were obtained without the need for this step [36]. Results for C̃Γ0

and C̃1 for two representative couplings are plotted on a logarithmic scale in figure 7, and

clearly suffer far less from fluctuations. By construction C̃ is symmetric about the lattice

midpoint. The correlators evaluated with point sources show no coupling dependence for

|x0| . 5; we ascribe this to the influence at short temporal separations of excited states

which are probably lattice artifacts. This is in notable contrast to using staggered fermions,

where excited states are absent permitting fitting over almost the entire temporal extent,

e.g. [23]. For this reason fits been made using smeared sources, which yield correlators with

a better projection onto the ground state and showing a much cleaner g−2-dependence;

reasonable fits to a simple pole were found for x0 ∈ [6, 18] (Γ0) and x0 ∈ [5, 19] (1), and

two such fits to C̃Γ0 are shown. Most of the data of figure 7 were obtained with Ls = 8

and mass term mhSh; we also show one correlator using Ls = 16 and m3S3, and it is clear

that at this level of accuracy the large-Ls limit is secure. The smeared source data in

figure 7 also show that C̃1 ≈ C̃Γ0 over the whole x0 range, but that there are systematic

differences near the lattice midpoint, which may be a C̃-artifact; C1 should vanish at the

lattice midpoint, and is ideally fitted with an odd function.
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Figure 8 shows results for the fermion mass mf for ag−2 ∈ [0.24, 0.36] and am =

0.01, .02, .03, together with the Σ data from figure 5. In the large-N limit mf = Σ +m [8].

The plot shows that this relation is approximately observed, but the measured mf falls

systematically below Σ at strong coupling and above Σ at weaker coupling. The fits also

yield mfΓ0 < mf1, with the trend becoming more marked at weak coupling, as might be

anticipated from figure 7. Both mf and Σ show similar variation with m over the whole

range studied. Determining whether the origin of the mismatch is due to finite spatial

volume, the fitted x0-range, O(1/N) corrections, or an artifact of fitting C̃ rather than the

Green function C is beyond the scope of this exploratory study.

Figure 8 also shows mass fits to meson correlation functions, defined by the combination

C+− + C−− using the notation of section 5.2 of ref. [31] (see (5.3) below), corresponding

to states interpolated by the bilinears ψ̄γ5ψ (JP = 0−), and ψ̄γ3ψ (0+). Again, there is

evidence of significant excited state contamination (see figure 15 below), and the fits shown

here were obtained from x0 ∈ [6, 18]. There was some difficulty in obtaining stable fits at

strong coupling using smeared sources, but by and large point and smeared sources yield

compatible results. All the previous remarks about systematic effects apply here; the main

feature revealed in figure 8 is M0∓ ≈ 2mf . Although the Goldstone mode has quantum

numbers 0−, it is only accessed via disconnected fermion line diagrams [35], or perhaps

more effectively via the auxiliary π field as in section 4.2. Mesons formed from connected

lines are only weakly bound by O(1/N) effects, hence the spectrum revealed in figure 8 is

physically plausible.
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Figure 9. Number of conjugate gradient iterations needed for HMC acceptance step.

5 Numerical results for the Thirring model

Next we turn to the Thirring model, for which the bosonic auxiliary field Aµ is not simply

related to a bilinear condensate order parameter, and where there is no straightforward

analytic approach to compare with numerical results. Moreover as discussed in section 2

the lattice prescription is not unique. Accordingly we will explore the models defined by

both surface (2.12) and bulk (2.13) interaction terms. Unless otherwise stated, the results

of this section were obtained with 5000 HMC trajectories over a range of couplings g−2

on a 123 system with Ls = 16 and am3 = 0.01, with N = 2 fermion flavors. The residual

∆h(Ls = 16) defined in (2.8) ranges between 0.6–1.0×10−6 so the results are safely in the

large-Ls limit implying 〈ψ̄ψ〉 = i〈ψ̄γ3ψ〉. For reference, figure 9 plots the mean number

of congugate gradient iterations to achieve a residual norm of 10−9 per vector component,

needed in the HMC acceptance step, for each model as a function of g−2. The relative cost

of the bulk model rises steeply as the coupling becomes strong. For comparison the plot

also shows corresponding data for the GN model of section 4 with Ls = 8; here by contrast

the number of iterations is maximal near the critical point.

First we simulate the surface model using the pseudofermion action (2.15). Figure 10

plots the ratio of the bilinear condensate i〈ψ̄γ3ψ〉 to the U(2N) symmetry breaking mass

m3 for values of the coupling ag−2 ∈ [0.1, 1.0]. The expectation value is measured using 10

stochastic estimators every 5 HMC trajectories, as described in section 5.1 of [31]. Over the

couplings explored the condensate varies by about 20%, and shows marked non-monotonic

behaviour, peaking at ag−2 ≈ 0.2. The plot also includes data taken with Ls = 20, showing

that the large-Ls limit is effectively reached, and data taken on 163 and 203 systems (the

latter with 2000 HMC trajectories) showing significant volume effects, though smaller than

those shown in figure 2 for the large-N GN model in the critical region.
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Figure 10. Bilinear condensate i〈ψ̄γ3ψ〉/m3 vs. g−2 for various am3, volume, and Ls, for the

surface model (2.12).
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Figure 11. Leading order 1/N contributions to the vacuum polarisation tensor in lattice QED.

The peak in the order parameter at strong couplings has also been observed in sim-

ulations of the Thirring model with staggered fermions [23, 25]. In [23] it was observed

that the fermion-auxiliary interaction fails to preserve transversity of the vector current

correlator, i.e. ∑
µ

Πµν(x)−Πµν(x− µ̂) 6= 0 (5.1)

where Πµν is the vacuum polarisation tensor. Transversity originates in Ward-Takahashi

(WT) identities arising from an underlying gauge symmetry, which on a lattice implies the

link field is represented by eiAµ rather than simply Aµ. In QED3 the WT identity follows

from a cancellation of an O(a−1) divergence between the two diagrams shown in figure 11.

With a linearised interaction of the form (2.12) the right hand diagram is absent because

there is no 2-fermion 2-boson vertex. The resulting linear divergence is absorbed by an

additive renormalisation of the coupling: g−2
R = g−2 − J(m,N)a−1. The physical strong

coupling limit g−2
R → 0 is thus found at non-zero g−2; in practice its location must be

determined by numerical simulation [25]. For g−2
R < 0 the vector correlator in the 1/N

expansion becomes negative, signalling violation of reflection positivity.

Now, the WT identity is independent of the details of the lattice fermion regulari-

sation; even without a detailed calculation of the diagrams in figure 11 using DWF it is
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Surface model results from figure 10 are plotted for comparison.

reasonable to apply the same arguments to the current case. Hence we interpret the peak

in figure 10 as evidence that the effective strong coupling limit lies at ag−2 ≈ 0.2, and that

the simulations have thus explored a range of couplings up to this limit. The variation

of i〈ψ̄γ3ψ〉 with g−2 shows clear evidence for interaction effects. We now observe that

data taken with am3 = 0.005, 0.01, 0.02 lie on top of each other, or in other words, there

is no evidence to contradict the hypothesis that limm3→0 i〈ψ̄γ3ψ〉 = 0 for all values of the

coupling. This is in marked contrast with results obtained using staggered fermions on

the same volume with comparable lattice parameters; compare figure 7 of ref. [23]. We

conclude that a spontaneous symmetry breaking U(2N) →U(N)⊗U(N) is absent in the

Thirring model defined by (2.12) for N = 2.

Figure 12 shows the results of a similar study for the bulk model (2.13), this time

using the pseudofermion action (2.16) to perform the HMC simulation. The magnitude

of i〈ψ̄γ3ψ〉/m3 is considerably larger, reflecting the fact that the two lattice models are

different regularisations of a field theory. Again, there is evidence for g−2-dependence, and

a local maximum at ag2 ≈ 0.2, this time followed by a steep rise at stronger couplings. Data

taken at different m3 lie on top of each other following rescaling, once again consistent with

the absence of symmetry breaking. An interesting contrast between the two formulations is

highlighted in figure 13 plotting the boson action g−2A2
µ per lattice site. For non-interacting

fields the expected value is 3
2 . In the surface model the action density stored in the auxiliary

fields exceeds the free-field value and increases with coupling strength, whereas the bulk

model exhibits the opposite trend, starting from the right below the free-field value and

decreasing up to the effective strong coupling limit at ag−2 & 0.2. Large UV artifacts

might be expected for the expectation value of a composite operator, and indeed this is the

preferred interpretation for what are ostensibly two different regularisations of the same

theory. Nonetheless, the contrast between surface and bulk models may prove a useful
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Figure 13. Auxiliary boson action g−2A2
µ for both surface and bulk models with am3 = 0.01 on

123, and for the GN model of section 4 with Ls = 8. The dashed lines denote free-field values.

diagnostic. For comparison the corresponding quantity g−2σ2 is plotted for the Z2 GN

model of section 4. Here there is a clear distinction between near free-field behaviour at

weak coupling and a sharp upward rise in the symmetry-broken phase, readily understood

since σ is also an order parameter field.

Next consider the axial Ward identity as test of the extent to which U(2N) symmetry

is restored. The equivalent identity has been found to hold in simulations of the Thirring

model with staggered fermions [24]. For a U(2N)-invariant theory such as the Thirring

model in the limit m→ 0, the axial Ward identity (4.3) generalises to

〈ψ̄iψi〉
m

=
N∑
j=1

∑
x

〈ψ̄iγ3ψi(0)ψ̄jγ3ψj(x)〉 =
N∑
j=1

∑
x

〈ψ̄iγ5ψi(0)ψ̄jγ5ψj(x)〉 ≡ χσ,π, (5.2)

where no sum is implied by repeated explicit flavor indices. The mesons interpolated by

ψ̄γ3ψ, ψ̄γ5ψ have opposite parities. With mass term m3, the equivalent identity has ψ̄γ5ψ as

the pseudoscalar, and the equivalent correlator contains contributions from 2+1+1d prop-

agators S(m3; 0, s;x, s′) = 〈Ψ(0, s)Ψ̄(x, s′)〉 both running between the walls, and starting

and ending on the same wall [31]:

〈ψ̄γ5ψ(0)ψ̄γ5ψ(x)〉 ≡ C3
π(x) = tr

[
S(m3; 0, Ls;x, Ls)P−S

†(m3; 0, Ls;x, Ls)P+

+S(m3; 0, 1;x, 1)P+S
†(m3; 0, 1;x, 1)P−

+S(m3; 0, 1;x, Ls)P−S
†(m3; 0, 1;x, Ls)P−

+S(m3; 0, Ls;x, 1)P+S
†(m3; 0, Ls;x, 1)P+

]
≡ C3−+(x) + C3+−(x) + C3−−(x) + C3++(x). (5.3)

Assuming that only connected fermion line diagrams contribute to the Ward identity, we

define the pion susceptibility χπ =
∑

xC
3
π(x).
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Figure 14 plots the ratio i〈ψ̄γ3ψ〉/m3χπ as a function of g−2, which should take the

value unity if the axial Ward identity is preserved by the lattice formulation, for both

surface and bulk models. There are clear problems both in terms of the ratio’s magnitude

and also its variation with g−2, which is smooth but significant in the regime g−2
R > 0. It

is interesting that the trend is opposite for surface and bulk models, again suggestive that

the g−2 variation is a UV artifact. There is no variation with m3.

The Ward identity is not respected because the bare action (2.1), (2.12), (2.13) is not

U(2N)-invariant. Possible causes of the breakdown could be that the correct fermion mass

in (5.2) is not simply related to the lattice parameter m3, or that the field identification (2.7)

needs modification, resulting in renormalisation of fermion bilinears, once interactions are

present. Whilst these are not fatal objections, they do make it clear that care will be needed

in applying DWF techniques to this strongly-interacting system. In particular, figure 14

provides little guidance as to whether to choose bulk or surface formulations for further

study. One possible way forward is instead to regard the Ward identity as a relation between

renormalised quantities, so that m in (5.2) is replaced by mf , which as a spectral quantity

is much better-defined. The physical fermion mass was successfully measured in Thirring

model simulations using staggered fermions [23]. To this end the fermion propagator on a

123 × 24 lattice with Ls = 16, am3 = 0.01 was studied using 45000 HMC trajectories of

the surface model, with measurements made every 5 trajectories using 5 randomly chosen

sources. The best results were obtained with a smeared source (4.7) with D⊥ incorporating

a link connection of the form Uµ = eiAµ . The resulting CΓ0(ag−2 = 0.8), where positive, is

plotted in figure 7.2 While there is a signal, the fluctuations are still too large to permit a

2The corresponding C̃Γ0(x0) is constant for x0 & 5, showing that in contrast to GN a correct treatment

of phase fluctuations is essential to capture Thirring dynamics.
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credible fit for mf ; this may well reflect the resemblance of the Thirring model to a gauge

theory, for which the correlator vanishes unless a gauge-fixing is specified.

Finally, figure 15 plots the meson correlator C+−+C−−, obtained with point sources,

for the surface Thirring model at two representative couplings. Corresponding results for

the GN model discussed in section 4 yielding the spectrum plotted in figure 8 are shown for

comparison. The contast is clear; the GN data permit a simple pole fit describing a massive

meson as reported in figure 8, while the x0-independent plateaux in the Thirring correlators

are due to fermion propagators reconnecting after looping around the timelike extent of

the system, and are characteristic of non-confining theories containing light fermions. Ex-

tracting spectral information in the meson channel would require lattices of much greater

temporal extent than those studied here. Figure 15 provides further indirect evidence that

over the coupling ranges explored dynamical fermion mass generation is happening in the

GN model, but not in the Thirring model.

6 Discussion

Let us summarise the main results of the paper. The programme to apply DWF to rela-

tivistic fermions in reducible spinor representations begun in [31, 32] has been developed to

cover non-perturbative simulations of interesting quantum field theories. The main results

of the earlier work, namely that U(2N) global symmetries are recovered in the large-Ls
limit, and that approach to the large-Ls limit is accelerated if an antihermitian or “twisted”

mass term im3ψ̄γ3ψ is chosen, have been confirmed. The large-N solution of the GN model

presented in section 3 provides a particularly nice illustration, since here the acceleration is
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actually exponential. Simulations of the GN model set out in section 4 provide qualitative

support for the physical picture revealed by the large-N limit, but also enable a quantifi-

cation of quantum corrections of O(1/N). Crucially, the results for the gap Σ and scalar

susceptibility χ demonstrate that critical physics can be observed using DWF, and that

finite-Ls artifacts can be controlled. Whilst a quantitative understanding of the critical

properties and universal features of the fixed point theory would require simulations on

a much larger scale, and in particular require much larger spacetime volumes, there is no

reason to doubt the feasibility of such a campaign.

From a theoretical perspective, the principal result of the paper is that with N = 2

the physics of the GN and Thirring models is very different, in contradiction to results ob-

tained with staggered fermions [11, 27]. The most obvious distinction is that the GN model

exhibits a phase transition at strong-coupling to a phase in which a global symmetry (Z2 in

the example studied) is spontaneously broken and a fermion mass dynamically generated;

no such transition is observed in the Thirring model despite strong evidence that the phys-

ical strong coupling limit is probed. In the GN case, subsidiary measurements of the axial

Ward identity and the mass spectrum yielded results consistent with large-N expectations.

This success may be due in part to the fields σ and π being related via equations of motion

to bilinears of direct interest such as the order parameter field; it is certainly the case that

sampling the {π} ensemble is a very effective means of estimating correlators formed from

disconnected diagrams. To our knowledge the measurement of the fermion correlator is

the first using DWF; compared to what is known using staggered fermions, the contribu-

tions of excited state artifacts are surprisingly large, necessitating an approach based on

source smearing. This in turn exacerbates the influence of phase fluctuations, so that the

analysis needs to be based on the quasi-Green functions C̃. It is remarkable that even so

the resulting spectrum shown in figure 8 matches large-N expectations as well as it does.

For the Thirring model, the non-observation of symmetry breaking is a robust result

suggesting that the critical number of flavors required for dynamical symmetry breaking

for the action (1.2) satisfies Nc < 2. If we make the additional assumption that the UV

fixed point of the Thirring model coincides with the IR fixed point of QED3, then this

is compatible with the recent non-observation of a bilinear condensate in massless QED3

with N ≥ 2 [33]. Beyond this, by contrast, the picture is not satisfactory. Despite the

inapplicability of Elitzur’s theorem, phase fluctuations due to the use of smeared sources

have precluded fermion spectroscopy, and small fermion masses coupled with the absence of

confinement have also prevented success in meson channels. Neither failure invalidates the

DWF approach; the latter is simply a problem intrinsic to studying near-conformal physics

on a finite volume, while the former might in future be tackled by a form of gauge-fixing

(see below). However, our inability to extract spectral information severely curtails insight

into the failure of the axial Ward identity shown in figure 14, which potentially is a more

profound problem, though again not necessarily fatal. What is disappointing, though, is

that there is still no clear guide to the optimal lattice Thirring formulation.

Obvious future directions to explore include different formulations of the lattice

Thirring model which may be less prone to the issues encountered here. Ref. [19] highlighted

the role of a “hidden local symmetry” which is manifest once the Thirring action (2.11) is
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supplemented by a scalar Stückelberg field φ coupled to Aµ. The HLS model has a gauge

symmetry for which the Thirring model is the result of gauge-fixing to φ = 0. Smoother

gauge choices may enable better control over the fermion propagator. Formulating DWF

with a true gauge symmetry will also restore transversity of the vacuum polarisation, mak-

ing identification of the strong-coupling limit less ambiguous. Another route to finding and

studying critical behaviour might come via implemention of the RHMC algorithm enabling

N = 1 to be simulated. It may also be possible to find a formulation permitting N = 1

simulations using HMC, as recently demonstrated for QED3 [33, 37]. However, a more

promising route, permitted by the control offered by the DWF formulation, may be to

introduce a U(2N) and parity-invariant “Haldane” interaction term (ψ̄γ3γ5ψ)2, motivated

by the findings of the functional renormalisation group [6] which identifies a significant

Haldane component in the fixed-point action corresponding to the Thirring model. There

is still much to learn about fermions in 2+1d.
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A Free fermion propagator

In this appendix we develop the propagator for the free DWF propagator in 2+1d following

the methods set out in [38] and [39]. Inititally we consider the hermitian mass term mhSh.

In 2+1d momentum space, the action may be written

S =

∫
p

∑
s,s′

Ψ̄(p, s)D(p; s, s′)Ψ(p, s′) (A.1)

where D is related to the operator D0 defined on a lattice with infinite s-extent via

D(p; s, s′) = θ(s− 1)θ(s′ − 1)θ(Ls − s)θ(Ls − s′)D0(p; s, s′)

+mh(P+δs,1δs′,Ls + P−δs,Lsδs′,1), (A.2)

with

D0 = −(P−δs+1,s′ + P+δs−1,s′) + (b(p) + ip̄/ )δs,s′ ;

D†0 = −(P+δs+1,s′ + P−δs−1,s′) + (b(p)− ip̄/ )δs,s′ ;

(D0D
†
0)s,s′ = δs,s′(1 + b2 + p̄2)− b(δs+1,s′ + δs−1,s′), (A.3)

and p̄µ and b(p) defined in (3.4). The hermitian operator D0D
†
0 has zeromodes of the form

ψ(s) = e±αs:

D0D
†
0ψ(s) = [b2(p) + p̄2 − 2b coshα(p) + 1]ψ(s), (A.4)
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so the zero eigenvalue condition gives the definition of α in (3.4). The Green function of

D0D
†
0 is given by

G0(s, s′) =
e−α|s−s

′|

2b sinhα
≡ Be−α|s−s′|. (A.5)

To find the Green function of DD†, we need to take into account both the fact that the

operators differ at s = 1 and s = Ls, and the mass term coupling the domain walls. Define

DD† = P+Ω+ + P−Ω−; G = P+G+ + P−G−; (A.6)

then it can be verified that

Ω+(s, s′′)G0(s′′, s′)− δs,s′ = Be−αs
′
eα(be−α − 1 +m2

h)δs,1

+Bbe−α(Ls+1)eαs
′
δs,Ls (A.7)

+Bmhb[δs,1e
−α(Ls−s′) + δs,Lse

αe−αs
′
].

and

Ω+(s, s′)e±αs
′

= δs,1e
±α(be∓α − 1 +m2

h) +mhbδs,1e
±αLs)

+δs,Ls(be
±α(Ls+1) +mhbe

±α). (A.8)

The − conditions are obtained using the manifest symmetry

Ω−(s, s′) = Ω+(Ls − s+ 1, Ls − s′ + 1). (A.9)

The general form of the propagator consistent with (A.9) is then

G+(s, s′) = G0(s, s′) +A+e
−α(s+s′−2) +A−e

−α(2Ls−s−s′)

+Am(e−α(Ls+s−s′−1) + e−α(Ls−s+s′−1)). (A.10)

By requiring consistency for terms of the form δs,1e
∓s′ , δs,Lse

∓s′ , the condition

Ω+(s, s′′)G+(s′′, s′) = δs,s′ then yields the following equations:

C

(
A+

Am

)
= B

(
1− be−α −m2

h

−mhb

)
; C

(
Am
A−

)
= B

(
−mhb

−be−α

)
(A.11)

with

C(mh, Ls) =

(
(beα − 1 +m2

h) +mhbe
−α(Ls−1) mhb+ (be−α − 1 +m2

h)e−α(Ls−1)

mhb+ be−αe−α(Ls−1) beα +mhbe
−α(Ls−1)

)
.

(A.12)

The solution is [39]

A+ = ∆−1B(eα − b)(1−m2
h) (A.13)

A− = ∆−1B(e−α − b)(1−m2
h) (A.14)

Am = ∆−1B[−2mhb sinhα+ e−α(Ls−1)(e−2α(b− eα) +m2
h(e−α − b))] (A.15)
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with

∆ = b−1detC = [e2α(b− e−α) +m2
h(eα − b)]

+e−α(Ls−1)4mhb sinhα (A.16)

+e−2α(Ls−1)[m2
h(b− e−α) + e−2α(eα − b)].

Next we explore the consequences of the anti-hermitian parity-invariant mass term

msS3 (2.5) so that now

D(s, s′) = θ(s− 1)θ(s′ − 1)θ(Ls − s)θ(Ls − s′)D0(s, s′)

+im3P+δs,1δs′,Ls − im3P−δs,Lsδs′,1. (A.17)

Eqs. (A.7), (A.8) are replaced by

Ω3
+(s, s′′)G0(s′′, s′)− δs,s′ = Be−αs

′
eα(be−α − 1 +m2

3)δs,1

+Bbe−α(Ls+1)eαs
′
δs,Ls (A.18)

+iBm3b[δs,1e
−α(Ls−s′) − δs,Lseαe−αs

′
]

and

Ω3
+(s, s′)e±αs

′
= δs,1e

±α(be∓α − 1 +m2
3) + im3bδs,1e

±αLs)

+δs,Ls(be
±α(Ls+1) − im3be

±α), (A.19)

while the symmetry (A.9) is now

Ω−(s, s′) = Ω∗+(Ls − s+ 1, Ls − s′ + 1). (A.20)

motivating the Ansatz

G3+(s, s′) = G0(s, s′) +A+e
−α(s+s′−2) +A−e

−α(2Ls−s−s′)

+Am3e
−α(Ls+s−s′−1) +A∗m3

e−α(Ls−s+s′−1). (A.21)

The consistency conditions become

C

(
A+

A∗m3

)
= B

(
1− be−α −m2

3

im3b

)
; C

(
Am3

A−

)
= B

(
−im3b

−be−α

)
(A.22)

with

C(m3, Ls) =

(
(beα − 1 +m2

3) + im3be
−α(Ls−1) im3b+ (be−α − 1 +m2

3)e−α(Ls−1)

−im3b+ be−αe−α(Ls−1) beα − im3be
−α(Ls−1)

)
.

(A.23)

The solutions (A.13), (A.14) remain valid with m↔ m3 and ∆↔ ∆3, but now

Am3 = ∆−1
3 B[−2im3b sinhα+ e−α(Ls−1)(e−2α(b− eα) +m2

3(e−α − b))] (A.24)
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with

∆3 = b−1detC = [e2α(b− e−α) +m2
3(eα − b)] (A.25)

+e−2α(Ls−1)[m2
3(b− e−α) + e−2α(eα − b)].

Two features are apparent: first, there are no O(e−αLs) contributions to ∆3, so the first

correction is O(e−2αLs); second, the O(e−αLs) contribution to Am3 is now shifted by a phase

ei
π
2 with respect to the leading order piece. Both features mitigate finite-Ls corrections to

the calculation of 〈ψ̄γ3ψ〉 in the large-N GN model presented in section 3.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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