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 12 

Exposure to a noninvasive, external radiofrequency (RF) electric field has been 13 

proposed for the treatment of cancer, using nanoparticles as heating agents within a tumor. 14 

The Kanzius Radiofrequency Hyperthermia system has been proposed for hypothermic 15 

therapy of cancer. Studies using this system in combination with gold and carbon-based 16 

nanoparticles have sparked much debate regarding the RF heating mechanisms of 17 

nanomaterials, especially in conductive, biologically-relevant media. Past research has 18 

focused on optimizing nanoparticle properties to enhance energy absorption and nano-19 

localized heat, but no effort has been made to enhance the heating of highly conductive 20 

media by directly modulating its bulk dielectric properties. Here we show that simple 21 

materials, including salts, sugars, sugar alcohols, and betaines, can be used to modulate the 22 
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conductivity of aqueous solutions to optimize their heating rates. These materials are non-1 

toxic, inexpensive, and universally available, and thus highly attractive for clinical use. 2 

Cancer is the second leading cause of mortality in the U.S. and, despite ongoing 3 

improvements in the three primary treatment modalities of surgery, chemotherapy, and radiation 4 

therapy, five-year survival for certain solid malignancies such as pancreatic and lung cancer 5 

remains profoundly low. RF-induced hyperthermia has long been investigated as a treatment 6 

modality for cancer but various clinical trials involving its use have produced mixed results1–10. 7 

One of the hallmark challenges in RF treatment of cancer is sufficiently heating a tumor to the 8 

desired temperature while sparing normal tissue, particularly fatty subcutaneous tissue that is 9 

prone to over-heating. It has been stated that tumor tissue, owing to its abnormal structure and 10 

hence increased electric conductivity, selectively heats more so than normal tissue when exposed 11 

to RF11. Separately, nanoparticles, especially gold nanoparticles, have been coupled with 12 

noninvasive RF to enhance heating and cytotoxicity12–16, generating much debate on the RF 13 

heating mechanism of nanomaterials17–23. The presence of salts, especially, in aqueous solutions 14 

and biological systems is known to affect the RF heating behavior of gold nanoparticles, but the 15 

role of salts may be “the most unresolved aspect of thermal dissipation by gold nanoparticles in 16 

RF,” according to a recent review22. Surfactant-wrapped single-walled carbon nanotubes have 17 

also been coupled with RF to enhance heating in vitro and in vivo24, similarly motivating a 18 

number of experimental and theoretical studies on nanoparticle heating mechanisms25–28. The 19 

nature of RF heating in biologically relevant materials remains poorly understood. Establishing a 20 

solid framework for RF heating in biological materials is needed not only for modeling heating 21 

behavior but also for optimization of tissue hyperthermia for therapeutic use. Here we present 22 
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well-defined experimental and theoretical heating curves for aqueous salt solutions that in the 1 

future will serve as a foundation for understanding the role of salts in nanoparticle heating.  2 

Macroscopic biological materials respond to electromagnetic (EM) fields as governed by 3 

their dielectric properties, i.e., permittivity. In time-varying alternating electric fields such as 4 

radiofrequency waves, a material’s permittivity becomes a complex function as a result of the 5 

electric polarization of the medium and is given by the equation:  6 

𝜀𝑟 = 𝜀𝑟
′ + 𝑖𝜀𝑟

′′ = 𝜀𝑟
′ + 𝑖

𝜎

𝜔𝜀0
              (1) 7 

where 𝜀𝑟 , 𝜀𝑟
′ , 𝜀𝑟

′′ are the complex, real-valued, and imaginary relative permittivities, respectively, 8 

i is √−1, σ is the conductivity, ε0 is the relative permittivity of free space, and ω is the angular 9 

frequency. Dielectric materials heat when exposed to electromagnetic fields within the radio- and 10 

microwave frequency range (3 kHz–300 GHz) and the energy absorbed by the medium is 11 

defined by the specific absorption rate (SAR): SAR = 𝜎𝐸2/2𝜌. The rate of heating of a material 12 

exposed to EM fields is then: 13 

HR =  
𝜕𝑇

𝜕𝑡
=

𝜎|𝐸eff|
2

2𝜌𝑐𝑝
                          (2) 14 

where 𝐸eff is the effective electric field within the sample, ρ is the mass density and 𝑐𝑝 is the 15 

specific heat capacity. 16 

Cancerous tissue, by virtue of abnormal cell growth and structure, has intrinsically 17 

different dielectric properties than that of normal tissue11,29–32. This difference in permittivity, it 18 

has been postulated, can be exploited to selectively heat and thus injure cancerous cells while 19 

leaving normal tissue intact. A common mistake in interpreting equation (2), however, is to 20 

simply equate higher conductivity with increased heating rate15,25. An external, applied electric 21 
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field 𝐸appimpinging upon an interface of two dielectric materials must obey the following 1 

boundary condition:  2 

𝜀𝑟,1𝐸app = 𝜀𝑟,2𝐸eff                               (3) 3 

in which it becomes apparent that the ratio of dielectric properties at the interface influences the 4 

effective electric field within the material of interest. In the case of pure water surrounded by air, 5 

the ratio 𝜀𝑟,air/𝜀𝑟,sample is on the order of 10-2 and the ratio is 10-4 for normal sodium chloride 6 

(physiologic saline) surrounded by air. In the latter case, saline is greatly polarized by the applied 7 

electric field, thus reducing the internal effective electric field experienced by the bulk media. 8 

Accounting for the boundary condition allows for a more precise heating rate model of a sample 9 

surrounded by air, as is the case in the experiments reported here: 10 

HR =
𝜎 |

𝜀𝑟,air

𝜀𝑟
𝐸app|

2

2𝜌𝑐𝑝
                          (4) 11 

where 𝜀𝑟,air and 𝜀𝑟 are the absolute relative permittivities of air and the sample, respectively. 12 

This model results in a theoretical and experimentally confirmed peak heating rate of saline 13 

solution with concentration of 5.6 mM corresponding to a conductivity of 0.06 S/m at a 14 

frequency of 13.56 MHz33,34. Herein we generalize this heating model to that of a large variety of 15 

salts and show that maximal heating occurs at the same conductivity of 0.06 S/m regardless of 16 

the atomic or molecular identity of salts. 17 

 18 

RF heating of aqueous salt solutions 19 

We measured the RF heating rates of an assortment of salts dissolved in ultra-pure water 20 

in the concentration range 0.01–200 mM. The salts tested were NaCl, NaC2H3O2, MgCl2, 21 

Na2SO4, AuCl3, and Na3C6H5O7 (sodium citrate). Samples were loaded onto a 1.3 mL non-22 
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conductive quartz cuvette and exposed to a RF field (13.56 MHz operating frequency) at 100 W 1 

generator power (Fig. 1a). Sample temperature was measured using an infrared camera and the 2 

heating rates were calculated by a least-squares linear regression of the resultant temperature-3 

time plot (Fig. 1b). Samples were heated from 23 °C to either 27 °C or for a duration of 60 s, 4 

whichever occurred first. Over this selected small temperature range, the variation of heating rate 5 

of the solutions due to the temperature-dependence of dielectric properties is estimated to be less 6 

than 0.07%. Each salt displays a characteristic peak heating curve as a function of concentration 7 

(Fig. 2a), with salts of greater valence typically displaying peak heating at lower concentrations 8 

than salts of lesser valence. 9 

The heating curves for the individual salt solutions collapse into a single curve when the 10 

conductivity of solutions is considered as shown in Fig. 2b. Peak heating occurred for all 11 

measured salts at a conductivity of 0.060 S/m. We obtained conductivity values at 13.56 MHz 12 

(RF generator operating frequency) of each sample by measuring their complex relative 13 

permittivity (𝜀𝑟
′  and σ) in the range 10 MHz–3 GHz. Of note, when measuring the relative 14 

permittivity of highly conductive solutions, electrode polarization occurs at low frequencies, 15 

which can result in significant instrument-related measurement errors, especially for 𝜀𝑟
′  [17]. We 16 

have performed the necessary corrections25 and found these errors to be insignificant (<1.2% for 17 

σ and 𝜀𝑟) for our purposes in the conductivity range studied (Extended Data Fig. 1c). The heating 18 

model of saline is thus generalized to all salts by demonstrating that the heating rate of salts is 19 

dependent on bulk conductivity regardless of specific atomic or molecular identity. 20 

 21 

Enhancing RF heating of ionic solutions  22 
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From the generalized RF heating curve for salts, it is apparent that an increase in material 1 

conductivity does not monotonically increase heating rate. Peak heating for aqueous media 2 

occurs at a conductivity of 0.060 S/m, beyond which addition of conductive material will 3 

decrease heating rate. Indeed, this was shown using metallic and semiconducting carbon 4 

nanotubes, though this behavior was not yet well understood27. Blood and body fluids are present 5 

on the far right of the curve with conductivities of 1.1 and 1.5 S/m, respectively, at 13.56 MHz35. 6 

Intra- and extra-cellular environments of cells have similarly high ion content. Therefore, 7 

increasing the heating rate of body tissues under RF energy would require diluting existing ionic 8 

content, a task not readily performable or tolerated in vivo. 9 

An alternative approach presented herein is to introduce neutral, water-soluble materials 10 

called kosmotropes that, when added to an ionic aqueous solution, serve to decrease conductivity 11 

and thus increase RF heating rate of the solution. Kosmotropic (“structure-forming”) materials 12 

preferentially interact with water solvent molecules and form hydrogen bonds to water that are 13 

stronger than the water-water hydrogen bonds, thus stabilizing the water network36. Glycerol, 14 

propylene glycol, ethylene glycol, and methanol are examples of kosmotropes that are used as 15 

anti-freeze agents; in nature, sugars such as trehalose and sucrose act as cryo-protective agents 16 

when present in high concentrations in flora and fauna. Biotechnologists commonly use 17 

dimethylsulfoxide as their cryoprotectant agent of choice to reduce cellular damage by ice when 18 

freezing cells for long-term storage. Marine life, such as seagrasses, use a wide variety of 19 

kosmotropic materials, such as sugars, sugar alcohols, and zwitterions to maintain osmotic 20 

balance in the rapidly changing salinity of seawater37. Quaternary ammonium compounds called 21 

betaines, also in high concentrations, allow bacteria to survive in highly ionic environments.  For 22 

example, glycine betaine is used by E. coli to counteract the effects of low pH and high urea 23 
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concentrations in the urinary tract38. In stabilizing the water network, these materials can also 1 

reduce ion mobility, a property we exploit to reduce the conductivity of highly ionic solutions 2 

thereby increasing their heating rate accordingly. To our knowledge, this is the first time that RF 3 

heating rates of aqueous solutions have been modulated in this way. 4 

To perform the experiment, we measured the RF heating rates and complex permittivities 5 

of a number of kosmotropes (Fig 3a) dissolved in phosphate buffered saline (PBS), a biologically 6 

iso-osmolar solution with similar conductivity (1.15 S/m) to blood and body tissues. The 7 

kosmotropes tested were sucrose, maltose, glucose, ethylene glycol, propylene glycol, glycerol, 8 

sorbitol, glycine, sarcosine, glycine betaine, and dimethylsulfoxide. Kosmotrope solutions in 9 

PBS were prepared and appropriately diluted from concentrated stock PBS (10x PBS containing 10 

90 g/L NaCl, 1.44 g/L KH2PO4, and 7.95 g/L Na2HPO4) to maintain equivalent final ionic 11 

concentrations in all solutions. RF heating rates and complex permittivity were measured in the 12 

same fashion as the salt heating experiments described above. We found that all of the 13 

kosmotropic materials tested decreased the conductivity of PBS and increased its heating rate in 14 

a concentration-dependent manner as shown in Fig. 3b. Propylene glycol outperformed all other 15 

materials at every concentration studied, increasing the heating rate of PBS by 490% when added 16 

at a concentration of 500 mg/mL. On average, PBS heating rate increased from 0.028 °C/s to 17 

0.034 ± 0.001, 0.052 ± 0.001, and 0.112 ± 0.004 °C/s at kosmotrope concentrations of 100, 250, 18 

and 500 mg/mL, respectively. Regardless of concentration, kosmotrope-PBS solutions heat 19 

similarly to salt solutions of the same conductivity, according to the same heating model when 20 

exposed to the RF field. 21 

From equation (4), it is clear that heating rate can also be manipulated by altering heat 22 

capacity and density. For example, we found that lithium chloride displayed peak heating rates of 23 
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0.37, 0.67, and 1.21 °C/s when dissolved in pure water, 70% ethanol, and pure ethanol, 1 

respectively (Fig. 3d). The increase in peak heating rate with increasing ethanol content 2 

corresponds to decreases in heat capacity, density, and 𝜀𝑟
′  of the solvent. Although systemic 3 

administration of pure ethanol would not be physiologically tolerated, direct injection of ethanol 4 

into tumors is already used therapeutically in hepatic arterial chemo-embolization, which could 5 

be coupled with RF hyperthermia therapy.  6 

Modeling RF heating behavior 7 

Thus far we have compared the theoretical model to experimental measurements not only 8 

for the conductivity at which peak heating occurs in a given aqueous solution, but also the 9 

general shape of the curve and found excellent agreement between the two when sample 10 

temperature is properly accounted for. We have not, however, made direct comparisons between 11 

theoretically predicted and experimentally measured heating rates. For that comparison, all 12 

variables in equation (4) must be measured. Unfortunately, it is notoriously difficult to measure 13 

the external electric field when the field strength is extremely strong as it is in our experiments. 14 

Attempts to measure the field with a voltage probe have led to rapid (< 1 second) overheating 15 

and subsequent damage of the probe, even at an RF generator power of 10 W. Instead, we 16 

estimate Eapp by fitting the heating rate model to the salt heating data in Fig. 1b. This calculation 17 

requires a further adjustment for the effective electric field term to account for sample holder 18 

geometry39: 19 

𝐸eff =
1

1 + 𝑁 (
𝜀𝑟

𝜀𝑟,air
− 1)

𝐸app          (5) 20 

where N is the polarization tensor, 𝜀𝑟,air is the relative permittivity of air, and 𝐸app is the applied 21 

electric field in air. The polarization tensor depends upon the dimensions of the sample and is 22 
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approximately 0.596 in the case of our cylindrical cuvette40. Note that in the limit where the two 1 

materials are geometrically infinite plane layers, N is equal to 1 and 𝐸eff reduces to equation (3). 2 

We fit equation (2) with the geometry-adjusted expression for 𝐸eff shown in equation (5) to the 3 

heating rate (HR) and complex permittivity (σ and 𝜀𝑟) values, using 𝐸app as the fit parameter. 4 

The heating rate model fit is indicated by the solid line in Fig. 2b. The angular frequency ω = 2πf 5 

corresponds to the 13.56 MHz operating frequency of the RF generator and ρ and 𝑐𝑝 are 6 

estimated to be equal to the values of pure water at 25 °C. Using these parameters, we calculate 7 

𝐸app to be 0.49 MV/m at 100 W operating power. Although this value appears to be very large, it 8 

is necessary to achieve the heating rates reported. The same heating rate model can be applied to 9 

the 13.56 MHz RF system reported by Liu, et al., who reported a maximum temperature increase 10 

of only 0.7 °C over an RF exposure period of 10 min (0.00117 °C/s). Based on the sample 11 

dimensions given, we estimate N for this system to be 0.673 and calculate 𝐸app to be 30.3 kV/m, 12 

in excellent agreement with the electric field strength estimated by the authors from low power 13 

measurements34. 14 

Prior studies with the Kanzius RF generator by our group utilized a power settings of 15 

900-1000 W13,21,24,27,41, compared to 100 W in the study described above. The reason for the 16 

reduction in power is to minimize the effects of the aforementioned temperature-dependence of 17 

permittivity, in which the heating rate itself would change as the sample material increased in 18 

temperature. The further evaluate this phenomenon, we additionally measured RF heating rates 19 

of salt solutions at 900 W from 25 °C to 70 °C, or for a duration 120 seconds, whichever 20 

occurred first, similar to the experimental conditions we have reported previously. Under these 21 

conditions, we measured heating rates as fast as 3.98 °C/s, corresponding to a rise in sample 22 

temperature from room temperature (~25 °C) to over 60 °C over a RF exposure period of only 23 
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ten seconds. Over this large temperature range, the temperature-dependence of dielectric 1 

properties of salt solutions cannot be ignored. Due to this effect, peak heating occurred at lower 2 

concentrations (Fig. 4a) and lower conductivity, 0.038 S/m (Fig. 4b), compared to 0.060 S/m at 3 

100 W. 4 

In general, peak heating occurs when the medium’s real and imaginary permittivities, 𝜀𝑟
′  5 

and 𝜀𝑟
′′, respectively, are equal. Both are frequency- and temperature-dependent. For this reason, 6 

we cannot fit the heating rate model described by equations (2) and (5) as was done for the 7 

heating and permittivity data at 100 W. Instead, we use temperature corrections42–44 for the 8 

conductivity, permittivity, density, and heat capacity of saline solutions to calculate the 9 

instantaneous heating rates of saline for any given temperature and concentration. The calculated 10 

heating curves at 25, 45, and 70 °C given an estimated applied electric field of 1.53 MV/m are 11 

shown in Fig. 4b as a function of solution conductivity at 25 °C. These results show that the 12 

average heating rates measured over the temperature range 25–70 °C are similar to the 13 

instantaneous heating rates at 45 °C. Other authors have also reported fast heating rates (~1.3 14 

°C/s) that similarly necessitate high electric field strengths45. 15 

 16 

Discussion 17 

RF-induced hyperthermia has gained interest as a compelling treatment modality for 18 

cancer. Although knowledge of tissue dielectric properties has accumulated in the past few 19 

decades, the behavior of RF heating of biological materials has been not been well characterized 20 

and has posed a significant barrier against therapeutic optimization of this potential treatment 21 

modality. In vitro, prior studies have characterized the heating behavior of saline solutions alone. 22 

Here, we have generalized that theoretical heating model to a diverse assortment of salts and 23 
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shown that the RF heating behavior is determined by the dielectric and thermal properties of the 1 

bulk solution independent of the atomic or molecular identity of the salt. With well-defined 2 

experimental and theoretical peak heating curves, we have shown that the heating behavior of 3 

aqueous solutions in a RF field is calculated with a relatively simple model even over large 4 

temperature ranges once geometry and temperature-dependent properties are well accounted for. 5 

The heating rate model predicts peak heating to occur at a specific bulk medium 6 

conductivity for a given frequency as opposed to a monotonic increase with conductivity, a 7 

misconception sometimes encountered in the literature. Beyond this peak heating conductivity, 8 

heating rate decreases due to the diminished effective field strength within the sample. At 13.56 9 

MHZ, the dielectric properties of biological systems exceed this peak heating value and thus 10 

preclude the practice of adding more salts or polar materials, as this addition would actually 11 

decrease the heating rate of the medium. To achieve increased heating rates in physiologic 12 

materials, we propose the use of kosmotropes such as propylene glycol, sucrose, and glycine 13 

betaine, which are a class of molecules that stabilize water structure and decrease the 14 

conductivity of highly ionic solutions. We have shown that kosmotropes can be added to 15 

physiologic media to increase the heating rate of biologically relevant aqueous solutions in a 16 

concentration-dependent manner. In converting this technique into a clinical application, an 17 

adequate method for tumor-targeted delivery of these materials will need to be identified. One 18 

possibility includes percutaneous arterial injection into the local tumor vasculature, similar to the 19 

well-known and clinically available technique of arterial chemo-embolization. The human body, 20 

however, is complex dielectric with many tissue interfaces, therefore the effects of kosmotropes 21 

on the RF heating rates of in vivo tissues will need to be investigated. Most of the substances 22 

tested here for RF heating enhancement are widely available, inexpensive, and considered safe 23 
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when ingested in moderate quantities, making them highly attractive for clinical use. We believe 1 

that with further understanding of suitable kosmotropes the availability of RF-induced 2 

hyperthermia can become a treatment universal and not limited by the cost of “designer” drugs.   3 
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Materials and Methods 1 

Sample preparation 2 

Aqueous salt solutions were prepared in high-resistivity water (18.2 MΩ/cm) using a 3 

number of monovalent (KCl, LiCl, NaBr, NaCl, NaC2H3O2, NaI, NaNO3), divalent (BaCl2, 4 

CaCl2, MgCl2, Na2CO3, Na2SO4), and trivalent salts (AuCl3, GdCl3, Na3C6H5O7, and Na3PO4) at 5 

concentrations varying from 0.001 mM to 2 M. For kosmotrope experiments, 1 mL of 6 

concentrated PBS containing 90 g/L NaCl, 1.44 g/L KH2PO4, and 7.95 g/L Na2HPO4 was added 7 

to a known mass of kosmotrope material, followed by dilution to 10 mL to ensure equal ion 8 

concentration across all samples. Kosmotrope materials (sucrose, maltose, trehalose, glycerol, 9 

propylene glycol, ethylene glycol, glycine betaine, dimethylsulfoxide) and all salts were obtained 10 

from Sigma-Aldrich in high purity (>98 %) and used as received. 11 

Electrical characterization 12 

Complex permittivity measurements were taken using an Agilent 85070E high-13 

temperature coaxial dielectric probe (Agilent Technologies, Santa Clara, CA) connected to an 14 

Agilent E4991A impedance analyzer to extend the frequency range of the probe down to 10 15 

MHz. Four-point calibration (open, short, 50 ohm load, low-loss capacitor) of the impedance 16 

analyzer was performed prior to each measurement session. Three-point probe calibration of the 17 

probe (air, short, water) was performed periodically between samples and a single-point 18 

calibration (air) was performed between every sample to eliminate signal drift. For 19 

measurements, 600 μL of sample was loaded onto the probe and approximately 400 logarithmic 20 

data points were acquired across the frequency range 10 MHz–3 GHz with each measurement 21 

performed in triplicate in rapid succession to avoid probe drift. We found no difference between 22 

loading a small amount of sample onto probe and immersing the probe into a plastic beaker 23 
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containing 20 mL of sample. Additionally, for each sample in the 900 W experiment, static 1 

solution DC conductivity was measured ten times using either an InLab 731 or 741 conductivity 2 

probe (Mettler Toledo, Columbus, OH), depending on the conductivity of the sample and the 3 

measurement range of each probe (data not shown). DC conductivity measurements were in 4 

agreement with AC conductivity measurements performed using the impedance analyzer at 5 

13.56 MHz. 6 

Radiofrequency heating  7 

A variable power Kanzius External RF (13.56 MHz) Generator System (ThermMed, 8 

LLC, Erie, PA) was used to heat aqueous solutions. A high-voltage RF field is generated in the 8 9 

cm air gap between the transmitting and receiving heads of the RF-field generator. For aqueous 10 

experiments, samples were placed in a 1.3 mL quartz cuvette on a non-conducting Teflon holder 11 

mounted on an adjustable rotary stage at ambient temperature and open to air. The cuvette was 12 

placed 8 mm from the transmitting head of the RF-field generator and exposed to the high-13 

voltage RF field at 100 or 900 W generator power. Sample temperatures were recorded using an 14 

infrared camera (FLIR SC 6000, FLIR Systems, Inc., Boston, MA) approximately every 0.17 s. 15 

At 100 W, samples were heated from ambient temperature (~23 °C) to 27 °C or for a duration of 16 

60 s, whichever occurred first. At 900 W, samples were heated from ambient temperature to 70 17 

°C or for a duration of 120 s, whichever occurred first. Heating rates were calculated by fitting a 18 

linear regression to the temperature versus time plot of each sample for the duration of RF 19 

exposure. 20 

  21 
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 2 

Figure 1 | Experimental setup for the RF-Induced heating of aqueous solutions. a, The non-3 

invasive Kanzius RF system. A radiofrequency (13.56 MHz) generator (black arrow) is used to 4 

generate a high-voltage electric field between the transmitting (Tx) and receiving (Rx) heads. An 5 

infrared camera (blue arrow) is used to record the temperature of the sample (red arrow). b, 6 

Temperature plots for 0.1 (grey), 1 (blue), and 10 mM (red) NaCl solutions. Least-squares linear 7 

regressions (solid lines) are used to calculate RF heating rates. Insert displays the IR camera 8 

view of the sample. 9 

 10 

Figure 2 | RF heating of salt solutions. a, Concentration-dependent heating at 100 W of 11 

monovalent (black; NaCl - ■, NaC2H3O2 - □), divalent (red; MgCl2 - ▲, Na2SO4 - △), and 12 

trivalent salts (blue; AuCl3 - ●, Na3C6H5O7 - ○). b, Conductivity dependence of heating rates (■) 13 

and effective electric field (dashed line). Black line indicates heating rate model fit described by 14 

equations (2) and (5). Heating rates reported are averages of three replicates with error bars 15 

indicating SEM.   16 
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     1 

Figure 3 | Modulating solution properties to optimize RF heating. a, Kosmotrope structures. 2 

b, Kosmotropes enhance the heating rate of PBS (■) in a concentration-dependent manner. 3 

Kosmotropes include sugar alcohols (red; ethylene glycol - □, propylene glycol - ○, glycerol - △, 4 

sorbitol - ▽), sugars (blue; maltose - □, glucose - ○, sucrose - △), amines (black; glycine - □, 5 

sarcosine - ○, glycine betaine - △), and dimethylsulfoxide (purple, □). Salt solution heating from 6 

Fig. 2b is shown in grey. c,  Heating rates of LiCl in ethanol (black), 70% ethanol (red), and 7 

water (blue) at 1–100 mM. All heating rates are averages of three replicates. Error bars 8 

indicating SEM are omitted for clarity in b but are generally smaller than symbols. 9 

  10 



23 
 

 1 

Figure 4 | RF heating of salt solutions at high power. a, Concentration-dependent heating at 2 

900 W of monovalent (black; KCl - □, LiCl - ○, NaBr - △, NaCl - ▽, NaC2H3O2 - ◇, NaI - ◁), 3 

divalent (red; BaCl2 - □, CaCl2 - ○, MgCl2 - △, Na2CO3 - ▽, Na2SO4 - ◇), and trivalent salts 4 

(blue; AuCl3 - □, GdCl3 - ○, Na3C6H5O7 - △, Na3PO4 - ▽). b, Measured (■) and calculated (lines) 5 

heating rates of saline at 25 (dotted), 45 (solid), and 70 (dashed) °C. Heating rates reported are 6 

averages of three replicates. Error bars indicating SEM are omitted for clarity but are generally 7 

smaller than symbols.  8 
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 5 

 6 

 7 

 8 

Extended Data Figure 1 | Complex permittivity of NaCl. a, Real-valued 

permittivity and b, conductivity of 0.1 (black), 1 (red), 10 (blue), and 100 

(grey) mM NaCl over the frequency range 10 MHz–3 GHz. Dashed blue and 

grey lines indicate low frequency polarization correction of real-valued 

permittivity of 10 and 100 mM NaCl, respectively. Dotted black line  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

indicates 13.56 MHz. c, Concentration-dependence of 𝜀r
′ (circles) and 𝜀𝑟

′′ 

(squares) for NaCl at 13.56 MHz, both measured (black) and corrected (red) 

values are shown. The absolute value of the relative permittivity |𝜀r | is 

indicated for measured (grey line) and corrected (dotted red line) values.  


