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Highlights 

• Predictive matching of Boger-fluid experiments in circular contraction-

expansions 

• Flow-transitions predicted for all aspect-ratios () and with rise in flow-rate 
• Precise capture of enhanced pressure drops, epdmax~600% (=10) 

• ≥6: salient-c/lip-vortex co-existence observed, then dominated by elastic c-

vortex 
• Tight correspondence in flow-structure between streamline patterns and N1-fields 

• N1Shear found to be responsible for vortex evolution with rise in flow-rate 
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Abstract 

This study is concerned with the continuum modelling of sharp-corner contraction-

expansion axisymmetric flows, under contraction-ratio variation, and more particularly, 

in the precise capture of the large-levels of experimental excess pressure-drops (epd) for 

Boger fluids. The particular contraction-ratios () considered are those studied 

experimentally by M. Pérez-Camacho, J.E. López-Aguilar, F. Calderas, O. Manero, M.F. 

Webster, J. Non-Newton. Fluid Mech. 222 (2015) 260-271; of ={2, 4, 6, 8, 10}. Their 

experimental PAA/corn-syrup Boger fluids have been characterized and modelled with 

the so-called swanINNFM model through dissipative continuum-scale modelling. This 

facilitates the precise capture of experimental-levels of epd-data (largest epd=O(6) 

under =10 contraction-ratio and sharp corners). The swanINNFM model has already 

proven capable of reproducing the large excess pressure-drops reported by J.P. 

Rothstein, G.H. McKinley, J. Non-Newton. Fluid Mech. 98 (2001) 33-63, in their 

experiments (epd=O(3) for =4 contraction-ratio and PS/PS Boger fluids); it is also 

capable of reproducing the Boger-fluid pressure-drop rise, relative to Newtonian-

instance, in axisymmetric =4 contraction-flow, as opposed to the null rise observed in 

the planar counterpart reported by S. Nigen, K. Walters, J. Non-Newton. Fluid Mech., 

102 (2002) 343-359. In the present study, at each contraction-ratio and under De-rise 

(flow-rate-increase), one may identify two main phases: i) an epd plateauing-region at 

low deformation-rates, and ii) a sudden epd-rise above the Newtonian unity reference- 

line. With elevation in contraction-ratio, the first plateaued-epd phase is elongated and 

the maximum epd-levels rise significantly. Such epd-elevation is captured theoretically 

and numerically, with counterpart rise in extensional-viscosity. In addition, this position 

in epd-response correlates well against trends in vortex-dynamics - correctly capturing 

lip-vortex appearance, lip-vortex and salient-corner vortex co-existence and 
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coalescence, and ultimate elastic corner-vortex domination. In this respect, their 

presence and transitions, may themselves be linked to increased elastic effects and 

normal-stress response. 

 

Keywords: epd-enhancement and flow-structure matching Boger-fluids, contraction-ratio 

variation; swanINNFM model, numerical simulation; lip, salient and elastic corner vortices; 

continuum modelling 

 

1. Introduction 

Experimentally, on entry-flow A plethora of steady-state studies have considered 

various:  geometrical-configurations (axisymmetric-planar; contraction-ratio variation), 

edge-sharpness (sharp-rounded corners), and fluid rheology (constant shear-viscosity 

Boger fluids – shear-thinning fluids). For related background see [1-4]. Regarding circular 

contractions and Boger fluids under a contraction-ratio of (), Boger et al. [5] 

compared the flow of two fluids with essentially equivalent characteristic relaxation 

times, derived from shear-flow measurement. Whilst increasing deformation-rate, 

observations revealed two distinct patterns arose in flow-structure. The first fluid, a 

polyacrylamide/corn-syrup solution (PAA/CS), displayed a single vortex, initially at low 

rates, confined to the salient-corner by a concave flow separation-line. This single vortex 

continually traversed from the corner to the lip with rate increase, bounded by a 

straightened separation-line and cell of constant reattachment-length. Then, once the 

vortex became located at the lip, it enhanced with further rise in flow-rate; attendant 

with growing reattachment-length and convex separation-line (cell-shape). A second 

test fluid, a polyisobutylene/polybutene solution (PIB/PB), exhibited isolated salient-

corner and lip-vortices. Salient-corner vortex shrinkage and disappearance were 

reported, followed by lip-vortex formation and enhancement. These distinctly different 

forms of flow sequences were attributed to variation in extensional properties. The 

authors concluded that knowledge of steady and dynamic shear properties alone was 

insufficient to characterise elastic liquids in such complex flow scenarios. Subsequently, 

Boger and Binnington [6] studied the influence of aspect-ratio (={4,22}) for a well-

known M1-fluida PIB/PB solution), concentrating upon circular geometries. Thereupon 

and with rising flow-rate, a similar pattern of isolated corner and lip-vortices was 

observed to that provided in Boger et al. [5], specifically for the relatively low aspect-

ratio of =4. Further incrementation in contraction-ratio to =22, provided a rich 

sequence of structures, each displaying co-existence of salient-corner and lip-vortices. In 

this context and with rising flow-rate, this revealed patterns of: Newtonian flow-like 

structures at low deformation-rates; followed by corner and lip-vortex co-existence 

under an undulating flow separation-line; then, disappearance of the salient-corner 

vortex; and finally, lip-vortex domination. Such vortex-activity in this larger aspect-ratio, 

was attributed to the larger extension-rates generated therein. With a similar PIB/PB 
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solution, McKinley et al. [7] also reported analogous trends under ={2, 3, 4, 5, 6, 8}. 

Once more, with co-existent of salient-corner and lip-vortices observed for ≥6. 

Excess pressure-drop in contraction-expansion geometries With focus on contraction-

expansion flow, circular-symmetric and sharp-cornered, Rothstein and McKinley [8-9] 

provided results on excess pressure-drop (epd) and vortex dynamics for steady-state 

flow of a polystyrene-polystyrene (PS/PS)-based Boger fluid. There, with increase in 

Deborah number (De) (promoted via flow-rate Q-increase), Rothstein and McKinley [8] 

reported a marked rise in epd for (contraction-ratio. These authors remarked that 

such epd-rise was not related to an elastic-instability, instead attributing this to an 

additional polymeric dissipative-stress, observed when the material is stretched through 

a constriction. In subsequent work, Rothstein and McKinley [9] explored the influence of 

contraction-ratio and its variation for the same (PS/PS)-based Boger fluid, where both 

sharp- and rounded-corners were considered. Contraction-ratios of ={2, 4, 8} provided 

large epd above their Newtonian counterparts, irrespective of the contraction-tip 

smoothness. Maximum epd-levels also rose with aspect-ratio increase. In terms of 

kinematic flow features, salient-corner dominated flow was prevalent for aspect-ratios 

of ≥4, whilst lip-vortices were apparent for =2. More recent experimental studies 

with a PAA/CS Boger fluid, of Perez-Camacho et al. [10] for ={2, 4, 6, 8, 10}, reported 

similar trends and findings, of increasing max-epd with contraction-ratio increase. In 

addition, transitions from salient-corner to lip-vortex domination were also recorded, 

yet only for relatively large contraction-ratios of ≥6. Although such Boger-fluids are 

known to display similar shear rheometrical properties, their departure here in 

kinematic response is suspected to be linked to their respective extensional properties 

(hence formulation, see Rothstein and McKinley [9]). 

Numerical predictions Traditionally, Boger fluids have been represented by constant 

shear-viscosity Oldroyd-B models. Nevertheless, Oldroyd-B solutions have failed to 

predict the significant increases observed experimentally in Couette correction (related 

to pressure drop) for Boger fluids (for example [11-16]). Moreover, the lack of finite-

extensibility of the Oldroyd-B model, and its over-strong quadratic response in first 

normal stress difference N1, are severe shortcomings. These have been overcome more 

recently, via FENE-CR functionality [17]. Using the FENE-CR model, Szabo et al. [18] 

simulated a flow of Boger fluids through an axisymmetric (=4) contraction-expansion 

with rounded-corners. This avoided numerical approximation difficulties associated with 

resolving the flow about sharp-corners. These authors used a split Lagrangian-Eulerian 

finite-element scheme in their computations and extracted valuable information on 

epd. They used a solvent to total viscosity ratio (β) of 1/9 (benchmark highly-polymeric 

setting, far from Boger fluid composition), and varied the finite extensibility-parameter 

(L) of FENE-CR model. With values of L=3.26, 5 and   (Oldroyd-B limit), they gradually 

increased strain-hardening features, and hence, derived some modest epd-

enhancement with L-increase (of ~10% at De∼10 with L=5). More recently, Castillo-Tejas 
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et al. [19] performed simulations for Boger fluids, through non-equilibrium molecular 

dynamics and on abrupt (={2,4}) contraction-expansion flows. Their molecular studies 

point the way forward, under planar and axisymmetric geometries, successfully 

predicting significant pressure-drop enhancement in the circular case (for =4, of ~150% 

over the Newtonian unity reference-level; for =2, of ~40%, and null response for 

planar). 

Contraction-flows, Boger and shear-thinning fluids: Aboubacar and Webster, [20] and 

Aboubacar et al. [11, 21] switched attention to contraction geometries, again involving 

highly-polymeric solvent viscosity-ratio β=1/9. Both planar and axisymmetric 

configurations were considered, with sharp versus rounded-corners. Using a hybrid 

finite element/volume method, numerical solutions for (=4) aspect-ratio focussed on 

Couette-correction and vortex-dynamics, with Oldroyd-B and Phan-Thien-Tanner (PTT) 

models (Linear (LPTT) and Exponential (EPTT) variants [22]).  There, on Couette-

correction under εPTT=0.25 for circular sharp-corner, LPTT initially dropped up to Wi~1 

and rose thereafter. In contrast, EPTT Couette-correction rose monotonically for all Wi, 

covering a wider elasticity range, whilst comparatively Oldroyd-B results dropped 

steeply to negative values over a narrow-restricted range of Wi. So, and conspicuously 

for Boger fluids, experimental-levels of pressure-drop were only poorly represented. It 

was argued that some of these trends were due to the relevant shifts and scaling that 

arise in the Couette-correction ratio, once shear-thinning is introduced. Under the same 

context of highly-polymeric β=1/9 fluids, Oliveira et al. [23] focused on contraction-ratio 

variation in sharp-contractions ([2, 100]). Towards this end, a staggered-grid finite-

volume method was used. Similarly, these authors provided results for Couette-

correction and vortex-activity using Oldroyd-B (constant viscosity) and Phan–Thien–

Tanner (LPTT) constitutive equations (shear-thinning). There, the vortex-type (corner, lip 

or mixed) was quantified in a 2D-map, with  and De as independent parameters. For 

10, lip-vortex formation occurred at a specific and fixed level of De. Moreover, at any 

constant value of De/the salient-corner vortex completely surrounded that at the lip. 

In addition, parametric analysis was also conducted on the εPTT hardening-parameter, 

covering the range εPTT=[0, 0.5]. Couette-correction data somewhat replicated the 

trends reported in Aboubacar et al. [21]. For example, under εPTT=0.25 and 10≤≤100, 

Couette-correction was clustered around a single trend-line for all De. There, was an 

initial drop in Couette-correction, apparent up to De~1, followed by a subsequent rise. 

Nevertheless, and despite such advances in predictive capability described above, 

only recently have the remarkably large experimental epd-levels for the PS/PS-Boger 

fluid) of Rothstein and McKinley [9] been captured with continuum modelling (~300% 

over the unity reference-line). This has been achieved with the so-called swanINNFM 

model of Tamaddon-Jahromi et al. [24], within the relevant =4 rounded-corner 

contraction-expansion flow of Rothstein and McKinley [9]. In addition, in the context of 

sharp-corner contraction entry-flow and using the same model, López-Aguilar et al. [25] 
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have extended these ideas to apply to both planar and axisymmetric configurations. 

There and once again, the experimental pressure-drop data of Nigen and Walters [26] 

for PAA Boger-fluids, have been well reproduced, null response in planar and excessively 

large epd for circular. Such success relies on the swanINNFM constitutive equation 

structure, which is a hybrid construct of a FENE-CR polymer component with a White-

Metzner functional dependence of the extension-rate in both solvent and polymer 

contributions to the total stress. Hence, annunciation of the target for the present 

study, that is concerned with matching epd-levels reported in Perez-Camacho et al. [10], 

and the trace of counterpart vortex activity. Then, the geometry is that of contraction-

expansion form, axisymmetric and sharp-cornered; the fluid is a Boger fluid of 

PAA/corn-syrup. The geometric ratios considered cover -variation, ={2, 4, 6, 8, 10}. It 

is shown how epd-levels are closely extracted under swanINNFM modelling. With flow-

rate rise and larger contraction-ratios, the vortex-dynamics reveals various flow 

transitions, from salient-corner to lip-dominated activity, replicating that reported in the 

counterpart experiments. 

 

2. Governing equations and discretisation  

The relevant governing equations are those of mass conservation and momentum 

transport, together with an equation of state for stress. Under isothermal and 

incompressible flow assumptions, these equations may be expressed as: 

0 u ,          (1)  

Re - Re p
t


  



u
T u u ,       (2) 

where u , represents fluid-velocity, p , isotropic pressure and T , extra-stress. A first 

dimensionless group number, the Reynolds group-number    c oRe UR , provides a 

relative measure of inertial to viscous forces in the fluid. Here one identifies a material 

density as  , an average velocity based on the flow-rate Q as U , a characteristic length 

of the flow domain as cR  (taken as the contraction-gap radius), and a characteristic 

viscosity as    o p s . This characteristic viscosity is taken at zero shear-rate (simple-

shear first-Newtonian viscosity-plateau), being split into two contributions, { p , s } of 

{polymeric, solvent} origin. In this work, creeping flow is assumed, warranted through 

virtually inertialess [ Re O(10−2)] flow conditions. 

Consistently then, the rheological nature of the fluid is specified through a solute-

solvent split extra-stress T , where  T p s  ; where p  and s  represent the 

polymeric (solute) and solvent stress-contributions, respectively. Under such splitting, a 

measure of the concentration of solute in the fluid-mixture, or solvent-fraction, may be 
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defined as    s o . As required for Boger fluids, large solvent-fractions provide fluid-

representation of solvent-dominated quality. 

Constitutive equation – swanINNFM(q) model This model is a hybrid construct of a 

FENE-CR polymer component, with a White-Metzner functional dependence on 

extension-rate. It possesses both polymer and solvent dissipative terms (WM-FENE-CR; 

[17, 24-25, 27-28]). Such a model takes advantage of finite-extensibility, inherited from 

the parent FENE-CR model, with controlled-boosting of extensional-viscosity levels 

through a dissipative-stress contribution (WM-component). Moreover, a weakened 

N1Shear response is obtained, in contrast to the strong quadratic response of Oldroyd-B.  

In configuration-tensor A-form, the swanINNFM(q) model may be expressed as:  

 
      

1
2


   


   T D

p s
f Tr

De
  A A ,    (3) 

   


  IDe f TrA A A 0 ,        (4) 

where 


  represents the upper-convected material derivative of A: 

    
 
       


u u u
T

-
t

A
A A A A .      (5) 

D=(∇u+∇uT)/2 is the rate-of-deformation tensor (superscript T for tensor transpose). 

Finally, the ABS-f-functional,   Af Tr , in eqs.(3)-(4) is taken as: 

  
  2

1

1



A

A
f Tr

Tr L
,       (6) 

where, the extensibility-parameter L governs the plateau-level of extensional viscosity 

Ext, and the slope strength of N1Shear. Here, elevation in L-parameter results in larger 

Ext-plateaux and stronger N1Shear-slopes, approaching the Oldroyd-B quadratic limit as 

L→∞. 

A second non-dimensional group number, that of Deborah number 1 cDe U R , 

may be defined through the ratio of a characteristic time-of-the-material 1, and a 

characteristic time-of-the-flow. This flow characteristic-time is chosen as ( cR U ), and 

represents an average residence-time of a volume-element of fluid in the contraction-

gap. As such, this non-dimensional De modulates the degree of viscoelasticity in the 

flow and correlates linearly with flow-rate (Q) -rise. 

Within the White-Metzner construction, the dissipative-function ( )   may be 

defined as    
2

1     D . This represents a quadratic-term truncated Taylor series 

approximation, of the more general hyperbolic-cosine function        Dcosh  [24, 

29-30]. Here, D represents a dissipative extensional-viscous time-scale (material 
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dissipative-factor) and   an extension-rate.2 The function ( )   introduces additional 

dissipative-stress factors in both polymeric and solvent contributions to the stress 

tensor, see eq(3). These dissipative-stress contributions promote extra energy-removal 

from the flow [8]. Such loss of energy may be observed through large excess pressure-

drop in contraction/contraction-expansion complex flows. The dissipative-factor D is a 

time-parameter that governs the dissipative stress contribution, controlling the 

extensional viscosity boosting. The dissipative-factor D may vary between *0, ∞). Note 

that the swanINNFM(q) model collapses into FENE-CR [   1   ] in: ideal flows with null 

extensional deformation (via 0 ; for example, pure shear and planar flows); or 

indeed, when the extra dissipative stress is deactivated through D=0. 

 

Material function matching – First-normal stress difference N1Shear The physical 

quantities reflecting the viscoelastic characteristics of the polyacrylamide (PAA)/corn-

syrup(CS) Boger fluid are - a relaxation time of 1 0 174Exp .  s and a zero-shear viscosity 

of 0 13 5Exp .   Pa s. In addition, N1Shear data was provided in Perez-Camacho et al. 2015 

(see Appendix A for scaling-factor equivalence on De numbers from experiments to 

simulation). In the range of shear-rate tested experimentally, the N1Shear experimental 

data is well captured within the modelling through parameter selection of - a solvent 

fraction of β=0.9 and an extensibility-parameter window of L={3, 10} (see [10]). Hence in 

the present study, a representative parameter set of {β, L}={0.9,5} has been chosen. 

The rheometric response of the swanINNFM(q) model is displayed in Fig. 1. The 

model predicts a constant shear viscosity, yet the first normal stress difference (N1Shear) 

is weaker than the strong quadratic form exhibited by the Oldroyd-B model. The 

extensional data in Fig. 1a for the extensional viscosity (ηExt) of the swanINNFM(q) 

model are new contributions specific to the viscoelastic setting for the range of 0≤λD≤ 

1.0. Here and for low extensional strain-rates up to 0.3, this model-response is 

practically identical to that of the Oldroyd-B model. Beyond this state, ηExt for the λD=0 

(FENE-CR) model is capped, with ηExt limiting-plateau levels depending on L-elevation. 

Here, one is able to detect the consequence of larger λD influence on ηExt. For λD>0, a 

rising trend in extensional viscosity is observed for swanINNFM(q), when compared to 

the FENE-CR base-model. Hence for example, with λD=0.2 and at strain-rates of O(1) 

                                                 
2 In complex flow, a generalised strain-rate

 
  and a shear-rate   may be extracted from the second 

and third invariants of rate-of-deformation tensor D, viz, 3 D D/  III II , and 2 D  II ; where  

   
1

tr
2

D D, det II III2D D . 
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unit, extensional viscosity is around 5.5 units, whilst for λD=1.0, ηExt has reached around 

~8 units. With a five times increase in strain-rate [from O(1) to O(5)], the corresponding 

ηExt-levels are around {10, 80} units for λD={0.2, 1.0}, respectively. The relevant 

rheometrical functions for the swanINNFM(q) model are then: 

 

    
  

2

0

0 1 2

2

0 0

2 1
0

3 3 1
2

  
 

       
 


  

 
    

  

Shear Shear

Ext

De
; N , N ,

f

f
.

f De f De

   (7) 

Hence, it becomes clear that for a particular material, the ( )   functional and its 

dissipative-factor D, can be determined from fitting to extensional viscosity data; hence 

covering a range of deformation-rates, as experienced under alternative flow and 

geometric settings. Yet, when not available, we have been able to indicate through 

prediction in Nyström et al. [31], that fitting to experimental epd-measurement data can 

be used to back-calculate a measure for extensional viscosity. Specifically in Nyström et 

al. [31], considering an axisymmetric hyperbolic contraction-expansion configuration in 

which a steady and constant strain-rate is established, it is shown that a parametric 

relationship between extensional viscosity (ηExt) and pressure drop (epd) can be 

established. This has led to a practical means to find a best-fit to measured-epd from 

predicted-epd (simulation), and hence, to determine an extensional-based material 

time-constant λD. In this manner and for elastic fluids, a much-sought for measure of 

extensional viscosity can be established through the derived pressure-drop data. 

Sharp-corner contraction-expansion flow domain & meshing The relevant mesh 

characteristic detail, covering the specific meshes employed within this study, is 

provided in Table 1. A schematic illustration is shown in Fig.2, based on the =8 aspect-

ratio geometry. Here, the aspect-ratio  denotes relative change in upstream-tube 

diameter to constriction diameter (held fixed at Rc=1 unit) for all contraction-ratios 

cited. Mesh-refinement analysis is conducted for the isolated benchmark-case of =4 

contraction-ratio, drawing upon coarse, medium and refined meshes. As a consequence 

of findings therein, and with alternative aspect-ratios in mind, only medium refinement 

has been employed, accordingly. One notes that mesh-structure proved key in attaining 

highly-elastic solutions through the present Q-increase procedure. With focus on the 

constriction-zone at each aspect-ratio, meshes with uniform squared-structure 

construction (Fig.2), provided solutions at significantly larger Q-levels (Wicrit), than other 

options with trapezoidal mesh-structure (as constructed with areas delimited by 

diagonals uniting the centreline with the re-entrant corner contraction-tips). Such 

results are attributed to numerical stability gains from larger CFL numbers, due to a 

larger minimum-mesh size Rmin for squared-structure meshes; these Rmin-values are an 

order-of-magnitude larger than those for the trapezoidal-structured options. 
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Numerical approximation Comprehensive detail on the numerical fe/fv algorithm 

employed to generate the present predictive solutions can be found elsewhere [25]. 

Concisely, this scheme is that of a hybrid finite element/finite volume algorithm which 

follows a three-stage time-splitting semi-implicit formulation. Note, across contraction-

ratios, singularities at re-entrant corners were not an impediment for matching epd-

experimental data in the De-ranges sampled. New to this hybrid algorithmic formulation 

are techniques in strain-rate stabilisation (SRS-term - Belblidia et al. [32-34]); handling 

ABS-f-correction (   Af Tr ) in the constitutive equation, which provides consistent 

material-property prediction; and introducing purely-extensional velocity-gradient 

component specification at the shear-free centreline of the flow, through a velocity 

gradient (VGR) correction, López-Aguilar et al. [35]. At entry-exit zones, locally periodic 

boundary conditions were imposed, to overcome inconsistencies between inlet (and 

outlet) and inner-field approximations. Here, within the entry-zone a feedback 

procedure was implemented from the interior shear-flow section (likewise with an 

interior-domain feed-forward procedure for the exit-zone), notably active on velocity-

gradients (u ) and extra-stress ( p ), see López-Aguilar et al. [36]. The optimum 

solution continuation procedure adopted at each new flow rate is to first compute the 

best match extensional inelastic solution (swanINNFM(λD≠0, λ1=0)) to the experimental 

epd-level. Then, to use solution parameter continuation through the relaxation time (λ1) 

to introduce elasticity, with swanINNFM(λD≠0, λ1≠0). 

 

3.  On Excess pressure-drops (epd) 

Graphical plots for epd against flow-rate Q-increase (De-increase) are provided in 

Fig.3. Here, one may recall that larger Q-levels, imply larger deformation-rates. This 

covers data for all five geometry aspect ratios considered, ={2, 4, 6, 8, 10}.  

=4 contraction-ratio (base-case, Fig.3b): When considering Q-rise, and whilst also 

applicable for all ≥4, epd data display three main regions of epd-response. For =4 the 

position is depicted as: (i) a first lower-rate epd-plateau zone, with epd~1 (De<0.6); (ii) a 

sharply rising - epd zone (0.6<De<1.3); and (iii) a tendency towards a second higher-rate 

epd-plateau (De>1.3) (more clearly captured with larger aspect-ratio, of say =10).  

Pressure-drop (=4)-maxima reach an order of epd~1.42. Firstly, epd-data founded 

on predictions with the base-model FENE-CR (swanINNFM D=0.0, L=5, =0.9) are 

provided [as shown in Perez-Camacho et al. (2015) and Tamaddon-Jahromi et al. 2016)]. 

Conspicuously, in Fig.3b, predictive-solution (D=0.0)-data lies significantly below 

experimental expectation in the higher deformation-rate region of De>0.6. Here, it is 

shown how by appealing to the new swanINNFM (D≠0) model, such under-prediction 

may be successfully overcome, so that the span of the experimental data may be well 

captured. Best practice would indicate that a Q-increase mode is the more practical and 

efficient steady-state solution-seeking route through continuation to implement such 
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predictive matching [24]. That is, when taken against its alternative continuation-

procedure of fluid-elasticity 1-increase mode – a standard practice used under 

simulation procedures. 

Epd D–windows Employing fixed D–solutions, the three main epd-(=4)-regions of 

response, identified above, are captured for the De-range (0≤De≤1.3), in upper-lower 

windows of D-values (see continuous lines in Fig.3b). The first lower-window, is given 

by D=[0.0, 0.5], which covers the first lower-rate epd-plateau zone, just above epd-

unity line, and slightly beyond up to De≤0.8. The second and upper-window, with 

D=[0.5, 0.8], captures the pronounced rising-trend observed in the experimental epd-

data throughout the range 0.8≤De≤1.4. One notes that for all ≥4-instances and for the 

lower plateaued-epd phases, the lower D-bound is provided by D=0 solutions (FENE-CR 

limit; see Fig.1 for back-reference to material functions). In this fashion, even the initial 

drop below the unity epd-reference-line is extracted (Fig.3b,c for ={4, 6}). 

Epd-data subsets Upon more close inspection of the epd-data in Fig.3b, one may go 

somewhat further to classify three epd ranges, and accordingly three epd-data subsets. 

Here, it is the slope of the linear-fit line to each epd-data subset which is the 

distinguishing factor, as noted in De-ranges {I, II, III}. Crucially, this slope may be 

correlated against an averaged D-value across each De-range identified. Such an 

average D-value may be established by sampling D-values that match the experimental 

epd-levels across a particular De-range. For example in the =4 base-case, this suggests 

a step-function of D-values, spanning such epd subsets/De-ranges, identified through: 

(I) D=0, at relatively low flow-rates (De≤0.65); (II) D=0.4, at intermediate flow-rates 

(0.6<De≤0.95); and (III) D=0.7, at high flow-rates (0.95<De≤1.3). 

≥6 contraction-ratio variation To progress across alternative deformation states, 

one may contrast epd-findings with larger geometric aspect-ratios, ≥6. Note that with 

-increase, firstly experimental-epd maxima rise; and secondly, larger Q-levels (larger 

deformation-rates) are required to precisely capture the distinct character and phases 

of lower epd-plateau, epd-rise and higher epd-plateau.  

Matching epd-rise phase, aspect-ratio -variation Seeking a match against the 

experimental data and with rise in , it is clearly necessary to adjust the D–parameter 

selection within the predictions. In contrast to the =4 base-case with a solution 

window of [lower, upper] bounds of D=[0.5, 0.8], the =6 case demands larger 

dissipative-parameter D-levels (Fig.3c). Hence, observing a fresh window and bounds of 

D=[0.6, 1.0]. For yet larger contraction-ratios of ≥8, there is a sustained decrease in 

D-levels to match the experimental epd (Fig.3d,e). For example, in the =8 case, 

corresponding bounds are given under solution window D=[0.4, 0.55], whilst the =10 

case requires a bounded-window of D=[0.2, 0.4]. Such D-reduction for ≥8 may be 

correlated against ever increasing maximum extension-rates with -rise. These larger 

extension-rates with -rise are promoted by the relatively larger Q-levels needed to 
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substantiate the epd-rises detected in the experiments. This is a natural state of affairs, 

since the dissipative-function,  
2

( ) 1D D      , itself has dependency upon the 

product factor ( D  ) as its driving parameter. Hence, for the same level of   (whose 

increase stimulates larger E and epd), a larger extension-rate   automatically provides 

a smaller dissipative-parameter D. Under such complex flow deformation, as here, this 

is strong evidence of the need for rate-dependent adjustment of the extensional-based 

dissipative parameter (D) – as suggested by the step-function above, or indeed by a 

multimode representation (motivated by extensional considerations). In principal, upon 

using a more robust multimode approach, even better predictions against experimental 

findings may be anticipated, offering wider matching to experimental data in shear 

(ηShear, N1Shear) than afforded by a single-mode averaged approximation. 

To investigate such dependencies and interrogate the position further, plots are 

provided in Fig.4 for centreline extension-rate maximum, max , dissipative-factorD and 

dissipative-function max. Such data is taken against deformation-rate rise and across the 

various contraction-ratios. Note, these extrema are extracted at various Q-levels, each 

Q-level being representative of an epd-subset in each -instance, from Fig.3 data. The 

D–values are those required to best match the experimental epd-data, in each -

instance, and at specific De-values (Q-levels). In Fig.4a, with each -instance, a linear 

relationship is recorded between the maximum extension-rate at the centreline max  

through De (Q-rise). At fixed-De (Q-fixed) and with -rise, centreline max  increases. For 

instance at De=9, =8 maximum extension-rate equates to max =11.5 units, whilst 

equivalently for =10, max =12 units; rendering a 4% increment. In contrast in Fig.4b, 

covering the various -instances, a complex non-linear dependency is observed to hold 

between D with Q-rise. For example, with ={4, 6} and Q-rise, steep linear increasing 

trends are apparent on D; whilst, for ={8, 10}, an initial (shallower) linear rise is 

observed at relatively small deformation-rates, followed by a maximum being reached, 

before a subsequent decline. The consequence is gathered in the rising max-trends as 

observed in Fig.4c, which are relatively linear for ={4, 6, 8}, and piecewise-linear for 

=10.  

Epd-data subsets and D-step-functions (≥6) Taken in contrast to the =4 base-

case, ≥8 instances display richer behaviour in epd-slope subsets (Fig.3c-e). Note, both 

=4 and =6 cases displays three long subsets, as observed in Fig.3b,c. Generally and 

with -rise, an increased number of subsets are required to match the experimental 

data, albeit for an ever widening coverage and De-range. In the extreme case of =10 

(Fig.3e), five subsets are identified: (I) D=0 for De≤3; (II) D=0.2 for 4<De≤5; (III) D=0.37 

for 5<De≤9; (IV) D=0.31 for 9<De≤14; and (V) D=0.26 for 14<De≤18). Meanwhile, the 
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=8 instance displays four subsets (Fig.3d): (I) D=0 for De≤1.7; (II) D=0.2 for 

1.7<De≤2.3; (III) D=0.47 for 2.3<De≤4.8; and (IV) D=0.43 for 4.8<De≤10.  

=2 contraction-ratio variation This geometry choice is unique amongst its 

counterparts, in that it offers much reduced levels of maximum strain-rates (see Fig.4a). 

This implies that larger levels of dissipative-factor D [=O(102), from the smallest Q-level] 

are required to furnish equivalent levels in the dissipative-function ( )D    (Fig.4b,c), 

and hence impact upon the rheometrical functions. Notably, =2 epd-data is devoid of 

the first lower epd-plateau, displaying only an initial sharp rise in epd from the epd-unity 

reference line. Then, at De~0.01, a continuous slope-decrease is observed, to finally 

attain a constant yet rather shallow rising-trend for De>0.03. Moreover, the epd-

maximum level observed is epd~3, which is twice that for the base-case of =4 

(epd~1.42). Here, only a single window of D-values is required to match epd-

experimental data (Fig.3a). The {lower, upper} bounds of such a solution-window are 

given by D=[45, 180]. Nevertheless, three epd-slope subsets remain to be identified: (I) 

D=165 for De≤0.01; (II) D=115 for 0.01<De≤0.024; and (III) D=55 for 0.024<De≤0.056. 

In contrast to larger-and with Q-rise, the D-level decreases whilst transcending these 

epd-subsets. 

 

4. On Vortex dynamics  

In this section, particular consideration is given to flow structure, through vortex-

intensity and streamlines patterns. Once again, this covers solution-data for all five 

geometry aspect-ratios, ={2, 4, 6, 8, 10}. In summary, with Q-rise (De-increase), a 

number of vortex features may be observed, upstream and downstream of the 

contraction. First, there is onset and rise in salient-corner (sv)-vortex-intensity,sal 

(Fig.5a,b and Fig.6a), with concave-shape (Fig.8,9a-11a; =4: upstream-downstream sv 

asymmetry and growth). Second, there is lip-vortex (lv)-formation in some cases, 

notably for ≥6 cases (Fig.9b-11b). Third in these instances, the convex lip-vortex 

eventually dominates and evolves into an elastic corner-vortex (cv), but only at relatively 

large flow-rates (lip: Fig.5c,d and Fig.6b; streamlines: Fig.9c-11c). One notes the use of 

absolute value notation for clarity on sal and lip. Such features have their counterpart 

streamline-representation in Fig.7-11. Such a sequence of vortex-growth patterns has 

been observed previously, under circular =4 entry-flow experiments for a PIB/PB 

Boger-fluid flow (Boger et al. 1986). There, salient-corner and lip-vortices co-existed at 

mid-Q-levels; subsequently, the lip-vortex began to dominate and to ultimately develop 

into an elastic corner-vortex. Conspicuously, within an intermediate-Q range [={4, 6, 8, 

10}, De~{0.8, 1.5, 2, 3.5}], the appearance of a lip-vortex and its subsequent domination, 

coincides with epd-rise and departure from the unity reference-line. Such 

correspondence marks flow regime change, and this is well captured under D≠0 

solutions. 
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Comparison of vortex-intensity with -variation In Fig.5, trend plots of the salient-

corner and lip-based vortex-activity are provided, for both upstream and downstream 

zones.

sal-maxima, relative strength with -variation In the =2 case, despite its relatively 

low deformation-rates (0.007≤De≤0.05), a sharp rise in sal is observed (Fig. 5a,b red-

dashed lines), with a unique range of vortex-enhancement (symmetric convex vortices; 

see on to Fig.7). Note, in Fig.5a upstream, there is sal-maxima rise from =2 to 4; then 

decline from =4 to 6; and finally rise for ≥6.  The initial appearance of a lip-vortex is 

also highlighted, alongside sal-growth. Comparatively, Fig.5b downstream, sal-maxima 

enlarge with -rise. Note that, with respect to the upstream-location, downstream sal-

maxima are always smaller, and for ≥6, appear somewhat more delayed till larger Q-

levels. 

In Fig. 5c,d, counterpart lip vortex-intensity lip-plots are provided (no lip-vortices  

present for ≤4). With -rise, lip-vortex onset is gradually shifted to larger Q-levels. 

Upstream, the first flow-rates to witness lip-vortex formation are De={1.53, 2.01, 2.36} 

for  ={6, 8, 10}. From such positions, relatively sharp rise is observed in lip. Then, at 

sufficiently high Q-levels, a linear lip-trend is recovered (Fig.5c,d), during a phase 

dominated by an elastic corner-vortex (see Fig.9c,10,11c). Notably for ={6, 8, 10} and 

on transition activity from salient-corner to elastic corner-vortex domination, 

predictions located at De~{2, 4, 7}, roughly coincide with experimental observations, 

reported at De~{2.6, 4.5, 7} (see [10]). 

=10 instance Since the =10 geometry provides the most prominent features (see 

streamline patterns, Fig.7-11), this instance is isolated in Fig.6, to display direct 

upstream-downstream data comparison (also representative for all ≥6). For =10, the 

upstream lip-vortex first appears at De=2.5 (Fig.6a). Before this stage (De<2.5), there is 

salient-corner vortex asymmetry upstream-downstream (see counterpart Fig.11a). 

Beyond De>2.5, the salient corner-vortex experiences a sharp rise in its rotational 

strength, before its disappearance at De>3.7 [elastic corner-vortex domination 

identified, 4.5<De≤17.4 (Fig.6b, 11c)]. There is co-existence of a salient-corner and lip-

vortex for 2.5≤De≤4.5 (Fig.11b). Here, an increase of 260% in vortex intensity is 

observed via {sal, De}, from {0.003, 2.57} to {0.010, 3.68}. Note, there are similar trend 

patterns observed downstream, although these are somewhat delayed in deformation-

rate; with lip-vortex appearance at De=3.8, and elastic corner-vortex domination for 

De>4.4. 

Such De-ranges are affected by aspect ratio reduction from =10 to ={6,8}, 

becoming narrower in width and lower in starting value. For =6 (Fig. 9) - (a) salient-

corner vortex asymmetry: De<1.5; (b) lip-vortex appearance: De=1.5; and vortex co-

existence: 1.5≤De≤1.7; and (elastic corner-vortex domination: 1.7<De≤2.8. For =8 (Fig. 

10) - (a) salient-corner vortex asymmetry: De<2, (b) lip-vortex appearance: De=2; and 
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vortex co-existence: 2.0≤De≤2.8, and (c) elastic corner-vortex domination: 2.8<De≤9. 

One notes the elongation of the salient corner-vortex (concavity), observed at relatively 

low Q-levels (part a) of Fig.9-11), is a key factor governing lip-vortex formation. Such 

elongation and further lip-vortex growth are enhanced by the relatively longer front and 

back wall-faces of the =10 geometry. Hence, as -increases, the strength and size of 

these emerging lip-vortices increase. 

 

5. On stress-to-vortex structure interdependence 

First normal stress ratio As proposed by Rothstein and McKinley [9], in their 

experimental study on aspect-ratio variation, there a normal stress-ratio was used to 

depict the transition from lip-vortex activity to elastic corner-vortex activity. Data on a 

variety of fluids was provided, and each at a specified but different flow-rate. Such a 

normal stress-ratio was defined as the relative measure of normal-stress in pure shear 

(as on walls), to that in pure extension (as on flow centreline). For large-, these authors 

reported on phases of elastic corner-vortex domination, which correlated with relatively 

small normal stress-ratios; hence, with domination of extensional over shear normal-

stress. Accordingly, Fig.12 conveys representative and current findings on this normal 

stress-ratio. Here and for each -instance in turn, treated in contrast to the Rothstein 

and McKinley data [9], normal stress-ratios are reported at various deformation-rates, 

as flow-rate is increased. With -rise, our averaged normal stress-ratio (taken across 

flow-rate and indicated with a dash-dotted line), rises from ~1.8 units for =4, to ~1.9 

units for =6. For larger aspect-ratios, these averaged-values subsequently decline 

sharply, to ~{1.2, 0.9} for {8, 10}. In line with findings of Rothstein and McKinley [9] 

through -rise, such a decline in normal stress-ratio would indicate larger extensional-

N1 relative to that in shear. This position reflects elastic corner-vortex domination for 

≥6 at relatively high deformation-rates. Moreover, extrema are observed in normal 

stress-ratio for all ≥4; occurring at De~{0.8, 1.1, 4.8, 5} with ={4, 6, 8, 10}. Hence and 

consistently ≥6 aspect-ratio solutions produce more balanced shear-extension normal-

stress-ratios, revealing dominant elastic corner-vortex activity; whilst counterpart =4-

solutions with larger normal-stress-ratios, provide exclusively salient-corner vortex-

activity. Phase transitions, from lip-vortex to elastic corner-vortex are also indicated in 

Fig.12 (by vertical dashed-lines), and arise in the vicinity of extrema in normal stress-

ratio. 

Vortex activity against normal stress differences, N1 and N2, Representative N1 and 

N2 field projections (3D) are compared in Fig.13 against corresponding vortex 

transitions. Here, the most responsive case of aspect-ratio =10 is selected, covering Q-

rise through low-medium-high De of 0.35≤De≤17.4. As such, vortex activity may be 

directly correlated to the corner-patterns apparent in N1-N2 fields, observed through 

corner-to-lip vortices (structure and location, both upstream and downstream). One 
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may infer from this evidence that elasticity, through N1-N2, is responsible for the 

formation and evolution of these corner and lip-vortices.  At relatively low De=0.35 

(Fig.13a), symmetric upstream-downstream normal-stress patterns are apparent, 

reflecting the presence of salient-corner vortex-like structures. During the vortex co-

existence phase, when both lip- and salient-corner vortices are present (Fig.13b, 

moderate-De), three sample De-solutions are provided. At De=3.47 and upstream, 

salient-corner and lip-centred stress patterns co-exist, whilst downstream, only isolated 

corner patterns are apparent. At the incremented larger level of De=4.24, a single 

upstream pattern has formed upon merging of lip and corner forms, with locus centred 

nearby the re-entrant corner. Analogously at De=4.24 and downstream, co-existent N1-

N2 structures are also visible, capturing the corresponding vortex structures as shown. 

Upon still further incrementation to De=6.3, both stress-patterns and vortex-structures 

are depicted as coalesced, reflecting a strong single elastic-corner vortex; similar 

response is captured in both upstream and downstream zones. Covering the final phase 

of elastic corner-vortex domination, captured here at De=17.4, large vortex-like stress-

patterns emerge, both upstream and downstream. At this stage, the streamline loci 

have detached from the contraction front and back-faces. This position correlates with 

the emergence of sharp negative N1-peaks around the same wall-locations in the re-

entrant corner vicinity (also appearing at De=6.3; being less apparent in N2-plots). 

Trends on vortex stress-maxima The associated trends in N1max and N2max are plotted 

against rate-rise in graphical form within Fig.14, corresponding to values at the centre of 

the vortex-like stress-patterns. Consistently, with Q-rise, the salient-corner N1max and 

N2max of Fig.14a, reflect analogous trends to those observed in vortex-intensity (Fig.6a). 

Downstream response is always delayed to that upstream, and N2max represents a 

suppressed form of N1max (but constituting more than 50% of N1max). Beyond the station 

at which a lip-vortex appears, N1max considerably strengthens, as noted both upstream 

and downstream; a feature present but less prominent in N2max. Equivalently, on tracking 

the lip- to elastic corner-vortex and normal-stress activity of Fig.14b, two phases of 

rising N1max may be identified. The first-phase corresponds to that of lip-vortex 

formation, alongside its co-existence with the salient-corner structure (here, N1max and 

N2max coincide); the second-phase corresponds to that of domination from an elastic 

corner-vortex (transition indicated with a dashed-line). In N2max-data, the onset of this 

second-phase is marked by an initial drop, that is then followed by a subsequent rise 

(ultimately, contributing ~80% to N1max). 

To help complete the picture, Fig.15 compares and contrasts viscometric equivalent 

normal stress field patterns, in both shear (centre) and extension (right), against present 

complex flow solutions (left) through the same phases of Fig.13. In sight of this 

evidence, one may infer that preferential rheology to govern N1 is indeed a crucial factor 

in controlling vortex activity, and from a field distributional perspective, is largely 

dictated by normal stress response in shear. So, earlier suspicions, as expressed by 
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Boger et al. [5] and Rothstein and McKinley [9], within a particular flow configuration 

and at a specific rate, may now be qualified; that is - ‘whether it is extensional viscosity 

differences between fluids, or other influences such as their differences in normal-stress 

response in shear, that ultimately prove responsible for the particular vortex patterns 

that emerge’. Here, on the evidence supplied above, we favour the normal-stress 

response in shear as the overriding solution property, which consistently governs trends 

in flow patterns and distributions in stress/vortex activity within the vortex cells. 

Nevertheless normal-stress maxima, recorded through normal-stress-ratio, correlate 

well with the vortex-phasing observed experimentally. As such, one notes particularly 

the increased influence of extensional normal-stress contributions, that themselves 

dictate the dominance of an elastic corner-vortex over a salient-corner vortex (see 

Fig.12). 

 

6. Conclusions 

In a recent study [10], experimental epd and vortex-dynamics data were reported for 

the flow a Boger PAA/CS-based Boger fluid, whilst changing contraction-ratio ={2, 4, 6, 

8, 10}. Despite the qualitative agreement obtained, with a FENE-CR(=0.85, L) model, 

the precise capture of the experimental-epd data for =4 remained somewhat lacking; 

gathering a maximum predicted-epd of only 30% at De~35 - that is, against an 

experimental target value of 44% excess at much lower level of De~1.4. There, L={3, 6, 

10} and a fluid relaxation-time (1)-increase protocol was used. In the present paper, we 

have presented a major modelling advance in closely-matching such experimental 

findings, whilst adopting the same flow configurations. This has only proved possible by 

appealing to the recently-proposed continuum-based swanINNFM model [24]; whilst 

employing parameters of (=0.9; L=5; D) and under a flow-rate (Q)-incremental 

protocol (to replicate equivalent procedures as used in the experiments). 

 Most notably here, precise matching of experimental-epd has been obtained for all 

contraction-expansion geometric aspect-ratios tested; and this under an averaged single 

relaxation time (1) approximation For ≥4, three main regions of experimental epd-

response have been captured with upper-lower windows of dissipative-D-factor 

employing the swanINNFM(q) model. Under close examination for each and within 

such experimental zones, characteristic epd-subsets have been identified and correlated 

with averaged D-values. These epd-subsets increase in number with -rise, providing 

an ever richer response. This has permitted the capture of epd-maximum levels, as in 

the experiments, of ~{300, 144, 350, 550, 600}% for ={2, 4, 6, 8, 10}. To our knowledge, 

such matching is unprecedented in continuum mechanics for Boger-fluids and circular 

contractions. An additional complication arose experimentally, in that larger Q-levels 

(larger deformation-rates) were required with -rise, to capture the full history of epd-

rise. Hence naturally, some D-adjustment was found necessary to match the 
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corresponding experimental observations. Here, a complex non-linear relationship has 

been constructed on D against Q-rise, exposed through a piece-wise step-function in 

epd-subsets. This provides evidence for the necessity of a multimode representation in 

the dissipative ( )  D -functional. 

In addition, a detailed description of the ensuing Q-rise flow-structure has been 

derived, related through counterpart vortex-dynamics. The outcome agrees tightly with 

the experimental findings of [10] across all contraction ratios, such that a change of flow 

regime is captured numerically with swanINNFM(q) D≠0 solutions at the deformation-

rates reported experimentally. These transitions are observed for ≥4, through epd-rise; 

and through kinematics, for ≥6, with corner/lip-vortex coexistence, and subsequent 

elastic corner-vortex domination. With Q-rise and for ≥6 (=10 being the most 

representative - largest extension-rates), the complex vortex activity reflects three 

distinct phases. Firstly, at low Q-levels, Newtonian-like salient-corner vortex-

enhancement is apparent, with concave separation-lines; secondly, this phase is then 

supplanted by lip-vortex formation and co-existence of lip-with-salient-corner vortices 

at intermediate deformation-rates; and finally, lip-vortex domination and prevalence 

towards a convex elastic corner-vortex. In contrast, for ≤4, only salient-corner vortex 

enhancement is predicted, as in [10]. Moreover, these vortex-growth patterns agree 

with previous experimental findings for PIB/PB Boger fluids and flow through circular 

contractions [5], where salient-corner and lip-vortices were found to co-exist. Within 

the context of contraction-expansion flow and PAA/CS Boger fluids, our predictions also 

reproduce the trends found experimentally in [9], on lip-vortex to elastic corner-vortex 

formation. Consistently ≥6-solutions, with more balanced shear-extension normal-

stress-ratios (greater extensional stress influence), reveal flow domination governed by 

an elastic corner-vortex; whilst =4-solutions, with larger normal-stress-ratios, provide 

exclusively salient-corner vortex-activity. The =2 solutions remain an isolated case, 

with its experimentally large maxima in epd of ~3, within a notably low and narrow Q-

range (low extension-rates generated). This position is reflected in epd, on a single D-

prediction-window of outstandingly large D-bounds [~O(102) upper]; and through its 

kinematics, producing a single phase of symmetric salient-corner vortex-enhancement. 

Covering both upstream and downstream vortex activity, it is increased elastic effects 

that are identified as the origin of salient-to-lip vortex location and intensity, governing 

their presence, co-existence, coalescence and evolution. This has been recognised 

through flow response, in patterns of first and second normal stress differences, N1-N2, 

and trends in N1max-N2max and first normal stress ratio. Vortex structures that reflect 

existence, location and evolution, directly correlate with vortex-like patterns in N1-N2 

fields. Consistently, the transition from the lip-vortex phase to the elastic corner-vortex 

phase is reflected in N1max-N2max, and N1–trends in particular. Hence, one may infer that 

N1 preferential rheology is a crucial factor in controlling vortex activity, largely dictated 
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by response from normal stress in shear. Here, shearing normal-stress contributions are 

held chiefly responsible for the internal patterns supported within the vortex-cells 

(salient; salient-to-lip; lip-to-elastic); whilst relative strength of extensional to shear 

normal stresses, is correlated with elected vortex-phasing, between salient-corner 

vortex and elastic corner-vortex structures. As such, this work helps clarify earlier 

statements made on the subject, see Boger et al. [5], Rothstein and McKinley [9]. 
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Appendix A. Scaling factor between experimental and numerical data  

In the experimental work of Pérez-Camacho et al. [10], the Deborah number De is 

defined as follows: 

1exp 3

4

c

Q
De

R



 ,         (A.1) 

whilst for numerical simulations, a measure of fluid viscoelasticity is given by a Deborah 

group number simDe  of the form: 

1 13
 


 sim

sim sim

c

Q U
De

R L
.        (A.2) 

Note that 1 sim  is held at a unity level, and change in elasticity is driven by Q-increase, 

mimicking closely experimental protocols. Hence, equating experimental and 

computational characteristic deformation-rates, one obtains: 

1exp 14 


sim

sim

DeDe
,         (A.3) 

and on introducing relevant physical quantities ( 1exp 0.174  s , as provided 

experimentally), one finally extracts: 

1

1.44

simDe De .         (A.4) 
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Table 1. Mesh characteristics 

Contraction 

Ratio  

Level of  
refinement 

Number of 
elements 

Total 
number of 

nodes 

DOF Rmin 

2 Medium 3003 6204 38825 0.0525 

4 

Coarse 1872 3905 24447 0.1158 

Medium 2703 5600 35049 0.0579 

Refined 4511 9274 58026 0.0289 

6 Medium 3056 6313 39507 0.0582 

8 Medium 2508 5217 32657 0.0244 

10 Medium 3112 6445 40337 0.0241 
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a) 

b) 

Figure 1. Material functions; a) Ext & b) N1Shear; {, L}={0.9, 5} 
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

Rc=1

Rc

Figure 2. Sharp contraction-expansion geometry mesh; ={2, 4, 6, 8, 10}; medium level of refinement  
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III II I 

a) 

I.   De≤0.01,              D=165 

II.  0.01<De≤0.024,   D=115 

III. 0.024<De≤0.056, D=55 

III II I 

I.   De≤1.4,        D=0.0 

II.  1.4<De≤2,   D=0.49 

III. 2<De≤2.8,   D=0.95 

c) 

III II I 

I.   De≤0.65,        D=0.0 

II.  0.6<De≤0.95, D=0.4 

III. 0.95<De≤1.3, D=0.7 

b) 

Figure 3. epd prediction-windows against De;{a, b, c, d, e} correspond to ={2, 4, 6, 8, 10}  
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III II I IV 

d) 

I.    De≤1.7,        D=0.0 

II.  1.7<De≤2.3, D=0.2 

III. 2.3<De≤4.8, D=0.47 

IV. 4.8<De≤10,  D=0.43 

III II I IV V 

I.   De≤3,          D=0.0 

II.  3<De≤5,     D=0.20 

III. 5<De≤9,     D=0.37 

IV. 9<De≤14,   D=0.31 

V.  14<De≤18, D=0.26 

e) 

Figure 3 (cont’d). epd prediction-windows against De;{a, b, c, d, e} correspond to ={2, 4, 6, 8, 10}  
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b) 

a) 

c) 

Figure 4. Centreline a)  max, b) D and c) max against De; ={2, 4, 6, 8, 10}  
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Figure 5. Vortex intensity against De; ={2, 4, 6, 8, 10} 

Upstream 

a) 

 

Salient-corner vortex b) 

    

Salient-corner vortex 

c) Lip - elastic c-vortices 

-
lip

 

d) Lip - elastic c-vortices 

-
lip

 

Downstream 
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a) 

a) b) 

a) b) 

Upstream  
a) Salient-v asymmetry - De<2.5          
b) Salient & lip v coexist. - 
2.5≤De≤3.7 
Downstream  
a) Salient-v asymmetry - De<3.8          
b) Salient & lip v coexist. - 
3.8≤De≤4.4 

=10 

b) 

Elastic cv-domination 
c) 3.7<De≤17.4 - Upstream 
c) 4.4<De≤17.4  - 
Downstream 
 

c) 
c) 

Lip - elastic c-vortices 
 

Salient-corner vortex 

 

-
lip

 

Figure 6. Vortex intensity against De; =10 
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Symmetric sv growth & 
intensification  

Flow direction 

=2 

Figure 7. Streamlines against De; =2 
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Flow direction 

a) Low-De – sv asymmetry;D={0.3, 0.5} 

  
 

b) Mod-De – sv growth;D=0.7 

d=0.1 

  
 

=4 

Figure 8. Streamlines against De; =4 
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Figure 9. Streamlines against De; =6 

Flow direction 

b) Mod-De – lip-vortex; D={0.4, 0.7} 

d=0.1 

  

a) Low-De – sv asymmetry; D={0, 0.2} 

c) High-De – cv growth; D={0.8, 0.95} 

=6 
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Flow direction 

a) Low-De – sv asymmetry; D=0 

d= 

b) Mod-De – lip-vortex; D={0, 0.5} 

d=0.1 

  

c) High-De – cv growth; D~0.5 
 

=8 

Figure 10. Streamlines against De; =8 
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c) High-De – cv growth; D~0.4 

a) Low-De – sv asymmetry; D=0 

d=0.1 

  
Flow direction 

b) Mod-De – lip-vortex; D~0.3 

d=0.1 

  

=10 

Figure 11. Streamlines against De; =10 
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Avg 

Avg 

Transitions 

Figure 12. Normal stress ratio against De; ={2, 4, 6, 8, 10} 
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Flow direction 

De=0.35 


D
=0 

a) Low-De – sv 

N
1
 N

2
 

De=3.47 


D
=0.1 

b) Mod-De – sv-lv coexistence 

De=4.24 


D
=0.3 

De=6.3 


D
=0.39 

De=17.4 


D
=0.22 

c) High-De – cv domination 

=10 

Figure 13. Normal stresses v streamlines against De; =10 
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a) 

b) 

Lip - elastic corner-vortex 
 

=10 

Salient-corner vortex 

Transition 

Figure 14. Vortex-structure N1max and N2max against De; a) sv, b) lv-cv; =10  
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Figure 15. Vortex-structure v viscometric N1Shear and N1Ext against De; =10 
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D=0.22 
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D=0.39 

De=0.35 

D=0 

De=3.47 
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De=4.24 

D=0.3 

Flow direction 
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a) Low-De – sv	

b) Mod-De – sv-lv coexistence 
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c) High-De – cv domination 
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Flow direction 
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swanINNFM(q) model 


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