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Abstract

The Cobham recursive set functions (CRSF) provide a notion of polynomial time
computation over general sets. In this paper, we determine a subtheory KPu

1 of
Kripke-Platek set theory whose Σ1-definable functions are precisely CRSF. The the-
ory KPu

1 is based on the ∈-induction scheme for Σ1-formulas whose leading existen-
tial quantifier satisfies certain boundedness and uniqueness conditions. Dropping the
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uniqueness condition and adding the axiom of global choice results in a theory KPC41
whose Σ1-definable functions are CRSFC , that is, CRSF relative to a global choice
function C. We further show that the addition of global choice is conservative over
certain local choice principles.

1 Introduction

Barwise begins his chapter on admissible set recursion theory with: “There are many
equivalent definitions of the class of recursive functions on the natural numbers. [. . . ] As
the various definitions are lifted to domains other than the integers (e.g., admissible sets)
some of the equivalences break down. This break-down provides us with a laboratory for
the study of recursion theory.” ([5, p.153])

Let us informally distinguish two types of characterization of the computable functions
or subsets thereof, namely, recursion theoretic and definability theoretic ones. Recursion
theoretically, the computable functions on ω are those obtainable from certain simple ini-
tial functions by means of composition, primitive recursion and the µ-operator. As a
second example, the primitive recursive functions are similarly defined but without the
µ-operator. A third example is the recursion theoretic definition of the polynomial time
functions by Cobham recursion [13] or by Bellantoni-Cook safe-normal recursion [9]. De-
finability theoretically, the computable functions are those that are Σ1-definable in the
true theory of arithmetic. A more relevant example of a definability theoretic definition is
the classic theorem of Parsons and Takeuti (see [12]) that the primitive recursive functions
are those that are Σ1-definable in the theory IΣ1; namely, one additionally requires that
this theory proves the totality and functionality of the defining Σ1-formula. Analogously,
the polynomial time functions have a definability theoretic definition as the Σb

1-definable
functions of S1

2 [11]. For more definability theoretic definitions of weak subrecursive classes,
see Cook-Nguyen [15].

Admissible set recursion theory provides a definability theoretic generalization of com-
putability: one considers functions which are Σ1-definable (in the language of set theory)
in an admissible set, that is, a transitive standard model of Kripke-Platek set theory KP.
Recall that KP consists of the axioms for Extensionality, Union, Pair, ∆0-Separation, ∆0-
Collection and ∈-Induction for all formulas ϕ(x, ~w):

∀y (∀u∈y ϕ(u, ~w)→ ϕ(y, ~w))→ ϕ(x, ~w).

To some extent this generalization of computability extends to the recursion theoretic
view. By the Σ-Recursion Theorem ([5, Chapter I, Theorem 6.4]) the Σ1-definable func-
tions of KP are closed under ∈-recursion. This implies that the primitive recursive set
functions (PRSF) of [20] are all Σ1-definable in KP. By definition, a function on the uni-
verse of sets is in PRSF if it is obtained from certain simple initial functions by means of
composition and ∈-recursion. Hence, PRSF is a recursion theoretic generalization of the
primitive recursive functions. Paralleling Parson’s theorem, Rathjen [22] showed that this
generalization extends to the definability theoretic view: PRSF contains precisely those
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functions that are Σ1-definable in KP1, the fragment of KP where ∈-Induction is adopted
for Σ1-formulas only. One can thus view PRSF as a reasonable generalization of primitive
recursive computation to the universe of sets.

It is natural to wonder whether one can find a similarly good analogue of polynomial
time computation on the universe of sets. In [7] we proposed such an analogue, following
Cobham’s [13] characterization of the polynomial time computable functions on ω as those
obtained from certain simple initial functions, including the smash function #, by means
of composition and limited recursion on notation. Limited recursion on notation restricts
both the depth of the recursion and the size of values. Namely, a recursion on notation on x
has depth roughly log x; being limited means that all values are required to be bounded
by some smash term x# · · ·#x.

In [7] a smash function for sets is introduced. The role of recursion on notation is taken
by ∈-recursion, and being limited is taken to mean being in a certain sense embeddable
into some #-term. In this way, [7] defines the class of Cobham recursive set functions
(CRSF), a recursion theoretic generalization of polynomial time computation from ω to
the universe of sets. This paper extends the analogy to the definability theoretic view.

A definability theoretic characterization of polynomial time on ω has been given by Buss
(cf. [12]). It is analogous to Parsons’ theorem, with IΣ1 replaced by S1

2 and Σ1 replaced by
a class Σb

1 of “bounded” Σ1-formulas. The theory S1
2 has a language including the smash

function # and is based on a restricted form of induction scheme for Σb
1-formulas, in which

the depth of an induction is similar to the depth of a recursion on notation.
Both directions in Buss’ characterization hold in a strong form. First, S1

2 defines poly-
nomial time functions in the sense that one can conservatively add Σb

1-defined symbols and
prove Cook’s PV1 [14], a theory based on the equations that can arise from derivations
of functions in Cobham’s calculus. Second, polynomial time functions witness simple the-
orems of S1

2. More precisely, if S1
2 proves ∃y ϕ(y, ~x) with ϕ in ∆b

0, that is, a “bounded”
∆0-formula, then ∀~xϕ(f(~x), ~x) is true for some polynomial time computable f , even prov-
ably in PV1 and S1

2.
In the present paper, we analogously replace Rathjen’s theory KP1 and Σ1-definability

with a theory KP41 and Σ41 -definability; here Σ41 -formulas are “bounded” Σ1-formulas,
defined using set smash and the embeddability notion 4 of [7]. The theory KP41 has a
finite language containing, along with ∈, some basic CRSF functions including the set
smash and has ∈-Induction restricted to Σ41 -formulas.

As we shall see, KP41 defines CRSF analogously to the first part of Buss’ characteriza-
tion. An analogy of the second part, the witnessing theorem, would state that whenever
KP41 proves ∃y ϕ(y, ~x) for a ∆0-formula ϕ, then ϕ(f(~x), ~x) is provable in ZFC (or ide-
ally in a much weaker theory) for some f in CRSF. But this fails: a function witnessing
∃y (x 6= 0→ y ∈ x) would be a global choice function, and this is not available in KP41 .

We discuss two ways around this obstacle. If we add the axiom of global choice we get a
theory KPC41 and indeed can prove a witnessing theorem as desired (Theorem 6.13). The
functions Σ1-definable in KPC41 are precisely those that are CRSF with a global choice
function as an additional initial function (Corollary 6.2). Thus, Buss’ theorems for S1

2 and
polynomial time on ω have full analogues on universes of sets equipped with global choice,
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if we consider the global choice function as a feasible function in such a universe.
Our second way around the obstacle is to further weaken the induction scheme, the

crucial restriction being that the witness to the existential quantifier in a Σ41 -formula is
required to be unique. The resulting theory KPu

1 still defines CRSF in the strong sense that
one can conservatively add Σ41 -defined function symbols and prove Tcrsf , an analogue of PV1

containing the equations coming from derivations in the CRSF calculus (Theorem 5.2).
We prove a weak form of witnessing (Theorem 6.10): if KPu

1 proves ∃y ϕ(y, ~x) for ϕ a
∆0-formula, then Tcrsf proves ∃y∈f(~x)ϕ(y, ~x) for some f in CRSF. This suffices to infer
a definability theoretic characterization of CRSF on an arbitrary universe of sets: the Σ1-
definable functions of KPu

1 are precisely those in CRSF (Corollary 6.1). We do not know
whether this holds for KP41 .

Concluding the paper we address the question how much stronger KPC41 is compared
to KP41 . We show that the difference can be encapsulated in certain local choice principles.

The outline of the paper is as follows. Section 2 recalls the development of CRSF
from [7]. For the formalizations in this paper we will use a slightly different, but equivalent,
definition of CRSF which we describe in Proposition 2.9. Section 3 defines the three theories
KP41 , KPu

1 and Tcrsf mentioned above. They extend a base theory T0 that we “bootstrap”
in Section 4, in particular deriving various lemmas which allow us to manipulate embedding
bounds. Section 5 proves the Definability Theorem 5.2 for KPu

1. A technical difficulty is
that KPu

1 is too weak to eliminate Σ41 -defined function symbols in the way this is usually
done in developments of KP or S1

2 (see Section 5.2). Section 6 proves the Witnessing
Theorems 6.10 and 6.13 for KPu

1 and KPC41 , and the Corollaries 6.1 and 6.2 on definability
theoretic characterizations of CRSF. This is done via a modified version of Avigad’s model-
theoretic approach to witnessing [4] (see Section 6.1). Our proof gives some insight about
CRSF: roughly, its definition can be given using only a certain simple form of embedding
(see Section 6.4). Section 7 proves the conservativity of global choice over certain local
choice principles (Theorem 7.2). Here, we use a class forcing as in [17] to construct a
generic expansion of any (possibly non-standard) model of our set theory. Some extra care
is needed since our set theory is rather weak.

Several related recursion theoretic notions of polynomial time set functions have been
described earlier by other authors. The characterization of polynomial time by Turing
machines has been generalized in Hamkins and Lewis [18] to allow binary input strings of
length ω. We refer to [8] for some comparison with CRSF. Yet another characterization of
polynomial time comes from the Immerman-Vardi Theorem from descriptive complexity
theory (cf. [16]). Following this, Sazonov [23] gives a theory operating with terms allowing
for least fixed-point constructs to capture polynomial time computations on (binary en-
codings of) Mostowski graphs of hereditarily finite sets. Not all of Sazonov’s set functions
are CRSF [7]. But under a suitable encoding of binary strings by hereditarily finite sets,
CRSF does capture polynomial time [7, Theorems 30, 31].

Arai [2] gives a different such class of functions. His Predicatively Computable Set Func-
tions (PCSF) form a subclass of the Safe Recursive Set Functions (SRSF) from [6]. SRSF
is defined in analogy to Bellantoni and Cook’s recursion theoretic characterization of poly-
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nomial time [9], different from Cobham’s. Bellantoni and Cook’s functions have two sorts
of arguments, called “normal” and “safe”, and recursion on notation is allowed to recurse
only on normal arguments, while values obtained by such recursions are safe. Similarly,
SRSF and PCSF contain two-sorted functions. It is shown in [7] that CRSF coincides with
the functions having only normal arguments in PCSF+ (from [2]), a slight strengthening
of PCSF. In a recent manuscript [1], Arai gives a definability theoretic characterization
of PCSFι, a class of set functions intermediate between PCSF and PCSF+. He proves a
weak form of witnessing akin to ours. He uses two-sorted set-theoretic proof systems whose
normal sort ranges over a transitive substructure of the universe, and which contains an
inference rule ensuring closure of this substructure under certain definable functions. Like
KPu

1, these systems contain a form of “unique” Σ1-Induction. As in our setting, eliminating
defined function symbols is problematic; the final system in [1] is a union of a hierarchy
of systems, each level introducing infinitely many function symbols. Thus, dealing with
similar problems, Arai’s solution is quite different from the one presented here; as is his
proof, which is based on cut-elimination.

2 Cobham recursive set functions

In this section we review some definitions and results from [7]. In later sections, many of
these results will be formalized in suitable fragments of KP.

As mentioned in the introduction, [7] generalizes Cobham’s recursion theoretic char-
acterization of polynomial time to arbitrary sets. We recall Cobham’s characterization.
On ω the smash x#y is defined as 2|x|·|y| where |x| := dlog(x + 1)e is the length (of the
binary representation) of x. We have successor functions s0(x) := 2x and s1(x) = 2x + 1
which add respectively 0 and 1 to the end of the binary representation of x.

Theorem 2.1 (Cobham 1965). The polynomial time functions on ω are obtained from ini-
tial functions, namely, projections πrj (x1, . . . , xr) :=xj, constant 0, successors s0, s1 and the
smash #, by composition and limited recursion on notation: if h(~x), g0(y, z, ~x), g1(y, z, ~x)
and t(y, ~x) are polynomial time, then so is the function f(y, ~x) given by

f(0, ~x) = h(~x),

f(sb(y), ~x) = gb(y, f(y, ~x), ~x) for b ∈ {0, 1} and sb(y) 6= 0.

provided that f(y, ~x) 6 t(y, ~x) holds for all y, ~x.

One can equivalently ask t to be built by composition from only projections, 1 and #;
or just demand |f(y, x1, . . . , xk)| 6 p(|y|, |x1|, . . . , |xk|) for some polynomial p.

We move to some fixed universe of sets, that is, a model of ZFC. The analogue of smash
defined in [7] is best understood in terms of Mostowski graphs. The Mostowski graph of
a set x has as vertices the elements of the transitive closure tc+(x) := tc({x}) and has a
directed edge from u to v if u ∈ v. Every such graph has a unique source and a unique
sink.
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The set smash x#y replaces each vertex of x by (a copy of the graph of) y with incoming
edges now going to the source of y and outgoing edges now leaving the sink of y. It can
be defined using set composition x� y, which places a copy of x above y and identifies the
source of x with the sink of y. Writing 0 for ∅,

x� y :=

{
y if x = 0,
{u� y : u ∈ x} otherwise

x#y := y � {u#y : u ∈ x}.

The Mostowski graph of x#y is isomorphic to the graph with vertices tc+(x)× tc+(y)
and directed edges from 〈u′, v′〉 to 〈u, v〉 if either u′ = u ∧ v′ ∈ v or u′ ∈ u ∧ v′ = y ∧ v = 0
(see [7, Section 2]). An isomorphism is given by σx,y(u, v) := v � {u′#y : u′ ∈ u}.

A #-term is built by composition from projections, #,� and the constant 1 = {0}.
Such terms serve as analogues of polynomial length bounds, with the bounding relation 4
defined as follows: x 4 y means that there is a (multi-valued) embedding that maps vertices
u ∈ tc(x) to pairwise disjoint non-empty sets Vu ⊆ tc(y) such that whenever u′ ∈ u and
v ∈ Vu, then there exists v′ ∈ Vu′ ∩ tc(v). The notation τ(·, ~w) : x 4 y means that
u 7→ τ(u, ~w) is such an embedding. Then [7] generalizes Cobham’s definition as follows.

Definition 2.2. The Cobham recursive set functions (CRSF) are obtained from initial
functions, namely projections, constant 0 := ∅, pair {x, y}, union

⋃
x, set smash x#y, and

the conditional

cond∈(x, y, u, v) :=

{
x if u ∈ v
y otherwise,

by composition and Cobham recursion: if g(x, z, ~w), τ(u, x, ~w) and t(x, ~w) are CRSF, then
so is the function f(x, ~w) given by

f(x, ~w) = g(x, {f(y, ~w) : y ∈ x}, ~w)

provided that τ(·, x, ~w) : f(x, ~w) 4 t(x, ~w) holds for all x, ~w.

Here the embedding proviso τ(·, x, ~w) : f(x, ~w) 4 t(x, ~w) ensures, intuitively, that a
definition by recursion is allowed only provided that we can already bound the “structural
complexity” of the defined function f . A relation is CRSF if its characteristic function is.
Direct arguments show (see [7, Theorem 13]):

Proposition 2.3.

(a) (Separation) If g(u, ~w) is in CRSF, then so is f(x, ~w) := {u ∈ x : g(u, ~w) 6= 0}.
(b) The CRSF relations contain x ∈ y and x = y, are closed under Boolean combinations

and ∈-bounded quantifications ∃u∈x and ∀u∈x .

It is then not hard to show that transitive closure tc(x), set composition x � y, the
isomorphism σx,y(u, v) and its inverses π1,x,y(z), π2,x,y(z) are CRSF [7, Theorem 13]. In
particular, #-terms are CRSF. Further, one can derive the following central lemma [7,
Lemma 20]. It says that 4 is a pre-order and that #-terms enjoy some monotonicity
properties one would expect from a reasonable analogue of “polynomial length bounds”.
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Lemma 2.4. Below if τ0 and τ1 are in CRSF then σ can also be chosen in CRSF.

(a) (Transitivity) If τ0(·, x, y, ~w) : x 4 y and τ1(·, y, z, ~w) : y 4 z, then there exists
σ(u, x, y, z, ~w) such that σ(·, x, y, z, ~w) : x 4 z.

(b) (Monotonocity) Let t(x, ~w) be a #-term. If τ0(·, x, z, ~w) : z 4 t(x, ~w) and τ1(·, x, y, ~w) :
x 4 y, then there exists σ(u, x, y, z, ~w) such that σ(·, x, y, z, ~w) : z 4 t(y, ~w).

Based on this lemma, a straightforward induction on the length of a derivation of a
CRSF function shows [7, Theorem 17]:

Theorem 2.5 (Bounding). For every f(~x) in CRSF there are a #-term t(~x) and a CRSF
function τ(u, ~x) such that τ(·, ~x) : f(~x) 4 t(~x).

In fact, in the definition of Cobham recursion one can equivalently require the function t
in the embedding proviso to be a #-term [7, Theorem 21]. Using the Bounding Theorem
and the Monotonicity Lemma one can obtain, similarly to Theorems 23, 29 and 30 of [7]:

Theorem 2.6.

(a) (Replacement) If f(y, ~w) is CRSF, then so is f”(x, ~w) = {f(y, ~w) : y ∈ x}.
(b) (Course of values recursion) If g(x, z, ~w), τ(u, x, ~w) and t(x, ~w) are CRSF, then so is

f(x, ~w) := g(x, {〈u, f(u, ~w)〉 : u ∈ tc(x)}, ~w)

provided τ(·, x, ~w) : f(x, ~w) 4 t(x, ~w) holds for all x, ~w.

(c) (Impredicative Cobham recursion) If g(x, z, ~w), τ(u, y, x, ~w) and t(x, ~w) are CRSF,
then so is

f(x, ~w) = g(x, f”(x, ~w), ~w)

provided τ(·, f(x, ~w), x, ~w) : f(x, ~w) 4 t(x, ~w) holds for all x, ~w.

Closure under replacement (a) implies that x× y is CRSF [7, Theorem 14]. Impredica-
tive Cobham recursion (c) is, intuitively, somewhat circular in that the embedding τ may
use as a parameter the set f(x, ~w) whose existence it is supposed to justify.

We introduce a variant definition of CRSF that uses syntactic Cobham recursion. The
name “syntactic” indicates that it does not have an embedding proviso, but rather con-
structs a new function from any CRSF functions g, τ and #-term t. We also allow the
bound to be impredicative in the sense of (c) above.

Definition 2.7. Let g(x, z, ~w) and τ(u, y, x, ~w) be functions and t(x, ~w) a #-term. Then
syntactic Cobham recursion gives the function f(x, ~w) defined by

f(x, ~w) =

{
g(x, f”(x, ~w), ~w) if τ is an embedding into t at x, ~w
0 otherwise

(1)

where the condition “τ is an embedding into t at x, ~w” stands for

τ(·, g(x, f”(x, ~w), ~w), x, ~w) : g(x, f”(x, ~w), ~w) 4 t(x, ~w). (2)
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Note that Proposition 2.3 implies that the condition (2) is a CRSF relation, cf. (4) in
Section 3.2.

Proposition 2.8. The CRSF functions are precisely those obtained from the initial func-
tions by composition and syntactic Cobham recursion.

Proof. Since the condition (2) is a CRSF relation, (1) can be written f(x, ~w) = g′(x, f”(x, ~w), ~w)
for some g′ in CRSF. The embedding proviso τ(·, f(x, ~w), x, ~w) : f(x, ~w) 4 t(x, ~w) holds
for all x, ~w, since either (2) holds, in which case f(x, ~w) = g(x, f”(x, ~w), ~w) so (2) gives us
the embedding, or f(x, ~w) = 0, in which case any function is an embedding of f(x, ~w) into
t(x, ~w). We thus get that f is CRSF by impredicative Cobham recursion.

Conversely, assume f(x, ~w) is obtained from g, τ, t by Cobham recursion, and in par-
ticular that the embedding proviso is satisfied for all x, ~w. Then f satisfies (1), so f can
be obtained by syntactic Cobham recursion. By [7, Theorem 21], we can assume that t is
a #-term.

The next proposition describes the definition of CRSF that we will formalize with the
theory Tcrsf in Section 3.4. Closure under replacement and the extra initial functions are
included to help with the formalization.

Proposition 2.9. The CRSF functions are precisely those obtained from projection, zero,
pair, union, conditional, transitive closure, cartesian product, set composition and set
smash functions by composition, replacement and syntactic Cobham recursion.

Remark 2.10. For an arbitrary function g(~x), let CRSFg be defined as CRSF but with g(~x)
as additional initial function. This class might be interpreted as a set-theoretic analogue of
polynomial time computations with an oracle function g(~x). If there is τ(u, ~x) in CRSFg

such that τ(·, ~x) : g(~x) 4 t(~x) for some #-term t(~x), then all results mentioned in this
section “relativize”, that is, hold true with CRSF replaced by CRSFg.

3 Theories for CRSF

3.1 The language L0 and theory T0

The language L0 contains the relation symbol ∈ and symbols for the following CRSF
functions:

0, 1,
⋃
x, {x, y}, x× y, tc(x), x� y, x#y.
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The meaning of these symbols is given by their defining axioms:

symbol defining axiom

0 u /∈ 0
1 u ∈ 1↔ u = 0⋃
x u ∈

⋃
x↔ ∃y∈x (u ∈ y)

{x, y} u ∈ {x, y} ↔ u = x ∨ u = y
x× y u ∈ x× y ↔ ∃x′∈x∃y′∈y (u = 〈x′, y′〉)
tc(x) u ∈ tc(x)↔ u ∈ x ∨ ∃y∈x (u ∈ tc(y))
x� y 0� y = y ∧ (x 6= 0→ x� y = {z � y : z ∈ x})
x#y ∃w∈tc+(x#y) (w = {z#y : z ∈ x} ∧ (x#y = y � w))

The table above uses some special notations: as usual, {x} stands for the term {x, x},
〈x, y〉 for the term {{x}, {x, y}}, x ∪ y for the term

⋃
{x, y}, and x ⊆ y for the formula

∀u∈x (u ∈ y). We write tc+(x) for the term tc({x}). The final two lines of the table use
“replacement terms”. More generally, we use three types of comprehension terms:

Definition 3.1. The following notations are used for comprehension terms:

- Proper comprehension terms: for a formula ϕ(u, ~x), we write z = {u ∈ x : ϕ(u, ~x)}
for

∀u∈z (u ∈ x ∧ ϕ(u, ~x)) ∧ ∀u∈x (ϕ(u, ~x)→ u ∈ z).

- Collection terms: for a formula ϕ(u, v, ~x), we write z = {v : ∃u∈xϕ(u, v, ~x)} for

∀v∈z ∃u∈xϕ(u, v, ~x) ∧ ∀v ((∃u∈xϕ(u, v, ~x))→ v ∈ z). (3)

- Replacement terms: for a term t(u, ~x), we write z = {t(u, ~x) : u ∈ x} for

z = {v : ∃u∈x (v = t(u, ~x))}.

Such terms may not be used as arguments to functions.

We use collection terms only in contexts where we have ∀u∈x ∃!v ϕ(u, v, ~x), so that (3)
is equivalent to

∀v∈z ∃u∈xϕ(u, v, ~x) ∧ ∀u∈x ∃v∈z ϕ(u, v, ~x).

In particular, this is the case for replacement terms. These restrictions ensure that our
formulas are ∆0(L0) whenever ϕ is, provided that the comprehension terms have the unique-
ness property. As usual, we write ∃!y ϕ(y, ~x) for ∃61y ϕ ∧ ∃y ϕ, where ∃61y ϕ stands for
∀y, y′ (ϕ(y, ~x) ∧ ϕ(y′, ~x)→ y = y′).

Instead of ∆0 etc. we use more precise notation, making the language explicit:

Definition 3.2. Let L be a language containing L0. Then ∆0(L) is the set of L-formulas ϕ
in which all quantifiers are ∈-bounded, that is, of the form ∃x∈t or ∀x∈t where t is an
L-term not involving x. We refer to t as an ∈-bounding term in ϕ.

The classes Σ1(L) and Π1(L) contain the formulas obtained from ∆0(L)-formulas by
respectively existential and universal quantification, and Π2(L) contains those obtained
from Σ1(L)-formulas by universal quantification.
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We define our basic theory, which the other theories we consider will extend.

Definition 3.3. The theory T0 consists of

- the defining axioms for the symbols in L0

- the Extensionality axiom: x 6= y → ∃u∈x (u /∈ y) ∨ ∃u∈y (u /∈ x)

- the Set Foundation axiom: x 6= 0→ ∃y∈x∀u∈y (u /∈ x)

- the tc-Transitivity axiom: y ∈ tc(x)→ y ⊆ tc(x)

- the ∆0(L0)-Separation scheme: ∃z (z = {u ∈ x : ϕ(u, ~w)}) for ϕ ∈ ∆0(L0).

Lemma 3.4. The theory T0 proves the ∆0(L0)-Induction scheme

∀y (∀u∈y ϕ(u, ~w)→ ϕ(y, ~w))→ ϕ(x, ~w) for ϕ ∈ ∆0(L0).

Proof. ∆0(L0)-Induction is logically equivalent to ∆0(L0)-Foundation

ϕ(x, ~w)→ ∃y (ϕ(y, ~w) ∧ ∀u∈y ¬ϕ(u, ~w))

for ϕ in ∆0(L0) which is derived in T0 as follows. Assume ϕ(x, ~w) and use ∆0(L0)-
Separation to get the set z = {y ∈ tc+(x) : ϕ(y, ~w)}. Then x ∈ tc+(x) by the defining
axiom for tc, so x ∈ z 6= 0. Choose y as the ∈-minimal element in z according to Set Foun-
dation. Then ϕ(y, ~w) and, if u ∈ y, then u /∈ z, and thus ¬ϕ(u, ~w) because u ∈ y ⊆ tc+(x)
by tc-Transitivity.

Remark 3.5. It is for the sake of the previous lemma that the tc-Transitivity axiom is
included in T0. In fact, this axiom is equivalent to ∆0(L0)-Induction with respect to the
remaining axioms of T0.

3.2 Embeddings

An embedding of a set x into a set y is an injective multifunction τ from tc(x) to tc(y)
which respects the ∈-ordering on tc(x) in a certain sense. There are several variants of
embeddings, depending on how τ is defined.

Definition 3.6. A function symbol τ(u, ~w) is a strongly uniform embedding (with pa-
rameters ~w) of x in y if the following ∆0(L0 ∪ {τ})-formula holds (where for the sake of
readability we suppress the parameters ~w):

∀u∈tc(x) (τ(u) ⊆ tc(y))

∧ ∀u∈tc(x) (τ(u) 6= 0)

∧ ∀u, u′∈tc(x) (u 6= u′ → (τ(u) and τ(u′) are disjoint))

∧ ∀u∈tc(x)∀u′∈u∀v∈τ(u)∃v′∈τ(u′) (v′ ∈ tc(v)).

(4)

The last conjunct is read as “for all u, u′ ∈ tc(x), if u′ ∈ u then for every v in the image of u
there is some v′ in the image of u′ with v′ ∈ tc(v).” Note that the “identity” multifunction
u 7→ {u} is an embedding of x in x; we will call an embedding of this form the identity
embedding.
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We abbreviate (4) by τ(·, ~w) : x 4 y. We next introduce terminology for embeddings
whose graphs are given by formulas and embeddings whose graphs are given by sets.

Definition 3.7. Given a formula ε(u, v, ~w), we define ε(·, ·, ~w) : x 4 y to be condition (4)
with v ∈ τ(u, ~w) replaced by v ∈ tc(y)∧ ε(u, v, ~w). More precisely, ε(·, ·, ~w) : x 4 y means:

∀u∈tc(x)∃v∈tc(y) ε(u, v, ~w)

∧ ∀u, u′∈tc(x)∀v∈tc(y) (u 6= u′ → ¬ε(u, v, ~w) ∨ ¬ε(u′, v, ~w))

∧ ∀u∈tc(x)∀u′∈u∀v∈tc(y) (ε(u, v, ~w)→ ∃v′∈tc(v) ε(u′, v′, ~w)).

(5)

This kind of embedding is called a weakly uniform embedding.

Definition 3.8. For a set e, we write e : x 4 y if e ⊆ tc(x) × tc(y) and ε(·, ·, e) : x 4 y
holds when ε(u, v, e) is the formula 〈u, v〉 ∈ e. We write simply x 4 y to abbreviate
∃e (e : x 4 y). This is called a nonuniform embedding.

Note that e : x 4 y is ∆0(L0). More generally, if ε is a ∆0(L)-formula in a language
L ⊇ L0 then ε(·, ·, ~w) : x 4 y is also ∆0(L).

Definition 3.9. We say that a theory defines a ∆0(L0)-embedding x 4 y if there is a
∆0(L0)-formula ε(u, v, x, y) such that the theory proves ε(·, ·, x, y) : x 4 y.

The next lemma is useful for constructing embeddings. We state it for nonuniform
embeddings, but there are analogous versions for strongly and weakly uniform embeddings.
Say that two embeddings e : x 4 z and f : y 4 z are compatible if their union is still an
injective multifunction, that is, if it satisfies the disjointness condition of (4). In particular,
embeddings with disjoint ranges are automatically compatible.

Lemma 3.10. Provably in T0, if two embeddings e : x 4 z and f : y 4 z are compatible,
then e ∪ f : x ∪ y 4 z.

Proof. It follows from the axioms that u ∈ tc(x ∪ y) if and only if u ∈ tc(x) or u ∈ tc(y).
The proof is then immediate.

3.3 The theories KP41 and KPu
1

This section defines theories KP41 and KPu
1 that, intuitively, are to Rathjen’s KP1 as S1

2 is
to IΣ1. The role of “sharply bounded” quantification in S1

2 is now played by ∈-bounded
quantification. The analogue of a “bounded” quantifier in our context is one where the
quantified variable is embeddable in a #-term:

Definition 3.11. A #-term is a {1,�,#}-term.

Saying that a set is embeddable in a #-term t(x) is analogous to saying that a num-
ber/string has length at most p(|x|) for some polynomial p. When we write a #-term, we
will use the convention that the # operation takes precedence over �, and otherwise we
omit right-associative parentheses. So for example 1� x#y� z is read as 1� ((x#y)� z).
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Definition 3.12. Let L be a language containing L0. The class Σ41 (L) consists of L-
formulas of the form

∃x4t(~x)ϕ(x, ~x)

where t is a #-term not involving x and ϕ is ∆0(L). Here ∃x4t ϕ stands for ∃x (x4t∧ϕ).
Recall that x 4 y denotes a nonuniform embedding, i.e., it stands for ∃e (e : x 4 y). Hence
a Σ41 (L)-formula is also a Σ1(L)-formula. (See also Lemma 4.13.)

Note that the term 4-bounding the leading existential quantifier in a Σ41 (L)-formula is
required to be a #-term while the ∈-bounding terms in the ∆0(L)-part can be arbitrary
L-terms.

Definition 3.13. The theory KP41 consists of T0 without tc-Transitivity, that is, the defin-
ing axioms for the symbols in L0, Extensionality, Set Foundation and ∆0(L0)-Separation,
together with the two schemes:

- ∆0(L0)-Collection:

∀u∈x ∃v ϕ(u, v, ~w)→ ∃y ∀u∈x ∃v∈y ϕ(u, v, ~w) for ϕ ∈ ∆0(L0),

- Σ41 (L0)-Induction:

∀y (∀u∈y ϕ(u, ~w)→ ϕ(y, ~w))→ ϕ(x, ~w) for ϕ ∈ Σ41 (L0).

We omitted tc-Transitivity from the definition of KP41 because it is not one of the usual
axioms for Kripke-Platek set theories. However, tc-Transitivity can be proven by ∆0(L0)-
Induction from the rest of the axioms of T0. Since ∆0(L0)-Induction is contained in KP41 ,
it follows that tc-Transitivity is a consequence of KP41 . Thus KP41 contains T0. The same
holds for the theory KPu

1 defined next.
Our goal is to Σ41 (L0)-define all CRSF functions in KP41 in the following sense. Fix a

universe of sets V (a model of ZFC); of course, we may view V as interpreting L0. Let T
be a theory and Φ a set of formulas. A function f(~x) over V is Φ-definable in T if there is
ϕ(y, ~x) ∈ Φ such that V |= ∀~xϕ(f(~x), ~x) and T proves ∃!y ϕ(y, ~x).

In fact, we will show that an apparently weaker theory KPu
1 is sufficient for this purpose.

KPu
1 is defined in the same way as KP41 , except that the induction scheme is restricted to

Σ41 (L0)-formulas of a special form, where the witness to the leading existential quantifier is
required to be unique and uniformly embeddable into a #-term (hence the superscript u).
We will see later (in Lemma 4.13) that it is only the uniqueness requirement that distin-
guishes this from KP41 .

Definition 3.14. The theory KPu
1 consists of T0 without tc-Transitivity, that is, the defin-

ing axioms for the symbols in L0, Extensionality, Set Foundation and ∆0(L0)-Separation,
together with ∆0(L0)-Collection and the scheme:

- Uniformly Bounded Unique Σ41 (L0)-Induction

∀u∃61v ϕ(u, v, ~w) ∧ ∀y
(
∀u∈y ∃v ϕε,t(u, v, ~w)→ ∃v ϕε,t(y, v, ~w)

)
→ ∃v ϕε,t(x, v, ~w)
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where ϕε,t(u, v, ~w) abbreviates the formula

ϕ(u, v, ~w) ∧ ε(·, ·, v, u, ~w) : v 4 t(u, ~w)

and the scheme ranges over ∆0(L0)-formulas ϕ, ε and #-terms t.

3.4 The language Lcrsf and theory Tcrsf

Our final main theory, Tcrsf , is an analogue of the bounded arithmetic theory PV1. Tcrsf

has a function symbol for every CRSF function, and Π1 axioms describing how the CRSF
functions are defined from each other. By comparison, KP41 and KPu

1 are analogues of S1
2.

One of our main results is Theorem 6.9, which states that a definitional expansion of KPu
1

is Π2(Lcrsf)-conservative over Tcrsf , that is, every Π2(Lcrsf)-sentence provable in the former
theory is also provable in the latter. Theorem 6.12 states an analogous result for KP41 , but
only with the addition of a global choice function to Tcrsf .

Definition 3.15. The language Lcrsf consists of ∈ and the function symbols listed below.
The theory Tcrsf contains the axioms of Extensionality, Set Foundation and tc-Transitivity,
together with a defining axiom for each function symbol of Lcrsf , as follows.

- Lcrsf contains the function symbols from L0, and Tcrsf contains their defining axioms.

- Lcrsf contains the function symbols projni for 1 6 i 6 n and cond∈(x, y, u, v) with
defining axioms projni (x1, . . . , xn) = xi and

cond∈(x, y, u, v) =

{
x if u ∈ v
y otherwise.

- (Closure under composition) For all function symbols h, g1, . . . , gk ∈ Lcrsf of suitable
arities, Lcrsf contains the function symbol fh,~g with defining axiom

fh,~g(~x) = h(g1(~x), . . . , gk(~x)).

- (Closure under replacement) For all function symbols f ∈ Lcrsf , Lcrsf contains the
function symbol f” with defining axiom

f”(x, ~z) = {f(y, ~z) : y ∈ x}.

- (Closure under syntactic Cobham recursion) Suppose g, τ are function symbols in
Lcrsf and t is a #-term. Let us write “τ is an embedding into t at x, ~w” for the
∆0(Lcrsf)-formula

τ(·, g(x, f”(x, ~w), ~w), x, ~w) : g(x, f”(x, ~w), ~w) 4 t(x, ~w).

Then Lcrsf contains the function symbol f = fg,τ,t with defining axiom

f(x, ~w) =

{
g(x, f”(x, ~w), ~w) if τ is an embedding into t at x, ~w
0 otherwise.

13



Proposition 3.16. The universe V of sets can be expanded uniquely to a model of Tcrsf .
The Lcrsf-function symbols then name exactly the CRSF functions as defined in Proposi-
tion 2.9.

Because of closure under composition, every Lcrsf-term is equivalent to an Lcrsf-function
symbol, provably in Tcrsf . Hence we will not always be careful to distinguish between terms
and function symbols in Lcrsf .

Lemma 3.17. For every function symbol f ∈ Lcrsf , there is a function symbol g ∈ Lcrsf

such that Tcrsf proves g(x, ~w) = {y ∈ x : f(y, ~w) 6= 0}.

Proof. Using cond∈ we may construct a function symbol h(y, ~w) which takes the value {y}
if f(y, ~w) /∈ {0} and the value 0 otherwise. We put g(x, ~w) =

⋃
h”(x, ~w).

The next lemma is proved as in the development of CRSF in [7, Theorem 13]. Note
that we do not need recursion to prove either Lemma 3.17 or Lemma 3.18.

Lemma 3.18. Every ∆0(Lcrsf)-formula is provably equivalent in Tcrsf to a formula of the
form f(~x) 6= 0 for some Lcrsf-function symbol f . It follows that the Lcrsf functions are closed
under ∆0(Lcrsf)-Separation provably in Tcrsf ; that is, for every ∆0(Lcrsf)-formula ϕ(y, ~w)
there is an Lcrsf-function symbol f such that Tcrsf proves f(x, ~w) = {y ∈ x : ϕ(y, ~w)}.

Corollary 3.19. The theory Tcrsf extends T0.

4 Bootstrapping

4.1 Bootstrapping the defining axioms

We first derive some simple consequences of the defining axioms, namely basic properties
of tc, a description of the Mostowski graph of x� y, injectivity of � in its first argument,
and associativity of �.

Lemma 4.1. The theory T0 proves

(a) x ⊆ y → tc(x) ⊆ tc(y), tc(x) = tc(tc(x)),

(b) u ∈ tc(x� y)↔ (u ∈ tc(y) ∨ ∃u′∈tc(x) (u = u′ � y)),

(c) x 6= x′ → x� y 6= x′ � y,

(d) x� (y � z) = (x� y)� z.

Proof. We omit the proof of (a).
For (b) argue in T0 as follows. If x = 0, the claim follows from the �-axiom, so assume

x 6= 0. We prove (→) by ∆0(L0)-Induction (recall Lemma 3.4), so assume it to hold for all
x′ ∈ x. Let u ∈ tc(x � y). By the tc,�-axioms, either u ∈ tc(x′ � y) for some x′ ∈ x or
u ∈ x� y. In the first case our claim follows by induction noting tc(x′) ⊆ tc(x) by (a). In
the second case, u = u′ � y for some u′ ∈ x by the �-axiom.
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Conversely, we first show u ∈ tc(y) → u ∈ tc(x � y). By ∆0(L0)-Induction we can
assume this holds for all z ∈ x. Assume u ∈ tc(y) and let z ∈ x be arbitrary. Then
u ∈ tc(z � y) by induction. But z � y ∈ x� y, so tc(z � y) ⊆ tc(x� y) by (a).

Finally, we show u ∈ tc(x) → u � y ∈ tc(x � y). We assume this for all z ∈ x. Let
u ∈ tc(x). If u ∈ x, then u� y ∈ x� y ⊆ tc(x� y). Otherwise u ∈ tc(z) for some z ∈ x.
Then u� y ∈ tc(z � y) by induction; but tc(z � y) ⊆ tc(x� y) by z � y ∈ x� y and (a).

For (c) argue in T0 as follows. Suppose there are y, x0, x
′
0 such that x0 6= x′0 and

x0 � y = x′0 � y. It is easy to derive ∀x (x ∈ tc+(x)), so the set

z := {x ∈ tc+(x0) : ∃x′∈tc+(x′0) (x 6= x′ ∧ x� y = x′ � y)}

is non-empty because it contains x0. The set exists by ∆0(L0)-Separation. By Foundation,
it contains an ∈-minimal element x1. Choose x′1 ∈ tc+(x′0) with x1 6= x′1 and x1�y = x′1�y.

We claim that x1, x
′
1 are both non-empty. Assume otherwise, say, x′1 = 0 and hence

x1 6= 0. An easy ∆0(L0)-Induction shows x /∈ tc(x) and (x 6= 0 → 0 ∈ tc(x)) for all x.
Then y /∈ y = x′1 � y and y = 0�y ∈ tc(x1�y) by (b). This contradicts x1 � y = x′1 � y.

Choose x2 such that either x2 ∈ x1 ∧ x2 /∈ x′1 or x2 ∈ x′1 ∧ x2 /∈ x1. Assume the former
(the latter case is similar). By the �-axiom, x2 � y ∈ x1 � y = x′1 � y. Since x′1 6= 0 the
�-axiom gives x′2 ∈ x′1 such that x2 � y = x′2 � y. As x2 /∈ x′1 we have x2 6= x′2. By (a),
x2 ∈ x1 ⊆ tc+(x0) and x′2 ∈ x′1 ⊆ tc+(x′0). Thus x2 ∈ z, contradicting the minimality of x1.

For (d), an easy induction shows that u � 0 = u for all u. Item (d) is then true
immediately if any of x, y or z is 0. Otherwise it follows by induction on x, using the
�-axiom.

We write 2� := 1 � 1, 3� := 1 � 1 � 1, etc. Notice that, in T0, 1 � x = {x}. We give
an example of how we can now begin to build useful embeddings.

Example 4.2. There is a #-term tpair(x, y) such that T0 defines a ∆0(L0)-embedding
from 〈x, y〉 into tpair(x, y).

Proof. We put tpair(x, y) := 4� � x� 1� y. Consider the relations

e := {〈u, u〉 : u ∈ tc+(y)}
f := {〈u, u� 1� y〉 : u ∈ tc+(x)}
g := {〈{x}, 2� � x� 1� y〉}
h := {〈{x, y}, 3� � x� 1� y〉}.

Then e : {y} 4 tpair(x, y) and f : {x} 4 tpair(x, y), and these two embeddings are compati-
ble since they have disjoint ranges. So e∪f : {x, y} 4 tpair(x, y) (appealing to Lemma 3.10),
hence e∪f ∪h : {{x, y}} 4 tpair(x, y). On the other hand f ∪g : {{x}} 4 tpair(x, y). These
are compatible, so e∪f∪g∪h : {{x}, {x, y}} 4 tpair(x, y), as required. All these embeddings
can be expressed straightforwardly in T0 by ∆0(L0)-formulas.
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4.2 Adding ∈-bounded functions

We give a small expansion T+
0 of T0.

Definition 4.3. Let L+
0 be the language obtained from L0 by adding a relation symbol

R(~x) for every ∆0(L0)-formula ϕ(~x), and a function symbol f(~x) for every ∆0(L0)-formula
ψ(y, ~x) such that T0 proves ∃!y∈t(~x)ψ(y, ~x) for some L0-term t(~x).

The theory T+
0 has language L+

0 and is obtained from T0 by adding for every relation
symbol R(~x) in L+

0 as above the defining axiom R(~x) ↔ ϕ(~x), and for every function
symbol f(~x) in L+

0 as above the defining axiom ψ(f(~x), ~x).

Proposition 4.4. T+
0 is a conservative extension of T0. Every ∆0(L

+
0 )-formula is T+

0 -
provably equivalent to a ∆0(L0)-formula. In particular, T+

0 proves ∆0(L
+
0 )-Induction and

∆0(L
+
0 )-Separation.

We omit the proof. The language L+
0 and the theory T+

0 are introduced mainly for
notational convenience. Interesting functions often do not have ∈-bounded values.

Lemma 4.5. Every function symbol introduced in L+
0 has a copy in Lcrsf for which Tcrsf

proves the defining axiom.

Proof. Suppose T0 proves ∃!y∈t(~x)ψ(y, ~x). Then using Lemma 3.18 we can compute y
in Tcrsf as

⋃
{y ∈ t(~x) : ψ(y, ~x)}.

Example 4.6. The language L+
0 contains the relation symbol IsPair(x) with defining

axiom ∃u, v∈tc(x) (x = 〈u, v〉), the function symbol cond∈(x, y, u, v) with defining axiom
as in Definition 3.15, and function symbols π1(x), π2(x) and w’x such that T+

0 proves
π1(〈x1, x2〉) = x1, π2(〈x1, x2〉) = x2 and

w’x =

{
y if y is unique with 〈x, y〉 ∈ w
0 otherwise.

We now formalize the graph isomorphism for # mentioned in Section 2. We introduce
#”(u, y) below as an auxiliary function to formulate the defining axiom for σx,y(u, v).

Lemma 4.7. There are function symbols #”(u, y), σx,y(u, v), π1,x,y(w) and π2,x,y(w) in L+
0

such that T+
0 proves

#”(u, y) = {u′#y : u′ ∈ u},

σx,y(u, v) =

{
v �#”(u, y) if u ∈ tc+(x) and v ∈ tc+(y)
0 otherwise.

Moreover, T+
0 proves that

(a) σx,y is injective on arguments u ∈ tc+(x), v ∈ tc+(y).

(b) Every w ∈ tc+(x#y) has a σx,y-preimage (π1,x,y(w), π2,x,y(w)).
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(c) For all u, u′ ∈ tc+(x) and v, v′ ∈ tc+(y),

σx,y(u
′, v′) ∈ σx,y(u, v)↔ (u′ = u ∧ v′ ∈ v) ∨ (u′ ∈ u ∧ v′ = y ∧ v = 0).

Proof. The functions #”(u, y), σx,y(u, v) have obvious defining axioms. Concerning bound-
ing terms, from the #-axiom we get that #”(u, y) ∈ tc+(u#y) and

x#y = y �#”(x, y). (6)

By induction on x, using Lemma 4.1(b), we get that if u ∈ tc+(x) then u#y ∈ tc+(x#y).
Another use of Lemma 4.1(b) shows that if v ∈ tc+(y) then v � #”(u, y) ∈ tc+(u#y).
Hence σx,y(u, v) ∈ tc+(x#y).

Observe that for u ∈ tc+(x), v ∈ tc+(y),

v 6= 0→ σx,y(u, v) = {σx,y(u, v′) : v′ ∈ v},
σx,y(u, 0) = {σx,y(u′, y) : u′ ∈ u}.

(7)

The first line is from the definition. For the second, note z ∈ σx,y(u, 0) is equivalent to
z ∈ #”(u, y), and hence to z = u′#y for some u′ ∈ u; but u′#y = σx,y(u

′, y) by (6).
For (a), let u, ũ, . . . range over tc+(x) and v, ṽ, . . . range over tc+(y). We claim that

σx,y(u, v) = σx,y(ũ, ṽ) implies u = ũ and v = ṽ. By Lemma 4.1(c) it suffices to show it
implies u = ũ. Assume otherwise. By ∆0(L

+
0 )-Foundation choose u ∈-minimal such that

there exist ũ, v, ṽ with σx,y(u, v) = σx,y(ũ, ṽ) and u 6= ũ; then choose ũ ∈-minimal such that
there are v, ṽ with this property, and so on for v, ṽ. We distinguish two cases, as in (7).

First suppose v 6= 0. Then there is v′ ∈ v such that σx,y(u, v
′) ∈ σx,y(ũ, ṽ). If ṽ 6= 0,

then σx,y(u, v
′) = σx,y(ũ, v

′′) for some v′′ ∈ ṽ, and this contradicts the choice of v. If ṽ = 0,
then σx,y(u, v

′) = σx,y(u
′, y) for some u′ ∈ ũ, and this contradicts the choice of ũ.

Now suppose v = 0. If ṽ = 0, then {σx,y(u′, y) : u′ ∈ u} = {σx,y(u′′, y) : u′′ ∈ ũ},
so for each u′ ∈ u there is u′′ ∈ ũ such that σx,y(u

′, y) = σx,y(u
′′, y), so then u′ = u′′ by

choice of u; thus u ⊆ ũ. Similarly ũ ⊆ u, contradicting our assumption u 6= ũ. If ṽ 6= 0,
then for each u′ ∈ u there is v′ ∈ ṽ such that σx,y(u

′, y) = σx,y(ũ, v
′), so u′ = ũ by choice

of u. Thus u = 0 or u = {ũ}; the latter is impossible by choice of u, so u = 0; then
σx,y(ũ, ṽ) = σx,y(u, v) = σx,y(0, 0) = 0, so ṽ = 0, a contradiction.

For (b) we will show surjectivity; π1,x,y(w) and π2,x,y(w) can then easily be constructed.
So let w ∈ tc+(x#y). If w = x#y, put u := x, v := y. Otherwise w ∈ tc(x#y) =
tc(y � #”(x, y)) by (6). By Lemma 4.1(c) we have two cases. If w = v′ � #”(x, y) for
some v′ ∈ y, put u := x, v := v′. If w ∈ tc(#”(x, y)), then w ∈ tc+(x′#y) for some x′ ∈ x
and, using ∆0(L

+
0 )-Induction on x, we find u ∈ tc+(x′) ⊆ tc+(x) and v ∈ tc+(y) with

w = σx′,y(u, v). Since σx,y(u, v) does not depend on x, we have w = σx′,y(u, v) = σx,y(u, v).
Claim (c) follows by (7).

4.3 Monotonicity lemma

We can now formally derive non-uniform and weakly uniform versions of the Monotonicity
Lemma 2.4, meaning “monotonicity of #-terms with respect to embeddings.” Note that
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Lemma 4.8 includes as a special case the transitivity of embeddings,

z 4 x ∧ x 4 y → z 4 y. (8)

Lemma 4.8 (Monotonicity). For all #-terms t(x, ~w) the theory T0 proves

z 4 t(x, ~w) ∧ x 4 y → z 4 t(y, ~w). (9)

Moreover, for all ∆0(L0)-formulas ε0, ε1 there is a ∆0(L0)-formula ε2 such that T0 proves

ε0(·, ·, x, z, ~w) : z 4 t(x, ~w) ∧ ε1(·, ·, x, y, ~w) : x 4 y → ε2(·, ·, x, y, z, ~w) : z 4 t(y, ~w).

Proof. We only verify the first statement; the second follows by inspection of the proof.
We proceed by induction on t. We work in T+

0 , which is sufficient by Proposition 5.5.
If t(x, ~w) is 1 or a variable distinct from x, then there is nothing to show. If t(x, ~w)

equals x then we have to show (8). So assume e : z 4 x and f : x 4 y. Then

g := {〈u,w〉 ∈ tc(z)× tc(y) : ∃v∈tc(x) (〈u, v〉 ∈ e ∧ 〈v, w〉 ∈ f)}

exists by ∆0(L0)-Separation. We claim g : z 4 y. It is easy to see that 〈u,w〉, 〈u′, w〉 ∈ g
implies u = u′. Assume u′ ∈ u ∈ tc(x) and 〈u,w〉 ∈ g. Choose v such that 〈u, v〉 ∈ e and
〈v, w〉 ∈ f . Then there is v′ ∈ tc(v) such that 〈u′, v′〉 ∈ e. It now suffices to show that,
generally, for all v, v′, w we have

v′ ∈ tc(v) ∧ 〈v, w〉 ∈ f → ∃w′∈tc(w) 〈v′, w′〉 ∈ f.

This is clear if v′ ∈ v. Otherwise, v′ ∈ tc(v′′) for some v′′ ∈ v. Then choose w′′ ∈ tc(w)
such that 〈v′′, w′′〉 ∈ f . Appealing to ∆0(L0)-Induction, we can find w′ ∈ tc(w′′) such that
〈v′, w′〉 ∈ f . Then w′ ∈ tc(w) by Lemma 4.1(a), as claimed.

As preparation for the induction step in our induction on t, we show

x 4 x′ ∧ y 4 y′ → x� y 4 x′ � y′ ∧ x#y 4 x′#y′. (10)

Assume e : x 4 x′ and f : y 4 y′. By ∆0(L0)-Separation the set

{〈u, v〉 ∈ tc(x�y)×tc(x′�y′) : ∃u′∈tc(x)∃v′∈tc(x′) (u = u′�y∧v = v′�y′∧〈u′, v′〉 ∈ e)}

exists. We leave it to the reader to check that its union with f witnesses x� y 4 x′ � y′.
For #, observe e+ := e∪{〈x, x′〉} : {x} 4 {x′} and f+ := f∪{〈y, y′〉} : {y} 4 {y′}. Let g be
the set containing the pairs 〈σx,y(u, v), σx′,y′(u

′, v′)〉 such that 〈u, u′〉 ∈ e+ and 〈v, v′〉 ∈ f+.
This set g exists by ∆0(L

+
0 )-Separation. Using Lemma 4.7 it is straightforward to check

that g : x#y 4 x′#y′.
Now the induction step is easy. We are given embeddings z 4 t(x, ~w) and x 4 y. As-

sume first that t(x, ~w) = t1(x, ~w)�t2(x, ~w). By the identity embedding t1(x, ~w) 4 t1(x, ~w),
and applying the inductive hypothesis gives t1(x, ~w) 4 t1(y, ~w). Similarly t2(x, ~w) 4
t2(y, ~w). Applying (10) we get

t1(x, ~w)� t2(x, ~w) 4 t1(y, ~w)� t2(y, ~w),

that is, t(x, ~w) 4 t(y, ~w). This, together with (8), implies (9). The case of t1(x, ~w)#t2(x, ~w)
is analogous.
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4.4 Some useful embeddings

We first show that we can embed all L+
0 -terms into #-terms.

Lemma 4.9. The theory T0 defines a ∆0(L0)-embedding of x× y into a #-term t×(x, y).

Proof. By Proposition 4.4 it suffices to prove this for T+
0 and a ∆0(L

+
0 )-embedding. We

set
t×(x, y) = (x#y)� (x#y)� x� y � x.

The formula ε×(z, z′, x, y) implements the following informal procedure on input z, z′, x, y.
In the description of this procedure we understand that whenever a “check” is carried out
then the computation halts, and the procedure rejects or accepts depending on whether
the check failed or not. For example, line 2 is reached only if z /∈ tc(x).

It is easy to check that the condition that z, z′, x, y is accepted is expressible as a
∆0(L0)-formula.

Input: z, z′, x, y

1. if z ∈ tc(x) then check z′ = z

2. if z ∈ tc(y) then check z′ = z � x
3. guess u ∈ x
4. if z = {u} then check z′ = u� y � x
5. guess v ∈ y
6. if z = {u, v} then check z′ = σx,y(u, v)� x� y � x
7. if z = {{u}, {u, v}} then check z′ = σx,y(u, v)� (x#y)� x� y� x
8. reject

It is clear that any z ∈ tc(x × y) is mapped to at least one z′. Further, distinct z 6= z̃
cannot be mapped to the same z′ = z̃′: any z′ satisfies the check of at most one line and
this line determines the pre-image z (Lemmas 4.7 and 4.1(c)).

Assume z ∈ z̃ and z̃ is mapped to z̃′. We have to find z′ ∈ tc(z̃′) such that z is mapped
to z′. This is easy if z ⊂ tc(x)∪ tc(y), so assume this is not the case. Then z̃ cannot satisfy
any “if” condition before line 7. Hence z̃ = {{u}, {u, v}} for some u ∈ x, v ∈ y and z̃′

satisfies the check in line 7. As z ∈ z̃ we have z = {u} or z = {u, v} and for suitable guesses
in lines 3 and 5, z satisfies the “if” condition of line 4 or 6. Then choose z′ satisfying the
(first) corresponding check.

Lemma 4.10. For each L+
0 -term s(~x) the theory T0 defines a ∆0(L0)-embedding of s(~x)

into a #-term s#(~x).

Proof. This follows by an induction on s(~x) using Lemma 4.8 once we verify it for the base
case that s(~x) is a function symbol in L+

0 .
For any such s(~x), there is an L0-term r(~x) such that T+

0 proves s(~x) ∈ r(~x). By
Lemma 4.1 tc(s(~x)) ⊆ tc(r(~x)), so the identity embedding (expressed by the formula
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u = v) embeds s(~x) in r(~x). By transitivity of 4 (Lemma 4.8), it thus suffices to verify
the lemma for L0-terms r(~x). As for L0-terms, this follows by an induction on r(~x) using
Lemma 4.8 once we verify it for the base case that r(~x) is a function symbol in L0. The only
non-trivial case now is crossproduct ×, and this is handled by the previous lemma.

For tuples ~u = u1, . . . , uk let us abbreviate
∧
i ui ∈ z as ~u ∈ z. We show that given a

family of sets parametrized by tuples ~u ∈ z, where each set is uniformly embeddable in s,
we can embed the whole family (if it exists as a set) in a #-term t(z, s). Note that the
existence of V in the lemma is automatic in the presence of the Collection scheme.

Lemma 4.11. Let ϕ(v, ~u, ~w) and ε(z, z′, v, ~u, ~w) be ∆0(L
+
0 )-formulas and s(~w) a #-term.

There is a ∆0(L
+
0 )-formula δ(z, z′, V, z, ~w) and a #-term t(z, x) such that if

∀~u∈z ∃61v ϕ(v, ~u, ~w)

∧ ∀~u∈z ∃v
(
ϕ(v, ~u, ~w) ∧ ε(·, ·, v, ~u, ~w) : v 4 s(~w)

)
∧ V = {v : ∃~u∈z ϕ(v, ~u, ~w)}

(11)

then δ(·, ·, V, z, ~w) : V 4 t(z, s(~w)), provably in T+
0 .

Proof. For notational simplicity we suppress the side variables ~w. We first consider the
case in which ~u is a single variable u. Note that in the second line of the assumption (11)
we may assume without loss of generality that we actually have ε(·, ·, v, u) : {v} 4 s, since
otherwise we could modify ε so that ε(v, s, v, u) holds and replace the bound s with 1� s.
Now put t(z, s) := z#s and define

ε′(y, ỹ′, V, u) := ∃v∈V ∃y′∈tc(s) (ϕ(v, u) ∧ ε(y, y′, v, u) ∧ ỹ′ = σz,s(u, y
′)).

For each u ∈ z, if ϕ(u, v) then the formula ε′(·, ·, V, u) describes an embedding of {v} into
z#s which is a copy of the embedding ε(·, ·, v, u), but with its range moved to lie entirely
within the uth copy of s inside z#s. These embeddings have disjoint ranges for distinct u,
so as in Lemma 3.10 their union δ(y, ỹ′, V, z) := ∃u∈z ε′(y, ỹ′, V, u) describes an embedding
of V into z#s, since y ∈ tc(V ) implies y ∈ tc({v}) for some v ∈ V .

When ~u is a tuple of k variables, we reduce to the first case by coding ~u as an ordered
k-tuple in the usual way. So the quantifier ∀~u∈z becomes ∀u∈(z×· · ·×z) and we replace ϕ
and ε with formulas accessing the values of ~u from u using projection functions. The first
case then gives an embedding of V into t(z × · · · × z, s), and by Lemma 4.10 and the
Monotonicity Lemma 4.8 we get an embedding of V into some #-term t′(z, s).

We finish this section by showing, in Lemma 4.13, that the non-uniform embedding
bounding the existential quantifier in a Σ41 -formula (over any language) can be replaced
with a weakly uniform embedding. This will be useful when we want to show that structures
satisfy Σ41 -Induction. We first show a suitable embedding exists.

Lemma 4.12. There is a ∆0(L0)-formula εemb(u, v, e, x, y) and a #-term temb(y) such
that T0 proves e : x 4 y → εemb(·, ·, e, x, y) : 〈e, x〉 4 temb(y).
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Proof. Let ε×(u, v, x, y) ∈ ∆0(L0) describe (in T0) an embedding of x × y into t×(x, y).
Then ε×(u, v, tc(x), tc(y)) describes an embedding of tc(x)×tc(y) into t×(tc(x), tc(y)). The
identity embedding embeds tc(x) into x. Combining these, Lemma 4.8 gives a ∆0(L0)-
formula describing an embedding tc(x) × tc(y) 4 t×(x, y). But e : x 4 y implies e ⊆
tc(x)× tc(y), so this formula also describes an embedding e 4 t×(x, y).

Using Example 4.2 there is a ∆0(L0)-formula describing an embedding 〈e, x〉 4 tpair(e, x).
By Lemma 4.8 and the previous paragraph, there is a ∆0(L0)-formula describing an em-
bedding 〈e, x〉 4 tpair(t×(x, y), x). Since e : x 4 y it is easy to write a ∆0(L0)-formula with
parameter e describing an embedding x 4 y, so using Lemma 4.8 again we can replace x
by y, that is, construct a ∆0(L0)-embedding 〈e, x〉 4 temb(y) := tpair(t×(y, y), y).

Lemma 4.13. Let L be a language extending L0. Provably in T0, every Σ41 (L)-formula θ(~x)
is equivalent to a formula of the form

∃v
(
ϕ(v, ~x) ∧ ε(·, ·, v, ~x) : v 4 t(~x)

)
(12)

where ϕ is a ∆0(L)-formula, ε is a ∆0(L0)-formula and t is a #-term.

Proof. Expanding the existential quantifier implicit in the nonuniform embedding bound,
there is a ∆0(L)-formula ψ and a #-term s such that θ(~x) has the form

∃w∃e
(
e : w 4 s(~x) ∧ ψ(w, ~x)

)
.

By Lemma 4.12, T0 proves

e : w 4 s(~x)→ εemb(·, ·, e, w, s(~x)) : 〈e, w〉 4 temb(s(~x)).

Hence θ(~x) is equivalent to

∃〈e, w〉
(
e : w 4 s(~x) ∧ ψ(w, ~x) ∧ εemb(·, ·, e, w, s(~x)) : 〈e, w〉 4 temb(s(~x))

)
.

For clarity we have written this rather informally. Strictly speaking, 〈e, w〉 should be a
single variable v, and e and w should be respectively π1(v) and π2(v); then apply Propo-
sition 4.4.

5 Definability

This section develops KPu
1 with the goal of proving that it Σ41 (L0)-defines all CRSF func-

tions. The Definability Theorem 5.2 below states this in a syntactic manner, without
reference to the universe of sets.

Definition 5.1. A Σ41 (L0)-expansion of KPu
1 is obtained from KPu

1 by adding a set of
formulas of the following forms:

- ϕ(f(~x), ~x) where f(~x) is a function symbol outside L0 and ϕ(y, ~x) is Σ41 (L0) such
that KPu

1 proves ∃!y ϕ(y, ~x)
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- R(~x)↔ ϕ(~x) where R(~x) is a relation symbol outside L0 and ϕ(~x) is ∆0(L0).

For example, it is not hard to give a Σ41 (L0)-definition of a proper comprehension term
for a formula ϕ ∈ ∆0(L0) as a new function symbol.

Theorem 5.2 (Definability). There is a Σ41 (L0)-expansion of KPu
1 which contains all func-

tion symbols in Lcrsf in its expanded language, and proves all axioms of Tcrsf .

A Σ41 (L0)-expansion of KPu
1 is an expansion by definitions, and hence is conservative

over KPu
1. Thus Theorem 5.2 immediately implies that every CRSF function is denoted

by a symbol in the language, and hence is Σ41 (L0)-definable in KPu
1. Note that such

an expansion does not include the axiom schemes of KPu
1 for formulas in the expanded

language. (Definition 3.14 describes the axiom schemes of KPu
1.) The lack of these schemes

is the main technical difficulty in proving the Theorem 5.2. Some further comments can be
found in Section 5.2, where this difficulty is tackled. In Section 5.5 we describe a particular
well-behaved expansion which proves all these axiom schemes in the expanded language.

We will prove Theorem 5.2 indirectly. We first define an expansion KPu
1 + Ldef which

includes a function symbol for every function definable in KPu
1 by a particular kind of

Σ41 (L0)-formula. We will then show that these function symbols contain the basic functions
from Lcrsf and satisfy the right closure properties.

Remark 5.3. For the results in this section about KPu
1 and its expansions, we do not need

the full strength of the collection scheme in KPu
1. Every instance of ∆0(L0)-Collection we

use is an instance of the apparently weaker scheme

- Uniformly Bounded ∆0(L0)-Replacement

∀u∈x ∃61v ϕ(u, v, ~x) ∧ ∀u∈x ∃v ϕε,t(u, v, ~x)→ ∃y (y = {v : ∃u∈xϕ(u, v, ~x)})

where ϕε,t(u, v, ~x) abbreviates the formula ϕ(u, v, ~x) ∧ ε(·, ·, v, u, ~x) : v 4 t(u, ~x) and the
scheme ranges over ∆0(L0)-formulas ϕ, ε and #-terms t.

5.1 The definitional expansion KPu
1 + Ldef

It will be convenient to have the L+
0 relation and function symbols available, so the first

step in the expansion is a small one, allowing this.

Definition 5.4. KPu+
1 is the Σ41 (L0)-expansion of KPu

1 which adds the defining axioms for
all symbols in L+

0 \ L0.

We will use the following proposition without comment. (Cf. Proposition 4.4.)

Proposition 5.5. KPu+
1 is a conservative extension of KPu

1. Furthermore KPu+
1 proves

the axiom schemes of KPu
1 with L+

0 replacing L0.
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We now expand KPu+
1 with functions symbols f(~x) with Σ41 (L+

0 )-definitions of a special
kind. The existentially quantified witness v in such a definition is not only bounded by a
#-term t(~x), but weakly uniformly bounded. Moreover, the witness v is uniquely described
by a ∆0(L

+
0 )-formula ϕ(v, ~x). Intuitively, this formula says “v is a computation of the value

of f on input ~x”. The “output” function e is a very simple function that extracts the value
e(v) = f(~x) from the computation v.

Definition 5.6. A good definition is a tuple (ϕ(v, ~x), ε(z, z′, v, ~x), e(v), t(~x)) where ϕ, ε are
∆0(L

+
0 )-formulas, e(v) is an L+

0 -term and t(~x) is a #-term such that KPu+
1 proves

(Witness Existence) ∃v ϕ(v, ~x)
(Witness Uniqueness) ∃61v ϕ(v, ~x)
(Witness Embedding) ϕ(v, ~x)→ ε(·, ·, v, ~x) : v 4 t(~x).

Definition 5.7. The theory KPu
1 + Ldef is obtained from KPu+

1 by adding for every such
good definition a function symbol f(~x) along with the defining axiom

∃v (ϕ(v, ~x) ∧ f(~x) = e(v)). (13)

We then speak of a good definition of f . The language Ldef of KPu
1 + Ldef consists of L+

0

together with all such function symbols.

It is obvious that KPu
1 + Ldef is a conservative extension of KPu+

1 . Again, we stress
that we do not adopt the axiom schemes of KPu

1 for the language Ldef . For example, by
definition, KPu

1 + Ldef has just ∆0(L0)-Separation, not ∆0(Ldef)-Separation.

Theorem 5.8. KPu
1 + Ldef proves that Ldef satisfies the closure properties of Lcrsf from

Definition 3.15. That is, (a) closure under composition, (b) closure under replacement and
(c) closure under syntactic Cobham recursion.

Statement (a) is proved in Theorem 5.10, statement (b) in Theorem 5.15 (see Exam-
ple 5.16) and statement (c) in Theorem 5.17.

The Definability Theorem 5.2 follows easily from Theorem 5.8. We first observe that all
function symbols in Ldef are Σ41 (L0)-definable in KPu

1, since we can replace all L+
0 symbols

in (13) by their ∆0(L0) definitions and appeal to the conservativity of KPu+
1 over KPu

1. We
can then go through the function symbols in Lcrsf one-by-one and show that each one has
a corresponding symbol in Ldef (see also Section 5.5 below). Notice that this gives us more
than just that every CRSF function f is Σ41 (L0)-definable in KPu

1. In particular, we have
that the witness v is unique, which we will use later in Corollary 6.17. Put differently, the
value f(~x) is ∆0(L0)-definable from a set v which is ∆0(L0)-definable from the arguments ~x.

A first step in the proof of Theorem 5.8 is to show that we can treat the language Ldef

uniformly, in that every function symbol in it has a good definition.

Lemma 5.9. For every f(~x) in L+
0 there exists a good definition (ϕ(v, ~x), ε(u, v, ~x), e(v), t(~x))

such that KPu+
1 proves (13).

Proof. For ϕ(v, ~x) choose v = f(~x), for e(v) choose v, and for ε and t use Lemma 4.10.
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It is straightforward to show part (a) of Theorem 5.8, that Ldef is closed under compo-
sition. In this proof, and in the rest of the section, we will make frequent appeals to the
Monotonocity Lemma 4.8 and will simply say “by monotonicity”.

Theorem 5.10. For all n-ary function symbols h(x1, . . . , xn) in Ldef and m-ary function
symbols gi(y1, . . . , ym) for i = 1, . . . , n in Ldef there is an m-ary function symbol f(~y) in Ldef

such that KPu
1 + Ldef proves

f(~y) = h(g1(~y), . . . , gn(~y)).

Proof. For notational simplicity, assume n = 1. Let h(x) and g(~y) be function symbols
in Ldef with good definitions (ϕh, εh, eh, th) and (ϕg, εg, eg, tg). Set

ψ(v, vg, vh, ~y) := (v = 〈vh, vg〉 ∧ ϕg(vg, ~y) ∧ ϕh(vh, eg(vg))),
ϕf (v, ~y) := ∃vh, vg∈tc(v)ψ(v, vg, vh, ~y),

ef (v) := eh(π1(v)).

We claim that there are εf , tf such that (ϕf , εf , ef , tf ) is a good definition, i.e., such
that KPu+

1 proves
ψ(v, vg, vh, ~y)→ εf (·, ·, v, ~y) : 〈vh, vg〉 4 tf (~y).

Argue in KPu+
1 . Assume ψ(v, vg, vh, ~y). By Lemma 4.10 and monotonicity, we have

eg(vg) 4 e#g (tg(~y)) for some #-term e#g . By monotonicity, vh 4 th(eg(vg)) implies that

vh 4 th(e
#
g (tg(~y))). Using the term tpair from Example 4.2, tf (~y) := tpair

(
th(e

#
g (tg(~y))), tg(~y)

)
is as desired. It is easy to find a formula εf as desired.

Before proving parts (b) and (c) of Theorem 5.8 we need a technical lemma. We return
to the proof of part (b) in Section 5.3.

5.2 Elimination lemma

Recall that the axioms of KPu
1 + Ldef do not include the axiom schemes of KPu

1 in the
language Ldef but only in the language L0. However, in order to prove closure under
syntactic Cobham recursion, Theorem 5.8 (c), we will need some version of these schemes.

In the usual development of full Kripke Platek set theory KP (e.g., [5, Chapter I]), one
shows that Σ1-expansions prove each scheme for formulas mentioning new symbols from
their bigger language L, for example ∆0(L)-Separation. This is done in two steps. First,
one shows that occurrences of new Σ1-defined symbols can be eliminated in a way that
transforms ∆0(L)-formulas into ∆1-formulas. Second, one proves ∆1-Separation in KP. An
analogous procedure is employed in bounded arithmetic when developing S1

2 (cf. [12]).
For our weak theory KPu+

1 the situation is more subtle. The following lemma gives
a version of the elimination step, just good enough for our purposes: it eliminates new
function symbols by ∈-bounding quantifiers, with the help of an auxiliary parameter V .
Intuitively, this V is a set collecting enough computations of new functions to evaluate
the given formula; it is uniquely determined by a simple formula and weakly uniformly
bounded. The precise statement needs the following auxiliary notion.
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Definition 5.11. We write ∆+
0 (Ldef) for the class of ∆0(Ldef)-formulas all of whose ∈-

bounding terms are L+
0 -terms.

Lemma 5.12 (Elimination). For every ϕ(~x) ∈ ∆+
0 (Ldef) there are ∆0(L

+
0 )-formulas ϕequ(~x, V ),

ϕaux(~x, V ), ϕemb(z, z′, ~x, V ) and a #-term tϕ(~x) such that KPu
1 + Ldef proves

∃61V ϕaux(~x, V )

∃V (ϕaux(~x, V ) ∧ ϕemb(·, ·, ~x, V ) : V 4 tϕ(~x)) (14)

ϕaux(~x, V )→ (ϕ(~x)↔ ϕequ(~x, V )).

Proof. This is proved by induction on ϕ(~x). The base case for atomic ϕ(~x) is the most
involved and is proved by induction on the number of occurrences of symbols in ϕ from
Ldef \ L+

0 . If this number is 0, there is not much to be shown. Otherwise one can write

ϕ(~x) = ψ(~x, f(~s(~x))),

where ψ(~x, y) has one fewer occurrence of symbols from Ldef \L+
0 , the symbol f(~z) is from

Ldef \ L+
0 , and ~s(~x) is a tuple of L+

0 -terms.
Let (ϕf , εf , ef , tf ) be a good definition of f(~z). By Lemma 4.10 and monotonicity, we

have #-terms e#f (v), ~s#(~x) and ∆0(L0)-formulas ε0, ε1 such that KPu
1 + Ldef proves

ϕf (v, ~s(~x))→ ε0(·, ·, v, ~x) : v 4 tf (~s
#(~x)) ∧ ε1(·, ·, v, ~x) : ef (v) 4 e#f (tf (~s

#(~x))).

By induction, there are ψequ, ψaux, ψemb, tψ such that KPu
1 + Ldef proves

∃61W ψaux(~x, ef (v),W )

∃W
(
ψaux(~x, ef (v),W ) ∧ ψemb(·, ·, ~x, ef (v),W ) : W 4 tψ(~x, ef (v))

)
ψaux(~x, ef (v),W )→ (ψ(~x, ef (v))↔ ψequ(~x, ef (v),W )).

Define ϕaux(~x, V ) := ∃W, v∈tc(V ) (χ(~x, V,W, v)) where

χ(~x, V,W, v) := (V = 〈W, v〉 ∧ ψaux(~x, ef (v),W ) ∧ ϕf (v, ~s(~x))).

Monotonicity lets us construct from ψemb a ∆0(L
+
0 )-formula ε2 such that KPu

1 + Ldef proves

χ(~x, V,W, v)→ ε2(·, ·, ~x, V ) : W 4 tψ(~x, e#f (v)) ∧ ε0(·, ·, π2(V ), ~x) : v 4 tf (~s
#(~x)).

Using the term tpair from Example 4.2 we define

tϕ(~x) := tpair(tψ(~x, e#f (v)), tf (~s
#(~x)))

and get a ∆0(L
+
0 )-formula ϕemb such that KPu

1 + Ldef proves

χ(~x, V,W, v)→ ϕemb(·, ·, ~x, V ) : V 4 tϕ(~x).

Finally, we set
ϕequ(~x, V ) := ψequ(~x, ef (π2(V )), π1(V )).
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It is easy to verify (14). This completes the proof for the case that ϕ(~x) is atomic.
The induction step is easy if ϕ(~x) is a negation or a conjunction. We consider the case

that ϕ(~x) = ∀u∈s(~x)ψ(u, ~x) for some L+
0 -term s(~x). By induction, there are ψequ, ψaux,

ψemb, tψ such that KPu
1 + Ldef proves

∀u∈s(~x)∃61W ψaux(u, ~x,W )

∀u∈s(~x)∃W
(
ψaux(u, ~x,W ) ∧ ψemb(·, ·, u, ~x,W ) : W 4 tψ(u, ~x)

)
∀u∈s(~x)∀W

(
ψaux(u, ~x,W )→ (ψ(u, ~x)↔ ψequ(u, ~x,W ))

)
.

By monotonicity and Lemma 4.10 there is a #-term s#(~x) such that T+
0 defines a ∆0(L0)-

embedding of u into s#(~x) when u ∈ s(~x), and hence without loss of generality we can
replace the bound tψ(u, ~x) above with tψ(s#(~x), ~x). By ∆0(L0)-Collection, KPu

1 + Ldef

proves that the set
V = {W : ∃u∈s(~x)ψaux(u, ~x,W )} (15)

exists, and by Lemma 4.11 it also ∆0(L0)-defines an embedding of V into some #-term t(~x).
For ϕemb(z, z′, ~x, V ) we choose a formula describing this embedding and we set tϕ(~x) = t(~x).
Define ϕaux(~x, V ) to be a ∆0(L

+
0 )-formula expressing (15); this is ∆0(L

+
0 ) because witnesses

in ψaux are unique – recall the discussion of “collection terms” in Section 3.3. Define
ϕequ(~x, V ) to be the ∆0(L

+
0 )-formula

∀u∈s(~x)∃W∈V (ψequ(u, ~x,W ) ∧ ψaux(u, ~x,W )).

It is straightforward to verify (14) in KPu
1 + Ldef .

One can bootstrap the Elimination Lemma to yield a bigger auxiliary set V such that
ϕequ(~x, V ) is equivalent to ϕ(~x) simultaneously for all tuples ~x taken from a given set. As
we shall use this stronger version too, we give details. Recall ~x ∈ z stands for

∧
i xi ∈ z.

Lemma 5.13. For every ϕ(~x, ~y) ∈ ∆+
0 (Ldef) and every L+

0 -term s(~y) there are ∆0(L
+
0 )-

formulas ϕsequ(~x, ~y, U), ϕsaux(~y, U), ϕsemb(z, z′, ~y, U) and a #-term tsϕ(~y) such that KPu
1 + Ldef

proves

∃61U ϕsaux(~y, U)

∃U (ϕsaux(~y, U) ∧ ϕsemb(·, ·, ~y, U) : U 4 tsϕ(~y))

ϕsaux(~y, U)→ ∀~x∈s(~y) (ϕ(~x, ~y)↔ ϕsequ(~x, ~y, U)).

Proof. Using Lemma 5.12, choose ϕequ, ϕaux, ϕemb and tϕ for which KPu
1 + Ldef proves

∀~x∈s(~y)∃61V ϕaux(~x, ~y, V )

∀~x∈s(~y)∃V (ϕaux(~x, ~y, V ) ∧ ϕemb(·, ·, ~x, ~y, V ) : V 4 tϕ(~x, ~y))

∀~x∈s(~y)
(
ϕaux(~x, ~y, V )→ (ϕ(~x, ~y)↔ ϕequ(~x, ~y, V ))

)
.

From the first and second lines, exactly as in the universal quantification step in the proof
of Lemma 5.12, we get a ∆0(L

+
0 )-formula ϕsemb(z, z′, ~y, U) and a #-term tϕ(~y) such that

KPu
1 + Ldef proves the existence of a set U with

U = {V : ∃~x∈s(~y)ϕaux(~x, ~y, V )} and ϕsemb(·, ·, ~y, U) : U 4 tϕ(~y). (16)
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For ϕsaux take a ∆0(L
+
0 )-formula expressing the first conjunct of (16), and for ϕsequ take the

∆0(L
+
0 )-formula ∃V ∈U (ϕaux(~x, ~y, V ) ∧ ϕequ(~x, ~y, V )).

As a simple application of Lemma 5.12 we derive a separation scheme.

Corollary 5.14. The theory KPu
1 + Ldef proves ∆+

0 (Ldef)-Separation.

Proof. Let ϕ(u, x, ~w) be a ∆+
0 (Ldef)-formula. We want to show that {u ∈ x : ϕ(u, x, ~w)}

exists. Choose ϕxaux, ϕ
x
equ according to the previous lemma, substituting x, ~w for ~y, substi-

tuting u for ~x, and substituting x for s(~y). Choose U such that ϕxaux(x, ~w, U). Then the set
{u ∈ x : ϕ(u, x, ~w)} equals {u ∈ x : ϕxequ(u, x, ~w, U)}, so exists by ∆0(L

+
0 )-Separation.

5.3 Closure under replacement

The following theorem is crucial. It provides a formalized version of Theorem 2.6(a) show-
ing, more generally, that KPu

1 + Ldef can handle comprehension terms coming from Re-
placement. Similar terms are basic computation steps in Sazonov’s term calculus [23] and
in the logic of Blass et al. [10]. Recall that ~x ∈ u stands for

∧
i xi ∈ u.

Theorem 5.15. Let θ(u, ~y, ~x) be a ∆+
0 (Ldef)-formula and g(~y, ~x) a function symbol in Ldef .

Then there exists a function symbol f(u, ~y) in Ldef such that KPu
1 + Ldef proves

f(u, ~y) = {g(~y, ~x) : θ(u, ~y, ~x) ∧ ~x ∈ u}.

Proof. For notational simplicity we assume ~y is the empty tuple. It is sufficient to prove
the theorem for g such that KPu

1 + Ldef proves g(~x) 6= 0. We first show that KPu
1 + Ldef

proves the existence of
z := {g(~x) : θ(u, ~x) ∧ ~x ∈ u}

and furthermore describes an embedding of z into t1(u) for a suitable #-term t1.
Let (ϕg, εg, eg, tg) be a good definition of g and choose θequ, θaux, θemb, tθ for θ according

to the Elimination Lemma 5.12. Argue in KPu
1 + Ldef . For every ~x ∈ u there exists a

unique w such that
∃y, vg, V ∈tc(w) ψ(w, y, vg, V, u, ~x),

where ψ(w, y, vg, V, u, ~x) expresses that w = 〈〈y, vg〉, V 〉 where either (y = g(~x)∧θ(u, ~x)) or
(y = 0∧¬θ(u, ~x)), and the computations of g and θ are witnessed by vg and V . Formally,
ψ(w, y, vg, V, u, ~x) is the following ∆0(L

+
0 )-formula:

w = 〈〈y, vg〉, V 〉 ∧ θaux(u, ~x, V ) ∧ ϕg(vg, ~x)

∧
(
(y = eg(vg) ∧ θequ(u, ~x, V )) ∨ (y = 0 ∧ ¬θequ(u, ~x, V ))

)
.

As in the proof of Lemma 5.12, from θemb and εg we can construct a ∆0(L0)-formula ε and
#-term t2(u, ~x) such that ε(·, ·, w, u, ~x) : w 4 t2(u, ~x) for this w. By Collection the set

W = {w : ∃~x∈u∃y, vg, V ∈tc(w) ψ(w, y, vg, V, u, ~x)},

27



exists, and by Lemma 4.11 we have ε′(·, ·,W, u) : W 4 t3(u) for a suitable ∆0(L0)-formula ε′

and #-term t3(u). The definition of W above can be expressed by the ∆0(L
+
0 )-formula (as

discussed in Section 3.3)

∀w∈W ∃~x∈u∃y, vg, V ∈tc(w) ψ ∧ ∀~x∈u∃w∈W ∃y, vg, V ∈tc(w) ψ. (17)

We see that z exists by ∆0(L0)-Separation:

z = {y ∈ tc(W ) : ∃w∈W (y = π1(π1(w)) ∧ y 6= 0)}. (18)

Note ε′(·, ·,W, u) : z 4 t3(u) since z is a subset of tc(W ). Recalling tpair from Exam-
ple 4.2, we construct a good definition (θf , εf , ef , tf ) of f(u):

θf (v, u) := ∃W, z∈tc(v) (v = 〈W, z〉 ∧ (17) and (18) hold)

ef (v) := π2(v)

tf (u) := tpair(t3(u), t3(u)),

and εf such that εf (·, ·, v, u) : v 4 tf (u) for the unique v with θf (v, u).

We can now show that, in KPu
1 + Ldef , weakly uniform embeddings (given by ∆0(L0)-

formulas) and strongly uniform embeddings (given by function symbols) are closely related.
For suppose we are given a ∆0(L0)-embedding ε(·, ·, ~x) : s(~x) 4 t(~x). Then a function τ
satisfying τ(z, ~x) = {z′ ∈ tc(t(~x)) : ε(z, z′, ~x)} is in Ldef by Theorem 5.15, and we have
τ(·, ~x) : s(~x) 4 t(~x). On the other hand, suppose τ ∈ Ldef and τ(·, ~x) : s(~x) 4 t(~x). If we
define ε(z, z′, ~x) as z′ ∈ τ(z, ~x), then ε(·, ·, ~x) : s(~x) 4 t(~x). The embedding ε is ∆+

0 (Ldef)
rather than ∆0(L0), but using the Elimination Lemma 5.12 we can find an equivalent
∆0(L0)-embedding, at the cost of involving a unique, bounded parameter V .

We will use constructions like this in the next subsection, where we need to show, using
induction with bounds given by weakly uniform embeddings, that Ldef is closed under
Cobham recursion where the bound is given by a strongly uniform embedding.

Example 5.16. Let f(x, ~w) be a function symbol in Ldef . Then Ldef contains a function
symbol f”(x, ~w) such that KPu

1 + Ldef proves

f”(x, ~w) = {f(u, ~w) : u ∈ x}.

Furthermore, Ldef contains the function symbols x∩ y and x \ y and KPu
1 + Ldef proves the

usual defining axioms for them.

5.4 Closure under syntactic Cobham recursion

We are ready to verify statement (c) of Theorem 5.8, that Ldef is closed under syntactic
Cobham recursion.
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Theorem 5.17. For all function symbols g(x, z, ~w) and τ(u, v, x, ~w) in Ldef and all #-
terms t(x, ~w) there is a function symbol f(x, ~w) in Ldef such that KPu

1 + Ldef proves

f(x, ~w) =

{
g(x, f”(x, ~w), ~w) if τ is an embedding into t at x, ~w
0 otherwise,

(19)

where “τ is an embedding into t at x, ~w” stands for the ∆0(Ldef)-formula

τ(·, g(x, f”(x, ~w), ~w), x, ~w) : g(x, f”(x, ~w), ~w) 4 t(x, ~w).

Proof. Let g, τ, t be as stated. For notational simplicity we assume ~w is the empty tuple.
We are looking for a good definition (ϕf , εf , ef , tf ) of the function f(x), that is, for a good
definition for which KPu

1 + Ldef proves (19) for the associated function symbol f(x) in Ldef .
We intend to let ϕf (v, x) say that v encodes the course of values of f , namely the set of

all pairs 〈u, f(u)〉, u ∈ tc+(x). More precisely, we will express this by writing a ∆+
0 (Ldef)-

formula ψ(w, x) which asserts that the values in a sequence w are recursively computed
by g, and then applying the Elimination Lemma 5.12 to get the required ∆0(L

+
0 )-formula

ϕf (v, x). Hence the witness v will consist of w plus some parameters needed for the
elimination of Ldef-symbols.

By Theorem 5.15 there is a binary function symbol w”y in Ldef such that KPu
1 + Ldef

proves w”y = {w’z : z ∈ y}. We define an auxiliary formula

ξ(w, y) := τ(·, g(y, w”y), y) : g(y, w”y) 4 t(y).

We then let ψ(w, x) express that w is a function with domain tc+(x) such that

∀y∈tc+(x)
(
(ξ(w, y) ∧ w’y = g(y, w”y)) ∨ (¬ξ(w, y) ∧ w’y = 0)

)
.

Claim 1. There is a ∆+
0 (Ldef)-formula δ and a #-term s such that KPu

1 + Ldef proves

ψ(w, x)→ δ(·, ·, w, x) : w 4 s(x).

Proof of Claim 1. Argue in KPu
1 + Ldef . Suppose that ψ(w, x) holds. Then for all y ∈ tc+(x)

we have τ(·, w’y, y) : w’y 4 t(y). Let δ0(z, z
′, w, y) be the formula z′ ∈ τ(z, w’y, y). Then

we have a weakly uniform ∆+
0 (Ldef)-embedding δ0(·, ·, w, y) : w’y 4 t(y) for all y ∈ tc+(x),

and by the proof of the Monotonicity Lemma 4.8, adapted for ∆+
0 (Ldef)-formulas, we can

construct a ∆+
0 (Ldef)-embedding δ1(·, ·, w, y, x) : w’y 4 t(x).

Using tpair from Example 4.2 we can find δ2 ∈ ∆+
0 (Ldef) and a #-term t′ such that

δ2(·, ·, w, y, x) : 〈y, w’y〉 4 t′(x)

for y ∈ tc+(x). Writing ϕ(v, y, w) for the formula v = 〈y, w’y〉, we have ∃!v ϕ(v, y, w) and
an embedding of v for each y, so can apply Lemma 4.11, adapted for ∆+

0 (Ldef)-embeddings,
to combine these into a single embedding of w into t′′(tc+(x), t′(x)) for a #-term t′′. As
usual by Lemma 4.10 and monotonicity we can replace this bound with a #-term s(x). a
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We can begin to construct a good definition of f . Since ψ is a ∆+
0 (Ldef)-formula

there exist ∆0(L
+
0 )-formulas ψequ(w, x, V ), ψaux(w, x, V ), ψemb(z, z′, w, x, V ) and a #-term

tψ(w, x) satisfying the Elimination Lemma 5.12 for ψ. Choose δ and s to satisfy Claim 1. By
Lemma 5.13, since δ is a ∆+

0 (Ldef)-formula there exist ∆0(L
+
0 )-formulas δrequ(z, z′, w, x, U),

δraux(w, x, U), δremb(z, z′, w, x, U) and a #-term trδ(w, x) such that KPu
1 + Ldef proves

∃61U δraux(w, x, U)

∃U (δraux(w, x, U) ∧ δremb(·, ·, w, x, U) : U 4 trδ(w, x))

δraux(w, x, U)→ ∀z, z′∈r(w, x) (δ(z, z′, w, x)↔ δrequ(z, z′, w, x, U)),

where r(w, x) is the term tc({w, s(x)}). From the third line it follows that

δraux(w, x, U)→ (δ(·, ·, w, x) : w 4 s(x)↔ δrequ(·, ·, w, x, U) : w 4 s(x)).

Now define

ϕf (v, x) := ∃w, V, U∈tc(v)(
v = 〈w, 〈V, U〉〉 ∧ ψaux(w, x, V ) ∧ ψequ(w, x, V ) ∧ δraux(w, x, U)

)
ef (v) := π1(v)’top(π1(v)),

where top(w) is an L+
0 -term that recovers x from w, as the unique member x′ of the domain

of w such that tc(x′) contains all other members of the domain of w.
We obtain εf and tf from the following claim. Recall that the properties of a good

definition of an Ldef symbol must be provable in KPu+
1 .

Claim 2. There is a ∆0(L
+
0 )-formula εf and a #-term tf such that KPu+

1 proves

ϕf (v, x)→ εf (·, ·, v, x) : v 4 tf (x).

Proof of Claim 2. By conservativity we can argue in KPu
1 + Ldef . Assume ϕf (v, x) and

write v = 〈w, 〈V, U〉〉. We have ∆0(L
+
0 )-formulas ψemb, δremb and δrequ such that

- ψemb(·, ·, w, x, V ) : V 4 tψ(w, x),

- δremb(·, ·, w, x, U) : U 4 trδ(w, x),

- δrequ(·, ·, w, x, U) : w 4 s(x),

where tψ(w, x), trδ(w, x) and s(x) are #-terms. Define

tf (x) := tpair

(
s(x), tpair

(
tψ(s(x), x), trδ(s(x), x)

))
and use monotonicity to get a ∆0(L

+
0 )-formula εf (z, z

′, v, x) describing an embedding of v
into tf (x). a

We must show that (ϕf , εf , ef , tf ) is a good definition. Claim 2 gives (Witness Embed-
ding) and the next two claims show (Witness Uniqueness) and (Witness Existence).
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Claim 3. The tuple (ϕf , εf , ef , tf ) satisfies (Witness Uniqueness).

Proof of Claim 3. It suffices to prove in KPu
1 + Ldef that

ψ(w, x) ∧ ψ(w̃, x)→ w = w̃

since uniqueness of V and U is then guaranteed by ψaux and δraux. So suppose ψ(w, x),
ψ(w̃, x) and w 6= w̃. Then the set {y ∈ tc+(x) : w’y 6= w̃’y} is nonempty. By set
foundation it contains an ∈-minimal element y0. Then w”y0 = w̃”y0 since w, w̃ both have
domain tc+(x) ⊇ y0. It follows that g(y0, w”y0) = g(y0, w̃”y0) and ξ(w, y0) ↔ ξ(w̃, y0).
Since ψ(w, x) and ψ(w̃, x), we get w’y0 = w̃’y0, a contradiction. a

The proof of the next claim is the only place where we use the full strength of induction
available in KPu

1.

Claim 4. The tuple (ϕf , εf , ef , tf ) satisfies (Witness Existence).

Proof of Claim 4. Again we will work in KPu
1 + Ldef and appeal to conservativity. We will

use uniformly bounded unique Σ41 (L0)-Induction to prove ∃v ϕf (v, x). We already know
by (Witness Uniqueness) that ∃61v ϕf (v, x). Furthermore by Claim 2, the witness v is
automatically uniformly bounded by the embedding εf . It thus suffices to show

∀y∈x∃v ϕf (v, y) → ∃v ϕf (v, x).

Suppose the antecedent holds. By ∆0(L0)-Collection and ∆0(L
+
0 )-Separation the set

W := {π1(v) : ∃y∈xϕf (v, y)}
exists. For each y ∈ x this contains exactly one wy such that ψ(wy, y), that is, such that wy
is a function with domain tc+(y) which recursively applies g. By the same argument as
in the proof of Claim 3, any two such functions agree on arguments where they are both
defined. Hence, w :=

⋃
W is a function with domain tc(x), and we put w′ := w∪{〈x, y)〉}

where y = g(x,w”x) if ξ(x,w), and y = 0 otherwise. Then ψ(w′, x) holds. Furthermore
KPu

1 + Ldef proves that there exist U and V such that ψaux(w
′, x, V ) and δraux(w

′, x, U).
This yields ϕf (v, x) for v = 〈w′, 〈V, U〉〉. a

We have shown (ϕf , εf , ef , tf ) is a good definition. Let f be the symbol in Ldef associated
to this definition. To conclude the proof we verify the conclusion of the theorem, that is,
that KPu

1 + Ldef proves

f(x) =

{
g(x, f”(x)) if τ(·, g(x, f”(x)), x) : g(x, f”(x)) 4 t(x)
0 otherwise.

Argue in KPu
1 + Ldef . The witness v for f(x) has the form 〈w, 〈V, U〉〉 such that ψ(w, x)

and f(x) = ef (v) = w’x. From ψ(w, x) we get

w’x =

{
g(x,w”x) if τ(·, g(x,w”x), x) : g(x,w”x) 4 t(x)
0 otherwise.

It now suffices to verify f”(x) = w”x. This follows from f(y) = w’y for every y ∈ tc+(x)
which is seen similarly as in the proofs of Claims 3 and 4.

This completes the proof of Theorem 5.8 and thus of Theorem 5.2.
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5.5 The expanded theories

We fix a fragment of KPu
1 + Ldef whose language is exactly Lcrsf . We show it proves the

schemes in the language Lcrsf .

Definition 5.18. KPu
1(Lcrsf) is the theory in the language Lcrsf which consists of KPu

1 to-
gether with, for each function symbol f in Lcrsf \L0, a defining axiom for f from KPu

1 + Ldef

chosen in such a way that KPu
1(Lcrsf) proves the defining axiom for f from Tcrsf .

Since KPu
1(Lcrsf) is an expansion by definitions of KPu

1, we have:

Proposition 5.19. KPu
1(Lcrsf) is conservative over KPu

1 and proves Tcrsf .

We will later show that KPu
1(Lcrsf) is Π2(Lcrsf)-conservative over Tcrsf (Theorem 6.9).

Observe that, by Lemma 3.18, KPu
1(Lcrsf) proves ∆0(Lcrsf)-Separation.

Lemma 5.20. Let the theory T consist of Tcrsf together with the axiom schemes of KPu
1 ex-

panded to the language Lcrsf , that is, the ∆0(Lcrsf)-Collection and uniformly bounded unique
Σ41 (Lcrsf)-Induction schemes, where the uniform embeddings may be given by ∆0(Lcrsf)-
formulas. Then KPu

1(Lcrsf) is equivalent to T .

Proof. Consider a model M of T ; we must show M � KPu
1(Lcrsf). The reduct of M to L0 is a

model of KPu
1, and Definition 5.18 is an extension by definitions. Thus M can be expanded

to a model M̃ of KPu
1(L̃crsf), where L̃crsf is a disjoint copy of Lcrsf containing a function

symbol f̃ for every function symbol f in Lcrsf . The L̃crsf functions satisfy the defining
axioms from Tcrsf ; we claim that this implies that the L̃crsf functions are identical to the
original functions from Lcrsf \ L0 in M , and thus M � KPu

1(Lcrsf). The claim is immediate
in the case of functions defined by composition or replacement, but for recursion we need
to appeal to induction in M . Suppose f = fg,τ,s is defined by syntactic Cobham recursion,
where g = g̃ and τ = τ̃ in M̃ and s is a #-term. We have in M̃ , where for clarity we
suppress the side variables ~w, both

∀x f̃(x) =

{
g(x, f̃”(x)) if τ is an embedding into s at x
0 otherwise

and the same formula with f and f” in place of f̃ and f̃”. The function f̃ has a good
definition in the sense of Definition 5.6, so there are ∆0(L

+
0 )-formulas ϕ, ε, an L+

0 -term e
and a #-term t such that for all x ∈ M̃ ,

M̃ |= ∃!v ϕ(x, v)

∧ ∀v (ϕ(x, v)→ ε(·, ·, x, v) : v 4 t(x))

∧
(
f̃(x) = f(x)↔ ∃v (ϕ(x, v) ∧ e(v) = f(x))

)
.

Hence f̃(x) = f(x) can be expressed as a uniformly bounded Σ41 (Lcrsf)-formula, for which
witnesses are unique. Therefore we can prove it holds for all x by induction in M , as the
induction step follows immediately from the recursive equations for f̃ and f .
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For the other direction, suppose M |= KPu
1(Lcrsf). We must show that M satisfies the

induction and collection schemes of T .
Suppose ϕ(x, y) and ε(z, z′, x, y) are ∆0(Lcrsf)-formulas and t(x) is a #-term, all with

parameters from M , and that M |= ∀x ∃≤1y ϕ(x, y). Let ϕε,t(x, y) abbreviate the formula
ϕ(x, y) ∧ ε(·, ·, x, y) : y 4 t(x). We will find ∆0(L

+
0 )-formulas ϕ̃(x,w), ε̃′(z, z′, x, w) and a

#-term t̃(x), with the same, unwritten, parameters, such that

M |= ∀x ∃≤1w ϕ̃(x,w) ∧ ∀x
(
∃y ϕε,t(x, y)↔ ∃w ϕ̃ε̃,t̃(x,w)

)
(20)

from which it follows that M satisfies uniformly bounded unique Σ41 (Lcrsf)-Induction.
Let χε(u, x, y) express u = {〈z, z′〉 ∈ tc(y)× tc(t(x)) : ε(z, z′, x, y)}, which implies in M

that u : y 4 t(x)↔ ε(·, ·, x, y) : y 4 t(x). By Lemma 3.18 there is f ∈ Lcrsf such that

M |= (ϕε,t(x, y) ∧ χε(u, x, y))↔ f(x, y, u) 6= 0.

The function f has a good definition in the sense of Definition 5.6. Therefore there are
∆0(L

+
0 )-formulas ψ, δ, an L+

0 -term e and a #-term s such that for all x, y ∈M ,

M |= ∃!v ψ(x, y, u, v)

∧ ∀v (ψ(x, y, u, v)→ δ(·, ·, x, y, u, v) : v 4 s(x, y, u))

∧
(
(ϕε,t(x, y) ∧ χε(u, x, y))↔ ∃v (ψ(x, y, u, v) ∧ e(v) 6= 0)

)
.

We can now define

ϕ̃(x,w) := ∃y, u, v∈tc(w)
(
w = 〈〈u, y〉, v〉 ∧ ψ(x, y, u, v) ∧ e(v) 6= 0

)
.

Then ϕ̃ satisfies the uniqueness condition; furthermore, the right-to-left implication in (20)
will hold for any choice of ε̃ and t̃. For the other direction, ∆0(Lcrsf)-Separation yields u
satisfying χε(u, x, y). To construct ε̃ and t̃ for the embedding, Lemma 4.12 gives εemb ∈
∆0(L0) and a #-term temb such that M |= u : y 4 t(x) → εemb(·, ·, u, y, t(x)) : 〈u, y〉 4
temb(t(x)). Thus, as in the proof of the Elimination Lemma 5.12, using monotonicity and
the term tpair we can find a ∆0(L

+
0 )-formula ε̃ and a #-term t̃ such that for all x, y, v ∈M ,

M |= u : y 4 t(x) ∧ δ(·, ·, x, y, v) : v 4 s(x, y, u) → ε̃(·, ·, x, 〈〈u, y〉, v〉) : 〈〈u, y〉, v〉 4 t̃(x).

Then ϕ̃, ε̃ and t̃ satisfy (20).
For collection, suppose M |= ∀x∈u∃y ϕ(x, y) for ϕ ∈ ∆0(Lcrsf). Then ϕ(x, y) is equiv-

alent to f(x, y) 6= 0 for some f ∈ Lcrsf . The good definition of f gives ψ ∈ ∆0(L
+
0 ) such

that ϕ(x, y)↔ ∃v ψ(x, y, v) in M for all x, y. By ∆0(L
+
0 )-Collection there is W ∈M such

that M |= ∀x∈u∃y, v∈W ψ(x, y, v). Thus M |= ∀x∈u∃y∈W ϕ(x, y) as required.

Lemma 5.21. Let KP41 (Lcrsf) be the theory KP41 + KPu
1(Lcrsf). Then KP41 (Lcrsf) is con-

servative over KP41 , and is equivalent to the theory consisting of Tcrsf plus the ∆0(Lcrsf)-
Collection and Σ41 (Lcrsf)-Induction schemes.

Proof. By Lemma 5.20 it is sufficient to show that any model M of KP41 (Lcrsf) satisfies
the Σ41 (Lcrsf)-Induction scheme. By Lemma 4.13 it is enough to show that uniformly
bounded Σ41 (Lcrsf)-Induction holds, and this follows by the same argument as in the proof
of Lemma 5.20, ignoring the conditions about the witnesses y and w being unique.
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6 Witnessing

Theorem 5.2 established that every CRSF function is Σ41 -definable in KP41 , and in fact
already in KPu

1. We would like to show that every function Σ41 -definable in KP41 is in
CRSF. By analogy with bounded arithmetic, one could aim to prove that whenever KP41 `
∃y ϕ(y, ~x) with ϕ ∈ ∆0(L0), then Tcrsf ` ϕ(f(~x), ~x) or at least ZFC ` ϕ(f(~x), ~x) for
some “witnessing” function f(~x) in CRSF. As mentioned in the introduction, this fails: a
witnessing function C(x) for (x 6= 0→ ∃y (y ∈ x)) would satisfy (x 6= 0→ C(x) ∈ x) and
not even ZFC can define such a C as a CRSF function.1 This section shows two ways
around this obstacle.

The first is to weaken the conclusion of the witnessing theorem from ϕ(f(~x), ~x) to
∃y∈f(~x)ϕ(y, ~x). We prove such a witnessing theorem for KPu

1 (Theorem 6.10), and this
has as a corollary the following definability theoretic characterization of CRSF. We do not
know whether Theorem 6.10 or Corollary 6.1 hold for KP41 instead of KPu

1.

Corollary 6.1. A function is in CRSF if and only if it is Σ1(L0)-definable in KPu
1.

The second is to simply add a global choice function C to CRSF as one of the ini-
tial functions, resulting in CRSFC (Remark 2.10). In this way we are able to prove full
witnessing, even for the stronger theory KPC41 obtained by adding the axiom of global
choice (Theorem 6.10). Again this has as a corollary the following definability theoretic
characterization of CRSFC where we write LC0 := L0 ∪ {C}.

Corollary 6.2. A function is in CRSFC if and only if it is Σ1(L
C
0 )-definable in KPC41 .

We do not know whether some form of witnessing holds for KP41 without choice. In
particular, the following question is open: if KP41 ` ∃!y ϕ(y, x), for ϕ a ∆0(L0)-formula,
does this imply that there is a CRSF function f such that (provably in KP41 ) ∀xϕ(f(x), x)
holds?

It would also be interesting to prove a result of this type that needs only an appropriate
form of local choice, rather than global choice. For example: if KP41 ` ∃!y ϕ(y, x), for ϕ a
∆0(L0)-formula, does this imply that there is a CRSF function f(x, r) such that (provably
in KP41 ) ∀xϕ(f(x, r), x) holds whenever r is a well-ordering of tc(x)?

6.1 Witnessing Tcrsf and Herbrand saturation

We use a method introduced by Avigad in [4] as a general tool for model-theoretic proofs
of witnessing theorems, in particular subsuming Zambella’s witnessing proof for bounded
arithmetic [24]. A structure is Herbrand saturated if it satisfies every ∃∀ sentence, with
parameters, which is consistent with its universal diagram. To get a witnessing theorem
for a theory T , one uses Herbrand saturation to show that T is ∀∃-conservative over a
suitable universal theory S. Since S is universal, a form of witnessing for S follows directly
from Herbrand’s theorem; conservativity means that this carries over to T .

1This is well-known: otherwise ZFC would define a global well-order and thus prove V = HOD; but
V 6= HOD is relatively consistent (see e.g., [19, p.222]).
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We want to use this approach where T is KPu
1 and S is Tcrsf . We cannot do this directly

since Tcrsf is not universal but, as Tcrsf is Π1, it turns out that something similar works.
Below we prove a version of Herbrand’s theorem for Tcrsf , in which a witness to a Σ1(Lcrsf)
sentence is not necessarily equal to a term, but is always contained in some term.

Theorem 6.3. Suppose Tcrsf ` ∃y ϕ(y, ~x) where ϕ is ∆0(Lcrsf). Then there is an Lcrsf

function symbol f such that Tcrsf ` ∃y∈f(~x)ϕ(y, ~x).

Proof. Take a new tuple ~c of constants and let P (~c) be the theory

Tcrsf + {∀y∈t(~c)¬ϕ(y,~c) : t(~x) an Lcrsf-term}.

It suffices to show that P (~c) is inconsistent. Then Tcrsf proves
∨
i ∃y∈ti(~x)ϕ(y, ~x) for

finitely many terms t1(~x), . . . , tk(~x); we can choose f(~x) so that Tcrsf proves f(~x) = t1(~x)∪
· · · ∪ tk(~x) using closure under composition.

For the sake of a contradiction assume P (~c) has a model M . Define

N := {a ∈M : M |= a ∈ t(~c) for some Lcrsf-term t(~x)}.

Note N contains each component cMi of ~cM via the term {ci}. We first show that N
is a substructure of M . To see this, suppose g is an r-ary function symbol in Lcrsf and
~a ∈ N r. We must show g(~a) ∈ N . For each component ai of ~a there is a term ti(~x)
such that M |= ai ∈ ti(~c). Choose a function symbol G(z) in Lcrsf such that Tcrsf proves
G(z) = g(πr1(z), . . . , πrr(z)), where πri is the standard projection function for ordered r-
tuples (which is in L+

0 ). Then in M we have g(~a) ∈ G”(t1(~c)× · · · × tr(~c)).
Next we show that N is a ∆0(Lcrsf)-elementary substructure of M , that is, for every

∆0(Lcrsf)-formula θ and ~a ∈ N , we have N |= θ(~a) ⇔ M |= θ(~a). This is proved by
induction on θ, and the only non-trivial case is where θ(~a) has the form ∃u∈t(~a)ψ(u,~a) for
some term t, and we have M |= b ∈ t(~a)∧ψ(b,~a) for some b in M . As N is a substructure,
t(~a) ∈ N and hence M |= t(~a) ∈ s(~c) for some term s(~x). Thus M |= b ∈

⋃
s(~c), so b ∈ N .

By the induction hypothesis N |= ψ(b,~a) which gives N |= θ(~a) as required.
Thus N |= Tcrsf since Tcrsf is Π1(Lcrsf). Further, N |= ∀y (¬ϕ(y,~c)), since in M there

is no witness for ϕ(y,~c) inside any term in ~c. This contradicts the assumption of the
theorem.

Corollary 6.4. If Tcrsf ` ∃!y ϕ(y, ~x), where ϕ is ∆0(Lcrsf), then there is an Lcrsf function
symbol g such that Tcrsf ` ϕ(g(~x), ~x).

Proof. Appealing to Lemma 3.18, take g(~x) computing
⋃
{y ∈ f(~x) : ϕ(y, ~x)} where f is

given by Theorem 6.3.

We give our version of Herbrand saturation. Let L ⊇ L0 be a countable language.

Definition 6.5. A structure M is ∆0(L)-Herbrand saturated if it satisfies every Σ2(L)-
sentence with parameters from M which is consistent with the Π1(L)-diagram of M .
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The next two lemmas do not use any special properties of the class ∆0(L), beyond that
it is closed under subformulas, negations and substitution.

Lemma 6.6. Every consistent Π1(L) theory T has a ∆0(L)-Herbrand saturated model.

Proof. Let L+ be L together with names for countably many new constants. Enumerate all
∆0(L

+)-formulas as ϕ1, ϕ2, . . . . Let T1 = T and define a sequence of theories T1 ⊆ T2 ⊆ . . .
as follows: if Ti+∃~x∀~y ϕi(~x, ~y) is consistent, let Ti+1 = Ti+∀~y ϕi(~c, ~y) where ~c is a tuple of
constant symbols that do not appear in Ti or ϕi. Otherwise let Ti+1 = Ti. Let T ∗ =

⋃
i Ti.

By construction, T ∗ is consistent and Π1(L
+).

Let M be a model of T ∗ and let N be the substructure of M consisting of elements
named by L+-terms. We claim that N |= T ∗. It is enough to show that for every ∆0(L

+)-
formula ϕ and every tuple ~a from N , we have N |= θ(~a) ⇔ M |= θ(~a). We prove this
by induction on θ. For the only interesting case, suppose M |= ∃xψ(~a, x) where the
inductive hypothesis holds for ψ. Since the components of ~a are named by terms, ψ(~a, x)
is equivalent in M to some formula ϕi(x) from our enumeration. But M |= ∃xϕi(x) implies
that ∃xϕi(x) is consistent with Ti and hence that ϕi(c) is in Ti+1 for some constant c. Thus
M |= ϕi(c) and therefore M |= ψ(~a, c), so N |= ψ(~a, c) by the inductive hypothesis.

Finally, N is ∆0(L)-Herbrand saturated. For suppose that ψ is ∆0(L) and ∃~x∀~y ψ(~x, ~y,~a)
is consistent with the Π1(L)-diagram of N , and hence with T ∗. Then as above ψ(~x, ~y,~a) is
equivalent to ϕi(~x, ~y) for some i, and since ∃~x∀~y ϕi(~x, ~y) is consistent with Ti it is witnessed
in Ti+1 by a tuple of constants and hence is true in N .

Lemma 6.7. If S, T are theories such that S is Π1(L) and every ∆0(L)-Herbrand saturated
model of S is a model of T , then T is Π2(L)-conservative over S.

Proof. Suppose T proves ∀~x∃~y ϕ(~x, ~y) but S does not, where ϕ is ∆0(L). Then, letting ~c
be a tuple of new constants, the theory S + ∀~y (¬ϕ(~c, ~y)) has a ∆0(L)-Herbrand saturated
model by Lemma 6.6. This contradicts the assumptions about S and T .

We now describe the most useful property of ∆0(Lcrsf)-Herbrand saturated models.

Lemma 6.8. Suppose that M |= Tcrsf is ∆0(Lcrsf)-Herbrand saturated and that ϕ(y, ~x,~a)
is a ∆0(Lcrsf)-formula with parameters ~a ∈M such that M |= ∀~x∃y ϕ(y, ~x,~a). Then there
exist a function f ∈ Lcrsf and parameters ~m ∈M such that M |= ∀~x∃y∈f(~x, ~m)ϕ(y, ~x,~a).

Proof. Let T ∗ be the Π1(Lcrsf)-diagram of M . Then T ∗ ` ∀~x∃y ϕ(y, ~x,~a) since otherwise
M |= ∃~x∀y (¬ϕ(y, ~x,~a)) by Herbrand saturation. The rest of the argument is standard.

By compactness, there are ~b ∈M and θ in ∆0(Lcrsf) such that M |= ∀~z θ(~a,~b, ~z) and

Tcrsf + ∀~z θ(~a,~b, ~z) ` ∀~x∃y ϕ(y, ~x,~a)

where we treat ~a,~b as constant symbols. Hence, replacing ~a,~b with variables ~u,~v,

Tcrsf ` ∃~z ¬θ(~u,~v, ~z) ∨ ∃y ϕ(y, ~x, ~u). (21)
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Using pairing and projection functions to code tuples of sets as single sets, we can apply
Theorem 6.3 to formulas with more than one unbounded existential quantifier. In particular
from (21) we get an Lcrsf function symbol f with

Tcrsf ` ∃~z ¬θ(~u,~v, ~z) ∨ ∃y∈f(~x, ~u,~v)ϕ(y, ~x, ~u).

Since M |= ∀~z θ(~a,~b, ~x) it follows that M |= ∀~x∃y∈f(~x,~a,~b)ϕ(y, ~x,~a).

6.2 Witnessing KPu
1

We prove witnessing for KPu
1(Lcrsf) as a consequence of witnessing for Tcrsf , together with

the following conservativity result.

Theorem 6.9. The theory KPu
1(Lcrsf) is Π2(Lcrsf)-conservative over Tcrsf .

Proof. Let M be an arbitrary ∆0(Lcrsf)-Herbrand saturated model of Tcrsf . By Lemma 6.7
it is enough to show that M is a model of KPu

1(Lcrsf). By Lemma 5.20 it is enough to show
that M satisfies ∆0(Lcrsf)-Collection and uniformly bounded unique Σ41 (Lcrsf)-Induction.

For collection, suppose that for some a ∈M we have M |= ∀u∈a ∃v ϕ(u, v), where ϕ is
∆0(Lcrsf) with parameters. We rewrite this as

M |= ∀u∃v (u ∈ a→ ϕ(u, v)).

By Lemma 6.8, for some Lcrsf function symbol f and tuple ~b ∈M ,

M |= ∀u∃v∈f(u,~b) (u ∈ a→ ϕ(u, v)).

Hence if we let c =
⋃
f”(a,~b) we have, as required for collection,

M |= ∀u∈a∃v∈c ϕ(u, v).

For induction, let ϕ(u, v), ε(z, z′, v, u) ∈ ∆0(Lcrsf) and t(u) be a #-term, all possibly
with parameters, and let ϕε,t(u, v) abbreviate ϕ(u, v) ∧ ε(·, ·, v, u) : v 4 t(u). Working
in M , suppose

∀u∃61v ϕ(u, v) ∧ ∀x
(
∀u∈x∃v ϕε,t(u, v)→ ∃v′ ϕε,t(x, v′)

)
.

Then in particular

∀x,w
(
∀u∈x∃v∈wϕε,t(u, v)→ ∃v′ ϕε,t(x, v′)

)
.

By Lemma 6.8 there is an Lcrsf-function symbol h and a tuple ~a ∈ M such that we can
bound the witness v′ as a member of h(x,w,~a). Then, since witnesses v to ϕ are unique,
if we let g(x,w,~a) compute

⋃
{v′ ∈ h(x,w,~a) : ϕ(x, v′)} we have

∀x,w
(
∀u∈x ∃v∈wϕε,t(u, v)→ ϕε,t(x, g(x,w,~a))

)
. (22)
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We must be careful here with our parameters. We may assume without loss of generality
that the so-far unwritten parameters in ϕ, ε and t are contained in the tuple ~a, and further
that ϕ(u, v) is really ϕ(u, v,~a), ε(z, z′, v, u) is ε(z, z′, v, u,~a) and t(u) is t(u,~a).

We now use syntactic Cobham recursion to iterate g. To use the recursion available
in Tcrsf we need to turn the weakly uniform embedding given by ε into a strongly uniform
embedding. So let τ be an Lcrsf-function symbol for which Tcrsf proves

τ(z, v, u, ~w) = {z′ ∈ t(u, ~w) : ε(z, z′, v, u, ~w)}.

Let f be the Lcrsf function symbol fg,τ,t with defining axiom

f(u, ~w) =

{
g(u, f”(u, ~w), ~w) if τ is an embedding into t at u, ~w
0 otherwise,

where “τ is an embedding into t at u, ~w” stands for the ∆0(Lcrsf)-formula

τ(·, g(u, f”(u, ~w), ~w), u, ~w) : g(u, f”(u, ~w), ~w) 4 t(u, ~w).

It suffices now to show that ∀xϕε,t(x, f(x,~a),~a). We will use ∆0(Lcrsf)-Induction, which
is available by Lemma 3.18. Suppose ∀u∈xϕε,t(u, f(u,~a),~a). Let w = f”(x,~a) and let
v = g(x,w,~a). By (22) we have ϕε,t(x, v,~a), and in particular ε(·, ·, v, x,~a) : v 4 t(x,~a).
Hence also τ(·, v, x,~a) : v 4 t(x,~a), that is, τ is an embedding into t at x,~a. From
the defining axiom for f we conclude that f(x,~a) = v, and thus ϕε,t(x, f(x,~a),~a). This
completes the proof.

From this we get witnessing for KPu
1(Lcrsf), and a fortiori for KPu

1:

Theorem 6.10. Suppose KPu
1(Lcrsf) ` ∃y ϕ(y, ~x) where ϕ is ∆0(Lcrsf). Then there is an

Lcrsf-function symbol f such that Tcrsf ` ∃y∈f(~x)ϕ(y, ~x).

Proof. By Theorem 6.9, Tcrsf ` ∃y ϕ(y, ~x). Then apply Theorem 6.3.

Corollary 6.11. If KPu
1(Lcrsf) ` ∃!y ϕ(y, ~x) where ϕ is Σ1(Lcrsf), then there is an Lcrsf-

function symbol g such that Tcrsf ` ϕ(g(~x), ~x).

Proof. Suppose KPu
1(Lcrsf) ` ∃!y ∃v θ(y, v, ~x) where θ is ∆0(Lcrsf). Using Theorem 6.10 it

is not hard to show that Tcrsf ` ∃y, v∈f(~x) θ(y, v, ~x) for some Lcrsf-function symbol f , and
from Theorem 6.9 we get Tcrsf ` ∃61y θ(y, v, ~x). Thus we can define the witnessing function
as g(~x) :=

⋃
{y ∈ f(~x) : ∃v∈f(~x) θ(y, v, ~x)}.

Together with the Definability Theorem 5.2, the above implies Corollary 6.1.
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6.3 Witnessing with global choice

We add to our basic language L0 and theory T0 a symbol C for a global choice function,
with defining axiom

(GC) : C(0) = 0 ∧ (x 6= 0→ C(x) ∈ x).

We denote the augmented language and theory by LC0 and TC
0 . We write LCcrsf and TC

crsf

for Lcrsf and Tcrsf defined using LC0 and TC
0 in place of L0 and T0. The symbols in LCcrsf

correspond to the functions in CRSFC , defined like CRSF but with the global choice
function C(x) as an additional initial function (cf. Remark 2.10).

We write KPC41 for the corresponding version of KP41 , that is, the theory consist-
ing of TC

0 and ∆0(L
C
0 )-Collection and Σ41 (LC0 )-Induction schemes. Similarly KPCu

1 con-
sists of TC

0 and the ∆0(L
C
0 )-Collection and uniformly bounded unique Σ41 (LC0 )-Induction

schemes (where we allow embeddings to be ∆0(L
C
0 )). Earlier results about the theories

without choice carry over to the theories with choice as expected; there is one extra case
in Lemma 4.10, taken care of by noting that the identity embedding embeds C(x) 4 x.
In particular, KPC41 (LCcrsf) is a Σ41 (LC0 )-expansion of KPC41 to the language LCcrsf which
is equivalent to the theory consisting of TC

crsf and the schemes of KPC41 over the lan-
guage LCcrsf (cf. Lemma 5.21). Thus, Corollary 6.2 follows from Theorem 6.13 below, a
witnessing theorem for KPC41 (LCcrsf). We prove it by showing conservativity over TC

crsf :

Theorem 6.12. The theory KPC41 (LCcrsf) is Π2(L
C
crsf)-conservative over TC

crsf .

Proof. Let M be an arbitrary ∆0(L
C
crsf)-Herbrand saturated model of TC

crsf . As before, by
Lemma 6.7 it is enough to show that M is a model of KPC41 (LCcrsf). By exactly the same
argument as in the proof of Theorem 6.9, we get that M is a model of ∆0(L

C
crsf)-Collection.

It remains to show that Σ41 (LCcrsf)-Induction holds in M . By Lemma 4.13, it is enough
to show that uniformly bounded Σ41 (LCcrsf)-Induction holds. That is, exactly the induc-
tion shown for the formula ∃v ϕε,t(u, v) in the proof of Theorem 6.9, except without the
uniqueness assumption that M |= ∀u∃61v ϕ(u, v). Working through that proof, we see that
uniqueness is used only in one place, to construct an Lcrsf-function symbol g satisfying

∀x,w
(
∀u∈x ∃v∈wϕε,t(u, v)→ ϕε,t(x, g(x,w,~a))

)
from an Lcrsf-function symbol h satisfying

∀x,w
(
∀u∈x ∃v∈wϕε,t(u, v)→ ∃v′∈h(x,w,~a)ϕε,t(x, v′))

)
.

In LCcrsf this can be done without the assumption, by setting

g(x,w,~a) = C({v′ ∈ h(x,w,~a) : ϕε,t(x, v′)}).

The rest of the proof goes through as before.

Theorem 6.13. Suppose KPC41 (LCcrsf) ` ∃y ϕ(y, ~x) where ϕ is ∆0(L
C
crsf). Then there is an

LCcrsf-function symbol f such that TC
crsf ` ϕ(f(~x), ~x).

39



Proof. By Theorem 6.12, TC
crsf ` ∃y ϕ(y, ~x). Using Theorem 6.3 for TC

crsf there is g in
LCcrsf such that TC

crsf ` ∃y∈g(~x)ϕ(y, ~x). Using Lemma 3.18 for TC
crsf we find h such that

TC
crsf ` h(~x) = {y ∈ g(~x) : ϕ(y, ~x)}. Then choose f such that TC

crsf ` f(~x) = C(h(~x)).

For the theory without choice, we get a weak result in the style of Parikh’s theorem [21].

Corollary 6.14. Suppose KP41 (Lcrsf) ` ∃y ϕ(y, ~x) where ϕ is ∆0(Lcrsf). Then in the uni-
verse of sets we can bound the complexity of the witness y in the following sense: there is
a #-term t such that ∀~x∃y4t(~x)ϕ(y, ~x) holds.

Proof. It is easy to show that for every LCcrsf-function symbol f(~x) there is an LCcrsf-function
symbol τ(z, ~x) and a #-term t(~x) such that τ(·, ~x) : f(~x) 4 t(~x), provably in TC

crsf . For the
initial symbols from LC0 this is by Lemma 4.10 (extended to cover C). For function symbols
obtained by composition we use monotonicity, for replacement we use Lemma 4.11, and
for syntactic Cobham recursion we are explicitly given such a bound.

Now suppose the assumption of the corollary holds. Then also KPC41 (LCcrsf) ` ∃y ϕ(y, ~x),
hence TC

crsf ` ϕ(f(~x), ~x) for some LCcrsf-function symbol f by Theorem 6.13. It follows that
TC

crsf ` ∃y4t(~x)ϕ(y, ~x), by the previous paragraph and using ∆0(Lcrsf)-Separation to get a
nonuniform embedding. In ZFC, global choice can be forced without adding new sets (see
for example [17]) so we can expand the universe V of sets to a model (V, C) of ZF + (GC)
and in particular of TC

crsf . Then ∀~x∃y4t(~x)ϕ(y, ~x) holds in (V, C), and thus also in V,
since it does not mention the symbol C.

6.4 Uniform Cobham recursion

We can use our definability and witnessing theorems to partially answer a question that
arose from [7]. Namely, the embedding giving the bound on a Cobham recursion is given
by a CRSF function. If we only allow simpler embeddings, given by ∆0(L0)-formulas,
does the class CRSF change? We show that it does not. This is a partial answer because
we only consider what happens if we make this change in our definition of CRSF from
Proposition 2.9, which is slightly different from the original definition in [7].

Definition 6.15. In the universe of sets, the CRSFu functions are those obtained from
the projections, zero, pair, union, conditional, transitive closure, cartesian product, set
composition and set smash functions by composition, replacement and “weakly uniform
syntactic Cobham recursion”. This is the following recursion scheme: suppose g(x, z, ~w)
is a CRSFu function, ε(z, z′, y, x, ~w) is a ∆0(L0)-formula and t(x, ~w) is a #-term. Then
CRSFu contains the function symbol f = fg,ε,t defined by

f(x, ~w) =

{
g(x, f”(x, ~w), ~w) if ε is an embedding into t at x, ~w
0 otherwise

where the condition “ε is an embedding into t at x, ~w” stands for

ε(·, ·, g(x, f”(x, ~w), ~w), x, ~w) : g(x, f”(x, ~w), ~w) 4 t(x, ~w).

40



The language Lcrsfu and theory Tcrsfu are defined by changing the syntactic Cobham recur-
sion case in the definitions of Lcrsf and Tcrsf to match the description above.

Theorem 6.16. The theory KPu
1 is Π2(L0)-conservative over Tcrsfu.

Proof. It is straightforward to show that Tcrsfu proves T0, just as Tcrsf does. Similarly the
results about Herbrand saturation go through for Tcrsfu. By Lemma 6.7 it is enough to show
that any ∆0(Lcrsfu)-Herbrand saturated model of Tcrsfu is a model of ∆0(L0)-Collection and
uniformly bounded unique Σ41 (L0)-Induction. For this we can simply repeat the proof of
Theorem 6.9 with Tcrsfu in place of Tcrsf , observing that the proof becomes more direct,
since in the application of syntactic Cobham recursion we can use the embedding ε directly
without needing to construct the function symbol τ .

Corollary 6.17. In the universe of sets, CRSFu = CRSF.

Proof. It is clear that every CRSFu function is CRSF. For the other direction, suppose
f(~x) is CRSF. Then there is a good definition of f in the sense of Definition 5.6, and
in particular there is a ∆0(L0)-formula ϕ(v, ~x) and an L+

0 -term e such that KPu
1 proves

∃!v ϕ(v, ~x) and such that ϕ(v, ~x) → f(~x) = e(v) holds in the universe for all sets v, ~x.
There is a similar version of Herbrand’s theorem for Tcrsfu as there is for Tcrsf . Combining
this with Theorem 6.16 we get that there is an Lcrsfu function symbol g such that Tcrsfu

proves ϕ(g(~x), ~x). Hence in the universe f(~x) = e(g(~x)), which is a CRSFu function.

7 Partial Conservativity of Global Choice

Recall from Section 6.3 the versions of our theories with global choice (GC).

Proposition 7.1. TC
0 is not Π2(L0)-conservative over ZF.

Proof. The theory TC
0 proves (AC) in the form: for every set x of disjoint, nonempty

sets, there is a set z containing exactly one element from every member of x. Indeed,
z := {v ∈ tc(x) : ∃u∈x C(u) = v} can be obtained by ∆0(L

C
0 )-Separation.

In particular, the extension KPC41 (LCcrsf) of KP41 (Lcrsf) is not Π2(L0)-conservative. In-
formally, we ask how much stronger KPC41 (LCcrsf) is compared to KP41 (Lcrsf). More formally,
we aim to encapsulate the difference in some local choice principles, namely a strong form
of (AC) plus a form of dependent choice.2

2This aims at technical simplicity of the argument rather than the strongest possible result.
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7.1 Dependent Choice

The class of ordinals is denoted by Ord(x) in L+
0 with defining axiom ∀y∈x∪{x} (tc(y) = y).

It is routine to verify in T+
0 some elementary properties of ordinals, e.g., elements of

ordinals are ordinals and, given two distinct ordinals, one is an element of the other.
We let α, β, . . . range over ordinals. By this we mean that ∀α . . . and ∃α . . . stand for
∀α (Ord(α)→ . . .) and ∃α (Ord(α) ∧ . . .) respectively.

The scheme ∆0(Lcrsf)-Dependent Choice gives for every ∆0(Lcrsf)-formula ϕ(x, y, ~x)

∀x∃y ϕ(x, y, ~x)→ ∀α ∃z (Fct(z) ∧ dom(z) = α ∧ ∀β∈αϕ(z�β, z’β, ~x)). (23)

We assume L+
0 ⊆ Lcrsf (cf. Lemma 4.5), Fct(y) is a unary relation symbol in L+

0 express-
ing that y is a function, and dom(x), im(x), x�y are function symbols in Lcrsf such that
KP41 (Lcrsf) proves dom(x) = π1”(x), im(x) = π2”(x) and x�y = {z ∈ x : π1(z) ∈ y}.

We further consider the following strong version of (AC) that we refer to as the well-
ordering principle (WO):

∀x ∃α∃y (“y is a bijection from α onto x” ∧ ∀β, γ∈α (y’β ∈ y’γ → β ∈ γ)).

The goal of this section is to prove:

Theorem 7.2. The theory KPC41 (LCcrsf) is conservative over KP41 (Lcrsf) plus ∆0(Lcrsf)-
Dependent Choice plus (WO).

Note this just says that every Lcrsf-formula proved by the former theory is also proved
by the latter. But the former theory is not an extension of the latter:

Proposition 7.3. KPC41 (LCcrsf) does not prove (WO).

Proof. By Theorem 6.13, if KPC41 (LCcrsf) proves the existence of an ordinal α bijective to
a given x, then it proves f(x) is such an α for some function symbol f(x) in LCcrsf . Fix a
universe of sets with a global choice function C, and view it as a structure interpreting LCcrsf .
There, f(x) denotes a function in CRSFC . By Theorem 2.5 (for CRSFC instead CRSF,
recall Remark 2.10), there is a #-term t(x) such that α = f(x) 4 t(x) holds for all x.
Then there is a polynomial p such that the von Neumann rank rk(f(x)) = α ≥ |x| is at
most p(rk(x)) (cf. [7, Lemma 2, 4, Proposition 10]). This is false for many x.

7.2 The forcing

Let M be a countable model of KP41 (Lcrsf) and ∆0(Lcrsf)-Dependent Choice and (WO). We
intend to produce a generic extension of M modelling (GC). Note we do not assume that M
is standard, in particular, M possibly does not interpret ∈ by ∈. While the forcing frame
is the class forcing commonly used to force global choice, we use a technically simplified
forcing relation avoiding the use of names. This is similar to [17]. The argument that the
forcing preserves KP41 (Lcrsf) needs some care since this theory and hence M is very weak.
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The forcing frame (P,6P) is defined as follows: P ⊆M contains p ∈M if and only if p
is a choice function in the sense of M , that is, M satisfies

(Fct(p) ∧ 〈0, 0〉 ∈ p ∧ ∀x, y (〈x, y〉 ∈ p ∧ x 6= 0→ y ∈ x)).

Further, p 6P q means M |= q ⊆ p. Then (P,6P) is a partial order. In the following we
let p, q, r, . . . range over conditions, i.e., elements of P. A subset X of P is dense below p
if for all q 6P p there is r 6P q such that r ∈ X. Being dense means being dense below
1P := {〈0, 0〉} (calculated in M). A subset X of P is a filter if p ∪M q ∈ X whenever
p, q ∈ X, and q ∈ X whenever p 6P q and p ∈ X. Being generic means being a filter that
intersects all dense subsets of P that are definable (with parameters) in M . The forcing
language is Lcrsf ∪ {R} for a new binary relation symbol R.

The forcing relation  relates conditions p to sentences of the forcing language with
parameters from M . It is defined as follows. For an atomic sentence ϕ that does not
mention R we let p  ϕ if and only if M |= ϕ. For an atomic sentence of the form Rts
with closed terms t, s we let

p  Rts ⇐⇒ M |= (t = {s} ∨ 〈t, s〉 ∈ p).

We extend this definition via the recurrence:

p  (ϕ ∧ ψ) ⇐⇒ p  ϕ and p  ψ,

p  ¬ϕ ⇐⇒ for all q 6P p : q 6 ϕ,
p  ∀xϕ(x) ⇐⇒ for all a ∈M : p  ϕ(a).

This defines p  ϕ for all sentences ϕ of the forcing language with parameters from M
which are written using the logical symbols ∧,¬,∀. We freely use the symbols ∨,→,∃
understanding these as classical abbreviations. Namely, (ϕ ∨ ψ), (ϕ → ψ),∃xχ(x) stand
for ¬(¬ϕ ∧ ¬ψ),¬(ϕ ∧ ¬ψ),¬∀x (¬χ(x)) respectively. Lemma 7.4 (f) below shows that
p  ϕ does not depend of the choice of these abbreviations.

Lemma 7.4. Let ϕ be a sentence of the forcing language with parameters from M .

(a) (Conservativity) If R does not occur in ϕ, then p  ϕ if and only if M |= ϕ.

(b) (Extension) If p 6P q and q  ϕ, then p  ϕ.

(c) (Stability) p  ϕ if and only if p  ¬¬ϕ, that is, if and only if {q | q  ϕ} is dense
below p.

(d) (Truth Lemma) For every generic G there is RG ⊆M2 such that for every ϕ we have
that (M,RG) |= ϕ if and only if some p ∈ G forces ϕ.

(e) (Forcing Completeness) p  ϕ if and only if (M,RG) |= ϕ for every generic filter G
containing p.

(f) {ϕ | p  ϕ} is closed under logical consequence.
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Proof. (a) and (b) obviously hold for atomic ϕ; for general ϕ the claim follows by a straight-
forward induction (see, e.g., [3, Lemma 2.6]). Similarly, it suffices to show (c) for atomic ϕ.
Assume ϕ = Rts for closed terms t, s. The second equivalence is trivial. The forward di-
rection follows from (b): if p  ϕ, then {q | q  ϕ} ⊇ {q | q 6P p} is dense below p.
Conversely, it is enough to find given p with p 6 Rts some q 6P p forcing ¬Rts. We have
M |= t 6= {s} and M |= 〈t, s〉 /∈ p. If M |= t = 0, then M |= s 6= 0 and no condition forces
Rts, so q := p  ¬Rts. If M |= t 6= 0, then there is a ∈M such that M |= (s 6= a ∧ a ∈ t)
and q := p ∪ {〈t, a〉} calculated in M is a condition. Then no r 6P q forces Rts.

The remaining claims can be proved by standard means. We give precise references
from [3]. A generic G is generic in the sense of [3, Definition 2.9], and M [G] is defined
for every such G (cf. [3, Definition 2.16]). [3, Proposition 2.26] states that up to isomor-
phism each such model M [G] has the form (M,RG) as in (d). Then (d), (e), (f) are [3,
Theorem 2.19, Corollary 2.20 (2), Corollary 2.20 (3)].

It is easy to see that for each ϕ(~x) of the forcing language the set {(p,~a) : p  ϕ(~a)}
is definable in M . There is, however, no good control of the logical complexity of the
defining formula. Therefore we use the following auxiliary strong forcing relation� between
conditions and sentences of the forcing language with parameters from M . It is defined
via the same recurrence as  except for the negation clause. Namely, p � ¬ϕ is defined
as p  ¬ϕ for atomic ϕ and otherwise via the recursion:

p � ¬(ψ ∧ χ) ⇐⇒ p � ¬ψ or p � ¬χ,
p � ¬¬ψ ⇐⇒ p � ψ,

p � ¬∀xψ(x) ⇐⇒ there is a ∈M : p � ¬ψ(a).

Remark 7.5. One can check that p � ∃xϕ(x) if and only if there is a ∈ M such that
p � ϕ(a), and p � (ϕ∨ ψ) if and only if p � ϕ or p � ψ. Here we understand ∃,∨ by the
particular abbreviations mentioned earlier. In this sense � commutes with quantifiers and
connectives ∧,∨. The price to pay for these nice properties is that � does not behave like
a notion of forcing. For example, let a, b ∈ M,a 6= b, and calculate c := {a, b} in M ; then
1P 6� Rca and 1P 6� ¬Rca, so 1P 6� (Rca ∨ ¬Rca), and hence Lemma 7.4 (f) fails for �.

A formula is in negation normal form (NNF) if negations appear only in front of atomic
subformulas.

Lemma 7.6. Let ϕ be a sentence of the forcing language with parameters from M .

(a) If p 6P q and q � ϕ, then p � ϕ.

(b) If p � ϕ, then p  ϕ.

(c) Let L ⊆ Lcrsf and ψ(~x) be a ∆0(L
+
0 ∪ L ∪ {R})-formula with parameters from M .

Then there exists a ∆0(L0 ∪ L)-formula
∼
ψ(u, ~x) with parameters from M such that

∼
ψ(u, ~x) defines {(p,~a) : p � ψ(~a)} in M .

(d) If ϕ is a Σ1(Lcrsf ∪ {R})-sentence in NNF with parameters from M and p  ϕ, then
there is q 6P p such that q � ϕ.
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Proof. (a) and (b) are straightforward. (c) is proved by induction on ψ. We only verify

the case when ψ(~x) equals ¬Rts for terms t = t(~x), s = s(~x). Then define
∼
ψ(u, ~x) as

u ∈ P ∧
(
(t = 0 ∧ s 6= 0) ∨ (t 6= 0 ∧ s /∈ t) ∨ ∃x∈t (x 6= s ∧ 〈t, x〉 ∈ u)

)
.

Here, u ∈ P abbreviates a suitable ∆0(L0)-formula defining P ⊆M in M . We have to show
that for all p ∈ P and ~a from M :

M |=
∼
ψ(p,~a)⇐⇒ for all q 6P p : q 6 Rt(~a)s(~a).

The direction from left to right is easy to see. Conversely, assume no condition q 6P p forces
Rt(~a)s(~a) and note M |= p ∈ P. Arguing in M , then t(~a) 6= {s(~a)} and 〈t(~a), s(~a)〉 /∈ p,
in particular t(~a), s(~a) are not both 0 . If t(~a) = 0, then s(~a) 6= 0 and

∼
ψ(p,~a) is true. So

suppose t(~a) 6= 0. Then q := p ∪ {〈t(~a), s(~a)〉} /∈ P. Hence s(~a) /∈ t(~a) or there is a ∈ t(~a)

with a 6= s(~a) and 〈t(~a), a〉 ∈ p. Both cases imply
∼
ψ(p,~a).

(d). Let ϕ(~x) be a formula of the forcing language with parameters from M . Call ϕ(~x)
good if for all ~a from M and p ∈ P: if p  ϕ(~a), then there is q 6P p with q � ϕ(~a).

Atomic and negated atomic formulas are good, as we can take q := p. Good formulas
are closed under conjunctions and disjunctions, and ∃y ψ(y, ~x) is good whenever ψ(y, ~x) is
good: if p  ∃y ψ(y,~a), then

⋃
b∈M{q | q  ψ(b,~a)} is dense below p, so there are q 6P p

and b ∈ M such that q  ψ(b,~a); as ψ(y, ~x) is good, there is r 6P q such that r � ψ(b,~a)
and hence r � ∃y ψ(y,~a).

Finally, we show that for a good ∆0(Lcrsf ∪ {R})-formula ψ(y, ~x), also ∀y∈t(~x)ψ(y, ~x)
is good, where t is a term. If p  ∀y∈t(~a)ψ(y,~a), then by Conservativity p  ψ(b,~a) for
all b with M |= b ∈ t(~a). As ψ(y, ~x) is good, we find for every q 6P p and every such b
some qb 6P q such that qb � ψ(b,~a). By (WO) we find s ∈M which is, in the sense of M ,
a bijection from an ordinal α onto t(~a). It suffices to find π ∈ M such that π is, in the
sense of M , a function with domain α and such that for all γ ∈M β ∈M α:

π’β 6P π’γ 6P p and π’β � ψ(s’β,~a). (24)

More precisely, the first three ’ should read ’M . This suffices indeed: by (a), then q :=⋃
im(π), calculated in M , is a condition extending p such that q � ψ(s’β,~a) for all β ∈M α.

Thus q � ψ(b,~a) for all b with M |= b ∈ t(~a), and hence q � ∀y∈t(~a)ψ(y,~a).
To find such π we apply ∆0(Lcrsf)-Dependent Choice in M with the following ∆0(Lcrsf)-

formula ϕ(x, y) with parameters from M :(
dom(x) ∈ α ∧ p ∪

⋃
im(x) ∈ P→ p ∪

⋃
im(x) ⊆ y ∧ y ∈ P ∧

∼
ψ(y, s’dom(x),~a)

)
.

where
∼
ψ is as in (c). Since ψ is ∆0(Lcrsf∪{R}), we have

∼
ψ (by (c)) and hence ϕ in ∆0(Lcrsf).

We show that M models ∀x ∃y ϕ(x, y). Argue in M : given c ∈ M with β := dom(c) ∈ α
and q := p ∪

⋃
im(c) ∈ P a witness for y is given by qb for b := s’β.

For α as above, choose π witnessing z in (23). We claim π satisfies (24). It suffices to
show M |= ∀β∈α (p ∪

⋃
im(π�β) ∈ P), or equivalently, M |= ∀γ, γ′∈β (p ∪ π’γ ∪ π’γ′ ∈ P)

for all β ∈M α. This follows by ∆0(L0)-Induction on β and elementary properties of
ordinals.
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7.3 Proof of Theorem 7.2

It suffices to show that every countable model M of KP41 (Lcrsf) plus ∆0(Lcrsf)-Dependent
Choice plus (WO) has an expansion to a model of KPC41 (LCcrsf). Recall, KPC41 (LCcrsf) is a
Σ41 (LC0 )-expansion of KPC41 (cf. Lemma 5.21). It thus suffices to find an expansion of M
to a model of KPC41 . Using the notation of the Truth Lemma 7.4(d), for every generic G
we have that RG is the graph of a function C satisfying the axiom of global choice (GC). A
∆0(L

C
0 )-formula in the corresponding expansion is equivalent to a ∆0(L0 ∪ {R})-formula.

It thus suffices to show that (M,RG) satisfies Σ41 (L0 ∪ {R})-Induction, ∆0(L0 ∪ {R})-
Separation and ∆0(L0 ∪ {R})-Collection.

We start with Induction. So, given a ∆0(L0 ∪ {R})-formula ψ(y, z) with parameters
from M , a #-term t(y) with parameters from M and b ∈M we have to show that

(M,RG) |= ∀x
(
∀y∈x ∃z4t(y)ψ(y, z)→ ∃z4t(x)ψ(x, z)

)
→ ∃z4t(b)ψ(b, z).

Recall IsPair(x) from Examples 4.6. We define

ψ′(y, z) := (IsPair(z) ∧ π1(z) : π2(z) 4 t(y) ∧ ψ(y, π2(z))).

We can assume that ψ′ is in NNF. Recall L+
0 ⊆ Lcrsf , so M interprets L+

0 . We assume

(M,RG) |= ∀x (∀y∈x ∃z ψ′(y, z)→ ∃z ψ′(x, z)) (25)

and aim to show (M,RG) |= ∃z ψ′(b, z). By the Truth Lemma there exists p ∈ G such that
p forces (25). It suffices to show that p forces ∃z ψ′(b, z). By Stability it suffices to find,
given p′ 6P p, some q 6P p′ forcing ∃z ψ′(b, z).

By (WO) we find s ∈ M such that, in the sense of M , s is a bijection from some
ordinal α onto tc+(b) that respects ∈, i.e., M |= (s’γ ∈ s’β ∈ tc+(b) → γ ∈ β). So by
Lemma 7.6(b), it suffices to find for every β ∈M α a pair 〈qβ, aβ〉 (in the sense of M) such
that qβ 6P p′ and

qβ � ψ′(s’β, aβ). (26)

We intend to apply ∆0(Lcrsf)-Dependent Choice with the following formula ϕ(x, y):

ϕ(x, y) := (ϕ0(x)→ ϕ1(x, y)),

ϕ0(x) := Fct(x) ∧ dom(x) ∈ α ∧ ∀γ, γ′∈dom(x) (p′ ∪ π1(x’γ) ∪ π1(x’γ′) ∈ P)

∧ ∀γ∈dom(x)
(
IsPair(x’γ) ∧

∼
ψ′(π1(x’γ), s’γ, π2(x’γ))

)
,

ϕ1(x, y) := IsPair(y) ∧ ∀γ∈dom(x) (p′ ∪ π1(x’γ) ⊆ π1(y)) ∧
∼
ψ′(π1(y), s’dom(x), π2(y)).

where
∼
ψ′ is defined as in Lemma 7.6(c).

We have ϕ ∈ ∆0(Lcrsf) by Lemma 7.6(c). We show M |= ∀x ∃y ϕ(x, y). Let c ∈M and
assume M |= ϕ0(c). We have to show M |= ∃y ϕ1(c, y). Compute

β := dom(c)

q := p′ ∪
⋃
γ∈β π1(c’γ)
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in M (this can be done: for f(x) such that KP41 (Lcrsf) proves f(x) = π1(π2(x)), we have
q = p′ ∪

⋃
f”(c) in M). Then q ∈ P extends (π1(c’γ))M for all γ ∈M β. By Lemma 7.6(a),

q � ψ′(s’γ, π2(c’γ)) for all γ ∈M β, and hence q � ∃z ψ′(s’γ, z) for all γ ∈M β. This implies
q � ∃z ψ′(d, z) for all d ∈ M with M |= d ∈ s’β. By Lemma 7.6(b), we see that q forces
∀y∈s’β ∃z ψ′(y, z). But q 6P p′ 6P p, so by Extension q forces (25). Plugging s’β for x in
(25) and recalling Lemma 7.4(f) we see that q  ∃z ψ′(s’β, z). This is a Σ1(Lcrsf ∪ {R})-
sentence in NNF with parameters from M , so Lemma 7.6(d) gives qβ 6P q and aβ ∈ M
such that qβ � ψ′(s’β, aβ). Then M |= ϕ1(c, 〈qβ, aβ〉) and thus M |= ∃y ϕ1(c, y).

By Dependent Choice there is π ∈ M , in the sense of M a function with domain α,
such that M |= ϕ(π�β, π’β) for all β ∈M α.

To show (26) it suffices to show M |= ϕ0(π�β) for all β ∈M α, or equivalently

∀γ, γ′∈β (p′ ∪ π1(π’γ) ∪ π1(π’γ′) ∈ P) ∧ ∀γ∈β (IsPair(π’γ) ∧
∼
ψ′(π1(π’γ), s’γ, π2(π’γ)))

holds in M for all β ∈M α. By Lemma 7.6(c), this can be written χ(β) for a ∆0(L
+
0 )-

formula χ(x) with parameters from M . Since ∆0(L
+
0 )-Induction holds in M , it suffices

to verify M |= χ(β) assuming M |= ∀γ∈β χ(γ). This is easy. Thus (M,RG) satisfies
∆0(L0 ∪ {R})-Induction.

We show that (M,RG) satisfies ∆0(L0∪{R})-Collection. Let ψ(y, z) be a ∆0(L0∪{R})-
formula with parameters from M and a ∈M such that (M,RG) satisfies

ϕ := ∀y∈a ∃z ψ(y, z).

By the Truth Lemma, ϕ is forced by some p ∈ G. Arguing as for (26) we can find q 6P p
such that for all b ∈M a there is c ∈ M such that q � ψ(b, c) (observe that the proof of
(26) gave a descending chain of qβ’s) – equivalently: q � ϕ. Note q � ϕ if and only if

M |= ∀y∈a ∃z
∼
ψ(q, y, z),

where
∼
ψ is ∆0(L0), chosen according Lemma 7.6(c). Then {q : q � ϕ} is M -definable and

dense below p, so we find such q in G. Applying ∆0(L0)-Collection in M we get

M |= ∃V ∀y∈a ∃z∈V
∼
ψ(q, y, z).

But for all b, c ∈M we have

(M,RG) |= (
∼
ψ(q, b, c)→ ψ(b, c)),

by Lemma 7.6(b) and the Truth Lemma. Thus (M,RG) satisfies ∆0(L0 ∪ {R})-Collection.
We show that (M,RG) satisfies ∆0(L0 ∪ {R})-Separation. Let a ∈ M and ϕ(x) be a

∆0(L0 ∪{R})-formula with parameters from M . We can assume ϕ(x) is in NNF. Let ϕ(x)
be logically equivalent to ¬ϕ(x) and in NNF. By the Truth Lemma it suffices to show
1P  ∃z (z = {x ∈ a : ϕ(x)}). By Stability it suffices to show that for every p ∈ P there is
q 6P p such that q  ∃z (z = {x ∈ a : ϕ(x)}).

47



Let p ∈ P be given. We claim that it suffices to find q 6P p that strongly decides
ϕ(b) for every b ∈M a in the sense that q � ϕ(b) or q � ϕ(b). Indeed, such a q
forces ∃z (z = {x ∈ a : ϕ(x)}). By Forcing Completeness we have to show (M,RG′) |=
∃z (z = {x ∈ a : ϕ(x)}) for every generic G′ containing q. But z is witnessed by
{x ∈ a :

∼
ϕ(q, x)}, a set obtainable in M by ∆0(L0)-Separation (Lemma 7.6(c)). To see

this, we verify for every b ∈M a:

(M,RG′) |= (ϕ(b)↔ ∼
ϕ(q, b)).

The direction from right to left follows from Lemma 7.6(b) and the Truth Lemma. Con-
versely, assuming (M,RG′) |= ϕ(b) the Truth Lemma gives r ∈ G′ forcing ϕ(b); then
r ∪ q ∈ G′ since G′ is a filter, so r ∪ q forces ϕ(b) by Extension, so cannot force ϕ(b) by
Lemma 7.4(f), so q 6 ϕ(b) by Extension, so q 6� ϕ(b) by Lemma 7.6(b), so q � ϕ(b) and
(M,RG′) |=

∼
ϕ(q, b) since q strongly decides ϕ(b).

Thus, given a condition p, we are looking for q 6P p that strongly decides ϕ(b) for every
b ∈M a. By (WO) choose s ∈ M such that, in the sense of M , s is a bijection from α
onto a. A condition q as desired is obtained in M as the union of a descending sequence
(qβ)β∈α with q0 6P p such that each qβ strongly decides ϕ(qβ, s’β). To get such a sequence
in M we apply ∆0(Lcrsf)-Dependent Choice on the following formula ψ(x, y):

(Fct(x) ∧ dom(x) ∈ α ∧ ∀γ, γ′∈dom(x)x’γ ∪ x’γ′ ∈ P
→ ∀γ∈dom(x) (p ∪ x’γ ⊆ y) ∧ (

∼
ϕ(y, s’dom(x)) ∨ ϕ̃(y, s’dom(x)))). (27)

A function π with domain α (in the sense of M) such that M |= ψ(π�β, π’β) for all β ∈M α,
is a sequence as desired. We are left to show M |= ∀x∃y ψ(x, y).

Let c ∈M satisfy the antecedent of (27), and compute β := dom(c) and q0 :=
⋃

im(c)
in M . Then q0 ∈ P. There exists q1 6P q0 such that q1  ϕ(s’β) or q1  ϕ(s’β). Indeed,
by Stability, if q0 6 ϕ(s’β), then there is q1 6P q0 such that r 6 ϕ(s’β) for all r 6P q1, i.e.,
q1  ¬ϕ(s’β) and hence q1  ϕ(s’β) by Lemma 7.4(f). Lemma 7.6(d) gives q2 6P q1 such
that q2 � ϕ(s’β) or q2 � ϕ(s’β) respectively. Then M |= ψ(c, q2).
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