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HIGHLIGHTS 

 Various percentages of minimal-size ZnO and ZnO-GO for PSF membrane enhancement. 

 5 times reduction of ZnO usage with the introduction of GO nanosheets as support. 

 ZnO-GO composite is more hydrophilic compared to other GO-nanohybrid. 

 ZnO-GO membrane exhibits excellent antifouling and antibacterial properties. 

 

ABSTRACT 

Zinc oxide nanoparticles were well-known for the enhanced antifouling and antibacterial 

properties which could be beneficial for membrane processes in desalination. The 

functionalization of ZnO onto graphene oxide nanoplates was targeted for better distribution. 

Both ZnO and ZnO-GO NPs were synthesized using sol-gel method. The nanoparticles 

characteristics were checked with XRD, TEM, and FESEM. The nanohybrid membranes 

were fabricated via wet phase inversion technique and embedded with various percentage of 

ZnO (1, 2, 3 wt %) and ZnO-GO (0.1, 0.3, 0.6 wt %) nanoparticles. All the membranes with 

nanoparticles incorporation exhibited improved membrane properties in comparison with the 

pristine PSF membrane. The best membrane performance was shown in membrane with 2 wt% 

of ZnO and 0.6 wt% of ZnO-GO. These two membranes presented significantly improved 

performance such as enhanced hydrophilicity, high permeability and porosity, improved 

humic acid rejection rate as well as good antifouling and antibacterial control. To an extent, 

the excellent antimicrobial ability of these nanohybrid membranes appeared as appropriate 

candidate to contribute or overcome bio-fouling issues in applications such as brackish water 

or seawater desalination. Hence, ZnO and ZnO-GO NPs were superb nanomaterials in the 

fabrication of PSF-nanohybrid membranes. The use of GO nanoplates allowed reduction of 

ZnO composition by up to 5 times while showing similar performances. 
 

 

Keywords: Zinc oxide; Zinc oxide-Graphene oxide nanohybrid; Polysulfone membrane; 

Antifouling; Antibacterial 
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1. Introduction 

Membrane fouling has been a major obstacle in water and wastewater treatment industry 

since decades ago. This weakness would impose problems in the separation process 

efficiency and lead to frequent maintenance of membrane operations [1]. A variety of 

researches has been performed to overcome the fouling issues. Several membrane 

modification methods have been practised widely to improve the membrane performance, i.e. 

development of composite membranes via interfacial polymerization [2], UV-initiated 

grafting [3], plasma treatment [4], electron beam irradiation [5] , layer-by-layer deposition [6] 

and incorporation of nanoparticles or antifouling agents [7]. In recent years, membrane 

separation advances have been achieved by introducing the application of nanomaterials in 

membranes. The combination of membrane and nanotechnology could lead to new 

breakthrough in the membrane development industry due to its versatile and attractive 

advantages.  

To date, the establishment of nanoparticles-embedded membranes is attaining 

tremendous interest due to its ability to enhance properties of membranes. Nanoparticles 

(NPs) which span the range between 1 nm to 100 nm are the most fundamental component in 

the formation of a nanostructure. According to Horikoshi et al., metallic NPs would normally 

yield different characteristics from bulk metals, in which the nano-size particulates would 

exhibit greater physical and chemical properties due to the enhanced surface area [8]. 

Numerous types of metal or metal oxide NPs have been reportedly used in membrane 

applications, such as silver (Ag), iron (Fe2O3, Fe3O4), silica (SiO2), aluminium (Al2O3), 

titanium (TiO2), magnesium oxide (MgO), and zirconium dioxide (ZrO2) [7]. Some of these 

metal oxide NPs are quite expensive and thus efforts have been focused to opt for a lower 

cost metal oxide. One of the popular low-cost metal oxide is zinc oxide (ZnO), which has 

been used as a new alternative for titanium oxide replacement [9].  

ZnO NPs are gaining rising attention in various industrial applications such as 

biomedical, optics, electronics, and recently in the development of membrane technology, 

owing to their superb antimicrobial, anti-corrosive, thermal and mechanical stability properties 

[10]. Several researches have been reported on the incorporation of various concentrations of 

ZnO NPs into different polymer matrix such as Polysulfone (PSF), Polyether sulfone (PES) 

and Polyvinylidene fluoride (PVDF). These studies reported on the formation of 

ultrafiltration (UF) and tight UF membranes with improved membrane performances such as 
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higher permeability, rejection capability, porosity, hydrophilicity and enhanced antifouling 

properties [11],[12],[13]. In addition, the ZnO-incorporated membranes also exhibited 

essential heavy metal ions (Cu
2+

) adsorption [14], reduced oleic acid fouling [15], improved 

dye rejection ability [9], collagen separation [16] and excellent photo-catalysis self-cleaning 

[17]. These interesting findings indicated that ZnO NPs has the potential to be an excellent 

NP candidate for better membrane quality.  

Although ZnO NPs yielded outstanding characteristics in membrane fabrication, there 

are drawbacks and limitations. This is a common issue for NPs incorporation, due to the 

nano-size particulates aggregation and formation of non-homogeneous distribution during the 

membrane formation. Therefore, graphene oxide (GO) nanosheets have been introduced as a 

versatile platform for better nanomaterials dispersion and appeared as an innovative material 

in membrane preparation [18][19]. This has been contributed by the synergistic effects 

between the hydrophilic-layered GO and nanoparticles. The carboxylic and hydroxyl 

functional groups of GO are essential in forming hybrid nanostructures with various kinds of 

NPs such as Ag, SiO2, TiO2 and so forth [20]. For instance, the synthesis of silver-graphene 

oxide (Ag/GO) nanocomposites has been reported as vital antibacterial agent for water 

disinfection [18]. According to Sun et al., the Ag/GO nanocomposite has been further 

developed in membrane fabrication for water purification [21]. The novel mixed matrix UF 

membrane impregnated with Ag/GO also exhibits excellent antifouling and anti-biofouling 

properties [22]. In addition, the unique nanohybrid SiO2/GO PSF membranes revealed 

significant improvement in terms of flux, protein rejection and antifouling tendency [23]. 

Furthermore, the nanocomposite of TiO2/GO PES membrane also illustrated perfect 

nanofiltration membrane performance in various aspects such as water permeability, 

hydrophilicity, fouling resistance and dye retention [24]. Similar improved desalination 

performance by TiO2/GO nanocomposite reverse osmosis membranes were developed too 

[25]. Besides, the formation of ZnO-GO composite has been shown to have better 

photocatalytic activity [26]. However, the study of ZnO-GO composite in membrane 

fabrication is still limited.  

Hence, the ultimate goal of this study is to develop PSF membranes with ZnO NPs 

and ZnO-GO nanohybrid in order to obtain improved membrane performance with enhanced 

permeability rate, rejection capability as well as fouling propensity. The ZnO NPs 

agglomeration problem is aimed to be overcome by decorating ZnO NPs onto the surface of 

GO nanosheets. The amount of ZnO could also be reduced by dispersing it on GO nanosheets. 
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The PSF-GO membranes is not included in this study as the literature shows that the GO-

nanohybrid membranes are always exhibiting better performance in comparison with GO 

membranes [23][27][28][29]. Therefore, the focus of the study will be the investigations on 

the comparison between the incorporation of minimal-size ZnO NPs and functionalized ZnO 

with GO nanosheets towards the membrane performance. The membrane overall 

performance will be further characterized by several approaches, i.e. water permeability test, 

humic acid rejection, hydrophilicity study, porosity analysis, morphology study with Field 

Emission Scanning Electron Microscopy (FESEM) and  Atomic Force Microscopy (AFM). 

Finally, the antifouling and antibacterial analysis will be performed to determine the 

Polysulfone-nanohybrid membranes workability and efficiency in fouling resistance and bio-

fouling control for further applications such as separation, purification, desalination as well as 

water and wastewater treatment.  
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2. Experimental  

2.1. Materials   

Polysulfone (PSF) granules were obtained from Goodfellow Cambridge Ltd., England. The 

solvent 1-methyl-2-pyrrolidinone (NMP, 99.5% purity) was of analytical grade and 

purchased from Merck Co., Germany. Humic acid was supplied by Sigma Aldrich Co., USA. 

All chemicals were used without any further purification.  

2.2. Synthesis of ZnO and ZnO-GO Nanoparticles 

ZnO NPs were prepared through sol-gel method with average size of 13 nm as reported in 

detail in our previous study [30]. Graphene oxide (GO) was synthesized from natural graphite 

powder based on Hummers method, as described in previous study [29]. The ZnO-GO 

nanohybrid was produced via sol-gel method by decorating 20 wt% of ZnO onto the GO 

nanosheets support. Finally, the mixture was centrifuged and dried with oven overnight 

before calcination. 

2.3. Nanoparticles characterization 

The crystallite size of the ZnO nanoparticles and crystal phase composition could be analysed 

by performing X-ray diffraction (XRD; Bruker D8 Advance AXS X-ray diffractometer) with 

CuKα radiation(1.5406 Å) in the 2h scan range of 20–80
o
. The average crystallite size of the 

ZnO was obtained from the XRD patterns with the Debye–Scherer equation Eq. (1). 

D = Kλ / βcosθ                  (1) 

where K is the Scherer constant (K = 0.89), λ is the X-ray wavelength, β is the peak width at 

half maximum, and θ is the Bragg diffraction angle. Besides, the ZnO nanoparticles 

crystallite size was observed using a transmission electron microscope (TEM; Philips CM200, 

model JEOLJEM 2100). The nanoparticles’ morphology structure were further determined 

using high resolution field emission scanning electron microscopy (SEM; SUPRA 55VP) 

with energy-dispersive X-ray spectroscopy (EDX) (Oxford EDX INCA Penta FETX3). 

2.4. Membrane Fabrication 

Phase inversion technique was applied in the membrane fabrication. Various percentages of 

ZnO and ZnO-GO NPs were incorporated during the preparation of PSF casting solution. The 

casting solution was prepared by dissolving 20 wt% of PSF pellets into NMP with average 
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temperature of 60±5 °C under continuous stirring for 5 hr. The NPs were sonicated for 30 

mins to ensure better dispersion before mixing in the homogeneous PSF casting solution. The 

membranes were cast by using Filmographe Doctor Blade 360099003 (Braive Instrument, 

Germany) with thickness of 0.2 mm. The coagulation process of membrane occurred in a 

25°C water bath. The fabricated membranes were then kept overnight with ultrapure water 

for storage. 

2.5. Membrane performance testing and characterization 

2.5.1. Hydrophilicity study 

The angle between water and membrane surface was measured with contact angle meter 

(Model Kruss GmbH, Germany with Drop Shape Analysis software). The membrane surface 

hydrophilicity was measured for 3 times and compared according to the contact angle values 

for each membrane.  

2.5.2. Permeability test 

Membrane permeability was determined by measuring the pure water fluxes using a stirred 

cell (Sterlitech HP4750). The pure water flux was calculated by using the following equation: 

 J = V / s t                    (2)  

where J is the water flux (L m
-2

 hr
-1

); V is the permeate volume (L); s is the effective 

membrane area (m
2
); t is the operation time (hr). Data of water fluxes against pressures was 

plotted and the permeability was determined according to the gradient of the linear line. The 

permeate was also analysed for the presence of Zn using Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS) analysis (PerkinElmer, Model ELAN 9000). This is to check 

whether nanoparticle leaching took place. The ICP-MS analysis confirmed that there was no 

nanoparticle leaching after permeation of pure water.  

2.5.3. Porosity analysis 

Membrane porosity (ε) was analysed by performing gravimetric method, as shown in the 

following equation: 

wdnA 


 21 

                                                                                                       (3) 

where ω1 is the wet membrane weight and ω2 is the dried membrane weight, A(m
2
) is the area 

of the membrane, n is the thickness and dw is the water density (998 kg/m
3
). Besides, 
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membrane pore size could be estimated by using the porosity data and Guerout–Elford–Ferry 

equation in Eq. (4). 

 

PA

lQ
rm








 8)75.19.2(
                                                                                (4) 

where η is the water viscosity (8.9×10
-4

 Pa s), Q is the volume of permeated pure water per 

unit time (m
3
/s), and ΔP is the applied pressure (MPa). 

2.5.4. Morphological study 

The surfaces and cross-sectional structures of the pure and modified membranes were 

observed by using Field Emission Scanning Electron Microscope (FESEM, Gemini SUPRA 

55VP-ZEISS). Mapping analysis was performed by using Aztec ver.3.0 software. Besides, 

membrane surface roughness was determined by applying Multimode AFM with Nanoscope 

IIIa controller (Veeco, USA), under ambient conditions using tapping mode with TESP 

cantilevers (Bruker AXS). The scanned area was 10 x 10 μm. 

2.5.5. Rejection study & Antifouling testing 

Rejection study of membranes was performed by using 10ppm of humic acid solution. The 

rejection was determined by using the following equation:  

R = (1 – Cp/Cf ) x 100%                   (5)  

where Cp is the permeate solution concentration and Cf is the feed solution concentration.  

The flux decline profile was analysed by plotting normalized flux against time. Besides, flux 

recovery ratio (FRR) was determined after the fouling test where the fouled membrane will 

be rinsed with ultrapure water for about 30 minutes. The flux recovery could be calculated by 

using the equation (6):  

FRR = (J2 / J1) x 100%         (6) 

where J1 is the pure water flux before fouling test and J2 is the pure water flux after fouling. 

Besides, the relative flux reduction ratio (RFR) was calculated by the following equation: 

RFR = (1 – JP / J1) x 100%         (7) 

where JP is the foulant flux and J1 is the pure water flux. 

2.5.6. Antibacterial testing 

Antibacterial testing of the membranes was performed by using Escherichia coli (E.coli). 

Initially, E.coli was cultured in nutrient broth to obtain a stock with 109 CFU/ml. Next, the 
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stock solution was further diluted into 20 CFU/ml from the stock nutrient broth. Membranes 

were sent for autoclave before testing and were dipped into the diluted E.coli solution for 

about 10 min. The membranes were then placed on nutrient agar plates and incubated 

overnight. Finally, the colony forming units (CFUs) of E.coli on the membrane surface were 

observed using FESEM [29]. 

3. Results and discussion  

3.1. Nanoparticles characterizations 

The ZnO and ZnO-GO NPs were successfully synthesized via sol-gel technique. The 

produced NPs were verified and confirmed with several characterization methods to ensure 

the originality of the NPs. Hence, XRD, TEM, FESEM with EDX were carried out to assess 

the purity of NPs. 

3.1.1. XRD  

Firstly, the purity and crystallite size of ZnO and ZnO-GO NPs were confirmed by XRD 

analysis. Fig. 1 illustrated all the diffraction peaks existing in ZnO and ZnO-GO NPs. It was 

confirmed that the synthesized ZnO NPs were in hexagonal phase with wurtzite structure, 

complimentary with the data in JCPDS card No.36-1415 with Miller indices (1 0 0), (0 0 2), 

(1 0 1), (10 2), (1 1 0), (1 0 3), (1 1 2), (2 0 1) and lattice parameters, a = b = 0.3249 nm and c 

= 0.5206 nm [31]. The crystallite size was calculated based on the Debye–Scherer equation, 

in which the size existed in range of 10-20 nm. On the other hand, the XRD spectra of ZnO-

GO NPs exhibited the presence of reduced GO peak in the range of 20-30° as reported 

elsewhere [32],[33]. The spectrum proved the integration between GO and ZnO NPs.  
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Fig. 1. XRD peaks for ZnO and ZnO/GO NPs. 

3.1.2. TEM  

As a supporting analysis for the NPs size and shape confirmation, TEM analysis was carried 

out for the synthesized ZnO and ZnO-GO NPs. Fig. 2 (a) and (b) showed that the average 

particles size of both synthesized ZnO and ZnO-GO NPs was within the range of 10 - 15nm 

[30]. It was in good agreement with the XRD size prediction. Besides, it was observed that 

there was uniform distribution of spherical-shaped ZnO NPs on the GO nanosheets shown in 

Fig. 2(d) in comparison with the ZnO NPs shown in Fig. 2(c) which showed slight 

agglomerations. It was a good phenomenon as the evenly-distributed ZnO NPs decorated 

onto GO nanoplates would impose great enhancement for incorporation into the membrane 

structures.  

3.1.3. FESEM & EDX  

In addition, Fig. 2 (c) to (f) demonstrated the FESEM with EDX analysis as final 

confirmation for the morphology and elemental study of ZnO and ZnO-GO NPs. Similar to 

the TEM figures, the morphological study with FESEM was compatible and exhibited the 

consistency in the distribution ZnO and ZnO-GO NPs. EDX spectrum was another important 

tool to examine the elemental composition of the synthesized NPs. The elements of interest 

for ZnO were zinc and oxygen while ZnO-GO composite were zinc, oxygen and carbon. 

Apparently, both EDX spectra reflected the presence of high abundance of listed elements in 

both synthesized NPs which further confirmed the purity of the NPs. The composition of 
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ZnO NPs consisted of 74 wt% of Zn and 15 wt% of O while ZnO-GO were formed by 60 wt% 

of C, 24 wt% of Zn and 16 wt% of O. Hence, it could be concluded that the synthesized ZnO 

and ZnO-GO NPs were high in purity with consistent particles size.  

 

 

Fig. 2. TEM images: (a) ZnO, (b) ZnO-GO; FESEM images: (c) ZnO, (d) ZnO-GO  

and EDX spectra: (e) ZnO, (f) ZnO-GO.  
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3.2. Membrane performance testing and characterization 

After confirming the characteristics of the ZnO and ZnO-GO NPs, these NPs were applied in 

membrane fabrication via phase inversion technique. To provide further insight of PSF 

membranes performance with these nanohybrids, the comparison of various concentrations of 

ZnO [1, 2, 3 wt%] and ZnO-GO [0.1, 0.3, 0.6 wt%] was performed. The nanohybrid 

membranes were then characterized by several methods such as surface hydrophilicity, 

permeability testing, porosity, rejection, morphological study and so forth. Table 1 listed the 

polymer, solvent and nanoparticles ratio for the membrane fabrication. 

Table 1.  

Ratio of polymer, solvent and nanoparticles percentage. 

Membrane 

 

NPs percentage 

(wt %) 

Mass ratio of  

PSF:NMP:NPs 

P0 - 1:5:0 

Z1 ZnO 1% 1:5:0.01 

Z2 ZnO 2% 1:5:0.02 

Z3 ZnO 3% 1:5:0.03 

ZG1 ZnO-GO 0.1% 1:5:0.001 

ZG2 ZnO-GO 0.3% 1:5:0.003 

ZG3 ZnO-GO 0.6% 1:5:0.006 

 

3.2.1. Permeability & Hydrophilicity 

First of all, the performance of the nanohybrid membranes was characterized through water 

permeability and contact angle testing. Water permeability testing was evaluated based on 

flux while contact angle was an important indicator for membrane hydrophobicity or 

hydrophilicity. The correlation between both responses was visualised in Fig. 3. In general, 

the permeability of membrane correlated disproportionately with membrane hydrophilicity. 

This was an interesting finding which marked the significance of ZnO and ZnO-GO NPs in 

improving membrane performance. There was also an obvious trend which showed the 

decrement in contact angle value with increased amount of either ZnO or ZnO-GO NPs in 

comparison with pure PSF membrane (P0). The lower the contact angle value, the better the 

hydrophilicity of membrane [29]. As shown in Fig. 3, the contact angle value declined from 

65.9 
o
 to 39.6 

o 
with the addition of various amount of ZnO and ZnO-GO NPs. There was not 
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much difference of average contact angle values between several concentrations of both ZnO 

and ZnO-GO NPs membranes, considering the standard deviation. It was mainly due to the 

contact angle test was only performed using water droplet on the surface of membranes, 

regardless the exact loading of ZnO and ZnO-GO nanostructures. However, the result was 

satisfactory due to the enhanced hydrophilic nature of the membranes compared with the bare 

PSF membrane. The improved hydrophilicity could be explained by the reduced interface 

energy of the mixed matrix membranes affected by the polar characteristics of ZnO NPs and 

large abundance of polar functional groups on the surface of GO nanosheets [34][35]. It was 

well known that hydrophilicity correlated directly with membrane permeability. All of the 

nanohybrid membranes yielded higher permeability than the pure PSF membrane due to the 

synergistic effects between polymer and nanofillers which was similar to other nanohybrid 

membrane studies [23]. The best enhancement of both types of nanohybrid membranes was 

demonstrated in membranes with loadings of 2 wt% ZnO (Z2) and 0.6 wt% of ZnO-GO 

(ZG3). Interestingly, the permeability of membranes increased from 0.89 to 2.83 and 5.11 

L.m
-2

.h
-1

.bar
-1

 for membrane P0, Z2 and ZG3 respectively. It was an improvement for a 

multiple of five which significantly highlighted the vital role of hydrophilic nanostructures in 

contributing to the membrane permeability. Besides, the solvent and non-solvent exchange 

rate during the phase inversion process was an important factor leading to better membrane 

permeability. The hydrophilic nature of ZnO and ZnO-GO NPs would greatly enhance the 

viscosity casting solution and accelerate the solvent/non-solvent exchange rate [36]. Hence, it 

was in good agreement with the theory of enhanced diffusion rate with less viscous blending 

solution would produce highly permeable membranes [13].  

 

Fig. 3. Permeability and hydrophilicity of the membranes. 
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3.2.2. Porosity and pore size 

Generally, membrane porosity was dependent on the mass transfer of the polymer solution 

during the phase inversion process [17]. Referring to the discussion on membrane 

hydrophilicity, the hydrophilic nature owned by the ZnO and ZnO-GO nanohybrids did 

contribute significantly to the membrane porosity. The hydrophilic functional groups from 

the nanohybrids would accelerate the membrane formation process by speeding up the 

exchange rate between solvent and non-solvent. Therefore, the pores formation process 

would be enhanced. As shown in Table 2, the porosity of membranes increased from 75% for 

bare PSF (P0) membrane to 86% for PSF-ZnO (Z2) membrane and the highest porosity of 90% 

for PSF-ZnO-GO (ZG3) membrane. The porosity result was excellent in comparison with 

some of the literature [37][27]. All the modified membranes porosity was improved but there 

was only a little difference between various loadings of ZnO and ZnO-GO nanomaterials. 

The slight decrement of porosity for Z3 membrane might be caused by the pores blockage 

due to the high concentration of ZnO NPs [27].  The enhancement of porosity for nanohybrid 

membranes were attributed to the less viscous blending solution with hydrophilic ZnO and 

ZnO-GO which directly led to faster occurrence of phase inversion process [38]. In addition, 

the membranes average pore size was estimated to enlarge from 2 nm to 4 nm. Although the 

variance of pores sizes was not significant, it could be concluded that all the membranes were 

approaching nanoscale which was a promising step to the formation of nanofiltration 

membrane in accordance to the permeability, too [15].   

 

Table 2.  

Porosity and pore size of membranes. 

Membrane Porosity, ε % Pore size, nm 

P0 75.2 2.04 

Z1 85.3 2.12 

Z2 86.7 3.19 

Z3 84.2 2.77 

ZG1 80.9 4.03 

ZG2 86.2 4.39 

ZG3 90.0 4.09 
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3.2.3. Morphological study  

Morphological analysis was equally important to provide a better insight for the development 

of membranes. Generally, the surface, cross-sectional, EDX and mapping analysis were 

performed by applying FESEM to examine the formation of membrane structures. The 

morphology of membranes were affected by several factors including the interaction, 

viscosity and diffusion rate of the casting solution [37]. The rate of solidification and 

coagulation of PSF polymer would decide the membrane matrix formation [13]. Fig. 4 

displayed the entire surface, cross sectional and EDX images for the pristine PSF (P0), PSF-

ZnO (Z2), and PSF-ZnO-GO (ZG3) membranes. The membrane surface shown in Fig. 4(a)-

(c) indicated the P0 membrane had rougher surface, possibly due to the formation of biofilm. 

The membrane matrices were basically formed with a dense top layer and a porous support 

layer [27]. The P0 membranes possessed more sponge-like structures at the bottom layer and 

a thickened top layer due to its delayed demixing rate which slower the phase inversion 

process. On the other hand, it was notable that the Z2 and ZG3 membranes cross sections 

exhibited finger-like structures which were likely due to the improved diffusion rate of the 

casting solution as per reported elsewhere [37]. The ZG3 membrane which was incorporated 

with ZnO NPs decorated on the GO nanosheets presented more finger-like channels with 

abundance of macrovoids at the membrane sub layer [24]. As a result, the number and size of 

pores were enhanced which was in good agreement with the porosity findings discussed 

above [20]. Hence, the Z2 and ZG3 membranes were selected for better enhancement of 

water permeability with increased porosity and pore size. In addition, the EDX analysis was 

rather important to verify the elements presented in the membrane matrix. As shown in Fig. 4 

(g)-(i), all the membranes were examined for the presence of the Carbon, Oxygen, Sulphur 

and Zinc components. The Zinc element was not detected in P0 membrane but in Z2 and ZG3 

membranes, whereas the other elements were detected in all the 3 membranes with various 

percentages, in which the Carbon element was the highest amount in ZG3 membrane due to 

the presence of GO nanosheets. Finally, the mapping analysis was carried out for both Z2 and 

ZG3 membrane to check the distribution of each of the elements in membrane structure. Fig. 

5 illustrated the distribution of Carbon, Oxygen, Sulphur and Zinc composition in membranes. 

Interestingly, the Zinc elements exhibited well and homogeneous dispersion without any 

agglomerations. This was an encouraging phenomenon as the conglomerations problem of 

nanoparticles could be greatly enhanced with the introduction of GO nanosheets as a better 

nanoparticles’ dispersing platform [23].  
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 In addition, the surface morphology of the fabricated membranes was also performed 

with AFM analysis. Fig. 6 (a)-(c) illustrated the three-dimensional images of the three 

synthesized membranes, i.e. P0, Z2 and ZG3 membranes. The table in Fig. 6 (d) also 

presented the surface roughness values of the membranes. It was known that the surface with 

more peaks or valleys represented rougher membrane surface. As shown in Fig 6, the AFM 

image coincided well with mean RMS values which marked the higher surface roughness of 

P0 membrane in comparison with Z2 and ZG3 membranes. The addition of ZnO and ZnO-

GO NPs altered the membrane structure and turned the larger peaks or valleys of the 

membranes into smaller valleys. Eventually, the embedment of GO nanoplates would assist 

in creating smoother membrane surface due to the low electrostatic interaction and high 

compatibility with PSF membrane matrix [27]. The findings were similar with some previous 

studies [37][39]. Generally, higher surface roughness would normally result in a higher 

fouling tendency and hydrophobicity. This phenomenon could be further explained by 

Wenzel’s model, in which the degree of roughness correlated proportionally to the surface 

hydrophilicity or hydrophobicity [40]. Hence, the incorporation of ZnO and functionalized 

ZnO nanomaterials would definitely enhance the membrane properties by providing smoother 

membrane structure.  
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Fig. 4. FESEM images of membranes: [i] Surface: (a) P0 (b) Z2 (c) ZG3; 

[ii] Cross sectional: (d) P0 (e) Z2 (f) ZG3; [iii] EDX spectra: (g) P0 (h) Z2 (i) ZG3. 

 

Fig. 5. FESEM mapping images for Z2 and ZG3 membrane.   

 

Fig. 6. AFM images and surface roughness analysis for membranes:  

a) P0 b) Z2 c) ZG3; d) Mean RMS value.   
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3.3. Membrane Application 

Knowing the excellent characteristics of the fabricated membranes, the antifouling and 

antibacterial evaluations were then performed to assess the workability and efficiency of the 

membranes. The antifouling testing would be assessed by applying humic acid solution as 

organic foulants while antimicrobial analysis were examined by using Escherichia coli 

(E.coli). These analyses were important in membrane development due to the critical issues 

of fouling and bio-fouling. 

3.3.1. Antifouling properties 

The rejection tendency of all the fabricated membranes [P0-ZG3] was checked by applying 

humic acid solution as organic foulants. Based on Fig. 7, the rejection percentage of humic 

acid increased from 52% for P0 membrane to 99% for ZG3 membrane. The Z2 and Z3 

membranes indicated equally great rejection propensity with ZG3 membrane. However, ZG3 

membrane exhibited outstanding performance with high permeability and simultaneously 

excellent rejection capability. This was an encouraging finding to prove that the enhanced 

antifouling properties of membranes incorporated with both ZnO and ZnO-GO NPs. This 

phenomenon was possibly attributed to the hydrophilic nature of the ZnO and ZnO-GO 

which would reduce the adsorption of organic pollutants within the membrane structure [9]. 

The improved hydrophilicity originated from the high polarity ZnO NPs and the abundance 

of hydroxyl, carbonyl and epoxy functional groups on the GO nanosheets [41] which could 

reduce the adsorption of humic acid molecules onto membranes surface [42]. The 

establishment of highly hydrophilic membrane structure with ZnO and ZnO-GO composites 

was aimed to increase the affinity of these NPs to water rather than the organic matter, 

resulting in lower hydraulic resistance [38]. Hence, there would be higher retention of 

foulants by utilizing the membranes embedded with highly hydrophilic ZnO-GO NPs.  

After conducting the rejection analysis, flux decline against time profile was plotted 

to evaluate the antifouling performance of membranes. As shown in Fig. 8, the normalized 

flux decline analysis was performed on 3 selected membranes, i.e. pure PSF membrane (P0), 

PSF-ZnO (Z2) and PSF-ZnO-GO (ZG3). The normalized plot behaviour, as referred to Fig 3,  

exhibited that membranes with greater hydrophilicty yield higher J/Jo value. The flux decline 

analysis indicated that Z2 and ZG3 membranes possessed better antifouling ability in 

comparison with the P0 membrane. To an extent, this could be explained by the correlation 

between hydrophilicity of membrane and degree of fouling. The higher the hydrophilicity of 
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membranes, the greater their resistances towards fouling matter In brief, it could be 

summarized that the antifouling behaviour was very much dependent on the hydrophilic 

nature of membranes which were altered by the oxygenated groups from the ZnO-GO 

nanohybrids [39]. [43]. Besides, the normalized flux was more than 1 for Z2 and ZG3 

membrane, possibly due to the existence of ZnO nanohybrid which might affect the 

membrane properties and resulted in higher normalized flux value. As shown in Fig.9, the 

flux profile demonstrated the complete cycle of antifouling test, in which ZG3 membrane had 

better recovery as the W2 region was still fluctuating in a consistent value in comparison to 

Z2 and P0 which showed a slight decrease trend after the HA fouling test. This phenomenon 

was possibly due to the deposition of HA onto the membrane surface which led to the 

decrement of flux. With the introduction of ZnO decorated on GO nanosheets (ZG3 

membranes), the synergistic effect of both nanomaterials enhanced the surface hydrophilicity 

and therefore it contributed to the antifouling ability towards the organic foulant. The 

common way to investigate fouling resistance was by determining the flux recovery ratio 

(FRR). Fig. 10 presented the flux recovery ratio (FRR %) and relative flux reduction ratio 

(RFR %) of the 3 types of membranes. The higher RFR ratio represented the membrane was 

prone to fouling which led to significant flux decline during the fouling test. From Fig. 10, P0 

membrane showed higher RFR value in comparison with Z2 and ZG3 nanohybrid 

membranes. This was explained by the additional of nanohybrid materials would prevent the 

membranes from fouling and reduced the flux reduction. On the other hand, the FRR trend 

signified that ZG3 membrane had the best flux recovery ratio. This was likely due to the 

surface roughness of the membranes. The lower roughness of membranes would contribute to 

the better of FRR [39]. This was proven with the AFM analysis with surface roughness 

parameters.  
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Fig. 7. Humic acid rejection percentage. 

 

Fig. 8. Normalized flux decline analysis of membranes. 
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Fig. 9. Flux profile with water and humic acid: W1: pure water flux for 30mins; HA: Humic 

acid for 2 hr; W2: pure water recovery for 30 mins. 

 

Fig. 9. Flux recovery ratio (FRR) and Relative flux reduction ratio (RFR) 
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3.3.2. Antibacterial properties 

ZnO NPs had gained significant interest in bio-fouling studies since it was a bio-safe material 

which could act as outstanding antimicrobial agents in various applications [44]. It was also 

well known that ZnO NPs possessed excellent antimicrobial property towards various types 

of bacteria strains such as Bacillus subtilis and Escherichia coli (E.coli) [45]. Recent study by 

Wang et al. also reported that ZnO-GO composites were superb antibacterial materials to 

effectively inhibit various kinds of bacterial growth and propagation [46]. Owing to the 

distinct advantages of ZnO NPs in eliminating a broad spectrum of pathogens or 

microorganisms, it was used in the evaluation of the membranes antibacterial properties. The 

FESEM images in Fig. 10 exhibited the bacterial growth on 3 different types of membranes, 

i.e. P0, Z2 and ZG3. Obviously, the bacterial colonies were reduced significantly after 1 night 

of incubation in PSF-ZnO and PSF-ZnO-GO membranes compared to the blank PSF 

membrane with a large colony of bacteria. According to Sirelkhatim et al., the antibacterial 

mechanisms could be attributed to the direct contact of ZnO NPs with bacteria cell walls, 

resulting in bacterial cell integrity disruption, and also Reactive Oxygen Species (ROS) 

generation which would release hydrogen peroxide, hydroxide and superoxide anion [47]. 

Besides, the study by Kochkodan et al. (2006) stated that there would be less adhesion of 

E.coli on hydrophilic membrane surface which was in good agreement with the findings 

obtained in this study. The enhanced antimicrobial control could also be explained based on 

membrane surface roughness due to smoother surface with less occurrence of hills and 

valleys would easily remove bacterium cells [48]. The combination of ZnO and GO NPs was 

a great effort in maximizing the antibacterial ability, owing to the benefits of GO to serve as a 

better platform to facilitate for ZnO dispersion [46]. It could be assumed that the PSF-ZnO-

GO membrane yield the best antibacterial properties due to its ability to eradicate most of the 

E.coli cells due to the synergistic effects of ZnO-GO which enhanced the electron transfer to 

contribute on more ROS formation in eliminating the bacterial cells. Hence, the practicability 

of ZnO and ZnO-GO incorporated membranes in bacterial growth inhibition was successfully 

proven with great performance. The enriched antimicrobial properties of these membranes 

could be further utilized in various kinds of separation and purification applications involving 

bio-fouling issues.  
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Fig. 10. FESEM images for membranes with E-coli antibacterial test: 

a) Pure PSF [P0] b) PSF-ZnO [Z2] c) PSF-ZnO/GO [ZG3]. 
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4. Significance of study 

Generally, the fabrication of membranes with the incorporation of various concentrations of 

ZnO and ZnO-GO NPs were performed successfully. The membrane performance and 

characterization studies demonstrated that the significance of the incorporation of hydrophilic 

nanoparticles towards the enhancement of membranes properties. From this study, the best 

performance of membrane was illustrated in Z2 membrane with ZnO NPs and ZG3 

membrane with ZnO-GO NPs. The novelty of this study was that the functionalization of 

ZnO NPs with GO nanosheets contributed to the significant membrane performance 

improvement due to its homogeneous dispersion and increased hydrophilic nature of the 

membranes. The ZnO dispersed onto GO nanosheets could be reduced by 5 times while 

exhibiting excellent performance. The ZnO-GO composite membranes are the most 

hydrophilic membranes with lowest contact angle value in comparison with other GO-

composite with TiO2, SiO2 and Ag. This is an encouraging phenomenon as the findings from 

this study provide an essential alternative towards the production of better membrane 

properties with the hydrophilic ZnO NPs and further distribution enhancement in membrane 

matrix with GO nanofillers. In addition, the excellent antifouling and antimicrobial properties 

of these ZnO-nanohybrid membranes are essential in the prevention of fouling biofilm 

formation and thus enhancing the process efficiency in various separation applications 

especially overcoming the severe biofouling issues in desalination technology.   
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5. Conclusion 

The Polysulfone-nanohybrid membranes were successfully fabricated with ZnO nanoparticles 

and functionalized ZnO on the GO nanosheets surface. Both kinds of nanoparticles were 

hydrophilic in nature due to the polar characteristics of ZnO and abundance of hydroxyl, 

carbonyl and epoxy groups from GO. The unique characteristics of ZnO and ZnO-GO NPs 

were verified with several analyses, i.e. XRD, TEM and FESEM. The enhancement of 

membranes was investigated by varying the concentrations of the NPs. The optimum 

membrane performance was exhibited by PSF-ZnO 2 wt% (Z2) membrane and PSF-ZnO-GO 

0.6 wt% (ZG3) membrane. Both membranes illustrated significant enhancement in terms of 

hydrophilicity, permeability, porosity, pore size, rejection tendency and fouling propensity. 

The membrane hydrophilicity decreased from 65° (P0) to 39° (Z2 & ZG3) while membrane 

permeability increased from 0.89 (P0) to 2.83 (Z2) and 5.11 (ZG3) L.m
-2

.h
-1

.bar
-1

 

respectively. The membrane porosity also improved from 75% to 90% for ZG3 membrane. 

Besides, the humic acid rejection for both Z2 and ZG3 membrane were approaching 96% and 

99% with greatly enhanced antifouling properties. Antibacterial testing was performed with 

E.coli to examine the practicability of these nanohybrid membranes in overcoming bio-

fouling problems. The final goal of this study is to investigate the improvement of membrane 

properties with the pure ZnO and GO-functionalized ZnO NPs. The ZnO NPs were minimal 

in size which might cause less agglomeration. However, the GO-functionalized ZnO NPs 

were highly favourable since GO had a better interface for ZnO dispersion. Hence, it could be 

concluded that the incorporation of both ZnO and ZnO-GO NPs into PSF membranes was an 

advanced approach in creating better membranes with significant hydrophilicity and fouling 

control enhancement which was suitable in various separation and purification applications. 
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