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Objective: Cone beam CT (CBCT) images contain more scatter than a conventional CT 38	  

image and therefore provide inaccurate Hounsfield units (HU). Consequently CBCT 39	  

images cannot be used directly for radiotherapy dose calculation. The aim of this study is 40	  

to enable dose calculations to be performed with the use of cone-beam CT images taken 41	  

during radiotherapy and evaluate the necessity of re-planning. 42	  

Methodology: A prostate cancer patient with bilateral metallic prosthetic hip 43	  

replacements was imaged using both CT and CBCT. The multilevel threshold algorithm 44	  

(MLT) was used to categorise pixel values in the CBCT images into segments of 45	  

homogeneous HU. The variation in HU with position in the CBCT images was taken into 46	  

consideration. This segmentation method relies upon the operator dividing the CBCT 47	  

data into a set of volumes where the variation in the relationship between pixel values 48	  

and HUs is small. An automated MLT algorithm was developed to reduce the operator 49	  

time associated with the process. An intensity modulated radiation therapy (IMRT) plan 50	  

was generated from CT images of the patient. The plan was then copied to the segmented 51	  

CBCT data sets with identical settings and the doses were recalculated and compared. 52	  

Results: Gamma evaluation showed that the percentage of points in rectum with γ < 1 53	  

(3%/3 mm) were 98.7% and 97.7% in the segmented CBCT using MLT and the 54	  

automated MLT algorithms, respectively. Compared with the planning CT (pCT) plan, 55	  

the MLT algorithm showed -0.46% dose difference with 8 hours operator time while the 56	  

automated MLT algorithm showed -1.3%, which are both considered to be clinically 57	  

acceptable, when using collapsed cone (CC) algorithm.  58	  

Conclusion: The segmentation of CBCT images using the method in this study can be 59	  
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used for dose calculation. For a prostate patient with bilateral hip prostheses and the 60	  

associated issues with CT imaging, the MLT algorithms achieved a sufficient dose 61	  

calculation accuracy that is clinically acceptable. The automated MLT algorithm reduced 62	  

the operator time associated with implementing the MLT algorithm to achieve clinically 63	  

acceptable accuracy. This saved time makes the automated MLT algorithm superior and 64	  

easier to implement in the clinical setting. 65	  

Advance in knowledge: The MLT algorithm has been extended to the complex example 66	  

of a patient with bilateral hip prostheses, which with the introduction of automation is 67	  

feasible for use in ART, as an alternative to obtaining a new planning CT and re-68	  

outlining the structures. 69	  

 70	  
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1 Introduction 83	  

One of the desirable objectives during external beam radiotherapy (EBRT) of the prostate 84	  

is the delivery of an uniform radiation dose to the treatment volume while sparing organs 85	  

at risk. In practice, this may be difficult to achieve due to day-to-day changes in patient 86	  

positioning, patient shape and internal organ movement during the treatment course (1). 87	  

Interfractional motions such as variations in bladder and rectum volume have been 88	  

demonstrated to have significant effects on prostate position and a negative impact on the 89	  

accuracy of the treatment course (2). 90	  

   The implementation of image guided radiation therapy (IGRT) in clinical practice, such 91	  

as kilovoltage cone beam computed tomography (kV-CBCT), has improved tumor 92	  

targeting and tumour control during the treatment delivery process and reducing dose 93	  

delivery to normal tissues. CBCT has been used to correct patient set-up in the treatment 94	  

position and to monitor any anatomical deformations in 3D with sufficient soft tissue 95	  

contrast (3). In addition, CBCT can be feasible for adaptive radiotherapy (ART), e.g. 96	  

dose recalculation, if the Hounsfield units (HU) are accurate and reliable (4). 97	  

   Due to its cone-beam geometry, the amount of scatter in CBCT images is greater than 98	  

that of conventional CT images (fan beam),and is dependent on the scanned object size, 99	  

the collimator and the filter used (5). The image quality also depends on acquisition 100	  

parameters, i.e. mA, kV and the number of projections. In addition, limited gantry 101	  

rotation speed and large field-of-view (FOV) in a single rotation reduce image quality. 102	  

Therefore, CBCT images provide inaccurate HUs and, consequently, cannot be used 103	  

directly for dose calculation (6). Therefore, if there are significant anatomical changes 104	  
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observed on the CBCT images, acquiring another CT is necessary for an accurate 105	  

assessment of dose differences. This procedure is time consuming across all staff groups 106	  

involved in the radiotherapy pathway and additional dose is delivered to the patients. 107	  

Thus it would be sufficient to use CBCT images that were already taken during 108	  

radiotherapy for evaluating the necessity of re-planning. Many papers have studied the 109	  

use of CBCT data for dose recalculation, which is still an active area for research (6). 110	  

   To deal with HU calibration of CBCT images, Richter et al (2008) proposed a method 111	  

where HU-electron density conversion curves were based on average CBCT HU values 112	  

for separate treatment sites in order to generate population-specific conversion curves (7). 113	  

Such an approach is still subject to CBCT artefacts and can result in dose calculation 114	  

errors of greater than 5% when compared to planning CT (pCT) -based dose calculation 115	  

(6). Some studies deal with correcting scatter by applying quite unsophisticated software 116	  

corrections to CBCT images before reconstruction (8). Such a method may be unable to 117	  

accurately reconstruct higher-density material for a large scanned object size. In addition, 118	  

it may be difficult to implement such a method in a clinic even though recent commercial 119	  

software releases provide sophisticated scatter correction algorithms (9). 120	  

   Other studies deal with adjustment techniques to correct CBCT HU values, such as 121	  

mapping the HUs in CT images to the equivalent points in the CBCT image geometry 122	  

after rigid or deformable image registration (10,11). In addition, image cumulative 123	  

histograms can be used to adjust HU values between pCT and CBCT images (10). 124	  

Another technique uses a multilevel- threshold (MLT) algorithm as proposed by Boggula 125	  

et al (2007), where the pixel values of CBCT images were replaced with a small number 126	  

of fixed HU values as in CT for air, soft- tissue and bone (12-14). Onozato et al (2014) 127	  
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excluded water and used fat and muscle instead, resulting in a dosimetric difference 128	  

below 2% (14). In addition, Fotina et al (2008) used the same technique, calling it a 129	  

density override technique, but with a range of HU values for bone (soft bony structures, 130	  

hard bone and teeth) and air/low density regions (rectal balloon and lung). All other 131	  

regions are assumed to be water-equivalent assigned with one HU value, resulting in a 132	  

dosimetric difference below 2% (6). 133	  

   Recently, Dunlop et al (2015) assessed the CBCT dose calculation accuracy for density 134	  

override approaches for four pelvis cases, where CBCT voxels were assigned as water 135	  

only and then as either water or bone (water only and water-and-bone methods). This was 136	  

then compared with a scatter correction and automated density override approach that is 137	  

available in the RayStation TPS (V3.99, RaySearch Laboratories, Stockholm, 138	  

Sweden)(9). In the automated density override approach, six different densities (air, lung, 139	  

adipose tissue, connective tissue, cartilage/bone, and higher density for prosthesis) are 140	  

assigned to the CBCT image by binning the CBCT image histogram into six density 141	  

levels. Compared with pCT acquired on the same day as the CBCT, the results showed 142	  

that the automated approach was superior to the other methods, when considering smaller 143	  

patients (with anterior-posterior distance < 25 cm). For larger patients, the water only 144	  

method gave the best accuracy. 145	  

   The occurrence of inhomgeneities in the patient anatomy, e.g. hip replacements, has the 146	  

ability to complicate the automated process, requiring the addition of additional set 147	  

densities. In fact, none of the above studies used a patient with prostheses, which would 148	  

provide a more general assessment of dose calculation using CBCT. Almatani et al 149	  

(2016) studied CBCT-based dose calculations of a prostate patient with a single hip 150	  
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prosthesis using the MLT algorithm. The work showed that it was necessary to extend the 151	  

MLT algorithm to categorise pixel values into segments on a region-by-region basis, with 152	  

the region size changing depending on the anatomical features (15). In addition, a larger 153	  

number of materials (up to 8) than typically used in previous works was explored. The 154	  

results showed that five values of HU (air, adipose, water, cartilage/bone and metal 155	  

implant) gave the best balance between dose accuracy (-1.9%) and operator time (5 156	  

hours). However, the length of operator time needed could make it difficult to implement 157	  

this as a technique in the clinic. 158	  

   The aim of this work is to develop a more robust method to account for the full range of 159	  

patient size as well as the difficulties presented by the metal artefacts in both pCT and 160	  

CBCT images. A CBCT-based dose calculation of a patient with bilateral metal hip 161	  

prostheses is presented using the extended MLT algorithm, in the same manner extending 162	  

upon proposed previously by the authors for a single hip prosthesis. In addition, an 163	  

automated MLT algorithm was developed to reduce the operator time associated with the 164	  

manual MLT algorithm. With the flexibility of a region-by-region approach, it is 165	  

envisaged that the method can be applicable for the automation of dose calculation on 166	  

segmented magnetic resonance (MR) images and could be of interest to MR-based ART 167	  

(9). 168	  

2 Method and materials  169	  

2.1 CBCT image acquisition  170	  

The X-ray volumetric imaging integrated in an Elekta Synergy linear accelerator (XVITM, 171	  

version 4.5, Elekta, Crawley, West Sussex, UK) was used to acquire CBCT images. The 172	  
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CBCT scans were acquired with a field of view (medium FOV) of 41 cm in diameter and 173	  

17.85 cm in the axial direction with a bowtie filter added (F1). CBCT images were 174	  

reconstructed with 1 mm cubic voxels and averaged in the longitudinal direction for 3 175	  

mm slice thickness. The images were then transferred to the Oncentra MasterPlan (OMP) 176	  

treatment planning system (version 4.3 Elekta, Netherlands) via DICOM protocol for 177	  

dose calculation. 178	  

2.2 Patient study 179	  

This study was performed on a patient with bilateral metal hip prostheses replacement 180	  

treated at the Department of Clinical Oncology and Radiotherapy, South West Wales 181	  

Cancer Centre ABM University Health Board, Swansea, Wales. The anterior-posterior 182	  

(AP) separation of the patient was 26.5 cm. Such a challenging case provides a good 183	  

assessment of dose calculation using CBCT due to the difficulties presented by the metals 184	  

artefacts in both pCT and CBCT images. The artefacts in pCT were reassigned as water 185	  

in the original patient plan using a bulk density correction (Fig. 1a). An intensity 186	  

modulated radiotherapy (IMRT) treatment with five 6-MV photon fields, at gantry angles 187	  

of 35°, 145°, 180°, 235°, and 300° was performed. The prescription dose was 70 Gy in 35 188	  

fractions. Dose distribution was calculated using pencil beam (PB) and collapsed cone 189	  

(CC) algorithms to allow the comparison with Monte Carlo (MC) algorithm and to 190	  

identify the effects of HU on dose calculation. 191	  

2.3 Modification of CBCT images  192	  

The MLT algorithm, used to correct CBCT data, involves categorising pixel values in the 193	  
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CBCT images into segments of homogeneous HU using MATLAB scripts (Mathworks, 194	  

Natick, MA) to generate segmented CBCT (sCBCT) data. Based on Almatani et al 195	  

(2016), the binning of CBCT images of a patient with hip prosthesis into five HU values 196	  

results in sufficiently accurate and clinically acceptable dose distribution (15). 197	  

Considering more than five HU values provides more anatomical information and 198	  

improves dose calculation accuracy (by 0.23%) but would require more operator time 199	  

(58%), as the sensitivity increases when increasing the number of HU bins to define the 200	  

material type. Therefore, in this study, five values of HU values were used to segment 201	  

CBCT images that represent, air (-976 HU), adipose tissue (- 96 HU), water (0 HU), 2/3 202	  

cartilage & 1/3 bone (528 HU) and metal implants (2976 HU). The ranges of pixel values 203	  

in the CBCT images were: air (0 to 200), adipose tissue (201 to 700), water (701 to 875), 204	  

2/3 cartilage & 1/3 bone (876 to 1600) and metal implant (1601 to 8000). 205	  

   The threshold values for each material at these intervals are dependent on the geometry 206	  

since noise and scatter in CBCT is variable, especially in the presence of high density 207	  

materials, as shown in Figure 1(b) (16). In this study, the MLT algorithm was used in two 208	  

ways, using a manual and an automated procedure. In the manual procedure, the CBCT 209	  

images were divided into regions with sets of different threshold values, which are 210	  

determined on a region-by-region basis, to sufficiently correct for the artefacts. The shape 211	  

of each region is a rectangular cuboid. In general, the greater the variation in the scatter, 212	  

the greater the number of regions that need to be considered, and the size of the region 213	  

decreases as it gets closer to inhomogeneities. The resultant segmented CBCT images 214	  

using this procedure are referred to as sCBCTman.  215	  
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   In the automated procedure, the CBCT images were divided into five concentric rings, 216	  

which are uniform in shape through all slices, using MATLAB scripts, as shown in 217	  

Figure 1(d). The centre of the inner radius (radius 1) was defined at the centre of the 218	  

patient geometry, which can be changed by the user. The lower threshold values for each 219	  

material changes with the radius but is easily determined by the user’s analysis of the 220	  

central slice. For example, the lower threshold value for water, in the inner radius, was 221	  

defined in relation to the pixel value with the maximum frequency in the slice according 222	  

to the ratio of the lower threshold value of water and the pixel value with the maximum 223	  

frequency in the central slice. The same procedure was applied for each material in each 224	  

radius. The resultant segmented CBCT images using this procedure are referred to as 225	  

sCBCTauto. 	  226	  

Figure 1: A slice of the pCT (a) and the original CBCT (b) and the resultant images after 
segmentation CBCT using the manual MLT (sCBCTman) and the automated MLT (sCBCTauto) 
(c and d respectively). 
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  The use of a radial shape was motivated by the fact that, in CBCT, the issue of the 227	  

scatter occurs spherically and ring artefacts that caused by miscalibrated detector pixel 228	  

lines/rows, elements or manufacturing defects at a fixed location in the flat panel detector 229	  

(FPD). In addition, due to the presence of the bilateral hip, the low energetic X-rays are 230	  

absorbed, thus the polychromatic beam becomes gradually harder. Consequently, the 231	  

FPD exhibits pixel-to-pixel sensitivity variations, that lead to ring artefacts (17). In a 232	  

pelvic region with prostheses, there is a rapid change in the exposure to the FPD from 233	  

frame to frame, receiving high exposure then followed by low exposure due the strong 234	  

attenuation of the metal. This leads to so-called radar artefacts that appear as a circular 235	  

radar bright-shaded region, owing to inconsistencies in detector signal and/or gain (18). 236	  

2.4 Monte Carlo calculation  237	  

The Elekta Synergy linear accelerator was modeled using Electron Gamma Shower 238	  

(EGSnrc), which is one of the most popular MC codes for medical physics (19). 239	  

BEAMnrc and DOSXYZnrc are two applications in EGSnrc code that are used to 240	  

simulate the beam generated from the treatment head and to score dose deposition in 241	  

voxel grids, respectively. In this study, 90 million particles were used for each beam to 242	  

provide an accurate simulation with a low statistical uncertainty. High performance 243	  

computing (HPC-Wales) was used to speed up MC calculations (20). The MC 244	  

normalization was performed by calculating the dose in a water phantom under the 245	  

standard reference conditions (10 ×10 field size, 100 cm source-to-surface distance, 5 cm 246	  

depth). 247	  

2.5 Treatment planning evaluation and comparison  248	  



	   12	  

The sCBCT (both sCBCTman, sCBCTauto) and pCT images fusion was accomplished with 249	  

manual rigid registration using ProSoma software (v3.3, MedCom, Germany) and the 250	  

structure sets were then transferred to the sCBCT images without any modification 251	  

except the external contour. The plans were then copied to sCBCT using the same 252	  

geometry and MU values and doses were recalculated using PB and CC algorithms. For 253	  

MC calculation, the pCT artefacts, caused by the presence of the hip prostheses, were 254	  

changed to a water material of uniform density using a MATLAB script. The MC dose 255	  

calculation was then performed on pCT and sCBCT images using the same HU-ED 256	  

calibration as in OMP. The MC dose file (.3ddose) and the DICOM-RT file were then 257	  

imported into the computational environment for radiotherapy research (CERR) software 258	  

to compare the resultant dose distribution (21). Dose volume histograms (DVH) were 259	  

compared between pCT and sCBCT plans. The maximum dose (Dmax), mean dose 260	  

(Dmean) and minimum dose (Dmin) parameters for PTV (prostate and seminal vesicles), 261	  

rectum and bladder were compared. The coverage of the PTV, the dose to 95% of the 262	  

PTV (D95%) and the relative volume doses delivered to the rectum and bladder (V65 and 263	  

V70) were compared. In addition, the volume of right/left hip and bone were calculated 264	  

in the pCT scan and compared with those in the sCBCTman and sCBCTauto scan to show 265	  

how close the two scans were. To quantitatively appraise the differences between pCT 266	  

and sCBCT plans, especially for the PTV, rectum and bladder, a gamma index analysis 267	  

was performed using the pCT plan as a reference. The criteria were set as 3 mm distance 268	  

to agreement (DTA) and 3% dose difference (DD) and 5% low dose threshold. The 269	  

conformity index (CI) was calculated for all sCBCT plans and then compared with the 270	  

pCT plans using PB, CC and MC algorithms (22). In addition, the dose at the isocentre 271	  
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(at the geometric centre of the prostate PTV (PTVp)) was compared between the pCT and 272	  

sCBCTman and sCBCTauto plans. 273	  

3 Results and discussion  274	  

Figure 2 shows the cross-plane profile/x profile of pCT, sCBCTman and sCBCTauto at the 275	  

depth of the plan isocentre as well as the CT number of the pCT, sCBCTman and 276	  

sCBCTauto scans at that depth. In general, the sCBCTman and sCBCTauto profiles are in 277	  

good agreement with the pCT profile especially at the implant/tissue interface. For bone 278	  

regions, the sCBCTauto numbers showed less agreement with pCT numbers, compared 279	  

with sCBCTman numbers where some of these regions were considered as water. In 280	  

addition, the sCBCTauto overestimated some adipose tissue regions and considered it as 281	  

water, especially in the PTV region (high-dose region), leading to an underestimation of 282	  

the dose in that region by -4.4%. On the other hand, sCBCTman numbers considered more 283	  
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adipose tissue than sCBCTauto numbers, thus the dose difference with the pCT dose 284	  

profile was less when compared with the sCBCTauto dose profile. 	  The largest difference 285	  

between the pCT and sCBCTman and sCBCTauto plans was in the PTV region where pCT 286	  

was 69.1 Gy, sCBCTman was 66.1 Gy and sCBCTauto was 65.8 Gy when using MC 287	  

algorithm.  288	  

   Figure 3 shows the differences in the right (RT)/left (LT) hip and bone volumes 289	  

between the pCT scan, sCBCTman and sCBCTauto scans. Compared with the pCT scan, 290	  

the largest difference between sCBCTman and sCBCTauto was found in the LT hip where 291	  

in sCBCTman it was overestimated by 6.8% and underestimated by -30.2% in sCBCTauto. 292	  

This underestimation was due to the fact that the automated MLT algorithm was unable 293	  

to accurately correct cupping artefacts due to the increased amount of scatter and beam 294	  

hardening inside the LT hip, resulting in dark streaks (17, 18). Thus, the automated MLT 295	  

algorithm erroneously replaced the artefacts with bone HU values while the manual MLT 296	  

correctly replaced the artefacts with metal HU values as shown in Figure (4). On the 297	  

other hand, both MLT algorithms overestimated the RT hip where scatter and bright 298	  
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streak artefacts were erroneously replaced with hip HU values, leading to a significant 299	  

reduction in the RT bone volume around that region. Another reason for the 300	  

underestimation of both bone volumes in both MLT algorithms might be due to the fact 301	  

that streak artefacts in pCT increased the number of high HU values and were not 302	  

corrected (only for dose calculation), where in sCBCT, both MLT algorithms attempted 303	  

to correct for this.   304	  

 305	  

   Figure 5 shows the DVH of a prostate IMRT plan with a prescription dose of 70 Gy in 306	  

35 fractions. It shows the dose of the pCT, sCBCTman and sCBCTauto plans to the PTV, 307	  

rectum and bladder using the CC algorithm. Both sCBCTman and sCBCTauto plans 308	  

showed almost the same difference from the pCT plan, except for the PTV where 309	  

sCBCTman showed better agreement, the difference in Dmax between the pCT and 310	  

sCBCTman plans was -0.56%, and sCBCTauto was -1.4%.  Compared with the pCT plan, 311	  

the sCBCTman plan underestimated Dmean and Dmin by -1% and -0.3%, respectively, 312	  

while the sCBCTauto plan underestimated Dmean and Dmean by -1.6% and -1%, 313	  

respectively. The MC and PB algorithm showed similar results to CC algorithm (see 314	  

Figure 4: A slice of the pCT (a) and the resultant images after segmentation CBCT using the 
manual MLT (sCBCTman) and the automated MLT (sCBCTauto) (b and c respectively), 
showing the HU value difference in the left hip prosthesis. 
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Table 1 in the Appendix 1). Compared with pCT plan, the bladder V65 was reduced by 315	  

56% and 58% in sCBCTman and sCBCTauto plans, respectively, when using CC 316	  

algorithm, showing better bladder sparing (Table 1). There was a tradeoff in the D95 of 317	  

the PTV, which reduced by 9% and 14% in sCBCTman and sCBCTauto plans, 318	  

respectively, when using the CC algorithm. Significant organ deformation was observed 319	  

between the pCT and CBCT scans, especially in the bladder volume (>15% reduction). 320	  

This deformation resulted in large differences in Dmean for the bladder in both sCBCTman 321	  

(-48.8%) and sCBCTauto (-49.2%).  322	  

   Previous studies used either deformable electron density or deformable image 323	  

registration (DIR) to improve the dose calculation accuracy and to correct the uncertainty 324	  

from organ de- formation (11, 14). For a standard prostate patient, the accuracy of dose 325	  

calculation could be improved by 1-2% using these methods. Thor et al (2011) stated that 326	  

the accuracy of DIR can be affected by bowel gas and artefacts from gold fiducial 327	  
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markers inside the prostate (23). Thus, in some cases, DIR would result in no 328	  

improvement in the accuracy of the dose calculation (14). In this study, the image quality 329	  

of both pCT and sCBCT images was affected by streak artefacts caused by the presence 330	  

of the bilateral hip prostheses, thus the uncertainty associated with using DIR would be 331	  

increased.  332	  

Table 1: PTV coverage for the pCT, sCBCTman and sCBCTauto. The dose to 95% of PTV 333	  
volume and minimum dose and the percentage of rectal and bladder volumes receiving 65 Gy and 334	  
70 Gy.	  335	  

Scan 
PTV Rectum Bladder 

D95 Dmin V65 V70 V65 V70 

CT 

PB 99.7 64.9 17.4 0.93 11.4 3.38 

CC 95.76 61.9 14.36 0 10.57 0.35 

MC 80.42 55.9 13.78 0 7 0 

sCBCTman 

PB 94.51 62.5 12.83 0 5.13 0.52 

CC 86.99 61.7 10.74 0 4.6 0 

MC 80.13 55.9 10.36 0 4.2 0 

sCBCTauto 

PB 92.99 62.1 12.25 0 4.96 0.3 

CC 82.1 61.3 9.66 0 4.39 0 

MC 75.65 53.5 9.26 0 4.01 0 
 336	  

   Dunlop et al (2015) eliminated the need for, and uncertainties associated with, DIR by 337	  

acquiring pCT on the same day as the CBCT, to be used as the ground truth for dose 338	  

calculation (9). Thus additional doses could be delivered to the patients. 339	  

   Figure 6(a) shows the CI values of the pCT, sCBCTman and sCBCTauto plans using PB, 340	  

CC and MC algorithms. In general, the differences in the CI values between pCT and 341	  

sCBCTman were smaller than those between pCT and sCBCTauto using all algorithms. 342	  

The difference of the CI values between pCT and sCBCTman were -26.7 %, -42.8% and -343	  
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15.6% when using PB, CC and MC algorithms, respectively. On the other hand, the 344	  

difference of the CI values between pCT and sCBCTauto were -38.9%, -74.1% and -345	  

46.9% when using PB, CC and MC algorithms, respectively. However, according to the 346	  

RTOG guidelines, the CI values between 0.9 and 1 indicate that the target volume is not 347	  

adequately covered by the prescribed isodose with a minor violation, whereas CI values 348	  

of less than 0.9 the treatment plan are rated major violations but may nevertheless be 349	  

considered to be acceptable (24).  350	  

 Figure 6(b) shows the γ agreement index (γAI) for the calculation points falling inside 351	  

the PTV, rectum and bladder for the pCT, sCBCTman and sCBCTauto plans, showing the 352	  

fraction of points resulting in γ < 1. For the bladder region, all the calculation points 353	  

passed the gamma test when using the PB and CC algorithm, while using the MC 354	  

algorithm, 99.9% and 99.8% showed γ < 1 for sCBCTman and sCBCTauto, respectively. 355	  
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Figure 6: (a) Conformity index (CI) comparison between pCT, sCBCTman and sCBCTauto plans 
using PB, CC and MC algorithms. (b) Summary of the γ index with fixed DTA = 3 mm and DD = 
3% for the calculation points falling inside the PTV, rectum and bladder, showing the fraction of 
points resulting with γ < 1. 
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The lowest number of points that passed was found in the rectum region when using MC 356	  

algorithm, where 98.7% showed γ < 1 in sCBCTman and 97.7% showed γ < 1 in 357	  

sCBCTauto plans, which is clinically acceptable. Son et al stated that γ value is considered 358	  

acceptable when the passing rate is greater than 95% with 3 mm DTA and 3% DD 359	  

criteria (25).  360	  

Table 2: Dose comparison between pCT, sCBCTman and sCBCTauto plans at the isocentre using 361	  
PB, CC and MC algorithms. 362	  

Scan 
sCBCTman sCBCTauto 

PB CC MC PB CC MC 

Dose difference (%) −0.81 −0.46 −0.39 −1.44 −1.36 −1.39 

 363	  

Table 2 shows the dose difference between pCT and sCBCT plans at the isocentre using 364	  

all algorithms. In general, both sCBCTman and sCBCTauto plans showed differences of 365	  

less than -2% compared with the pCT plan using all algorithms, which are both 366	  

considered to be clinically acceptable. It can be seen that the difference between the 367	  

sCBCTman and sCBCTauto is larger when using CC and MC algorithms than that when 368	  

using the PB algorithm. This is due to the fact that the PB algorithm in OMP calculates 369	  

dose to water while, the CC algorithm calculates dose to medium, as does the MC 370	  

algorithm (26). Therefore, the PB algorithm would be less sensitive than CC and MC for 371	  

calculating the dose using different scans. Thus MC and CC algorithms minimised 372	  

uncertainty related to the dose calculation as well as identifying those introduced by 373	  

different scans. However, for the MC calculation, the difference increased from -0.4% in 374	  

the sCBCTman plan to -1.4% in sCBCTauto plan when compared with the pCT plan. On 375	  
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the other hand, the operator time required for defining the threshold values for different 376	  

regions in sCBCTman was 8 hours while in sCBCTauto, the threshold values were defined 377	  

automatically and takes 20 min operator time. Some manual modification to ensure an 378	  

appropriate assignment of each material in sCBCTauto scan was still needed to improve 379	  

the accuracy but it requires much less (approximately 95%) operator time compared with 380	  

sCBCTman scan. Dividing CBCT images into five concentric rings was accurate enough 381	  

to correct the variation in the pixel value with position in the CBCT images. As a result, 382	  

the automated MLT algorithm reduced the operator time with an acceptable accuracy. 383	  

This time saved could turn this technique from a research-based to a clinical 384	  

implementation and makes it superior compared with the manual approach. Compared 385	  

with the proposed technique in this paper, acquiring a new pCT is more time consuming, 386	  

increase work load on physicists, physicians, and radiographers, which can take up to a 387	  

day in a busy radiotherapy department, and more importantly additional dose is delivered 388	  

to the patient. 389	  

4 Conclusion  390	  

The segmentation of CBCT images using methods in this study can be used for dose 391	  

calculation. For a prostate patient with bilateral hip prostheses, the MLT algorithms 392	  

achieved a sufficient dose calculation accuracy that is clinically acceptable. The 393	  

automated MLT algorithm reduced the operator time associated with the MLT algorithm, 394	  

making it possible to implement the technique into clinic. Thus this method would be 395	  

feasible for ART, as an alternative to obtaining a new planning CT and re-outlining the 396	  

structures. This method can be applicable for dose calculation on MR images and could 397	  
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be of interest to MR-based ART. 398	  

 399	  

 400	  

 401	  

 402	  

 403	  

 404	  

 405	  

 406	  

 407	  

 408	  

 409	  

 410	  

 411	  

 412	  

 413	  



	   22	  

Reference 414	  

1. Langen KM, Jones DTL. Organ motion and its management. International Journal 415	  

of Radiation Oncology* Biology* Physics. 2001;50(1):265-78 416	  

2. Ciernik IF, Baumert BG, Egli P, Glanzmann C, Ltolf UM. On-line correction of 417	  

beam portals in the treatment of prostate cancer using an endorectal balloon 418	  

device. Radiotherapy and oncology. 2002;65(1):39-45. 419	  

3. Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA. Flat-panel cone-beam 420	  

computed to- mography for image-guided radiation therapy. International Journal 421	  

of Radiation Oncology* Biology* Physics. 2002;53(5):1337-49. 422	  

4. Srinivasan K, Mohammadi M, Shepherd J. Cone beam computed tomography for 423	  

adaptive radiotherapy treatment planning. Journal of Medical and Biological 424	  

Engineering. 2014;34(4):377- 85. 425	  

5. Stock M, Pasler M, Birkfellner W, Homolka P, Poetter R, Georg D. Image quality 426	  

and stability of image-guided radiotherapy (IGRT) devices: A comparative study. 427	  

Radiotherapy and Oncology. 2009;93(1):1-7. 428	  

6. Fotina I, Hopfgartner J, Stock M, Steininger T, Ltgendorf-Caucig C, Georg D. 429	  

Feasibility of CBCT-based dose calculation: comparative analysis of HU 430	  

adjustment techniques. Radiotherapy and Oncology. 2012;104(2):249-56. 431	  

7. Richter A, Hu Q, Steglich D, Baier K, Wilbert J, Guckenberger M, et al. 432	  

Investigation of the usability of conebeam CT data sets for dose calculation. 433	  

Radiat Oncol. 2008;3(1):42.��� 434	  

8. Poludniowski GG, Evans PM, Webb S. Cone beam computed tomography 435	  

number errors and consequences for radiotherapy planning: an investigation of 436	  



	   23	  

correction methods. International Journal of Radiation Oncology* Biology* 437	  

Physics. 2012;84(1):e109-e14. 438	  

9. Dunlop A, McQuaid D, Nill S, Murray J, Poludniowski G, Hansen VN, et al. 439	  

Comparison of CT number calibration techniques for CBCT-based dose 440	  

calculation. Strahlentherapie und Onkologie. 2015;191(12):970-8.��� 441	  

10. van Zijtveld M, Dirkx M, Heijmen B. Correction of conebeam CT values using a 442	  

planning CT for derivation of the dose of the day. Radiotherapy and Oncology. 443	  

2007;85(2):195-200. 444	  

11. Yang Y, Schreibmann E, Li T, Wang C, Xing L. Evaluation of on-board kV cone 445	  

beam CT (CBCT)-based dose calculation. Physics in medicine and biology. 446	  

2007;52(3):685-705.  447	  

12. Boggula R, Wertz H, Lorenz F, Madyan YA, Boda-Heggemann J, Schneider F, et 448	  

al. A pro- posed strategy to implement CBCT images for replanning and dose 449	  

calculations. International Journal of Radiation Oncology* Biology* Physics. 450	  

2007;69(3):S655-S6.��� 451	  

13. Boggula R, Lorenz F, Abo-Madyan Y, Lohr F, Wolff D, Boda-Heggemann J, et 452	  

al. A new strategy for online adaptive prostate radiotherapy based on cone-beam 453	  

CT. Zeitschrift fr Medi- zinische Physik. 2009;19(4):264-76. 454	  

14. Onozato Y, Kadoya N, Fujita Y, Arai K, Dobashi S, Takeda K, et al. Evaluation 455	  

of OnBoard kV Cone Beam Computed Tomography-Based Dose Calculation 456	  

With Deformable Image Registration Using Hounsfield Unit Modifications. 457	  

International Journal of Radiation Oncology* Biology* Physics. 2014;89(2):416-458	  

23. 459	  



	   24	  

15. Almatani T, Hugtenburg R, Lewis R, Barley S, Edwards M. Simplified material 460	  

assignment for cone beam computed tomography-based dose calculations of 461	  

prostate radiotherapy with hip prostheses. Journal of Radiotherapy in Practice. 462	  

2016;15(2):170-180.��� 463	  

16. Pineda AR, Siewerdsen JH, Tward DJ, editors. Analysis of image noise in 3D 464	  

cone-beam CT: Spatial and Fourier domain approaches under conditions of 465	  

varying stationarity. Proc.SPIE 2008; 6913: 69131Q-69131Q-10. 466	  

17. Shaw CC. Cone beam computed tomography: Taylor & Francis; 2014. ��� 467	  

18. Bourland JD. Image-guided Radiation Therapy: Crc Press; 2012. 468	  

19. Kawrakow I, Rogers DWO. The EGSnrc code system. NRC Report PIRS-701, 469	  

NRC, Ottawa. 2000.  470	  

20. HPC Wales. Wales, UK. Available from: http://www.hpcwales.co.uk/. 471	  

[Accessed 08 December 15] ���. 472	  

21. Deasy JO, Blanco AI, Clark VH. CERR: a computational environment for 473	  

radiotherapy research. Medical physics. 2003;30(5):979-85. ��� 474	  

22. ICRU. International Commission on Radiation Units and Measurements. 475	  

Prescribing I. recording, and reporting photon-beam intensity-modulated 476	  

radiation therapy (IMRT). ICRU Report 83. J icru. 2010;10:1-106. ��� 477	  

23. Thor M, Petersen JBB, Bentzen L, Hyer M, Muren LP. Deformable image 478	  

registration for contour propagation from CT to cone-beam CT scans in 479	  

radiotherapy of prostate cancer. Acta Oncologica. 2011;50(6):918-25. 480	  

24. Feuvret L, Nol G, Mazeron J-J, Bey P. Conformity index: a review. 481	  



	   25	  

International Journal of Radiation Oncology* Biology* Physics. 482	  

2006;64(2):333-42. ��� 483	  

25. Son J, Baek T, Lee B, Shin D, Park SY, Park J, et al. A comparison of the 484	  

quality assurance of four dosimetric tools for intensity modulated radiation 485	  

therapy. Radiology and oncology. 2015;49(3):307-13. ��� 486	  

26. Knöös T, Wieslander E, Cozzi L, Brink C, Fogliata A, Albers D, et al. 487	  

Comparison of dose calculation algorithms for treatment planning in 488	  

external photon beam therapy for clinical situations. Physics in medicine 489	  

and biology. 2006;51(22):5785. 490	  

 491	  

 492	  

 493	  

 494	  

 495	  

 496	  

 497	  

 498	  

 499	  

 500	  

 501	  

 502	  



	   26	  

List of Figures 503	  

1. A slice of the pCT (a) and the original CBCT (b) and the resultant images after 504	  

segmentation CBCT using the manual MLT (sCBCTman) and the automated 505	  

MLT(sCBCTauto). ……………………………………………………………….. 9 506	  

2. Comparison of the dose profile of pCT, sCBCTman and sCBCTauto plans at the 507	  

isocentre depth using MC algorithm. The second y axis represents the sCBCTman 508	  

number, sCBCTauto number and CT number. ………………………………….. 12 509	  

3. Right/Left hip and bone volume differences between pCT and 510	  

sCBCTman/sCBCTauto. …………………………………………………………. 13 511	  

4. A slice of the pCT (a) and the resultant images after segmentation CBCT using 512	  

the manual MLT (sCBCTman) and the automated MLT (sCBCTauto) (b and 513	  

c ���respectively), showing the HU value difference in the left hip prosthesis. …... 14 514	  

5. DVHs comparison pCT (–), sCBCTman (-) and sCBCTauto (-.) IMRT plans for 515	  

PTV, rectum and bladder using CC algorithm. .................................................... 15  516	  

6. (a) Conformity index (CI) comparison between pCT, sCBCTman and sCBCTauto 517	  

plans using PB, CC and MC algorithm. (b) Summary of the γ index with fixed 518	  

DTA = 3 mm and DD = 3% for the calculation points falling inside the PTV, 519	  

rectum and bladder, showing the fraction of points resulting with γ < 1. ……... 16 520	  

7. Dose comparison between pCT, sCBCTman and sCBCTauto plans at the isocentre 521	  

using PB, CC and MC algorithms. …………………………………………….. 17 522	  

	  523	  


