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One-step deposition by slot-die coating of mixed lead

halide perovskite for photovoltaic applications

Giovanni Cotella, Jenny Baker, David Worsley, Francesca DeRossi,
Cameron Pleydell-Pearce, Matthew Carnie, Trystan Watson1

SPECIFIC, Swansea University, Bay Campus, Fabian Way, Crymlyn Burrows, Swansea,
SA1 8EN, Wales UK

Abstract

Recent advances in the performance and stability of lead halide perovskite
solar cells announce a promising future for this technology. As the under-
standing of lab scale device fabrication progresses technology developments
in the area of up-scaling are required to demonstrate their viability on an
industrial and pre-commercial scale. These developments include replacing
slow spin coated deposition techniques with continuous roll to roll compatible
slot-die methods. In this work we demonstrate the suitability of a one-step
slot-die coating method for the deposition of lead halide perovskite layers,
in particular for infiltration into a mesoporous titania scaffold. Appropriate
crystallisation dynamics of the perovskite are achieved by careful control of
the substrate temperature in combination with a post-processed rapid air
knife application. We show that devices fully processed in air using this
method deliver a photovoltaic conversion efficiency up to 9.2% , this is com-
parable to those manufactured using a spin coating process.

Keywords: Perovskite, slot-die, printing, one-step, photovoltaic

1. Introduction1

There are a number of photovoltaic technologies such as organic, dye sen-2

sitised, perovskite and quantum dot solar cells which aim to capitalise on the3

lower manufacturing cost achievable through solution processing combined4

with low embedded energy costs[1–3]. Since 2012, perovskite solar cells have5

emerged as the most efficient of the solution processed PV technologies [4, 5]6

with more recent advances demonstrating devices with efficiencies over 20%7
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[6]. Progress on the lifetime of perovskite based devices, up to 1000 hours8

under full AM 1.5 simulated sunlight in ambient air [7–9], suggests that per-9

ovskite solar cells are a promising technology for the transition to industrial10

scale manufacture.11

In addition to improvements in materials, to increase efficiency and life-12

time, methods of deposition must also evolve in order to progress the tech-13

nology from the laboratory into production. For fundamental studies at14

laboratory scale, spin coating is often favoured as a convenient method to15

deposit solution processed solar cells [4, 10, 11]. However, spin coating is lim-16

ited in commercial production by the high percentage of material wastage,17

necessity for batch processing and constrained substrate size.18

Techniques compatible with roll to roll deposition such as slot-die coating19

[12, 13] flexographic printing [14] blade coating [15] and K-bar [16] deposi-20

tion have been used for solar cell production and have the added advantage21

that there is typically less materials wastage than spin coating because of22

the direct deposition of material onto the substrate. This direct deposition23

has a disadvantage that the dynamic drying of the solvent, which is associ-24

ated with spin coating [17] does not occur and so all solvent removal must25

be achieved during subsequent heating steps. When crystallising perovskite26

from a precursor solution of lead chloride and methyl ammonium iodide in27

a single step process this excess solvent affects the crystallisation dynamics28

and if not controlled can lead to vertical crystal growth which causes a rough29

perovskite layer with poor surface coverage and therefore low photocurrent.30

Single step deposition of perovskite by scaleable techniques such as spray31

coating [18] doctor blading [19–22] and slot-die coating [12] have been shown32

to give good coverage when deposited onto a PEDOT:PSS layer in an in-33

verted p-n type architecture but when deposited onto a metal oxide layer the34

crystallisation dynamics are unfavourable and poor coverage of the perovskite35

is achieved, limiting photocurrent [12].36

In terms of long-term stability, it has been reported that planar cells with37

inverted device architecture and water-based PEDOT:PSS as the HTM onto38

the ITO substrate, can easily degrade [23] due to the hygroscopic and acidic39

nature of PEDOT, ease of diffusion of PSS into other layers and instability of40

the ITO/organic interface [24, 25]. Planar cells with conventional architec-41

ture have not shown satisfying lifetime so far [26, 27] with only limited stud-42

ies demonstrating higher long-term stability when using a combined halide43

perovskite [28], a water-free PEDOT:PSS [29] or a vacuum-assisted thermal44

annealing process to completely remove organic chloride by-products [30]45
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It is thus more advantageous to use an architecture based on a metal46

oxide scaffold, since this has been shown to exhibit improved stability, up to47

1000 hours both in the dark [31] and under full illumination [8, 32] compared48

to planar counterparts (inverted or not) [24].49

In order to improve the surface coverage of perovskite deposited onto a50

mesoporous titania scaffold, a two-step process can be employed [32] where51

first lead iodide is deposited from solution and this is converted into per-52

ovskite by immersion into methyl ammonium iodide [15]. This has enabled53

the perovskite to be deposited by slot-die coating of PbI2 supported by air54

quenching [33] however in order to convert the lead iodide into perovskite55

a second coating step must be employed which adds to the complexity of56

the processing. Of the roll to roll compatible processes, slot-die coating is57

favoured since it can produce patterned layers eliminating the need for com-58

plex removal steps associated with un-patterned deposition [15]. By using an59

airknife to control the temperature gradient, combined with a preheated sub-60

strate, the crystallisation dynamics can be controlled and this work demon-61

strates for the first time a single step deposition by slot-die coating of per-62

ovskite onto a mesoporous titania scaffold.63

2. Materials and Methods64

2.1. slot-die coating trials (temperature and air-knife setup)65

Plain soda glass (100mm x 150mm) substrates were cleaned with Hell-66

manex and then sequentially rinsed with de-ionized water, acetone, iso-67

propanol, ethanol before being oxygen plasma treated. A 40 wt% solution68

of methylammonium iodide (MAI) and PbCl2 (3:1 molar ratio) in DMF was69

prepared in a nitrogen atmosphere. The solution was then transferred to a70

class 10,000 clean room maintained at an average relative humidity below71

50%. The solution was pumped into the slot-die coating head, kept at 40◦C72

to avoid issues due to PbI2 crystallisation. To test the influence of substrate73

temperature on coating condition this was varied between 20◦C (no external74

heating source), and 65◦C or 90◦C achieved by preheating the substrate for75

30 minutes in an oven prior to application of the material. The distance be-76

tween meniscus waveguide and glass substrate was set at 50 µm, the pumping77

rate at 91 µL/min and the coater belt speed at 4.2 mm/sec. When necessary,78

a cold air knife impinging on the coated layer, with air pressure of 0.5 bar,79

was placed at a distance of 200 mm horizontally from the coating head and80

at a height of 250 mm from the sample. Coated precursors were annealed81
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via two runs in a 2.6m long convection belt oven (Thieme) at 110◦C at a82

belt speed of 3.3 mm/sec. Layer features have been investigated through83

optical microscopy and stylus profilometry measurements. The print head in84

operation and the subsequent layers produced are shown in figure 1.85

Figure 1: Photograph of the print head in operation. Inset, perovskite layers post depo-
sition and annealing.

2.2. Device Fabrication86

Patterened FTO glass substrates were cleaned and plasma treated as de-87

scribed in section 2.1. A compact titania layer (50 nm) was deposited via88

spray pyrolysis at 300◦C from a solution of 1:10 titanium diisopropoxide89

bis(acetylacetonate) and isopropanol, substrates underwent a sintering step90

at 550◦C for 30 min. For spin coated devices a TiO2 paste (DSL18NRT)91

diluted in ethanol (2:7 in weight) was spun over the samples at 5000 rpm,92

heated at 150◦C for 15 minutes and sintered at 550◦C for 60 minutes in or-93

der to give a 300nm mesoporous layer. Perovskite precursor solution (see94

section 2.1) was deposited at 2000 rpm, then the substrates were heated for95

90 minutes at 100◦C. For slot-die coated devices a TiO2 paste diluted in96

ethanol (1:1 in weight) was bar coated over the 100mm x 150mm substrate,97

then it was heated at 150◦C for 15 minutes and sintered at 550◦C for 6098
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minutes. Bar coating was used to deposit the mesoporous TiO2 layer as99

limitations related to spin coating sample size did not allow large enough100

substrates to enable a slot-die coating run, see figure 1. This different ap-101

proach led to an increased mesoporous TiO2 layer, approximately 350nm102

for spin coating and 600nm for bar-coating. The precursor solution was103

pumped into the slot-die coating head and subsequently deposited over the104

bar-coated mesoporous layer held at a predetermined temperature (20◦C,105

65◦C and 90◦C) and subjected to a single pass under the cold air knife. The106

sample was then transferred to the belt oven, set at 110◦C, for two passes107

according to the parameters noted in section 2.1. The temperature profile of108

the belt oven can be seen in figure S1 (supplementary). In order to compare109

performances between cells differentiated only by the mesoporous titania110

thickness and perovskite layer processing method, slot-die coated samples111

were scored and reduced in active area to ensure the same device configu-112

ration and post processing of subsequent layers (HTM and Au). For the113

hole transport layer, a 10 wt% solution containing 2,2,7,7-tetrakis-(N,N-di-114

p-methoxyphenyl-amine)-9,9-spirobiuorene (Spiro-OMeTAD), doped with 4-115

tert-Butylpyridine and lithium bis-trifluoromethanesulfonimide and oxidised116

through the addition of vanadium oxide (V2O5) [11], was spin coated over117

the perovskite layer in a nitrogen atmosphere at 2000 rpm. In case of spin118

coated devices, an additional step was necessary to scrape off the perovskite119

in order to allow the deposition of the front contact. This step was not120

necessary in case of slot-die coated devices because this technique produces121

patterned coatings. Gold contacts were thermally evaporated to complete122

the device stack.123

2.3. Film characterisation124

The device nano-structure was characterised using a Carl Zeiss Cross-125

beam 540 FIBSEM completed with Oxford 50 mm2 SDD EDS detector, via126

the preparation of electron transparent lamellar of approximately 100nm in127

thickness. X-ray diffraction spectra of spin and slot-die coated cell stack128

(just before the Spiro-OMeTAD deposition) were collected on a D8 Discover129

(Bruker) x-ray diffractometer with a Cu Kα source (λ = 1.5418 Å). The130

step time was 0.2 s and the step increment was 0.01◦.131

2.4. Device Characterization132

I-V testing was carried out using an Oriel solar simulator with a KG5133

filter and a Keithley 2400 source meter. The cells were measured at a scan134
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rate of 0.15 V/s between -0.1V and 1.1V. Ten seconds of light soaking time135

was applied before each measurement. For all devices an active area of solar136

cells was defined through a metal aperture mask with an area of 0.0625cm2.137

Stabilised current density measurements were carried out whilst maintaining138

the cells at a voltage corresponding to the maximum generated power for139

50 seconds. External quantum efficiency measurements were collected using140

an QE X10 spectral response machine in the wavelength range between 300141

nm and 850 nm. For lifetime measurements, the best performing devices142

were stored in a humidity controlled environment (30% RH), in the dark and143

tested at 0, 168, 504 and 1076 hours after their fabrication.144

Transient photovoltage decays were measured as described previously [34].145

The white bias light was provided by a BRIDGELUX 9000 lumen LED ar-146

ray (Farnell) whilst the pulse light was provided by a OSLON PowerCluster147

green LED array (RS). Pulse intensity was chosen to ensure ∆V remained148

within the small perturbation regime. A pulse length of 10 µs was utilised149

and was generated via a fast MOSFET transistor controlled by a National In-150

struments USB-6251 data acquisition board (DAQ) and WaveMetrics IGOR151

Pro software. Currents were measured by the DAQ as a voltage drop across152

a 30 Ω resistor. The open circuit voltage was allowed to equilibrate for >153

60 s before the perturbation pulse was fired. The variance in photovoltage154

in the preceding 10 s before the perturbation pulse was fired was found to155

be, on average, < 1.2 mV. A biphasic photovoltage decay was observed and156

fit with a double exponential function. The faster of the two resultant time157

constants was taken as the effective recombination lifetime.158

3. Results and Discussion159

3.1. Influence of substrate Temperature and air knife post processing160

Initial studies which entailed depositing the perovskite directly onto the161

plain glass substrate at room temperature led to an uneven surface structure162

which exhibited high roughness (average 1.45 µm) and pinhole distribution163

(Figure 2a), both well known to prohibit good device performance through164

poor interfacial contact with the hole transporter and increased shunt losses.165

It was determined that the issue of roughness is likely caused by differential166

crystallisation rates, strongly influenced by the temperature gradient gener-167

ated between the top and bottom region of the liquid layer within the first168

minute after the coating. The solution is kept at 40◦C in the coating head,169

however once it contacts the substrate (which is 20 ◦C) it cools down in order170
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to reach thermal equilibrium. Typical of perovskite, this temperature reduc-171

tion does not trigger a heterogeneous nucleation process, the coated liquid172

film remained clear after the deposition. However the low temperature in-173

duces a slow solvent evaporation rate and enormously reduces the diffusion174

of the solute within the layer, strongly affecting the nuclei growth rate [35].175

Thus when subsequently placed in an oven, which has a top-down hot air176

stream, there are only a few nuclei within the system surrounded by a so-177

lution at room temperature. Once the top of the solution is warmed up by178

the oven, the growth rate, which follows the temperature gradient, becomes179

higher in this region enhancing the non-ideal growth of the nuclei in the ver-180

tical direction, giving a final layer presenting thick and well separated crystal181

clusters. In order to promote rapid drying dynamics similar to the spinning182

process and generate a thermal gradient which promotes the crystal growth183

horizontally instead of vertically, the substrate material was pre-heated to184

65◦C and 90◦C. The higher temperature gave poor surface coverage however185

the intermediate temperature led to an increased surface coverage from 65%186

at 20◦C to 72% at 65◦C (as measured using colour thresholding software,187

ImageJ). These are shown in figure 2 (a and b).188

In addition to improved surface coverage the pre-heated substrates pro-189

duced thinner layers, 960nm at 65◦C. Moreover the average roughness (Ra)190

reduced from 180nm at 20◦C to 134nm at 65◦C, this is shown graphically in191

figure 2 (d). In this case a faster solvent evaporation creates a rapid incre-192

ment of precursor concentration triggering heterogeneous nucleation with a193

large number of events over the warm surface. The reduction of the liquid194

content, which turns the coated layer dark yellow and which we attribute195

to initial nuclei growth, was a process fairly visible with unaided eyes, just196

a few seconds after deposition. In this case an opposite thermal gradient197

is generated within the solution compared to the 20◦C substrate. Indeed198

the higher temperature at the liquid-solid interface makes the crystals grow199

faster in this region. When crystal growth approaches the colder region of200

the liquid film, the solute feeding flux caused by thermal convective motions,201

becomes strongly anisotropic affecting the crystal growth direction and rate.202

In particular, the horizontal component (parallel to the substrate surface) of203

the growing vector becomes predominant since the vertical one is drastically204

reduced because of the negative temperature gradient. This condition forces205

the crystals to grow along the warm region of the solution resulting in a206

levelling effect over the sample. A schematic representation of the described207

layer differences is illustrated in figure 3a.208
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Figure 2: Effect of substrate temperature and air knife on the slot-die coated mixed halide
perovskite layer on glass substrate. Optical microscope and profilometric measurements
a) Substrate at 20◦C), b) Substrate at 65◦C, c) Substrate at 65◦C with air knife applied.
d) Average layer thickness and roughness of samples

Further reduction in perovskite roughness, down to 95nm can be achieved209

through the use of a cold air knife applied just after the slot-die coating of210

the perovskite precursor (figure 2 c). Figure 3 b illustrates the same crystalli-211

sation process but in the presence of a pressured air knife blowing over the212

just coated perovskite precursors. In this case, the intense air flow subtracts213

a larger amount of thermal energy and creates an even stronger temperature214

gradient between the upper and lower region of the coated solution, allowing215

better control over the crystallisation process and giving a stronger flattening216

effect, as demonstrate by the marked reduction of the average roughness of217

such samples. The cold air-knife was applicable only in case of warm sub-218

strates thanks to the rapid reduction of liquid content while in case of cold219

substrate, the thick liquid layer was simply moved ahead by the air pressure220

applied.221
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Figure 3: Crystallisation Process. a) Illustration of the layer differences obtained with
substrate at 20◦C, preheated to 65◦C and 65◦C with air kinfe b) 1. Application of air
knife following initial formation of crystal nuclei. 2. Convective motions and reduced
viscosity boost the crystal growth at the interface with the substrate 3. Crystals approach
the cooler region reducing the vertical growth rate in favour of lateral growth across the
warm substrate. 4. Reduced thickness is achieved.

Glass was used as a substrate to demonstrate the crystallisation process222

as perovskite precursor solution exhibits complete wetting on a mesoporous223

TiO2 film as the solution is absorbed into the mesoporous substrate. The224

use of a glass substrate for these experiments allows a greater understanding225

to be developed about the formation of the capping layer on top of the226

infiltrated mesoporous film. However replicating this study on mesoporous227

TiO2 with a perovskite capping layer gave the same trend in roughness and228

surface coverage as shown in Figure S2.229

3.2. Device performance230

In order to prove the scalability of the perovskite layer in complete devices231

the precursor solution was slot-die printed entirely in an ambient environment232

maintaining the substrate at 65◦C and using the cold air-knife in order to233

reduce the layer thickness and roughness, devices were also prepared with-234

out the heated substrate or air blade for comparison. A conventional n-i-p235
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architecture was adopted using TiO2 as both a compact blocking layer and236

as a mesoporous scaffold. For annealing a 2.6m belt oven was adopted in or-237

der to replicate potential industrial conditions (the oven temperature profile238

is shown in figure S1). Comparison spin coated devices were prepared in a239

nitrogen filled glovebox environment using a hot plate for annealing. PCE240

data is shown in Figure 4.241

Figure 4: Statistics of spin and slot-die coated perovskite cells performances. From the
top left corner: power conversion efficiency (PCE), fill factor (FF), short circuit current
density (JSC), open circuit voltage (VOC). The data set comprises 10 devices for each
process.

Interestingly we did not observe a dramatic difference in device perfor-242

mances between the spin coated and optimised slot-die method. In partic-243

ular, slot-die coated perovskite cells showed an average PCE of 7.0 %, with244

champion device performance resulting in 9.2%. Devices fabricated entirely245

through spin coating in a nitrogen atmosphere reached performances slightly246

higher, achieving an average PCE of 8.8%. The highest spin coated device247

achieved a PCE of 10.8%. The slot die coated samples with no air-knife or248
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Figure 5: Best slot-die coated cell performances. a) JV curves for reverse (black dots)
and forward (red squares) scan. The inset table collects the cell performances for each
measure. b) External quantum efficiency measurement. The inset graph represent the
stabilised current density and efficiency over the time. As expected the integrated current
density matches pretty well the stabilised one.

preheated substrate showed the worst average PCE of 0.7%. The maximum249

PCE was 2.4% The samples with the substrate at 65◦C and no airknife had250

higher average performance of 1.7%, due mainly to more consistent current251

and VOC characteristics. The maximum PCE was 3.2%.252

Figure 5 shows the forward and reverse JV curves for the best performing253

slot-die coated devices alongside EQE and stabilised current. Remarkably the254

cell presents very low hysteresis and a stabilised current value that matches255

reasonably with the integrated current resulting from the EQE measurement.256

Variation in performances between the two methods can be ascribed to257

the varying amount of perovskite applied between the two deposition tech-258

niques. The spin coated perovskite cells have an approximate TiO2 thickness259

of 300nm with a perovskite capping layer approximately 75nm whereas the260

slot die coated perovskite cells have an approximate TiO2 thickness of 600nm261

and a perovskite capping layer of approximately 200nm262

Figure 6 shows transient photovoltage (TPV) decay data for typical spin263

and slot-die coated devices. The decays obtained were typically bi-exponential264

as observed previously [36] and a double exponential function was used to265

fit to the decays generating two time constants. The decay lifetimes (Tau)266

shown in figure 6 are the faster of the two time constants, which is reported267

to represent recombination lifetime in perovskite devices [37]268

Looking at Figure 6 it can be seen that recombination is an order of269
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Figure 6: Transient photovoltage decay data of spin-coated and slot-dye coated devices.
The decay lifetime is significantly faster in the slot-dye coated devices, indicating faster
recombination. Figure 6b inset SEM cross-section of slot-dye coated device showing com-
bined TiO2 MAPIC layer.
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magnitude faster in the slot-die coated device compared to its spin-coated270

counterpart. Diffusion lengths in MAPIC are reported to be of the order271

of 1 micron [38] and so as film thickness approaches the diffusion length, it272

might be expected that the rate of recombination will also increase. The273

faster recombination in the slot-die device can be attributed to the thicker274

perovskite layer and may be the cause of lower voltages. A faster rate of275

recombination might also be expected to reduce fill factors but this is not276

the case here. The higher fill factors seen in slot-die coated devices may277

also be an artefact of film thickness in that the thicker perovskite capping278

layer prevents the spiro-OMeTAD from contacting the m-TiO2 layer making279

a shunt contact less likely. The reduction in photocurrents observed in slot-280

die coated devices may also be linked to increased recombination. X-ray281

diffraction was performed to investigate crystallographic differences between282

the two different processing methods. As displayed in Figure 7, XRD results283

are in good agreement with a tetragonal symmetry [39].284

Figure 7: X-Ray diffraction spectra of spin coated and slot-die coated perovskite solar
cells.
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Peaks associated with the lead iodide are indicated by red triangular285

markers, it is possible to observe that the predominant peak (at 2θ = 12) is286

present only in the case of the slot-die coated devices. This suggest that the287

slot-die method has not achieved full conversion of the perovskite precursor288

solution. Although the peak is small it is likely that this is a contributor to289

the reduced current observed for this method.290

Shelf life testing (dark storage conditions at room temperature) was car-291

ried out on the slot-die coated devices. Devices were removed periodically292

and measured under a solar simulator at 1 sun. Figure 8 shows the main PV293

characteristics with storage time.294

Figure 8: Shelf life test on best performing slot-die coated perovskite devices. Unencap-
sulated cells were stored in a humidity controlled environment (30%) in the dark and
measured at 0, 168, 504, 1076 hours following fabrication. Average values (3 devices) and
standard deviations are plotted.

We observed a generally flat overall evolution in device performance over295

time, with a 7.0 % VOC) increment while JSC) and FF reduced by 19.7%296

and 12.8% respectively, resulting in an average 25.5% reduction of the PCE297
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(from 8.8% to 6.5% on average) after over 1000h. These devices demonstrates298

equivalent lifetime to spin coated devices of a similar architecture[24, 31].299

4. Conclusions300

In this work, we demonstrated the suitability of a slot-die coating method301

for the deposition of lead halide perovskite layers in one step and in air.302

Furthermore, we reported the use of an industrial 2.6 m belt oven for the303

annealing of such layers. We studied the effect of the substrate tempera-304

ture and a cold air knife over the deposited layer, finding that a substrate305

at 65◦C and the application of the air knife give a major control over the306

crystallisation process leading to important improvement of the layer fea-307

tures. In particular, we ascribed such result to the creation of a temperature308

gradient through the coated precursor solution that drives the crystallisation309

resulting in a thinning and flatening effect and improving the overall surface310

coverage of the deposition. We found the performance of devices where the311

perovskite layer is fully processed in air with a slot-die to be comparable to312

that of cells with spin coated perovskite layers in nitrogen atmosphere. The313

slot-die coated ones gave average power conversion efficiency of 7% and fill314

factor of 65.8%, with the best performing device showing a 9.2% PCE and315

FF of 75.6%. For the best devices, not encapsulated, after more than 1000316

hours, a PCE reduction of 25.5% was observed. Such a result is completely317

in agreement with the 28% PCE drop after 1000 h testing for devices with318

the same architecture but processed in the glove box, stored in the dark at319

20% humidity, already reported in literature [30]. To our knowledge, this is320

one of the first works on the one-step deposition in air and through slot-die321

coating of mixed halide perovskite layers, on a mesoporous scaffold, report-322

ing a study over the effect of the substrate temperature and air-knife over323

the process. We demonstrate that controlling properly the deposition condi-324

tion is possible to cast in one step and in air, through slot-die coating, high325

quality perovskite layers able to give cells having performances close to those326

totally fabricated in under nitrogen by spin coating. Other groups have al-327

ready scaled the processing of other functional layers, and we think that this328

work is an important step toward the scaling of the entire perovskite-based329

photovoltaic technology.330
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