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a b s t r a c t

Imaging flow cytometry (IFC) enables the high throughput collection of morphological and spatial infor-
mation from hundreds of thousands of single cells. This high content, information rich image data can in
theory resolve important biological differences among complex, often heterogeneous biological samples.
However, data analysis is often performed in a highly manual and subjective manner using very limited
image analysis techniques in combination with conventional flow cytometry gating strategies. This
approach is not scalable to the hundreds of available image-based features per cell and thus makes
use of only a fraction of the spatial and morphometric information. As a result, the quality, reproducibility
and rigour of results are limited by the skill, experience and ingenuity of the data analyst. Here, we
describe a pipeline using open-source software that leverages the rich information in digital imagery
using machine learning algorithms. Compensated and corrected raw image files (.rif) data files from an
imaging flow cytometer (the proprietary .cif file format) are imported into the open-source software
CellProfiler, where an image processing pipeline identifies cells and subcellular compartments allowing
hundreds of morphological features to be measured. This high-dimensional data can then be analysed
using cutting-edge machine learning and clustering approaches using ‘‘user-friendly” platforms such as
CellProfiler Analyst. Researchers can train an automated cell classifier to recognize different cell types,
cell cycle phases, drug treatment/control conditions, etc., using supervised machine learning. This work-
flow should enable the scientific community to leverage the full analytical power of IFC-derived data sets.
It will help to reveal otherwise unappreciated populations of cells based on features that may be hidden
to the human eye that include subtle measured differences in label free detection channels such as
bright-field and dark-field imagery.
� 2016 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

It is now widely accepted that cellular and molecular hetero-
geneity pervades all biological systems [1,2]. This creates a complex
set of challenges for understanding how individual cells within
heterogeneous communities interact with one another in order to
determine the phenotype and function of higher organisms with

respect to both healthy and disease states. Our ability to appreciate
biological heterogeneity is limited by the resolving power of the
analytical approaches at our disposal. At the methodological level,
there is currently a massive paradigm shift away from so called
‘‘bulk” analysis techniques toward single cell-focused approaches
that are able to cope far better with the challenges posed by
heterogeneity [3]. ‘‘Cytometry” translates in literal terms to mean
‘‘cell measurement” and can best be described as the derivation of
numbers from themeasurement of large populations of single cells.
While extremely powerful, it is a significant challenge to derive
meaningful, objective conclusions from the high parameter output
inherent to nearly all cytometric approaches. While cytometric
technologies such as fluorescence-based flow and mass cytometry
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can currentlymeasure 30–40 parameters per cell [4], the parameter
output from image-based cytometry systems can be almost infinite
and often continuous (non-discrete) in nature.

One very powerful image-based cytometric technology is imag-
ing flow cytometry (IFC, Fig. 1). It combines the high-throughput,
multi-parameter capabilities of conventional flow cytometry with
the current capability to capture up to 12 spatially registered
multi-spectral images for each cell as it passes through the system
[5]. These imaging channels can capture label-dependent fluores-
cence signals (currently up to 10) as well as transmitted bright-
field and laser side scatter (dark-field) information, the latter of
which do not require any introduced fluorescence (label-free).
IFC very much fits the paradigm of ‘‘image cytometry” as it
produces quantifiable image data in a high throughput, multi-
parameter format. This ensures that a fair, unbiased comparison
can be made between the output images so that any measured dif-
ferences can be considered biological rather than an artefact of
variable imaging conditions.

In many cases the unique capabilities of IFC to deliver high-
throughput, multispectral, spatially registered imagery has been
essential to the development of new assays to ask novel, cutting
edge biological questions. Most IFC-based assays take advantage
of the technologies’ inherent ability to measure fluorescence sig-
nals with spatial context. Such assays include measuring nuclear
translocation [7], mitochondrial localisation [8], co-localization
assays using ‘‘similarity” features [9], calcium signalling at the
organelle level [10], organelle inheritance during mitosis [11], cell
cycle phases [12], receptor activity [13], asymmetric cell division

[14–16], fission yeast cell cycle [17], dendritic cell morphology
[18], autophagy [19,20], detection of DNA damage foci [21,22]
and modelling intracellular infection [23]. Most, if not all, of these
assays would not be possible using traditional flow cytometry (lack
of spatial information) or conventional imaging techniques (low
throughput and poor quantitation).

Despite IFC being available to the research community for over
10 years it is still often referred to as a ‘‘new and emerging technol-
ogy”. In reality this is no longer the case. While new applications of
the technology continue to be developed on a regular basis, the
data analysis methods for IFC have noticeably lagged behind, and
certainly fall significantly short of their potential. In fact, it could
be argued that data analysis presents the single biggest bottle-
neck/barrier to a more comprehensive adoption of IFC by the
research and clinical diagnostic communities.

The most common approach to IFC data analysis is to use the
proprietary analysis software called IDEAS (manufacturer sup-
plied). This software is extremely powerful, allowing the user to
explore a range of image features derived from each individual cell.
There are a number of pre-calculated features that measure pixel-
based parameters (including morphological, intensiometric and
texture based features) using default cell segmentation algorithms
that automatically generate masks for each available imaging
channels on a per cell/object basis. It is also possible within the
IDEAS software to derive novel user-defined features based on
either the default channel masks or completely novel masks/
segmentations that can be constructed using a powerful suite of
adaptation algorithms. Briefly, the latter allows the user to adapt

Re-appraisal of data 
for previously 
unappreciated 

phenotypes  
including “label 

free” feature finding 

Fig. 1. Guidance on choosing cytometric method and analysis method. Any researcher who wants to use cytometry technology to ask a defined question should consider
‘‘what is the best approach” based on the question. For example if morphological/spatial information is not required then so-called ‘‘zero resolution flow cytometry” is best. If
however the question absolutely requires imagery, then the sample type should next be considered, is it tissue? Can it be disaggregated? Could it be analysed in such a way
that the spatial relationship of individual cells is lost? In our experience, IFC is best applied to situations where the cells biology can still be analysed when in suspension. This
could still be disaggregated tissue or adherent cells and not just cells that exist in suspension. If the target cell population is rare, then suspension-based high throughput
analysis is often necessary to collect sufficient events for statistical confidence. Once the IFC data is collected, several options can be chosen for data analysis. This figure
summarises these options in light of our proposed solution. The historical option is to rely entirely on IDEAS software to perform a potentially subjective, iterative image
analysis that involves adapting the masking/segmentation rules to best identify key pixels within an image channel and then to try and select the best feature calculated on
these pixels with the aim of resolving different phenotypes from one another. This approach can be partially automated using the so-called ‘‘find the best feature” method. We
propose however that a deeper analysis of features is more appropriate to IFC data sets. In this regard we have developed and validated a machine learning-based approach to
analyse IFC data that has been corrected and compensated in IDEAS (.rif to .cif conversion). We then use the open source image analysis platforms CellProfiler and CellProfiler
Analyst to better interrogate the imagery. Even in cases where the IDEAS-based iterative approach works very well, as is often the case when the outcome is well defined,
there may be benefit to re-analysing these data using the approach presented here. It may uncover unappreciated features - in our own experience, this allowed us to perform
a label-free classification of cell cycle stages, thus eliminating the need to add potentially confounding dyes to our cells [6].
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the default channel masks using a set of predefined rules to hone
the segmentation in such a way as to ensure the mask is optimised
with respect to what pixels it identifies within the image frame as
being ‘‘of interest” for subsequent analysis. New features can then
be calculated from within the masked area to hopefully better
resolve subtle biological differences in populations/treatment
groups.

The majority of the innovative applications mentioned previ-
ously have used this manual, iterative IDEAS-based approach.
However, this approach can sometimes lead to unconvincing
conclusions and poor reproducibility of results because there are
literally thousands of strategies that could be employed for data
analysis that can yield conflicting conclusions. A significant con-
tributor to this variation is the intimate relationship between
how well a given mask is able to identify the right groups of pixels
in an image and the resolving power of any feature derived from
the pixel properties under that mask [24]. For example, a logical
feature could be selected but the resolving power will be compro-
mised by poor pixel masking. A good example of this is using the
‘‘spot count” feature to resolve cells in anaphase from those in
metaphase. If the default nuclear dye channel mask is used, it tends
to be very permissive and will mask both nuclear poles in an
anaphase cell as a single entity. In this case calculating the ‘‘spot
count” of this mask will not resolve metaphase from anaphase
(both will give a value of 1). However if we adapt the stringency
of the default nuclear channel mask so that it now identifies two
separate foci, the spot count will be a powerful resolving feature
[24].

Recently an analysis method with some aspects of machine
learning has been proposed, known as the ‘‘find the best feature”
approach [19]. It involves manually selecting around 20–30 cells
that exemplify each of the user-observed phenotypes within the
sample (including controls), possibly requiring some new basic
masks to be constructed within the IDEAS software. IDEAS is then
used to calculate a range of features from these masks. The resolv-
ing power of each individual feature associated with a specific
channel masks is then ranked using the Fisher discrimination ratio

(Rd) to provide a numerical value for the degree of statistical
separation between two potentially overlapping distributions. In
this case the two distributions are derived from the hand-tagged
populations, one containing cells that exemplify a given observed
phenotype and the other containing cells that do not. The feature/
mask combination with the highest Rd value is then selected and
applied to the entire data file to assess the resolving potential for
larger numbers of cells. There are numerous potential problems
with this approach, not least the fact that selecting so few cells
to test the resolving power of a feature may confound the ranking
due to effects of under sampling. For example, if we were to
repeatedly sample 20–30 cells from a population of 4000 cells
and ‘‘find the best feature”, it is possible that each time we will
get a totally different top ranking feature due to effects of ‘‘under
sampling”. In reality we should test the resolving power of a set
of features using between 100 and 500 cells in order to reach the
point of ‘‘diminishing returns”. Using a manual approach, this
would be very time consuming.

By comparison, the field of image-based profiling is much more
advanced: hundreds of morphological features are extracted from
each cellular image acquired by conventional microscopy, and
the ‘‘profiles” of these cells are compared and/or subjected to
machine learning to identify biologically important differences
among them [25,26]. Until now, this approach has been hard to
employ for IFC-derived data because of the challenges around the
proprietary file formats and a workflow that is often highly subjec-
tive, relying far too much on individual human input.

We previously developed a prototype workflow in our effort to
develop a label-free assay for cell cycle analysis, using machine
learning on the bright-field and dark-field images image setts from
an imaging flow cytometer [6]. That analysis consisted of several
steps (see Methods section for details) that required the use of
commercial software (MATLAB) both before and after using the
open source software CellProfiler. In addition, significant expertise
in computer programming and machine learning was required to
follow the protocol. The pipeline also required the IDEAS software
to extract a single tiff image per fluorescence channel for each cell,

Fig. 2. In-focus single cells are gated from the population using bright-field images. Left: cells with a sufficiently high gradient RMS are in-focus (left). Right: objects with a
high aspect ratio (a measure of circularity, y-axis) and a mask area that is neither too high nor too low (x-axis) represent single cells.
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which for even modest cell counts generated very large numbers of
individual images, typically in the hundreds of thousands for
high-throughput studies, causing significant problems for file sys-
tems, file handling and processing.

Here we describe development of a fully open-source software
workflow to enable user-friendly machine learning based analysis
of imaging flow cytometry data. The workflow is a step towards
‘‘systems cytometry”, i.e. a systems approach to the quantitative
image analysis of single cells in high-throughput using advanced
data analysis methods.

2. Material and methods

2.1. Data acquisition in imaging flow cytometry

We briefly review data acquisition in imaging flow cytometers,
for a more extensive overview see [27]. Fluorescently labelled or
unlabelled cells in solution are run through the ImageStream or
FlowSight (Amnis) imaging flow cytometer and the data is acquired
using the INSPIRE control software. Much like traditional flow
cytometry, appropriately stained cells should also be measured
as controls in order to perform compensation before any analysis
is carried out. The INSPIRE acquisition software generates data in
the form of a raw image file (.rif file) which can then be directly
loaded into IDEAS for further analysis. When the .rif file is loaded
into IDEAS, a compensation matrix generated from the fluores-
cence control experiments can be used to produce a compensated
image file (.cif file). In the IDEAS environment, the user can plot
features derived from the bright-field, dark-field and fluorescence
single cell images in the form of histograms or bivariate scatter
plots. Gating can be performed using these plots to generate sub-
populations that can be then be studied in further detail. The plots,
gating and sub-population information from a session can then be
saved as a data analysis file (.daf file). It is also possible to generate
individual tiff images from each channel for each cell to analyse
outside of the IDEAS framework.

IDEAS is especially suited for visually inspecting the data irre-
spective of the further analysis pipeline the user wishes to perform.
The important first steps of identifying out-of-focus cells and
removing debris or multiple cells are best carried out using this
software platform. IDEAS suggests using a measure of the gradient
RMS of the bright-field image to determine the focus quality of
each cell. By gating the high values in the gradient RMS histogram
a subpopulation of in-focus cells is defined (Fig. 2, left). The next
step is to identify the single cells by plotting the cell mask aspect
ratio versus the cell mask area. A 2D gating window is defined to
select cells with an aspect ratio close to 1, which removes clumped
cells, while also rejecting high and low areas, which removes deb-
ris (Fig. 2, right). Once subpopulations are identified via gating they
can be saved as a new .cif file in IDEAS, which serves as the starting
point for our protocol.

2.2. From data acquisition to high-throughput data analysis

To enable the application of advanced high-throughput data
analysis to imaging flow cytometry, we developed a new protocol
to harvest and analyse the rich information in images acquired via
imaging flow cytometers. Our aim is to provide an open-source
protocol that enables user-friendly data processing and extraction
of hundreds of features in high-throughput and connects to state-
of-the-art data analysis based on machine learning techniques. As
discussed above we previously developed a methodology for using
high throughput data analysis techniques on imaging flow cytom-
etry data; however, the pipeline required significant computa-
tional skills and bespoke MATLAB scripts.

Our previous protocol consists of the following steps (Fig. 3A).

1. Extract hundreds of thousands to millions of single cell images
(tif files) from a single .cif file using IDEAS software and store
them to disk as individual files.

2. Pre-process the single cell images: Combine single cell images
to montages of 15 � 15 images using a MATLAB script.

3. Segment images and extract hundreds of features per cell per
channel, e.g., using CellProfiler. A table of features for each cell
can then be exported in a variety of different formats e.g. csv,
mat.

4. Downstream data analysis (such as machine learning, feature
selection, data visualization, etc.) can then be applied using
bespoke code to enable data analysis in high-throughput. In
our protocol, we provided MATLAB scripts for this step.

While this protocol was successful in allowing the application
of advanced multivariate techniques on imaging cytometry data,
several issues limit its application. Many IFC analysts find working
with MATLAB scripts to be outside their skill level and thus require
computational assistance. Also, handling the hundreds of
thousands up to millions of individual tiff images for each channel

Fig. 3. (A) Previous protocol for high-throughput data analysis for imaging flow
cytometry [6]. (B) New protocol for high-throughput data analysis in imaging flow
cytometry, built from open-source, user-friendly software. (C) Alternative new
protocol for high-throughput data analysis in imaging flow cytometry, describing
use of various alternate tools at each step.
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for each cell files is very slow and difficult to manage for the com-
puter’s file system. We have experienced problems exporting,
moving or deleting such a high number of files causing the system
to slow down, crash and fragment the disk drive.

To minimise the complexity of the pipeline, we developed an
improved protocol that makes imaging flow cytometry data analy-
sis in high-throughput much more streamlined and user-friendly.
One major advance is to keep the individual cell tiffs within the
cif file container and modify CellProfiler to allow the input of the
cif file via the ‘drag and drop’ interface. This eliminates the prior
first step, extracting hundreds of thousands or millions of single tiff
images and creating tiles therefrom.

The main reason for tiling the single cell images (besides not
obstructing the file system) is computational speed: CellProfiler
operates image-wise and can quickly detect hundreds or thou-
sands of objects in an image. Linearly crawling through a million
tiny images is not practical or feasible in a reasonable time given
the overhead of opening individual image files. Instead, the new
protocol handles about 1000 tiled images (with 1000 cells in each
image tile) when analysing a million cells.

We access the cif file with a new cif file reader, which we
contributed to Bio-Formats (http://loci.wisc.edu/software/bio-
formats). Bio-Formats is a community driven project with a
standardised application interface that supports open source anal-
ysis programs like ImageJ, CellProfiler and Icy, informatics solu-
tions like OMERO and the JCB DataViewer, and commercial
programs like MATLAB. As such, a cif file can now simply be loaded
by those programs. We have integrated the cif file reader into the
‘Images’ module in CellProfiler, via BioFormats, allowing the direct
input of the individual cell images for all channels (bright-field,
dark-field and fluorescence channels). We have also implemented

the tiling of the single cell images within CellProfiler, which
removes the need for the software solution in step 2 of our previ-
ous protocol. Our new imaging flow cytometry protocol is as fol-
lows (Fig. 3B, using CellProfiler):

1. Load .cif file in CellProfiler (drag & drop).
2. Segment images and extract hundreds of features per cell per

channel using CellProfiler. An example pipeline can be found
at http://cellprofiler.org/imagingflowcytometry/index.html.

3. Multiclass machine learning using CellProfiler Analyst.

In addition, the protocol has also become more streamlined if
alternate image analysis or data mining software is preferred
(Fig. 3C):

1. Run a Python or MATLAB script to automatically generate tiles
of �1000 single cell images per tile. A script for this step is
available on the website http://cellprofiler.org/imagingflowcy-
tometry/index.html.

2. Load image tiles in your preferred image analysis software such
as ilastik, CellProfiler, etc. and analyse images. Export features
as .csv file.

3. Multiclass machine learning using any programming language,
data analysis tool or visualization tool.

In ([6]), we reported the label-free classification of the cell cycle
phases using supervised machine learning techniques on bright-
field and dark-field images only. Such high-throughput analyses
of IFC data can now be streamlined in a smooth and user-
friendly way, making machine learning techniques more
accessible.

Fig. 4. Classification of the cell cycle of Jurkat cells using machine learning in CellProfiler Analyst. The cell images can be sorted via drag & drop into the five different bins at
the bottom, which are interphase (G1/S/G2) and the four mitotic phases: prophase (pro), metaphase (meta), anaphase (ana) and telophase (telo). The classifier, here
GradientBoosting, is first trained (train button) and then the training set is cross-validated (evaluate button). With the score all button one can predict the cell cycle phase of
all cells in the data set.
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Supervised machine learning is a powerful approach, where the
computer ‘‘learns” to recognize cells meeting certain criteria, based
on examples provided by the biologist expert. It relies on the hun-
dreds of morphological parameters that have been measured for
each cell.

Although any programming language, data analysis tool or
visualization tool can be used based on the extracted features,
CellProfiler Analyst is a particularly user-friendly option we tested
in our protocol. CellProfiler Analyst is free open-source software
for exploring and analysing large, high-dimensional image-derived
data. It includes machine learning tools for identifying complex
and subtle phenotypes [28]. CellProfiler Analyst has recently been
updated to include multi-class classification, and it now offers a
variety of supervised machine learning techniques [29].

2.3. Example: label-free cell-cycle classification of Jurkat cells

We demonstrate our new protocol of analysing IFC data in high-
throughput by predicting the cell cycle phase of Jurkat cells based
on bright-field and dark-field images only. While the cell-cycle
phase can be determined using fluorescent markers of various
stages of mitosis, we previously showed that by extracting hun-
dreds of features and using machine learning techniques, it is pos-
sible to accurately predict the cell cycle phase without the use of
any markers [6]. This method facilitates non-destructive monitor-
ing of cells, avoiding potentially confounding effects of fluorescent
stains while maximizing available fluorescence channels.

We will consider the following 5 classes: interphase, and the 4
mitotic phases: prophase, metaphase, anaphase and telophase. The
raw images stem from an ImageStream platform where 32,255
asynchronously growing Jurkat cells have been imaged. We use
the same Jurkat cell data set from [6] in order to demonstrate

the individual steps of the new protocol and to compare our results
with a previous benchmark. As controls, the cells were fixed and
stained with PI (propidium iodide) to quantify DNA content and
a MPM2 (mitotic protein monoclonal #2) antibody to identify
mitotic cells. These fluorescent markers were used to annotate
the cells with the ground truth (expected results) needed to train
the machine-learning algorithms and to evaluate the predictive
accuracy of our label-free approach. The ground truth was
obtained through gating in IDEAS by using the features from the
fluorescent marker channels.

Step 1: Image montages are generated from a .cif file via an
automated python script. The script directly reads the .cif file and
writes the image montages to disk within seconds (download the
script from http://cellprofiler.org/imagingflowcytometry/index.
html).

Step 2: We load the montages into CellProfiler (drag & drop)
and run a pipeline to measure hundreds of features in bright-
field and dark-field (download the pipeline from http://cellpro-
filer.org/imagingflowcytometry/index.html). The pipeline exports
the measurements as a csv file, which can be used with any pro-
gramming language for downstream data analysis such as machine
learning. In addition, the pipeline exports a CellProfiler Analyst
properties file (with an SQLite database file). The properties file
is a simple text file that can be edited with any text editor. The
properties file includes a section where features can be excluded
from the classifier; in our case we exclude irrelevant features such
as location or angular orientation of the cells (download a sample
properties file from http://cellprofiler.org/imagingflowcytometry/
index.html).

Step 3: Load properties file into CellProfiler Analyst for the
machine learning. See Fig. 4 for details [30], and the online manual
for an introduction to machine learning using CellProfiler Analyst
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Fig. 5. Label-free prediction of cell-cycle phases using Gradient Boosting classification. The true positive rate (which is the ratio between correctly scored phase and total
number of cells in that phase) is more accurate for GradientBoosting than for Random Forests classification, in particular for metaphase and anaphase.
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(http://cellprofiler.org/CPA). CellProfiler Analyst now includes sev-
eral machine learning algorithm options; for our purposes, we
chose a GradientBoosting classifier and a Random Forest classifier.
We picked boosting in order to compare with the boosting results
in (Blasi et al., 2016), and Random Forests as a second approach
often considered best-in-class. Briefly, boosting produces a predic-
tion model in the form of an ensemble of weak prediction models,
typically decision trees. The main idea behind boosting is that a set
of weak learners (‘‘specialists for specific prediction tasks”) can
form a single strong learner. The name GradientBoosting reflects
that a gradient descent algorithm is used to minimize a cost
function when constructing the set of learners. Boosting, however,
is very sensitive to mis-labeling and noise; we therefore used an
additional method, Random Forests, which is also based on deci-
sion trees but typically more robust. Random Forests reduces the

variance of an ensemble of ‘‘complex” models, whereas in Boosting
the composition elements are ‘‘weak” models.

3. Results and discussion

The predictions of the different cell cycle phases using our new
workflow are shown in Fig. 5 for GradientBoosting and Fig. 6 for
Random Forest classification. Both machine learning techniques
enable a label-free classification of the cell cycle phases. Gradi-
entBoosting gave better predictions than Random Forests in our
data set. Compared to Blasi et al. (2016) where a different training
set and a different machine learning algorithm was used, our
results are overall qualitatively similar. Interphase and telophase
have high true positive rate, while prophase and metaphase are
more difficult for the classifier to score correctly. The true positive
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Fig. 6. Label-free prediction of cell-cycle phases using a Random Forest classifier.

Table 1
Confusion matrices for GradientBoosting and Random Forests classifier.

GradientBoosting Predicted class

Int Pro Meta Ana Telo

True class Int 93.63 4.64 1.63 0.07 0.03
Pro 18.16 65.53 15.79 0.26 0.26
Meta 0.00 0.00 62.50 37.50 0.00
Ana 0.00 0.00 20.00 80.00 0.00
Telo 0.00 0.00 0.00 8.33 91.67

Random Forests Predicted class

Inter Pro Meta Ana Telo

True class Int 93.19 5.43 1.35 0.00 0.03
Pro 21.32 67.89 10.00 0.00 0.79
Meta 37.50 12.50 50.00 0.00 0.00
Ana 0.00 40.00 20.00 40.00 0.00
Telo 0.00 0.00 0.00 0.00 100.00
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rate is the number of correctly predicted cell cycle phases divided by
the total number of cells presented to the trained classifier. The test
set consists of over 30,000 cells, which are all cells that are not in the
training set. In addition, we cross-validated the training set (10-fold
cross-validation) with the evaluate function in CellProfiler Analyst.

The true positive rate for GradientBoosting in anaphase is lower
compared to the prior method in Blasi et al. (2016), where a
different classifier, Random Undersampling (RUS) boosting was
applied. RUS boosting is tailored for highly imbalanced data sets,
which may explain the superior prediction in the underrepre-
sented class anaphase; RUS boosting is not currently an option
within CellProfiler Analyst. The data set we analysed is highly
imbalanced containing over 30,000 interphase cells and only 15

anaphase cells and 25 telophase cells. The relative number of cells
in each phase reflects the duration of the respective cell cycle
phase, i.e., the relative numbers of cells would suggest that the
duration of anaphase is �2000 times shorter than interphase,
and so on. It is crucial to compensate for this strong class imbal-
ance. Our training set contains a lower number of cells from over-
represented classes (with respect to the total cell count), thus
reducing the imbalance in the training set through undersampling.
GradientBoosting detects the very few cells in the underrepre-
sented classes with 80% (anaphase) and 92% accuracy (telophase)
in the whole data set of over 30,000 cells. Fig. 5 is a graphical
representation of the confusion matrices, for completeness, we
provide the confusion matrices in Table 1.

Fig. 7. Example images of 224 cells from the test set where the cell cycle phase was predicted using machine learning (GradientBoosting). All cells displayed were deemed
prophase based on our ground truth. Ground truth was obtained from the fluorescence markers via gating in IDEAS.

208 H. Hennig et al. /Methods 112 (2017) 201–210



It can be informative to look at the images of cells in a given cat-
egory. In Fig. 7, we show examples of images of 224 cells, which
according to ground truth are all in prophase. We chose prophase
cells for this illustration because prophase is among the most
difficult classes to predict. Fig. 7 is a screenshot from CellProfiler
Analyst showing the cellular images with a coloured square on
top of each cell in the test set. The colour of the square denotes
the predicted class, i.e., cells marked with a green square were cor-
rectly classified as prophase cells (166 out of 224 cells, cf. hit table
in the lower right of the figure), whereas a yellow square marks
cells that were predicted to be in metaphase (20 out of 224 cells),
thus deviating from ground truth. One cell was classified as
telophase (the corresponding image tile is in row 10, column 8 of
the montage). Interestingly, it appears that ground truth is not
correct in this case and that indeed this particular cell is not in
prophase.

3.1. Feature selection

Which features were most informative for the prediction of the
cell cycle phases? We extended our previous work [6] by identify-
ing the most informative features. Both machine learning methods,
GradientBoosting and Random Forests, include feature selection,
and the top features are displayed in CellProfiler Analyst. The top
20 features are shown in Table 2 (feature #1 is the most informa-
tive, followed by feature #2 etc.).

Features extracted from the dark-field, also referred to as side
scatter channel (SSC) are named SSC_⁄ and bright-field features
are named BF_⁄. We note that the top feature for GradientBoosting
is a dark-field feature, while Random Forests does not use any
information from the dark-field channel among the top 20 fea-
tures; instead the top 20 features stem from bright-field (BF).

4. Conclusions

In conclusion, we introduced an open-source and user-friendly
protocol to analyse IFC data in high-throughput using machine
learning based on a previously developed prototype workflow
[6]. In order to demonstrate the individual steps of the new proto-
col, we applied machine learning to accurately predict the cell
cycle phase of Jurkat cells without the use of any labels, achieving
a level of accuracy comparable to the original, more cumbersome

procedure. Feature selection (e.g., provided in CellProfiler Analyst)
shows that the dark-field images carry valuable information for the
prediction of the cell cycle phase.

Image-based flow cytometry is much more parameter-rich
compared to conventional cytometry and mass cytometry
approaches. Data analysis methods for IFC have fallen short of their
potential. The protocol presented in this work connects imaging
flow cytometers and IDEAS with powerful, high-content analyses
via machine learning.

The protocol we describe will also facilitate the use of IFC data
for the emerging applications using image-based profiling [25,26].
In image-based profiling, based on hundreds of features per cell,
high-content profiles are extracted and subjected to machine
learning to enable new biologically relevant discoveries. We hope
the open-source and user-friendly protocol contributes to IFC
being more widely adopted by the research community and in
clinical diagnostics. Moving forward, the development and growth
of new imaging cytometry technologies, such as the CHIP Cytome-
ter by ZellKraftwerk and Imaging Mass Cytometry are likely to be
accompanied by even greater challenges posed to high-
throughput image data analysis.
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