
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in :

Biomaterials

                             

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa29691

_____________________________________________________________

 
Paper:

Rees, P. (in press).  Generation of an in vitro 3D PDAC stroma rich spheroid model. Biomaterials

http://dx.doi.org/10.1016/j.biomaterials.2016.08.041

 

 

 

 

 

 

 

 

_____________________________________________________________
  
This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository. 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

http://cronfa.swan.ac.uk/Record/cronfa29691
http://dx.doi.org/10.1016/j.biomaterials.2016.08.041
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 

Accepted Manuscript

Generation of an in vitro 3D PDAC stroma rich spheroid model

Matthew J. Ware, Vazrik Keshishian, Justin J. Law, Jason C. Ho, Carlos A.
Favela, Paul Rees, Billie Smith, Sayeeduddin Mohammad, Rosa F. Hwang, Kimal
Rajapakshe, Cristian Coarfa, Shixia Huang, Dean P. Edwards, Stuart J. Corr, Biana
Godin, PhD, Steven A. Curley

PII: S0142-9612(16)30442-2

DOI: 10.1016/j.biomaterials.2016.08.041

Reference: JBMT 17688

To appear in: Biomaterials

Received Date: 19 April 2016

Revised Date: 17 August 2016

Accepted Date: 25 August 2016

Please cite this article as: Ware MJ, Keshishian V, Law JJ, Ho JC, Favela CA, Rees P, Smith B,
Mohammad S, Hwang RF, Rajapakshe K, Coarfa C, Huang S, Edwards DP, Corr SJ, Godin B, Curley
SA, Generation of an in vitro 3D PDAC stroma rich spheroid model, Biomaterials (2016), doi: 10.1016/
j.biomaterials.2016.08.041.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 
 
 

 1 

Generation of an in vitro 3D PDAC stroma rich 
spheroid model 

Matthew J. Ware
1
, Vazrik Keshishian

1
, Justin J. Law

1
, Jason C Ho

1
, Carlos A Favela

4
, 

Paul Rees
2
, Billie Smith

3
, Sayeeduddin Mohammad

3
, Rosa F. Hwang

7
, Kimal 

Rajapakshe
8
, Cristian Coarfa

8
, Shixia Huang

8
, Dean P. Edwards

8
, Stuart J. Corr

1,4,5
, 

Biana Godin#
6 

and Steven A. Curley#
1*

  
 
1Department of Surgery, Baylor College of Medicine, Houston, Texas, 77030, USA 
2Department of Engineering, Swansea University, Swansea, United Kingdom 

3Pathology and Histology Core, Baylor College of Medicine, Houston, Texas, 77030, 
USA 
4Department of Systems Medicine and Bio-engineering, Houston Methodist 
Research Institute, Houston, Texas 77030, USA 
4Department of Chemistry, Rice University, Houston, TX 77005, USA 
5Department of Bioengineering, University of Houston, Houston, TX 77204, USA 
6Department of Nanomedicine, Houston Methodist Research Institute, Houston, 
Texas 77030, USA 
7Department of Surgical Oncology, University of Texas MD Anderson Cancer 
Center, Houston Texas 77030, USA 
8 Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, 
Texas, 77030, USA. 

 
CORRESPONDING AUTHORS: 
Dr. Steven Curley, 
Surgery/General Surgery Division 
Baylor College of Medicine 
One Baylor Plaza, 
Houston  
Texas, 77030 

 
Dr. Biana Godin 
Department of Nanomedicine 
Houston Methodist Research Institute 
Houston 
Texas, 77030 
Email: bianagodinv@gmail.com; bgodin@houstonmethodist.org 
Phone: 713-4417329 

KEYWORDS: 3D tumor microenvironment, Pancreatic Cancer, stroma, human 
pancreatic stellate cells 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 
 
 

 2 

 

Abstract  
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent 
desmoplastic/stromal reaction, which contributes to the poor clinical outcome of this 
disease. Therefore, greater understanding of the stroma development and tumor-stroma 
interactions is highly required. Pancreatic stellate cells (PSC) are myofibroblast-like cells that 
located in exocrine areas of the pancreas, which as a result of inflammation produced by 
PDAC migrate and accumulate in the tumor mass, secreting extracellular matrix components 
and producing the dense PDAC stroma.  Currently, only a few orthotopic or ectopic animal 
tumor models, where PDAC cells are injected into the pancreas or subcutaneous tissue layer, 
or genetically engineered animals offer tumors that encompass some stromal component. 
Herein, we report generation of a simple 3D PDAC in vitro micro-tumor model without an 
addition of external extracellular matrix, which encompasses a rich, dense and active stromal 
compartment. We have achieved this in vitro model by incorporating PSCs into 3D PDAC 
cell culture using a modified hanging drop method. It is now known that PSCs are the 
principal source of fibrosis in the stroma and interact closely with cancer cells to create a 
tumor facilitatory environment that stimulates local and distant tumor growth. The 3D 
micro-stroma models are highly reproducible with excellent uniformity, which can be used 
for PDAC-stroma interaction analysis and high throughput automated drug-screening assays. 
Additionally, the increased expression of collagenous regions means that molecular based 
perfusion and cytostaticity of gemcitabine is decreased in our Pancreatic adenocarcinoma 
stroma spheroids (PDAC-SS) model when compared to spheroids grown without PSCs. We 
believe this model will allow an improved knowledge of PDAC biology and has the potential 
to provide an insight into pathways that may be therapeutically targeted to inhibit PSC 
activation, thereby inhibiting the development of fibrosis in PDAC and interrupting PSC-
PDAC cell interactions so as to inhibit cancer progression. 
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1.0 Introduction 
 

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer 

related death in developed countries1,2. Five-year survival is approximately 6% and survival 

beyond 12 months is unusual. Only 20% of patients are deemed suitable for attempted 

curative resection. Chemotherapy confers marginal benefit while the benefit of radiotherapy 

is debated3. Despite aggressive research, little improvement in patient survival has occurred 

in the last decade. In fact, the best chemotherapeutic treatments currently only prolong life 

by ~6-12 weeks 4. The poor clinical outcome is attributed, at least in part, to the dense 

stromal reaction that arises during PDAC development and progression. In support of this 

notion, it has been shown that sequestration of chemotherapeutic agents such as 

gemcitabine can occur within the tumor stroma, effectively reducing the amount of the drug 

that can reach cancer cells 5 

One of the major players in the stromal compartment of PDAC are pancreatic 

stellate cells (PSCs). Pancreatic stellate cells are resident cells of the pancreas and are 

predominantly periacinar in location and comprise 4-7% of total pancreatic parenchymal 

cells. In healthy pancreas, PSCs remain in a quiescent state 6. PSCs are thought to play a 

primary role in maintenance of normal pancreatic architecture due to their ability to produce 

extra-cellular matrix (ECM) proteins as well as the enzymes that regulate ECM protein 

levels, such as matrix metallo-proteinases (MMPs) and tissue inhibitors of metallo-

proteinases (TIMPs). During an acute episode of pancreatic injury, PSCs are activated and 

express α-smooth muscle actin (α-SMA), proliferate, migrate, and secrete excess ECM 

proteins that lay down a lattice for regenerating epithelial cells. As the injury resolves, 

activated PSCs are lost through apoptosis7. MMPs secreted by the remaining PSCs degrade 

the excess fibrosis resulting in restitution of normal pancreatic tissue. However, during 

PDAC, an imbalance between ECM production and degradation results in an extensive and 

dense desmoplastic/fibrotic stroma produced by activated PSCs in which cancer cells are 

embedded8. Recent studies have alluded to PSCs playing an important role in promoting 

local growth of PDAC, facilitating regional and distant spread of PDAC cells9,10, aiding 

PDAC immune-evasion11-13, and facilitating a stem cell niche in PDAC, all of which have a 

major impact on the progression of PDAC and play a role in its high recurrence rate. This 

has meant that the interactions between PDAC cells and PSCs have become increasingly 

studied. However, there are currently very limited in-vitro options to study these complex 
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interactions in a 3D tumor environment. The majority of research in the field of cancer cell 

biology and therapeutic modalities is performed on monocultures of cells in monolayers. 

While the importance of these studies is not to be understated, increasing evidence in the 

literature shows the merits of utilizing 3D in vitro models rather than 2D, to replicate more 

precisely the biophysics of the tumor and surrounding micro-environment 14-16.  

Three-dimensional tumor spheroids have been grown by numerous groups which 

enable more accurate representation of tumor cell behaviors in a more complex 3D setting, 

which rely on cell-cell interactions, pathogenesis, transport of nutrients and therapeutics, and 

other important factors. However, current spheroid models do not provide a good model 

for PDAC, as they have not yet featured the key dense stroma component found in all 

PDAC tumors in vivo. Orthotopic or ectopic animal models, where PSCs and PDAC cells are 

injected into the pancreas or subcutaneous tissue layer, offer tumors that encompass some 

stromal component usually lacking PSCs. Genetically engineered animal models, on the 

other hand, represent more precisely the stroma of PDAC17. However, the stroma 

compartment in these tumors is from an animal origin and these models are resource-

intensive and time-consuming to create. Moreover, in vivo studies often provide only single 

end point measurements because visualizing the progress of the tumor and its response to 

therapies over multiple time points is difficult.  These difficulties arise because of the 

inaccessibility of orthotopic tumors for microscopic methods or the animals needing to be 

sacrificed for histology analysis. Additionally, significant heterogeneity is seen in stromal 

reaction development in vivo 18. These reasons lead to difficulty in obtaining mechanistic and 

time resolved data when studying tumor-stromal reactions in PDAC. It is, therefore, 

essential that more complex in-vitro cellular models that better mimic physiologic conditions 

within the tumor microenvironment be developed to study PDAC cell-stromal interactions 

for accurate predictions of drug or radiotherapy efficacy.  

 The importance of PDAC stroma interactions has been previously realized with the 

development of models incorporating the co-culture of PDAC and PSCs for a more 

‘organtypic’ approach. For instance the use of 2D monolayer co-cultures 19 and models 

which incorporate PDAC and PSCs embedded in type I glycosaminoglycan scaffolds and in 

collagen type I or Matrigel20 have been developed. We believe that this is specifically the first 

in-vitro model, which uses PSCs co-cultured with PDAC cells whilst employing a simple 

method to obtain a collagen rich spheroid model without adding any external extracellular 

matrix components. The PDAC-SS are highly reproducible with excellent uniformity, which 
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can be used for PDAC-stroma interaction analysis and high throughput automated drug-

screening assays. We used our recently described improved hanging drop technique21, which 

uses a viscosity-inducing agent, methylcellulose for co-culturing both PDAC cell lines21 and 

PSCs in various ratios for active stroma production. We believe our PDAC-SS model 

provides an in-vitro model for PDAC stroma rich tumors and will further improve 

understanding of the interaction of PDAC cells and stromal constituents and the initiation 

and progression of the stroma commonly found in PDAC.  

 

2.0 Materials and Methods 

2. 1. Materials 

To prepare media for 3D PDAC-SS formation, cell media specific to the particular 

cell line (as described below) was supplemented with 20% methylcellulose stock solution. 

For preparation of methylcellulose stock solution 6 g of autoclaved methylcellulose powder 

(M0512, Sigma-Aldrich) were dissolved in preheated 250 mL basal medium (60°C) for 20 

min. Thereafter, 250 mL of medium (room temperature) containing double the amount of 

FBS for the particular cell line was added to a final volume of 500 mL and the whole 

solution was mixed overnight at 4°C. The final stock solution was aliquoted and cleared by 

centrifugation (5000 rpm for 2h at room temperature). Only the clear, highly viscous 

supernatant was used for the spheroid formation, which was approximately 90-95% of the 

stock solution. 

2.2. Cell lines 
 

Five human PDAC lines, PANC-1, AsPc-1, BxPC-3, Capan-1 and MIA PaCa-2 cells 

were obtained from American Type Culture Collection (ATCC, USA). PANC-1 and AsPc-1 

cells were maintained in DMEM (Thermo Fischer Scientific, USA) with 10% fetal bovine 

serum (FBS, Sigma, USA). BxPC-3 was maintained in RPMI-1640 (Thermo Fischer 

Scientific, USA) medium with 10% FBS, Capan-1 in IMDM medium (Thermo Fischer 

Scientific, USA) with L-4 mM glutamine and 20% FBS. MIA PaCa-2 was maintained in 

DMEM (Thermo Fischer Scientific, USA) with 10% FBS and 2.5% horse serum (Thermo 

Fischer Scientific, USA). 2% penicillin-streptomycin solution (Sigma, USA) was added to the 

media of all PDAC lines.  Derivation of all PDAC cell lines are given by Table 1. 

Human pancreatic stellate cells (PSCs) were isolated and prepared as previously described13 
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by Dr. R. Hwang (UT-MD Anderson Cancer Center, Houston TX) from human PDAC 

samples. Briefly, PSCs were prepared by the outgrowth method22. Fresh tissue was obtained 

from residual pancreatic adenocarcinoma specimens from patients undergoing primary 

surgical resection at The University of Texas M. D. Anderson Cancer Center. All human 

samples were obtained in accordance with the policies and practices of the Institutional 

Review Board of The University of Texas M. D. Anderson Cancer Center. Tumor samples 

were minced and seeded in six-well plates containing 15% FCS/DMEM, l-glutamine (2 

mmol/L), penicillin/streptomycin, and amphotericin. Five days later, cells were able to grow 

out from the tissue clumps. When PSCs grew to confluence, cells were trypsinized and 

passaged 1:3. Cell purity was determined by immunohistochemistry for alpha-SMA, 

vimentin, and desmin, as well as morphology (spindle-shaped cells with cytoplasmic 

extensions) and positive staining with Oil Red O (lipid inclusions were visualized). Further, 

PSC derived from the pancreatic tumor of a patient who had received no prior therapy 

before surgery were immortalized using lentiviral vector with human telomerase (hTERT) or 

SV40 large T antigen (TAg) through plasmids containing TAg (pHIV7-CNPO-TAg) and 

hTERT (pHIV7-CNPO-hTERT) as previously described in details.23 PSCs carrying the 

hTERT or SV40-T were selected in 1 to 3 mg/mL G418 for 3 weeks (Invitrogen). Cells 

were maintained in DMEM with 10% FBS at 37°C in a humidified atmosphere of 5% CO2. 

 

Table 1: Donor patient information and cell line characteristics 

Cell line Source Derivation Metastasis Proliferation Differentiation Ref. 
PANC-1 56 y.o, 

female 
Primary tumor Yes 52h Poor 24 

AsPc-1 62 y.o, 
female 

Ascites Yes 38-40h Poor 25 

MIA PaCa-2 65 y.o, 
female 

Primary tumor Not 
described 

40h Poor 26 

Capan-1 40 y.o, 
male 

Liver 
metastasis 

Yes Not 
described 

Well 27 

BxPc-3 61 y.o, 
male 

Primary tumor No 48-60h Moderate to 
poor 

28 

 

2.3. A modified and improved hanging drop method for 3D PDAC-SS 
formation  
 

Spheroids were created using a novel approach that we have previously described21. 

Briefly, the approach combined two traditionally used techniques: the hanging-drop 
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technique and the use of methylcellulose in the medium. For spheroid generation we used 

20% of the methylcellulose stock solution and 80% culture medium corresponding to final 

0.24% methylcellulose. 20 μL drops of the 0.24% methylcellulose-culture medium solution 

containing 20,000 cells were pipetted onto the lid of 100 mm dishes and were inverted over 

dishes containing 10mL phosphate buffer solution. Cells were counted using the Countess 

Automated Cell Counter according to the manufacturer’s recommendations (Invitrogen, 

USA). A ratio of 1:2 (PSCs : PDAC cells) were gently mixed using pipette action for PDAC-

SS. Hanging drop cultures were incubated under standard culture conditions (5% CO2, at 

37°C) for 7 days, which allowed for adequate sedimentation time. The resultant cell 

aggregates were harvested by pipetting 10 mL of DMEM plus 10% FBS gently onto the lid 

where the hanging drop spheroids lay, which caused them to become suspended in the 

media. Each spheroid was gently caught by a sterile spatula and transferred to a well in a 12 

well plate for treatment or imaging. 

2.4 Generation of orthotopic PDAC tumors in mice 
 

Animal studies were performed in accordance with the guidelines of the Animal 

Welfare Act and the Guide for the Care and Use of Laboratory Animals based on approved 

protocols by Baylor College of Medicine Institutional Animal Care and Use Committee 

(IACUC). Orthotopic pancreatic tumors were grown in 6-7 week old athymic nude (FOXn1 

nu) female mice (Harlan Sprague Dawley, USA). Under sterile conditions an incision of ~2 

cm was made in the left flank to expose the pancreas. PANC-1 or Capan-1 cells (1 x 106 in 

40 µL of PBS) were injected into the pancreas. The abdominal wound was closed in two 

layers. Tumors were allowed to grow for 5 weeks before tumors were excised. The tumor 

size was measured (average size of tumor was 4 x 4 x 3mm) before fixing in 4% 

formaldehyde for histology preparation. 

2.5. Immunohistochemical evaluation  
 

PDAC-SS were fixed in formalin, embedded in histogelTM (Thermo Scientific 

Richard-Allan Scientific, USA), processed in paraffin blocks and sectioned using standard 

techniques. PDAC-SS slides were stained with H&E, Ki67 (proliferation, mouse anti human 

Ki67, Bio-Rad, USA), Picro Sirius (collagen, Picrosirius red, AbCam, USA), Hypoxia-

inducible factor 1-alpha (HIF-1-α, hypoxia, AbCam, USA), and Cleaved PARP (anti-cleaved 

parp AB, Abcam, USA, apoptosis).  Histology slides were imaged using Nikon Eclipse 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 
 
 

 8 

TE2000-U microscope fitted with a Nikon digital sight DS-Fi1 video camera. All slides were 

imaged at a fixed 167ms exposure time to ensure accurate comparisons when quantifying the 

expression of various histology stains.   

Quantities of immature and mature collagen in PDAC-SS were quantified using 

Picro Sirius stain. Picro Sirius stained histology slides were imaged using a Nikon Eclipse 

TE2000-U microscope fitted with a CoolSNAP HQ2 color camera (PhotometricsTM). A 

MATLAB program was created to calculate the percentage area fraction of picro sirius 

negative and picro sirius positive regions (See Supplementary Data 1). A threshold was 

applied to the color image to identify the ‘red’ pixels segmented based on its RGB profile. 

This generated a binary image where white pixels represent the red or collagenous areas 

within the frame. The number of white pixels was divided by the total number of pixels in 

the image to give the percentage of collagenous pixels within the area. This was repeated for 

10 PDAC-SS per group and for 20 frames of Capan-1 and PANC-1 tumors taken from 3 

separate mice.  The 20 frames were imaged from random areas of each tumor. Regions of 

both sparse and dense collagen were considered in all groups. 

 

2.6. Scanning electron microscopy (SEM) 
 

PDAC-SS were fixed by washing thrice with 0.1M sodium cacodylate buffer (CDB, 

Sigma, USA) followed by incubation in 2.5% glutaraldehyde (Sigma, USA) for 25 min at 

room temperature. Spheroids were washed thrice again in 0.1M CDB and subjected to an 

increasing concentration of ethanol (Thermo Fischer, USA) wash series for dehydration. The 

spheroids were then incubated in 1:1 t-butanol (Thermo Fischer, USA): ethanol mixture for 

5 min and mounted on carbon tape upon an SEM stub. Immediately before imaging the 

samples were sputter coated with 50% platinum 50% palladium at a thickness of 5±0.2nm to 

ensure good electrical conductivity.  

2.7. Light microscopy  
 

Brightfield imaging for analysis of size distribution and shape of the micro-stroma 

and was captured at the desired time points using an Nikon Eclipse TE2000-U microscope 

fitted with a Nikon digital sight DS-Fi1 video camera.  
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2.8 Reverse-Phase Protein Array Assay 
 

Reverse phase protein array (RPPA) assays were performed as described previously 

29,30 with minor modifications. Protein lysates were prepared from the cell culture samples 

with Tissue Protein Extraction Reagent (TPER; Pierce) supplemented with 450 mM NaCl 

and a cocktail of protease and phosphatase inhibitors (Roche Life Science). Protein lysates at 

0.5 mg/ml of total protein were denatured in SDS sample buffer (Life Technologies) 

containing 2.5% 2-mercaptoethanol at 100 °C for 8 min. Protein lysates were arrayed onto 

nitrocellulose-coated slides (Grace Bio-labs, Bend, OR, USA) using an Aushon 2470 Arrayer 

(Aushon BioSystems, Billerica, MA, USA) with an array format of 960 (experimental and 

controls) lysates per slide with each sample spotted as technical triplicates (2,880 spots per 

slide).  Slides were blocked for 1 h with I-Block reagent (Applied Biosystems) followed by a 

15 min incubation with Re-Blot reagent (Dako) and were loaded on an automated slide 

stainer Autolink 48 (Dako, Carpinteria, CA, USA) for incubation with primary antibodies. . 

Antibody binding was detected by fluorescence with a Vectastain-ABC Streptavidin–Biotin 

Complex (Vector, PK-6100) followed by incubation with the TSA-plus Biotin Amp Reagent 

diluted at 1:250 (Perkin Elmer, NEL749B001KT) and a 1:50 dilution of LI-COR IRDye 680 

Streptavidin (Odyssey) as the detection probe.  The total protein content of each spotted 

lysate was assessed by fluorescent staining with Sypro Ruby Protein Blot Stain for selected 

subsets of slides (Molecular Probes). Fluorescent-labelled slides were scanned on a GenePix 

AL4200 scanner, and the images were analyzed with GenePix Pro 7.0 (Molecular Devices). 

For normalization, raw image intensity of each spot was subtracted from that of negative 

controls and then divided by total protein values. Tumors with different genetic 

backgrounds were analyzed separately.  Of the 212 validated antibodies included in the 

RPPA, 143 antibodies detect total protein and 69 detect specific phosphorylated states 

known to be markers of protein activation. . The validated antibodies represent proteins in 

various signaling pathways and cell functional groups including growth factor receptors, cell 

cycle, cell proliferation, apoptosis, EMT, stem cells, DNA damage, cell stress, autophagy, 

cytokines, protein translation and gene transcriptional activators and repressors. For a 

complete list of validated antibodies see https://www.bcm.edu/centers/cancer-

center/research/shared-resources/antibody-based-proteomics. Significantly differentiated 

antibodies between experimental groups were determined using a cutoff of P < 0.05 (by 

two-sided Student’s t-tests) and FC (fold change) >1.25 (or < 1/1.25). Enriched pathways 
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were determined by employing the gene set collections at the Molecular Signature Database 

(Broad Institute, USA) using a hyper-geometric distribution (P < 0.05).  

 

2.9 Perfusion and drug efficacy analysis 
 

For perfusion analysis, spheroids were exposed to 0.1μM FITC and fluorescence was 

tracked over time using a Nikon Eclipse TE2000-U microscope (PhotometricsTM).For drug 

efficacy analysis, spheroids were exposed to 100uM of gemcitabine for 24h, then fixed with 

4% PFA for 1h. Spheroids were then stained with Ki67 and ClPARP for histological 

analysis. 

Liquid Chromatography Mass spectroscopy- Mass Spectroscopy (LC-MS/MS) was 

performed to quantify the relative gemcitabine content with spheroids with and without 

PSCs. One hundred spheroids were harvested from the hanging drop and incubated with 

1000μM of gemcitabine for 3h. They were then washed three times with PBS and spun 

down to form a pellet. To the cell pellets, 500 μL of 4:1 (Methanol :water) with Internal 

Standard was added. The samples were then probe sonicated for 30 sec. Then the samples 

were centrifuged for 30 min at 15,000 rpm at 4C. After centrifugation the supernatant was 

transferred into a new tube and were dried in Speed Vac for 1 hour. The samples were 

suspended in 200 μl of 50:50(methanol: water). The injection volume for LC-MS is 5 μl.  

LC-MS/MS method was developed for Gemcitabine using Agilent 6490 QQQ 

equipped with an Agilent jet stream source coupled to an Agilent 1290 Infinity UHPLC 

system. LC conditions: Waters Acquity UPLC BEH C18 column, 1.7 uM (2.1* 100 mm) 

(Waters, Milford, MA) was used for the analysis. The mobile phase consisted of A: Water 

with methanol (80:20) with 10 mM ammonium acetate buffer; B: Acetonitrile with water 

(90:10) with 10 mM ammonium acetate buffer. The injection volume was 5 microL and flow 

rate was 0.2 mL/min. Gradient used: % B was increased from 5 (initial conditions) to 98% B 

in 12 min, kept constant at 98% B for 1 min (up to 13 min), returned to initial conditions 

(5% B) from 13 to 13.1 minutes and kept constant up to 15 minutes for column 

equilibration to the starting conditions. 

The specific MRM transitions used for Gemcitabine compound and the optimized 

compound dependent MRM parameters, such as, collision energy, and dwell time. The 

nitrogen drying gas was set with flow rate of 14 l/min at temperature 200 °C. The pressure 

of the nitrogen nebulizing gas was set at 40 psi. The sheath gas temperature was 300 °C and 
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the sheath gas flow was 11 l/min. The capillary voltage was set at 3500 Volt. The Nozzle 

voltage was 1500 Volt. The optimized high pressure RF was set as 200 Volt and the low 

pressure RF was set as 100 Volt. 

Data acquisition and analysis: A Mass Hunter workstation (version B.06.01) was used 

for data acquisition. Mass Hunter Qualitative analysis (version B.06.01) and Quantitative 

analysis (version B.06.01) were used for data processing. The most abundant MRM 

transitions were selected for each analyte for relative-quantitation. 

The relative gemcitabine content was normalized to the total surface area available 

for drug-spheroid surface contact, as the spheroids with PSCs tend to have a smaller 

diameter when compared to spheroids without PSCs.  

Structural integrity of PANC-1 spheroids with and without PSCs was quantified 

using ImageJ analysis software 1.49U (National Institute of Health, USA). Histology images 

were transformed into binary format before measuring circularity and solidity of their 

structures. These parameters would give a quantitative measure of the spheroids structural 

integrity before and after gemcitabine exposure.  

 
Circularity is defined as: 
 

4π
                

                      
                                                                                                     (1) 

 
A value of 1.0 indicates a perfect circle. As the value approaches 0.0, it indicates an 
increasingly elongated polygon.  
 
Solidity is defined as: 
 

 
                

           
                                                                                                                 (2) 

 

Ki67 expression before and after 24h of gemcitabine exposure was quantified from 

histological color images captured using a Nikon Eclipse TE2000-U microscope fitted with a 

CoolSNAP HQ2 color camera (PhotometricsTM). ImageJ software (National Institute of 

Health, USA) was used to perform an intensity per unit area measure to quantify the amount 

of Ki67 present within the spheroids, since Ki67 positive nuclei stain dark brown and 

negative remain light blue.  

 
3.0 Results 
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3.1 Co-culture PDAC cells and PSCs in monolayer 

 
We first cultured PDAC cells and PSCs in 2D monolayer. The base media for PANC-1 and 

PSCs is DMEM plus 10 and 15% FBS, respectively. However the base media for Capan-1 

differs from PSCs (IMDM plus 20% FBS). By co-culturing PDAC and PSCs (2:1 ratio) cell 

lines in DMEM plus 15% FBS we established that both cell lines can be co-cultured with 

good viability in the same media. A 2:1 ratio of PDAC to PSCs was chosen after 

investigation of the effectiveness of various ratios to obtain uniform spheroids with 

collagenous regions. PDAC cells were labeled with CellTracker GreenTM before being co-

cultured with PSCs. After co-culture, we observed pockets of PDAC cells growing with a 

surrounding PSC component (Figure 1). This feature mimics micro-regions found in 

common PDAC tumor structure and this co-culture combination is a better 2D model for 

PDAC than PDAC cells cultured alone. The viability of PANC-1, Capan-1, PSCs when 

cultured separately in DMEM plus 15% FBS and 1% penicillin for 5 days was 97%, 92% and 

94%, respectively, measured via the Trypan Blue assay (Data not shown). 
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Figure 1: Co-culture of PANC-1 and Capan-1 cells with PSCs in 2-D monolayer 
settings. PDAC cells were labeled with CellTracker CMFDA GreenTM before being co-
cultured with unlabeled PSCs. Brightfield, FITC fluorescence and color picro-sirius red 
images of Panc-1 cells alone, Capan-1 cells alone, PSCs alone, PANC-1 and PSCs (co-

cultured in 2:1 ratio) and Capan-1 and PSCs (co-cultured in 2:1 ratio) (Scale bars = 1000μm) 

 

3.2. Proteomic analysis 
 

We utilized the reverse-phase protein assay (RPPA) to identify differentially 

expressed biomarker proteins when PSCs are co-cultured with PANC-1 or PANC-1 cells are 
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co-cultured with PSCs. The antibody panel used for the RPPA included 212 proteins 

covering major cellular signaling pathways involved on tumorigenesis.   The Student’s t-test 

was used to identify significantly differentiated levels of total or phosphoproteins  with p-

value < 0.05 and fold-change > 1.25 (or < 1/1.25). In comparison to single medias (PSCs or 

PANC-1), PSCs co-cultured in PANC-1 resulted in 66 up regulated and 43 down-regulated 

proteins while PANC-1 cells co-cultured in PSCs resulted in 27 up regulated and 37 down-

regulated proteins (Figure 2a, Tables S2a, S2b).  

Table S2a and S2b (supplementary) show that p21 is one of the most dramatically up 

regulated proteins in both sets of cells when exposed to each conditioned media. It has 

previously been described that p21 can mediate many different cellular processes especially 

those contributing to cancer development and progression including the interplay with the 

pancreatic stroma31.  Laminin5 is also strongly up regulated in both cell lines. Laminins are a 

family of extracellular matrix glycoproteins and are the major constituents of basement 

membranes. They have been implicated in a wide variety of biological processes including 

cell adhesion, differentiation, migration, signaling and metastasis. In addition to Laminin5, 

Snai2 (slug) was also up regulated in both cell lines. Although limited literature exists 

regarding its role in PDAC stroma development, the slug gene regulates the actin-bundling 

protein fascin that is involved in late-stage PanIN and PDAC formation in mice32. Fascin 

appears to promote formation of filopodia and invasive activities of PDAC cells32. Its levels 

in human PDAC correlate with outcomes and time to recurrence, indicating it might be a 

marker or therapeutic target for PDAC 32. 
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Figure 2: Proteomic analysis of PDAC/PSCs interaction. A) Hierarchical clustering of 
RPPA data of (left panel) PSC in PANC-1 media versus untreated PCSs and (right panel) 
PANC-1 in PSC media versus untreated PANC-1 (differentially expressed proteins, t test P 
< 0.05, fold change exceeding 1.25 times). B) Activated stroma related pathways enriched by 
the core-culture signatures. Data are displayed as the –log of the P value for each pathway. 
 

Catenin (cadherin associated protein) and beta 1 (Ctnnb1) gene (proteins detected by 

RPPA) are both heavily up regulated by PSCs when cultured with PANC-1 media.  These 

encode an important cytoplasmic component of the classical cadherin adhesion complex that 
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forms the adherens junction in epithelia and mediates cell-cell adhesion in many other tissues 

but also a key signaling molecule in the canonical Wnt signaling pathway that controls cell 

growth and differentiation during both normal development and tumorigenesis. Analysis of 

PDAC stroma in comparison to the stroma of chronic pancreatitis also demonstrates 

overexpression of Wnt5a in PDAC stroma31. It has previously been suggested that 

overexpression of Wnt signaling may contribute to the strong desmoplastic reaction seen in 

PDAC 33. The up regulation of MAPK found in this analysis corroborate results from Erkan 

et al., 2012 who highlighted that activation of stromal cells by pancreatic cancer cells is a 

persisting event that involves other pathways such as mitogen-activated protein kinase 

(MAPK)34 which may lead to the production of dense desmoplastic reaction in PDAC. Both 

cell lines cultured in conditioned media displayed altered expression of proteins which have 

previously been shown to be implicated in activated stroma such as integrin, Axl, MMP-9, 

Stat1, SOCS3 and Vimentin35. Gene set enrichment analysis performed using a hyper 

geometric method revealed that a number of pathways, such as Chiaradonna neoplastic 

transformation KRAS, Reactome NCAM signaling for neurite out growth and Kobayashi 

EGFR signaling related to activated stroma35 are enriched in the co-culture signatures 

(Figure 2b).  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 
 
 

 17 

3.3 Design and characterization of PDAC-SS 

 

Figure 3: Brightfield microscopy characterization of micro-tumors co-cultured with 
and without PSCs. A) Brightfield images of PANC-1, AsPc-1, MIA PaCa-2, Capan-1 and 

BxPc-3 tumors at 7-day time-point. (White scale bar = 1000μm and red scale bar = 500μm 
m) B) Diameter of PDAC spheroids with and without PSCs at 10-day time-point. C) Optical 
density of PDAC spheroids with and without PSCs at 10-day time-point (p<0.01). D) 
Schematic representing the increase in density of tumor due to collagen fibers and PSCs 
packing regions between PDAC cells. 
 
 

Brightfield microscopy revealed that PDAC-SS were smaller in diameter than their 
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spheroid counterparts after 7 days of growth (Figure 3). However their optical density was 

measured to be between 25-50% higher at the same time-point. One hypothesis to describe 

this phenomenon is that PSCs and their production of ECM proteins, including collagen, 

create a tightly bound matrix on which the cancer cells grow. Furthermore, collagenous 

material may fill gaps between the cells to increase density of the overall tumor structure 

(Figure 3D). The increased density has major implications for the diffusion of drug 

molecules, and hence may be an important factor in PDAC drug resistance that is commonly 

observed in human patients.  

 

 

Figure 4: Scanning electron microscopy of tumor surface. Scanning electron 
micrograph of A) PANC-1 spheroid B) Capan-1 spheroid, C) PANC-1 PDAC-SS, D) 
Capan-1 PDAC-SS and E) Orthotopic PDAC tumor from mouse model.  
 

Scanning electron micrographs (Figure 4) reveal individual cell aggregates on the 
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surface of the spheroid tumors. However, the surface of the spheroids is very different when 

grown with PSCs as a dense fibrous-like bed on the surface of PDAC-SS can be observed, 

which much more closely resembles the surface of the orthotopic PDAC tumor from a 

PANC-1 nude mouse model.  

 
3.4 Quantification of collagen content in 3D PDAC-SS 
 

One of the most widely used methods to visualize fibrosis in histological tissue is by 

staining it with Picro Sirius red 36-40. Picro Sirius red, in contrast to more traditional stains like 

van Gieson and trichrome, has greater selectivity and thus is superior for both staining and 

quantification of collagen 40,41. Picro Sirius red stains collagenous positive regions within the 

spheroid red with non-collagenous regions counterstained blue. Figure 5 (and Figure S1) 

shows extensive Picro Sirius positive regions in PDAC-SS. The percentage area fraction of 

collagenous regions within each spheroid was calculated based on picro-sirius positive and 

negative regions. This was also performed on tumor samples that had been generated using 

PANC-1 and Capan-1 cells injected into the pancreas of nude mice and on human PDAC 

samples (Figure 4). 
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Figure 5: Collagen content of PDAC tumors. A) Picro Sirius staining of various PDAC 
spheroids with and without PSCs, B) Quantification of collagen positive regions per unit 

area of tumor. (white and red scale bars= 500μm and yellow scale bars  = 200μm *p<0.05). 
 
Percentage area fraction of collagen rich was quantified in capan-1 and PANC-1 spheroids 

due to them being the two most collagenous spheroid models. Limited increases in AsPc-1 
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and BxPc-3 were observed. Percentage area quantification of picro sirius positive regions in 

PANC-1 and Capan-1 spheroids (-PSCs) using the MATLAB program (Supplementary Data 

2) yielded a 9% and 8% collagen content respectively. PANC-1 and Capan-1 in vivo tumors 

contained 37% and 24% collagen content respectively. This means the spheroids contained 

more than 4 times less collagen and 3 times less collagen than the in vivo tumors. However, 

PDAC-SS micro-tumors contained 25% (PANC-1) and 18% (Capan-1) collagenous material 

and hence more accurately represent the amount of collagen found in in vivo tumor tissues. 

Human grade 3 stage 1 and 2 displayed both sparse and dense collagen regions  (24% and 

18%, respectively) and human grade 1 stage 3 possessed a large amount of sparse and dense 

collagen (70%). 

 

 

 
Figure 6: Staining of the stroma fibrosis. Immunohistochemistry of PDAC stroma 
collagen components in PDAC-SS, as compared to orthotopic PDAC mouse tumors and 
human grade 2 stage 1 PDAC. Tissues sections stained for collagen 1, collagen 3, and 

fibronectin and smooth muscle actin (SMA) (Black scale bars = 500μm, red scale bars = 

200μm).  
 
 

3.5 The effect of collagen in PDAC-SS on drug diffusion 

Immunohistochemistry determined that the stromal regions in the PDAC-SS model consist 
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of Collagen I and III, fibronectin and SMA. The natural arrangement of crosslinking within 

the fibrils found in these substances makes the fibers highly resistant to tensile forces, and 

capable of dissipating significant deformation energy 42. In PDAC, collagen decreases tissue 

elasticity and increases interstitial pressure, resulting in reduced drug perfusion (Figure 7).  

 

 

 

Figure 7: Diffusion of molecules through PANC-1 spheroids with and without PSCs. 
FITC fluorescent molecule (MW=389.382 g/mol) was used as a model for gemcitabine 
(MW=263.198 g/mol) to visualize the diffusion through PANC-1 spheroids with and 
without PSCs. (A) FITC fluorescent images of PANC-1 spheroid regions with and without 
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PSCs/collagen component B) quantification of the fluorescent intensity per unit area of 
spheroid after 24h of FIT exposure (p<0.05) and C) Cross-sectional FITC fluorescence 
from spheroid border through to spheroid centre (lower inlaid images display typical 
position of intensity measurement across centre of spheroid) D) LC-MS quantification of 
gemcitabine content normalized to spheroid surface area (spheroid assumed to be perfectly 
spherical during normalization) in PANC-1 spheroids with and without PSCs (Scale bars = 

300μm, * indicates p<0.05). 
 
 

 FITC fluorescent marker was used to measure the molecular perfusion (FITC MW 

389g/mol, gemcitabine MW=263g/mol) through PDAC spheroids with and without PSCs 

(Figure 6A-C). LC-MS/MS was also performed to measure the relative gemcitabine content 

when spheroids with and without PSCs were incubated with 1000uM gemcitabine for 3h.  

This physiological chemoresistance has previously been shown to be a major contributor to 

the reduced efficacy of chemotherapeutics in PDAC 43. As shown in Figure 7, diffusion of 

both FITC and gemcitabine was significantly impaired in stroma rich spheroids as compared 

with spheroids composed of only PDAC cells. Figure 8 shows that PDAC-SS model are 

more structurally viable indicated by the compact nature of the spheroids and have a greater 

proliferation index (shown by Ki67 expression) after 24h exposure to 1000uM gemcitabine, 

when compared to spheroids without the PSCs/fibrotic component. 
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Figure 8: Histological analysis after 24h exposure of gemcitabine. Structural integrity and of 
PDAC spheroids with and without PSCs after 24h gemcitabine exposure. A) Color images 
of H&E stained histological slides show (left) zoomed representative image of a PANC1 
spheroid without PSCs and (right) a PANC1 spheroid with PSCs after 24h gemcitabine 
exposure. B) Quantification of circularity and solidity of PANC-1 spheroids with and 

without PSCs. (scale bars = 1000μm, p<0.01) (Robustness of segmentation algorithm is 
shown in Figure S7). *p<0.05. 
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Figure 9: Histological analysis after 120h exposure of gemcitabine. Proliferative index, 
measured by Ki67 staining, of PDAC spheroids with and without PSCs after 120h 
gemcitabine exposure. Color images of Ki67 stained histological slides show (left) PANC1 
spheroids without PSCs and (right) PANC1 spheroids with PSCs after 0h (top row) and 
120h (bottom row) gemcitabine exposure.  
 

PANC1 spheroids with PSCs display a much more dense appearance and increased 

structural integrity after gemcitabine exposure as given by circularity and solidity 

measurements. Circularity and Solidity are given by equations 1 and 2 respectively and are 

shape descriptors used to quantify the structure of the spheroids before after gemcitabine 

exposure (Figure 8). However, it was also observed that PANC1 spheroids with PSCs 

displays comparable ki67 content when compared to PANC-1 spheroids without PSCs 

before and after 120h of gemcitabine exposure (Figure 9).   
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4.0 Discussion 

 
A key histopathological feature of PDAC that is associated with its innate clinical and 

biological aggressiveness is its pronounced desmoplastic (stromal) reaction, which is now 

considered a potential therapeutic target in PDAC 44. Stroma production is stimulated by 

cancer-cell derived growth factors including transforming growth factor-β  (TGFβ ), 

hepatocyte growth factor (HGF), fibroblast growth factor (FGF), insulin-like growth factor 

1 (IGF-1) and epidermal growth factor (EGF) 45.The desmoplastic reaction is composed of 

ECM proteins, primarily type I and III collagen, fibronectin and proteoglycans; small 

endothelium lined vessels; and a diverse population of cells including inflammatory cells, 

fibroblasts and stellate cells 46. The stroma can form up to 90% of the tumor volume, a 

property which is unique to pancreatic cancer 47,48. The response of pancreatic cancer cells to 

chemotherapeutic agents in vitro is similar to cell lines derived from other solid tumors 48. 

However, pancreatic cancer patients have a limited response to drugs such as paclitaxel 

compared to breast and prostate cancer patients, suggesting that the unique tumor 

microenvironment in pancreatic cancer plays a role in chemoresistance 48. Erkan et al 49 

observed through staining pancreatic cancer tissue sections of patients for alpha smooth 

muscle actin (α-SMA the cytoskeletal protein marker for PSC activation) and collagen that a 

high activated stroma index (α-SMA/collagen) correlated with a poor prognosis. 

Furthermore, the extensive ECM deposition by PSCs in pancreatic cancer causes distortion 

and compression of tumor vasculature by fibrous tissue, which contributes to tumor 

hypoxia, a determinant of chemoresistance 5,50. Therefore, improved in vitro models of PDAC 

with active stroma, such as our PDAC-SS model, will enhance understanding of the dynamic 

interaction between cancer cells and stroma compartments. This is an important 

consideration when designing new, effective therapeutic strategies for pancreatic cancer. 

Both PDAC-SS and orthotopic tumors displayed both sparse and dense collagenous 

areas, indicated by the dim and bright red picro sirius positive regions, respectively. PANC-1 

PDAC-SS contained very dense collagen whereas Capan-1 PDAC-SS contained collagen 

fibers that had shrunk, most probably through histology preparation, to leave blank spaces 

within the tumor architecture. This feature is also seen in orthotopic tumor collagen. Tumor 

spheroids grown without PSCs, in contrast, displayed only sparse collagen and notably no 

dense collagenous areas.  

Although the main focus of this work considered stroma content, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 
 
 

 27 

immunohistochemistry analysis also showed that traditional spheroids and our PDAC-SS 

model possess hallmarks commonly found in PDAC (Fig S3, S4 and S5).  We have explored 

the viability of the spheroids at time points passed 2 weeks. However, the time point at 

harvest was chosen particularly because it represents the time in which the spheroids are 

most structurally viable. Since stroma rich pancreatic tumors should grow for longer periods 

of times in vivo (~1-2 months) we will not be able to maintain our spheroids for that long 

due to obvious limitations of the in vitro cell culture. However, at 7-10 day growth time we 

have found that the expression of such hallmarks of cancer, which include Ki-67 and HIF-

1α is similar between the PDAC-SS and the tumors grown orthotopically in the pancreas of 

mice. The expression of the human monoclonal Ki-67 antibody is strictly associated with cell 

proliferation. Ki-67 protein is present during all active phases of the cell (G1, S, G2, and 

mitotic phases) but is absent from resting cells (G0 phase), which makes it an reliable marker 

for determining the growth fraction of cells in a given cell population51. The fraction of Ki-

67-positive tumor cells, also known as the Ki-67 labeling index, is often correlated with the 

clinical course of the disease51 Ki-67 has been used in combination with other biomarkers 

and clinicopathological predictors to predict patient survival post surgery in pancreatic 

cancer 52. 

PDAC-SS also expressed hypoxia-inducible factor 1 alpha, (HIF-1α) which is a 

transcription factor that mediates cellular and systemic homeostatic responses to reduced O2 

availability in mammals, including angiogenesis, erythropoiesis and glycolysis. HIF-1α is over 

expressed during carcinogenesis and wound healing. It is crucial for the cellular response to 

hypoxia and is frequently over expressed in human cancers, resulting in the activation of 

genes essential for cell survival. HIF-1α regulates the survival and function in the 

inflammatory microenvironment directly.  

Proteomic-based approaches were also used to highlight potential genes, some of 

which are already known to be associated with PDAC-stroma interactions and fibrosis 

development in PDAC and some of which are not currently known. With a recent interest in 

moving toward an integrative, rather than reductionist, approach to PDAC biology in the 

post-genomic era, proteomic pattern comparisons between 2D and 3D mono and co-

cultures may lead to the discovery of numerous potential biomarkers that could be translated 

into diagnosis or prognosis in the clinical field.  

Finally, we demonstrated that the PDAC-SS model displayed a lower molecular 

perfusion and a slight trend in higher proliferative index after 24h exposure of FITC 
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fluorescent molecule and gemcitabine, respectively. Concentrations used in this manuscript 

are comparable to concentrations routinely used in in-vitro studies in PDAC using 

gemcitabine. In in-vivo scenarios, 30-60mg/kg may be injected into the mouse with a 

fraction of this dose arriving at the tumor. This model can act as a bridge between in vitro 

and in vivo as in vitro doses are used however not all cells posses a cell-drug interface which 

is comparable to in vivo situation. 

5.0 Conclusions 

 

It is clear that the prominent stromal/desmoplastic reaction of PDAC can no longer 

be dismissed as a mere epiphenomenon of carcinogenesis. Indeed, available evidence 

strongly indicates that this stromal reaction, and in particular the cells responsible for its 

production, PSCs, likely play a key role at the different stages of pancreatic cancer 

development and response to therapy. Therefore, all components of this reaction (stromal 

cells and collagenous matrix) warrant attention as potentially useful, additional therapeutic 

targets in this disease. In this work, we have developed an in vitro model of PDAC tumor 

that incorporates a prominent desmoplastic reaction through the incorporation of PSCs into 

a spheroid model. Spheroids grown with PSCs are more dense and compact and exhibit 

larger collagen content than spheroids grown solely with PDAC cell lines. In addition to 

similarities in collagen content, PDAC-SS are also very similar to orthotopic tumors in 

expression of KI67 and HIF-1α. PDAC-SS are thus an important advancement in the 

development of in vitro tumor models that closely resemble actual tumor 

microenvironments in patients. Future challenges in this field of research will be to develop 

experimental 3D in vitro models (or a range of models) that not only closely simulate the 

pathology, but also account for the heterogeneity and full range of cell types found in human 

PDAC, so as to successfully translate research findings into clinically effective therapies. 
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5.0 Supplementary Section  
 

 
Figure S1: Wide angle (x4) image of PANC-1 spheroids staining of picro sirius 
showing redness (collagen positive) of spheroids (A) without PSCs and (B) with 
PSCs.  
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S2 Supplementary Data 
 

The MATLAB algorithm created to segment and count the number of red pixels within an 
image 
 

% %cd('C:\Users/matthewware/Desktop/');% specifies the directory or 

folder the image is located 
  
clear; 
cd('/Users/matthewware/Desktop/');% specifies the directory or folder 

the image is located 
img=imread('tile_x007_y001.tif'); %imports the image by image name 
  
red = img(:,:,1); % Red channel 
green = img(:,:,2); % Green channel 
blue = img(:,:,3); % Blue channel 
  
red_dots = (red(:,:)>5& green(:,:)<115 & blue(:,:)<115); 
  
figure, imshow(img), title('Original image') 
figure, imshow(red), title('Red channel') 
figure, imshow(redish_dots), title('Red pixels') 
  
sum(red_dots(:)) 

 

 
Figure S2: Collagen content quantification algorithm. Collagen content was calculated 
via a MATLAB generated algorithm.  A) Raw RGB color image before processing and B) 
binary image after processing (picro-sirius regions represented by white pixels) of Orthotopic 
tumor from mouse model. C) Raw RGB color image before processing and B) binary image 
after processing of human grade 1, stage 1 PDAC tumor. 
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Figure S3: Histological analysis of tumor spheroids generated without PSCs. PANC-
1, Capan-1 and BxPc-3 cells grown in our new hanging drop method for 10 days before 

histological analysis, including H&E, Ki67 (proliferation), CLPARP (apoptosis) and Hif 1-α 

(hypoxia) (Scale bars = 500μm).  
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Figure S4: Histological analysis of micro-tumors generated with PSCs. PANC-1, 
Capan-1 and BxPc-3 cells grown in our new hanging drop method for 10 days before 

histological analysis, including H&E, Ki67 (proliferation), CLPARP (apoptosis) and HIF 1-α 
(hypoxia).  
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Figure S5: Histological analysis of PDAC orthotopic mouse tumors. Histological 
analysis of Panc-1 and Capan-1 orthotopic pancreatic mouse tumors, which includes H&E, 

Ki67, CLPARP  and Hif 1-α (scale bars = 1000μm). 
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Figure S6: Immunohistochemistry positive staining controls. A) Ki67, B) CLPARP, C) 

Hif 1-α, D) Picro Sirius, E) Collagen 1, F) Collagen 3, G) Fibronectin and H) SMA. Red and 
black arrows indicate positively and negatively stained regions, respectively. 
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Figure S7: Robustness of segmentation algorithm for shape descriptor analysis. A) 
Raw color image and B) Binary transformed image with segmentation (Scale bars = 

1000μM).  
 
 
Table S2a: Altered gene expression in PSC cells cultured in PDAC conditioned 
media. 

Altered genes in PSCs when 
cultured in PDAC conditioned 

media 
(Gene symbol) 

Relative effect 
(Z-score, + denotes up-
regulation and – denotes 

down regulation) 

p-value 

CDKN1A +2.85 2E-09 

LAMC2 +2.76 2E-09 

SNAI2 +2.53 2E-10 

MAP1LC3B +1.96 2E-09 

CTNNB1 +1.89 2E-08 

CDH1 +1.71 2E-06 

CDKN1B +1.62 4E-08 

AKT1, AKT2, AKT3 +1.61 2E-07 

PTK2 +1.54 1E-06 

YWHAZ +1.43 1E-04 

SRC +1.21 2E-05 

ITGB3 +1.2 3E-04 

PRKAA1 +1.19 2E-08 

MAPK1, MAPK3 +1.16 2E-05 

SHC1 +1.12 1E-08 

MAP1LC3A +1.07 4E-05 

FGFR1 +1.05 2E-05 

FOS -3.77 2E-10 

CHAF1A -3.55 7E-10 

MKI67 -3.25 4E-09 

RRM2 -3.18 3E-09 

AURKA, AURKB, AURKC -2.27 2E-07 

PRKAA1, PRKAA2 -2.11 2E-09 

RB1 -2.09 2E-07 
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EZH2 -2.07 9E-07 

FOS -1.92 1E-08 

STAT1 -1.26 6E-07 

LRP6 -1.21 9E-06 

ERBB3 -1.13 1E-05 

VIM -1.09 5E-05 

SOCS3 -1 5E-05 

 
Table S2b: Altered gene expression in PDAC cells cultured in PSCs conditioned 
media. 

Altered genes in PDAC cells 
when cultured in PSC 

conditioned media 
(Gene symbol) 

Relative effect 
(Z-score, + denotes up-
regulation and – denotes 

down regulation) 

p-value 

SNAI2 +2.49 1.1E-08 

CDKN1A +1.98 1.4E-07 

LAMC2 +1.87 1.3E-08 

ITGB3 +1.86 9.2E-04 

PTK2 +1.19 4.4E-07 

YWHAZ +1.18 4.8E-05 

MAP1LC3B +1.07 4.4E-08 

MKI67 -1.99 1.61E-08 

ERBB3 -1.55 1.22E-06 

FOS -1.44 1.37E-06 

CHAF1A -1.38 4.24E-07 

VIM -1.22 1.09E-05 

CASP7 -1.05 1.80E-05 
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