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Distortion-resistant and locking-free
eight-node elements effectively capturing the edge effects of
Mindlin-Reissner plates

Abstract

Purpose — A simple shape-free high-order hybrid displacement function element method is
presented for precise bending analyses of Mindlin-Reissner plates. Three distortion-resistant and
locking-free eight-node plate elements are proposed by utilizing this method.
Design/methodology/approach — This method is based on the principle of minimum
complementary energy, in which the trial functions for resultant fields are derived from two
displacement functions, F' and f, and satisfy all governing equations. Meanwhile, the element
boundary displacements are determined by the locking-free arbitrary order Timoshenko’s beam
functions. Then, three locking-free 8-node, 24-DOF quadrilateral plate bending elements,
HDF-P8-23f for general cases, HDF-P8-SS1 for edge effects along soft simply supported (SS1)
boundary, and HDF-P8-FREE for edge effects along free boundary, are formulated.

Findings —The proposed elements can pass all patch tests, exhibit excellent convergence and
possess superior precision when compared to all other existing 8-node models, and can still
provide good and stable results even when extremely coarse and distorted meshes are used. They
can also effectively solve the edge effect by accurately capturing the peak value and the dramatical
variations of resultants near the SS1 and Free boundaries. The proposed 8-node models possess
the potential in the engineering application and could be easily integrated into the commercial
software.

Originality/value—This work presents a new scheme, which can take the advantages of both
analytical and discrete methods, to develop high-order mesh-distortion resistant Mindlin-Reissner
plate bending elements.

Keywords finite element methods; hybrid displacement function element; analytical trial function;
edge effect; plate bending

Paper type Research paper

1. Introduction

The availability of simple, efficient and reliable elements for thin and thick plates represents one
of the main features of all finite element computer program libraries for structural analysis. To
date, considerable research efforts have been made to develop various plate bending elements
(Bathe 1996; Cen and Shang 2015; Long et al. 2009; Zienkiewicz and Taylor 2000), in which
many models are based on Mindlin—Reissner plate theory (Mindlin 1951; Reissner 1945). Unlike
the thin plate theory which requires C; continuity between the displacement fields of two adjacent
elements, Mindlin-Reissner plate theory only requires Cy continuity and can be used for both thin

and moderately thick plates (Crisfield 1984).
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Most conventional Mindlin-Reissner plate elements are displacement-based models and
generally perform well in moderately thick-plate applications. However, when the
span-to-thickness ratio of the plate becomes very large, their performances often become over stiff,
so they are not reliable for thin-plate cases. This numerical difficulty is known as the transverse
shear locking caused by false shear strains. During the history of finite element method, many
investigators have proposed recognized treatments on shear locking, including the classical
reduced (Zienkiewicz et al. 1971) and selective reduced integral schemes (Hughes ef al. 1977), the
stabilization procedure for reduced integral (Belytschko et al. 1981; Belytschko and Tsay 1983),
the mixed interpolated tensorial components (MITC) techniques (Bathe and Dvorkin 1985,1986),
the substitute shear strain methods (Hinton and Huang 1986; Onate et al. 1992), the mixed
element method derived from the modified Hellinger-Reissner principle (Lee and Wong 1982), the
linked interpolation schemes (Taylor and Auricchio 1993; Zienkiewicz et al. 1993), the discrete
shear constraint methods (Batoz and Lardeur 1989; Katili 1993), the hybrid-mixed variational
approach (Ayad et al. 1998; Ayad and Rigolot 2002), the enhanced displacement interpolation
(Ibrahimbegovi¢ 1993), the improved interpolation based on locking-free Timoshenko’s beam
formulae (Chen and Cheung 2000; Soh et al. 19992,1999b,2001), the generalized conforming
Mindlin-Reissner plate element (Cen et al. 2006) based on the quadrilateral area coordinates
(Long et al. 2009; Long et al. 2009), the smoothed FEM(SFEM) (Nguyen-Thoi e? al. 2012;
Nguyen-Xuan ef al. 2008;2009), and so on (Cen ef al. 2002; Falsone and Settineri 2012; Hansbo
et al. 2011; Hu et al. 2010; Jin et al. 1993; Jin and Qin 1995; Jirousek et al. 1995a,1995b;
Nguyen-Thoi ef al. 2011; Petrolito 1990,1996; Rezaice-Pajand and Karkon 2012; Ribaric and
Jelenic 2012). On the other hand, high-order elements usually have better precisions and exhibit
better performance for thin plate cases. So, many attempts have also been devoted to construct
high-order models free of shear locking. Ahmad et al. (1970) applied Mindlin-Reissner plate
theory in the degenerated shell approach and developed an 8-node isoparametric element;
Crisfield (1984) developed a quadratic element using shear constraints; Spilker et al. (1980,1982)
proposed 8-node hybrid-stress elements for analysis of thin and moderately thick plates; Hughes
and Cohen (1978) presented a so-called “heterosis” element which utilized an 8-node interpolation
for rotations and 9-node interpolation for deflections; Kant et al. (1982) proposed an element

based on a higher-order displacement mode and a three-dimensional state of stress and strain;
2
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Hinton and Huang (1986) developed a family of elements, including 8-,9-,12- and 16-node ones,
with substitute strain fields; Donea and Lamain (1987) provided a modified representation of
transverse shear component in 8-node and 9-node quadrilateral plate elements; Polit et al. (1994)
proposed an 8-node quadrilateral element, in which each monomial term of the interpolation
functions for the normal rotations is matched by the derivatives of its corresponding deflection;
Zhang and Kuang (2007) developed a new 8-node Reissner—Mindlin plate element with a special
interpolation within the element, this special interpolation is an extension of the element boundary
interpolation that employs Timoshenko beam function for the boundary segment interpolation;
Dhananjaya et a/ (2009) adopted the integrated force method to construct an 8-node serendipity
quadrilateral thin-thick plate bending element (MQPS8); Li et al (2015) presented an 8-node
quadrilateral assumed stress hybrid Mindlin plate element with 39 unknown parameters. These
efforts more or less improved the element resistance to shear locking problem

In addition to above shear locking problem, how to obtain good resultant/stress solutions is
another problem that should be concerned about. For a Mindlin-Reissner plate, its rotations and
stress resultants may vary sharply in a narrow region at the vicinity of certain types of boundary
conditions. This is so-called the edge effect or the boundary layer effect, and represents another
interesting and troublesome numerical challenge in Mindlin-Reissner plate theory (Arnold and
Falk 1989). However, aforementioned efforts mainly concentrate on the shear-locking problem,
few solution strategies have been considered for solving this difficulty. Although the edge effect
does not impose great influences on the entire structure, it will make the numerical analysis more
complicated. Some analytical, semi-analytical and discrete methods have been proposed to
conquer this challenging topic (Arnold and Falk 1990; Babuska and Scapolla 1989; Briassoulis
1993a,1993b; Haggblad and Bathe 1990; Hinton ef al. 1995; Kant and Gadgil 2002; Kant and
Hinton 1983; Rao et al. 1992; Wang et al. 2002; Ye and Yuan 2002; Yuan 1993; Yuan ef al.
1998), but few finite element models can easily and accurately predict the distributions of the
resultants near the plate boundaries when edge effect takes place.

Besides good behaviors in dealing with shear locking and edge effect problems, an ideal plate
bending element should have following features: i) no any adjusted factor existing in its
formulations; ii) high tolerance to various mesh distortions; and iii) high-precision results for

stress/resultant solutions as well as the displacements. Recently, in order to develop plane
3
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quadrilateral elements immune to mesh distortions, Fu et al (2010) and Cen et al
(2011a,2011b,2011¢) proposed a simple hybrid stress-function (HSF) element method, in which
the trial functions for stress fields are the analytical solutions of the stress function ¢. Inheriting
from this technique, Cen et al. (2014) and Shang ef al. (2015) established a simple hybrid
displacement-function (HDF) element method for constructing Mindlin-Reissner plate bending
elements, in which the trial functions for resultant fields are derived from two displacement
functions, F and f (Hu 1984), and satisfy all governing equations. Then, a robust shape-free
4-node, 12-DOF quadrilateral element HDF-P4-118 for general cases, two shape-free 4-node,
12-DOF quadrilateral elements HDF-P4-Free and HDF-P4-SS1 for solving edge effects along free
and soft simply supported (SS1) boundaries, respectively, were successfully developed. Numerical
examples proved that these new models possess outstanding performances among all existing
4-node models, no matter for conventional problems, or for edge effects.

Actually, above hybrid displacement function element method can be simply extended to
construct higher-order elements, so that more precise results for both displacements and resultants,
especially for the resultant distributions with edge effects, can be obtained using fewer elements.
In this paper, three 8-node, 24-DOF quadrilateral Mindlin-Reissner plate bending elements for
different purpose are presented. For general situation, twenty-three sets of the resultant
components derived from the displacement function F and satisfying all governing equations are
taken as the trial functions for resultant fields. Meanwhile, the element boundary displacements
and shear strains are determined by the locking-free arbitrary order Timoshenko’s beam functions
(Jelenic and Papa 2011). Then, an 8-node, 24-DOF quadrilateral plate bending element,
HDF-P8-23, is firstly formulated by the principle of minimum complementary energy. For
special situation consisting of the edge effect or the boundary layer effect (SS1 and FREE types),
the additional displacement function f related to the edge effect is considered. Then, two new
8-node, 24-DOF quadrilateral elements, denoted by HDF-P8-SS1 and HDF-P8-FREE, are also
constructed. The proposed elements pass all patch tests, exhibit excellent convergence and possess
superior precision when compared to other existing 8-node models, and can still provide good and
stable results even when extremely coarse and distorted meshes are used. It can also effectively
solve the edge effect by accurately capturing the peak value and the dramatical variations of

resultants near the SS1 and Free boundaries. The proposed 8-node models possess the potential in
4
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the engineering application and could be easily integrated into the commercial software.

2. The arbitrary order Timoshenko’s beam functions

For a robust Mindlin-Reissner plate bending element, it is necessary to eliminate the
phenomenon of shear locking which induces an over stiff problem as the plate becomes
progressively thinner. So, how to determine rational displacement modes and shear strains along
element edges becomes a key technique for many existing models. In the formulations of some
low-order plate elements, a set of locking-free functions for 2-node Timoshenko beam have been
successfully applied (Cen et al. 2002,2006,2014; Chen and Cheung 2000; Soh et al
1999a,1999b,2001; Shang et al. 2015). Recently, Jelenic and Papa (2011) presented a set of new

arbitrary order Timoshenko beam functions. These functions are given by:

n L n ) _1 n
W=lefw,»—;HN,~Zl‘,(—l)’1[?_1}//” l//=Z})1,-l//,-, (1
i= Jj= = i=

where L is the beam length; w; and w; (i=1~n) are the nodal displacements and the rotations at the
nth nodes equidistantly located between the beam ends; /; (i=1~n) are the standard Lagrange

polynomials of order n—1;

,
for j=1, N. =—
/ L

J

, (2)
else, N.=1- (n=Dr
! (J-DL

in which 7 is the length along the beam from the starting point. For an 8-node quadrilateral

element, any quadrilateral side can be treated as a 3-node Timoshenko beam element as given in

Figure 1. Then, the displacement and rotations can be obtained:

w= Iawi + Ibwj +Icwk _IO[((//xi + (//;gj _2l//x/c )l: - (l//yi + (//)/ - 2(//yk )l)*}] 4 (3)
7 :Iulei-‘r]bl//xj-‘r]clek’ ‘/7y :]avlyi—‘r]bl//}y’-‘r]cvlyk’ 4
with
5
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L =1-s,L, =s,1,=LQ2L 1)1, =L,QL, —1),I, =4LL,,]I, =M

I =(4s - 3)x, +(4s—1Dx, +(4—8s)xk,l; =—(4s-3)y,—(4s-1y, -(4-8s)y, , &)
I P

[R—" R

1
(07 +17) (17 +17)

in which s=7/L is the local coordinate along the beam (varies from 0 to 1). One should be noticed
here that the formulations are valid for curved boundaries because at different points along the
boundaries different tangent directions and outer normal directions could be derived by applying

differential method.

Thus, the displacement components @ along the i-j-k boundary can be written as

w| (1, -1l L1, Ll L1 200 210
_t/k: l/7x = 0 [a 0 0 [b 0 0 [c 0 qz_‘[k:Labcqijk’ (6)
7,) o o 1, o o 1, 0 0 I

where

awo=[a a4 @], a,.=[w, v, v.] m=iib (7)

3. The General formulations of the HDF elements

In element level, the finite element equations can be written as:
Kq° =P/, (8)
in which K¢ is the element stiffness matrix; q° is the element nodal displacement vector; and
P, is the element nodal equivalent load vector caused by the distributed transverse load g.

Following the construction procedure of the hybrid-displacement function elements (Cen ef al.

2014), the element stiffness matrix of the Mindlin-Reissner plates can be obtained:

K‘=H™"'H; )
e T T -1 *
P =V'-H'M'M". (10)
where
6
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M= [ §'CSdvdy, M"=[[ §'CR'dxdy, Q=[] R"CR'dxdy, (11)

H:J‘S‘STLT N| ds. V:J‘S‘,R*TLT N| ds. (12)

In above equations, S represents the general solution part; R* represents the corresponding

particular solutions of the resultant forces (for different distributions of the transverse load g,

R’ is also different); C is the flexibility matrix:

L A 0 0 0
DA-p") D(A-p)
A L 0 0 0
D(A-w’) D(A-p7)
c=| 0 0 2 0, (13)
D(1-u)
0 0 o Lo
C
0 0 o o L
L C_

with Poisson’s ratio x and the bending stiffness D of the plate; L denotes the matrix of the

direction cosines for element boundaries:

P21 00

X x"y
2 2

L=\l 1l - 0 0], (14)

o 0 0 - -

Y
where [ and ly denote the direction cosines of outer normal of the element boundary; NL is
the interpolation matrix for boundary displacements, and has different values along each element
edge. The components of NL_ are derived from the formulae of the arbitrary order Timoshenko’s
beam functions given in last section (Jelenic and Papa 2011), and their detailed expressions are
given in Appendix.

According to Reference (Hu 1984), the solutions of rotations 4, ¥, and deflection w for a

Mindlin-Reissner plate can be expressed by :

EY Ly EY r By (15)
Toox oy T oy ox C ’
with
3
D:Lz, c=3an, (16)
12(1- %) 6

where /4 is the plate thickness; £ is Young’s modulus; G = E/[2(1+)] is shear modulus; F' and f'in
7
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Equation (15) are two displacement functions and satisfy following equations

DV*V’F =¢q, (17)

%(l—ﬂ)DVZf—Cf=0, (18)

in which ¢ is the distributed transverse load. From Equations (9) to (12), the key point for

~

formulating the HDF elements is to define the general solution part S and the corresponding

particular solutions R of the resultant forces which can be derived from the two displacement

function F and 1.

3.1. Formulations of element HDF-P§8-23 3 (without edge effects)

Figure 2 shows an 8-node quadrilateral plate bending element. In normal situation, the first
displacement function F in Equation (17) is capable of reflecting the deformation of a
Mindlin-Reissner plate. Based on the derivations given by Cen et al. (2014), the trial functions for

the resultant forces without edge effects can be expressed by the displacement function F as:

MX
M,
y & R .
R,..=1M, =R +R =R/ +R =Sp+R’, (19)
T i=1
T,
with
82F0 82F0
2 +,Ll 2
Ox oy _i(xz +,Uy2)
MO 82F0 82F0 M* 4
Mf) oy’ Tt ox’ L _i(ux2+y2)
< 0 0 o°F° il 4
0__ 0 _ _ *_ * —
R= R}, R =M v =1 (1-pu) R =M, = 0 ., (20)
i=1 70 Ox0y T q
X X __x
)| Lwr) T 2
ox q
a 2 70 __y
—(V*F") 2
y
S=[Rl R} - RI[ @D

where 3 (i=1~k) are k unknown coefficients; F” are the (i=1~k) are k analytical solutions (in

Cartesian coordinates) of F° which generated from the homogeneous equation of Equation (17).

http://mc.manuscriptcentral.com/engcom
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The first twenty-three analytical solutions of F° (seventh-order completed in Cartesian
coordinates) and related resultant solutions are given in Table I. Meanwhile, R’ represents the
corresponding particular solutions of the resultant forces under uniformly distributed transverse

load ¢ (for transverse load ¢ with different distributions, R’ is also different).

After substituting the corresponding S and Rinto Equations (9) to (12), a new 8-node

quadrilateral plate bending element 1is constructed. This element is denoted by
HDF-P8-23p (without edge effects), and it is very easy to be integrated into the standard

framework of finite element programs.

3.2. Formulations of elements HDF-P§8-SS1 (with SS1 edge effects) and HDF-P8-FREE(with
free edge effects)

When the edge effect is taken into consideration, the second displacement function f has
significant effect on the performance of the elements. At the vicinity of certain types of boundary
conditions, it has a significant value near the plate boundaries, but can be ignored in other area
(Shang et al. 2015).

After considering the second displacement function £, the resultant forces with edge effects can

be assumed as:

Mx
M}’ k 2
R,.=1M,=R°+R +R’ =>"R/8 +R" +Y Rla,. (22)
T i=1 Jj=1
T,
with
9
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o f
“(-mbza
*f,
My (l_”)Daxa;
M/
Y
s L) o’ f O f i
Ry =M/ b=t La_ yp Lyt (j=12) (23)
Tx{ 2 Oy Ox
i o
I %
oy
%
ox

The detailed expressions of the resultants derived from fare given in Table IT (Shang ef al. 2015).
It is shown that, these resultants are exponentially distributed along the direction perpendicular to
the SS1 or FREE edge, while no exponential distributions exist along the direction parallel to the
SS1 or FREE edge.

In order to formulate the eclements HDF-P8-SS1(with SS1 edge effects) and

HDF-P8-FREE(with free edge effects), the modified general solution part S and the modified

me

particular solution part R when the plate is subjected to a uniformly distributed transverse

mod
load g are needed.

Element HDF-P8-SS1 or HDF-P8-FREE should be allocated along the SS1 or FREE edge of
the plate (for example edge 12 in Figure 2). The boundary resultant force vector at the edge 12
should satisfy the following SS1 or FREE boundary conditions:

R R, =0, (24)

edge = Ledge edge

where

Ry, :{f‘fn}

M, s

M| (25)
Ripere =11,

Ty ) v

10
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I I} 211, 0 0
L=l L0 roe o 0
L vy x7y x oy ss1
L P20l 0 o] (26)
Ligee =| 1L, L1, lf—lf_ 0 0
0 0 0 l [
L * Y JFREE
RSSI = SZSI ZSI + Sésl éSI + R* (27)
R = SFREE FREE + SFREE FREE + R* >
FREE A A v v
in which:
SiSI = [R? R?o R?s R?s R?7 o R23:| (28)
Si*=[R} -~ R R} R} R} R) R}, R}, R} R) R} R}, RL]
s'=[R), R}, R}, R R{ R/] 9

si**=[R; R, R}, R R) R R; R/ R{]
The detailed expressions of the matrices S{* and S{® can be obtained from Tables I and II.

Substitution of Equations (28)-(29) into (27), then three sets of constraint equations can be

obtained by substituting the coordinates (x;, y;), (x2, 12), (x5, ys) of nodes 1, 2, 5 into Equation

(24):
szge eAdge + K,;dgeﬁevdge + K';nge — 0 , (30)
with
LsmSiSl(xn%) LsmSéSl(xlayl) L531R*(X19y1)
KESI = LsmSiSl(xz’yz) >K§Sl = LSSISéSl(x2,y2) ’KsSzSI 3 L351R*(x2’y2)
LsmSiSl(xssys) _L531S§Sl(x5ay5) L R (x5, 5) 31)
LFREESZREE (x, 1) LFREEngEE (x,0) LFREER* (x,0)
KiREE = LFREESZREE (x5 ,) a’(ngE = LFREES?{EE (x3,7,) sK(FzREE = LFREER*(xzayz)
LFREESZREE (x5, ¥5) _LFREEngEE(xS’yS) LireeR (x5, 05)

SS1 : . SS1 : . SS1 - . FREE - .
where & is a 6x19 matrix; &, is a 6x6 matrix; & is a 6x1 matrix; &,  is a 9x17 matrix;

ke is a 9x9 matrix; and & is a 9x1 matrix. Then, the vector Bi® can be solved by:

-1
cvdgc — _Kédgc (szgc cAdgc + K!c)dgr:) , (32)

Substitution of Equation (32) into (27) yields

R, =SBy + RIS, (33)
11
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where
edge _ gedge edge r:dgc’I edge
Smad - SA - Sv Ky Ky > (34)
edge __ * edge r:dgc’I edge
RIY% =R —Sy%xy™ x,° . 35

Equation (34) is the final modified trial functions for resultants of element HDF-P8-SS1 or

HDF-P8-FREE, which can satisfy the boundary conditions at the nodes along the SS1 or FREE

edge. SI% is the modified general solution part; B is the final unknown coefficient vector;

mo

R®® s the modified particular solution part when the plate is subjected to a uniformly

mod

distributed transverse load q.

In order to derive the formulations of the element HDF-P8-SS1 and the element HDF-P8-FREE,

the S and R* from Equations (9) to (12) can be simply substituted by S, R™

mod mod

respectively. The other procedures are the same as the formulations of element HDF-P8-238.

4. Numerical examples

In this section, the performances of the proposed elements HDF-P8-233, HDF-P8-SS1 and
HDF-P8-FREE are fully assessed by some classic benchmark examples. Both traditional and new
severely distorted meshes are employed. Meanwhile, the results calculated by element S8R in
Abaqus (2009), some other well-known high-order quadrilateral elements, and the low-order
hybrid displacement function elements proposed by Cen et al. (2014), Shang et al. (2015) are also

given for comparison.

4.1. Eigenvalues and rank

It is found that, for extremely thin and moderately thick plate cases, each element stiffness
matrix of three new elements always produces only three zero eigenvalues corresponding to three
rigid body modes for various regular or distorted element shapes. As a result, the proper rank and

the absence of spurious modes can ensure that proposed elements are stable.

4.2. Patch tests for element HDF-P8-23[3
12
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Figure 3 plots the Irons patch test problems. These tests are only performed for element
HDF-P8-23 4 without edge effect. And different test conditions are summarized as follows:

1) Meshes: Four mesh types are employed. Mesh A contains only one 8-node element,

while Meshes B, C and D are divided into five distorted elements.

i) Loads and Constraints: Distributed line loads along the patch boundaries; three nodal

deflections are constrained (w;=w,=w;=0) to eliminate rigid body motions.

iii) Span-thickness ratios: Three different span-thickness ratios 2a/A=1000, 100, 10, are

considered.

(a) Constant bending moment case (M,= 1). As shown in Figure 3a, the rectangular plate patch
is subjected to bending moment M,= 1 along its all edges. The computed results of bending
moments M, (=1) and M, (=1), twisting moment M,, (=0), shear forces 7 (=0) and 7, (=0), at any
point are exact for all span-thickness ratio cases.

(b) Constant twisting moment case (M,s= 1). As shown in Figure 3b, the rectangular plate patch
is subjected to twisting moment M,,= 1 along its four edges. In all cases, the numerical results of
M, (=1), M, (=0), M, (=0) T, (=0) and T}, (=0) obtained by the element HDF-P8-23[3 are exact.

(c) Non-zero constant shear force case (T,=Constant, T,=Constant). As shown in Figure 3c, the
eight boundary nodes of the rectangular plate patch are imposed by given deflections and rotations.
The element HDF-P8-233 can give the exact constant shear force (7,:=Constant, 7,=Constant)

corresponding to different span-thickness ratio cases.

4.3. Square plate subjected to uniformly distributed load
Figure 4 gives the meshes employed for this example, in which only a quarter of the plate is
considered owing to the biaxial symmetry. The geometric parameters and conditions are given as
follows:
1) Geometric parameters: L denotes the edge length; 4 denotes the thickness of the plate;
Poisson’s ratio u= 0.3.
i) Load and Boundary Conditions (BCs): The square plate is subjected to a uniform
transverse load g=1. Three BC cases, the clamped BC (w=0, =0, w;=0), the soft
simply supported (SS1) BC (w=0), and the hard simply supported (SS2) BC (w=0, y,=0),

are considered.
13
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i) Span-thickness ratios: From thick case (#/L=0.1) to very thin case (h/L=10""")
iv)  Meshes: Three mesh types are used, and the mesh densities are 1x1, 2x2, 4x4, 8x8 and
16x16.

The dimensionless results (here, let L =1 and D =1) of deflections and moments at the plate
center are presented in Tables III to V. It should be noted that under SS1 BC, edge effect will
take place. So, as shown in Figure 4, element HDF-P8-SS1 will be allocated along the SS1
boundary, in which the corner region is split into two degenerated triangular elements. Since the
shapes of the present elements are quite free, such mesh will not bring unfavorable influence.
The corresponding results are given in Tables III to V, and plotted in Figures 5 to 7. From
Figures 5(c), 6(c) and 7(c), the distributions of the bending moments and the shear forces under
different boundary conditions are clearly visualized. And the influence of the edge effects for
shear force T, can be observed in Figure 7(c). The new elements exhibit excellent performance

for both precision and convergence for this example.

4.4. Test for checking the sensitivity problem to mesh distortions

As shown in Figure 8, several distorted meshes are designed to test the sensitivity to mesh

distortions for the new element HDF-P8-233. A quarter of thin square plate with symmetry and
clamped boundary conditions is subjected to a uniformly distributed load. All parameters are the

same as those given in section 4.3.

The normalized results of the central deflection and moment of the plate are also given in

Figure 8. It can be seen that element HDF-P8-23f is quite roust even when the mesh is severely

distorted.

4.5. Skew plates subjected to uniformly distributed load

Figure 9 shows a new 4x4 mesh configuration and the geometric parameters for a 30° skew

plate with SS1 BC (soft simply supported). This example has been studied by Morley (1963)
under the thin plate assumptions. Two characters exists in this test: i) singularity appears in the
bending moment at the obtuse corner; and ii) edge effect appears. This problem has also been
solved as a 3D elastic case by Babus§ka and Scapolla (1989). Two span-thickness ratios (L/A=1000,

100) are considered. The principal bending moments and deflections at the central node O are
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calculated. Table VI, Table VII and Figure 10 present the dimensionless results obtained by the
new elements HDF-P8-233 and HDF-P8-SS1 (due to the occurrence of the edge effects) and other

models. Better convergence can be obtained by the new models when compared to other elements.

4.6. Circular plate subjected to uniformly distributed load

Figure 11 shows a circular plate subjected to a uniform load ¢ = 1. According to the symmetry,
only a quarter of the plate is modeled. Two different thickness-radius ratio cases (A/R=0.02, 0.2),
and two different BC cases, the soft simply supported (SS1) BC (w = 0) and the clamped BC (w=0,
=0, w=0), are considered. The analytical solutions can be found in references (Ayad et al. 1998;
Ayad and Rigolot 2002). Results obtained by the new element HDF-P8-23 and some other
models are given in Tables VIII, IX and plotted in Figure 12, 13.
Because HDF-P8-238 is a high-order element with mid-side nodes, it is possible for the element to
simulate the circular arc. This example can be perfectly solved by only using one
HDF-P8-23f element, which cannot be achieved by other models in different literatures. Although
the test contains the SS1 boundary condition, according to the Mindlin-Reissner theory, the edge
effects will not take place in the circular plate case. So, satisfactory solutions can be obtained by

using element HDF-P8-23 only.

4.7. Edge effect test

As shown in Figure 14, a square plate is subjected to a uniformly transverse load g. Due to
symmetry, only one quarter of the plate, ABCD (C is the center of the plate), is analyzed. Two
boundary condition cases are studied: (i) SFSF, two opposite edges hard simply-supported (SS2)
and the other two edges free; and (ii) SS 'SS”, two opposite edges hard simply-supported (SS2) and
the other two edges soft simply-supported (SS1). The edge length of the square plate is a, the
thickness is %, and Poisson’s ratio # = 0.3. And only one span-thickness ratio, a/A=50, is
considered.

Kant and Hinton (1983,2002) have solved the case by using the segmentation method. Thus,
their solutions are presented here for comparison. Furthermore, results obtained by some other 4-,
5- and 8-node quadrilateral plate elements, including Shang et al. (2015), S4 (4baqus 2009), S8R

(Abaqus 2009), HMPLS5 (Saleeb and Chang 1987) and CL8 (Spilker 1982), are also presented for
15
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comparison.
a) The SFSF plate

The meshes and the locations of the elements HDF-P8-Free and HDF-P8-23f3 are also
illustrated in Figure 14. The values of displacements and resultants at selected points, obtained by
present method and Shang ef al (2015), Abaqus elements S8R (4bagus 2009), are listed in Table X
for comparing the convergence rate. And the results derived by two semi-analytic methods,
including the segmentation method (Kant and Gadgil 2002; Kant and Hinton 1983) and the
FEMOL (Yuan 1993), are also presented.

The distributions of the resultants obtained by the present scheme along selected paths and the
corresponding contour plots of the resultants are plotted through Figures 15 to 16. The values at
nodes are smoothed solutions by averaging direct nodal values at all connective elements.

Figure 15 plots the distribution of 7, along the symmetry edge DC. Figure 16 shows the
distributions of M,, and T, along the hard simply-supported edge AB. Their distributions
recalculated by the present method using a 10x10 mesh, and results of some other quadrilateral
plate elements are also given for comparison.

From the numerical results, some conclusions could be drawn:

i) Compared to other elements, the combination of HDF-P8-Free and HDF-P8-23[3 exhibits

better prediction and convergence for the resultants. Meanwhile, for present elements, only a

coarse mesh is enough to ensure that the zero resultant conditions are satisfied at the nodes

along free edge.

ii) Compared to the low-order element proposed by Shang et al. (2015), the present element

combination shows better performance in capturing the peak value of the resultants.

b) The SS'SS” case

The meshes and the location of the elements HDF-P8-SS1 and HDF-P8-23f are also
illustrated in Figure 14. And for the case a/A=50, the results calculated at selected points are
listed in Table XI. Figure 17 shows the distribution of 7, along the symmetry edge DC. Figure 18
shows the distributions of M,, and T, along the hard simply-supported edge AB. The
corresponding contour plots of the resultant are also presented. Results calculated by some other

quadrilateral plate elements with a 10x10 mesh are also given for comparison. Same conclusions
16
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as those in previous case can be obtained.

5. Conclusions

In this paper, three simple high-order hybrid displacement function elements are presented for
analysis of thin and moderately thick plates. In general situation, the displacement function F,
which can be used to derive displacement components satisfying all governing equations, is
combined with the locking-free arbitrary order Timoshenko’s beam functions. Then, an 8-node,
24-DOF quadrilateral plate bending element, HDF-P8-230, is formulated. For the special situation
consisting of the edge effect or the boundary layer effect (SS1 or FREE type), an additional
displacement function f related to the edge effect is considered to develop novel plate bending
elements HDF-P8-SS1 or HDF-P8-FREE.

Numerical examples show that the proposed elements are free of shear-locking, pass all patch
tests, exhibit excellent convergence, and possess higher precision when compared to other existing
models, even when quite coarse and extremely distorted meshes are used. Especially, they can
effectively solve the edge effect by accurately capturing the peak value and the sharp changes of
stress/resultant-force near the SS1 or Free boundary.

The proposed method possesses advantages from both analytical and discrete methods, and can
be easily integrated into the standard framework of finite element programs. An interesting future
work is to develop a high performance plate crack element, and then combine the proposed

elements with plate crack element to solve the plate crack propagation problem of the plate.

Appendix: The expressions for matrix N|r in Equation (12)

The i-j-k boundary displacement vector of the element NL can be rewritten as

=L,uy, :NL qQ, (AT)

al
1]
ST N

in which the vector @i is given by Equation (6); and Ly is the direction matrix,
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0 I I
L,=|0 - 1| (A2)
0 0
® Along 1-2-5 boundary,
N =[N N,o o N oo o0 o], (A3)
where
0 Il Il 0 Il I 0 Il Il
N=|0 -1/ Il |N=0 -l LI ||N=0 -l Il |, (A4)
I, =1Ll Il 1, =Ll I I, 200 =210
and 0 is a 3x3 zero matrix.
® Along 2-3-6 boundary,
N =[o N, N, 0 0 N 0 0], (A5)
where
0 Il Il 0 Ll I 0 Il Il
N,=| 0 -1 Il ||N,=|0 -LI Il |Ng=0 -1l LI |. (A6)
I, =Ll Il I, —ILl I I, 200 =21
® Along 3-4-7 boundary,
N =[0o o N, N, 0 0 N, 0], (A7)
where
0 Il Il 0 Ll I 0 Il Il
N,=|0 -1l Il |N,=0 -LI Il |N>=0 -1l LI |, (A8)
1, =Ll Il , Ll I I, 210 =210
® Along 4-1-8 boundary,
N =[N 0o 0o N 0 0 0 NJ (A9)
where
0 Il Il 0 Ll 1] 0 11 Il
N,=[0 -1/ LI |N=[0 -Il LIl |Ny=0 -1l Il |.  (Al0)
1, =Ll Il 1, =Ll Il I 200 =21

The relevant parameters and matrices have been given in Equations (3) to (7).
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Table I. Twenty three fundamental analytical solutions for the general part of the displacement

function and resulting resultant forces

i 1 2 3 4 5 6 7
—DEO X Xy y2 X Xy xy2 y3
M 2 0 2u 6x 2y 2x 6Ly
h 2u 0 2 6100 2uy 2x 6y
g 0 1-u 0 0 2(1—po)x 2(1-pyy 0
T’ 0 0 0 6 0 2 0
T)0 0 0 0 0 2 0 6
i 8 9 10 11
-DF’ e % Ay 63—y
D FO 6 6 2 2 2 2
~DF, X roxy 1202407 12(1-1)(0*)
0 2 2 2 2
M 6401y 61y 1202 12(1-1)(*?)
M) 3(1-px° 3(1-py° 0 24(1~pxy
T’ 6x 6x —24y 0
i 12 13 14
—DF" PO 5652 Bty

M! 6xy"+1(2x°—12x)7)

M ? 6 ,uxy2+2x3— 1 2xy2
2 3
My, (1-p)(6x"y=4y")
r; 6(’~y)
T —12xy

102020 x*+30 x)?
10x™+24(-20 x*+30 xy7)
30(1-4)x’y
—30x"+30)"

60xy

610y +2y —12x°y
6x"y 12y~ 12x°y)
(1-p2)(6xy"—4x")
—12xy

6(=x"+)7)

http://mc.manuscriptcentral.com/engcom



Page 25 of 54

©CoO~NOUTA,WNPE

Engineering Computations

i 15 17
PR S e . o AN 105y -3y 3y
M 10y*+24-20 y*+30 x*y) —200p°+20x°y 60(1—1)(xy"— x*y)
M )0 1020°—20 y*+30 x°y —20x)°+2000°y 60(1—)(*y— x1°)
M, 30(1-py® 5(1-p)x' ") ~15(1-p)(x*~6x"y"+ ")
T’ 60xy 60x%y—-20y" 0
T’ 30x’-30)" 20x°-60x)" 0
i 18 19
bR oloryesyt Yoloytseyt
M° 30x"—120x%y"+10y*+4=20 x*+60 x°)7) —20 y*+60 x*y*+1430y"~120x"*+10x")
M 20 x*+60x%y*+2430x*-120x°°+10y") 30p*—120x%y+10x*+24(-20y*+60 x*?)
M’ 40(1-)(=2x°y+ x°) 40(1-p)(=2x° + X°y)
T’ 40x°~120x)" 40x°-120x)”
T’ 40y°-120x%y 40y°-120x%y
i 20 21
_______ DE 2wyt sshey
M 42(=2x°+10x°)y)+42 p(x°—5x") A20(—x y+x2y ) +42 u(5x =)
M ? A2(x°=5xy" V42 1(—2x°+10x°7) 42(5x*y—=)+420 i~ y+x*°)
M), 2(1-)(5x'y= ) 84(1-)(5x’y’~x)
T’ —210(x*-6x"y*+ y* —-840(x*y— x")
T° 840(x’y- x°) —210(x*-6x"y*+ ")
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22

23

35x° y4—x7— 1 4xy6

2 1x2y5—2y7—7x6y

42(5xy"—x")+420 il —xy* +x°)7)

420(—xy* +x°y)+42 1(5x) —x")
B4(1—p)(5x°y’~ »")
—210(x*—6x"*+)")

840(x’y—x°)

42(0°=5x"y)+4211(-2y°+10x)°)
42(=2y°+106%°)+42 1(y°—5x"y)
2(1-p)(5xy" ")
—840(x’y—x)”)

—210(x*—6x"y* ")
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Table II. Two analytical solutions for the displacement function f'and the resulting resultant forces

R/ j=1 j=2

mx+ny—a,

M (1— )ymne™ ™% d-p) [(nx —my)ymn+n®—m’ ] e

©CoO~NOUTA,WNPE

mx+ny—a,

11 M —(1— p)ymne™ ™™ —(1-u) [(nx —my)mn+n’ —m’ ] e

: 1 1
13 M7 5(1 —w)(n* —m*)e™ 5(1—y)[—4mn+ (nx —my)(n* —mz)]e"’””y’“"

mx+ny—ag mx+ny—a,

16 T/ %ne %[(nx—my)n—m]e

18 T/ _gmelnx+ny—a0 _£ nx —m m+n elnx+ny—a0
19 v D o LG =my)m +n]
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Table III. Clamped square plate: Dimensionless results of central deflection w. /(¢L* /100D)

and moment M, /(gL*/10D) obtained by element HDF-P8-23p (Example 4.3)

Mesh density Analytical
h/L Mesh type 1x1 2%2 Ax4 8x8 16x16 solutions
we /(gL* /100D)
Mesh A-regular 0.12505 0.12636 0.12652 0.12653 0.12653
10°°~0.001 Mesh B-distorted - 0.12634 0.12652 0.12653 0.12653 0.1265
Mesh C-distorted - 0.12628 0.12652 0.12653 0.12653
Mesh A-regular 0.12530 0.12662 0.12677 0.12678 0.12678
0.01 Mesh B-distorted - 0.12659 0.12677 0.12678 0.12678 0.1267
Mesh C-distorted - 0.12654 0.12677 0.12678 0.12678
Mesh A-regular 0.14944 0.15072 0.15066 0.15055 0.15049
0.1 Mesh B-distorted - 0.15071 0.15067 0.15056 0.15049 0.1499
Mesh C-distorted - 0.15066 0.15069 0.15057 0.15050
M, /(gL* /10D)
Mesh A-regular 0.24196 0.22902 0.22908 0.22905 0.22905
10%°~0.001 Mesh B-distorted - 0.22069 0.22895 0.22903 0.22905 0.2291
Mesh C-distorted % 0.21864 0.22879 0.22901 0.22905
Mesh A-regular 0.24187 0.22909 0.22912 0.22910 0.22909
0.01 Mesh B-distorted - 0.22137 0.22899 0.22908 0.22909 0.2291
Mesh C-distorted - 0.21935 0.22887 0.22907 0.22909
Mesh A-regular 0.23827 0.23159 0.23214 0.23209 0.23203
0.1 Mesh B-distorted - 0.23118 0.23217 0.23210 0.23203 0.231
Mesh C-distorted - 0.23061 0.23218 0.23211 0.23204
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Table IV. SS2 square plate: Dimensionless results of central deflection w, /(¢L* /100D)

and moment M, /(gL*/10D) obtained by element HDF-P8-23p (Example 4.3)

Mesh density Analytical
h/L Mesh type 1x1 2%x2 4x4 8x8 16x16 solutions
we /(gL* /100D)

Mesh A-regular 0.40579 0.40620 0.40623 0.40623 0.40623

10%°~0.001 Mesh B-distorted - 0.40626 0.40623 0.40623 0.40623 0.4062
Mesh C-distorted - 0.40628 0.40624 0.40623 0.40623
Mesh A-regular 0.40601 0.40641 0.40644 0.40644 0.40644

0.01 Mesh B-distorted - 0.40646 0.40644 0.40644 0.40644 0.4064
Mesh C-distorted - 0.40648 0.40644 0.40644 0.40644
Mesh A-regular 0.42697 0.42724 0.42728 0.42728 0.42728

0.1 Mesh B-distorted - 0.42725 0.42728 0.42728 0.42728 0.4273
Mesh C-distorted - 0.42726 0.42728 0.42728 0.42728

M, /(gL* /10D)

Mesh A-regular 0.49074 0.47909 0.47888 0.47887  0.47886
10°°~0.001 Mesh B-distorted - 0.47384 0.47863 0.47883  0.47886
Mesh C-distorted - 0.47263 0.47841 0.47882  0.47886
Mesh A-regular 0.49060 0.47908 0.47888 0.47886  0.47886

0.01 Mesh B-distorted - 0.47416 0.47866 0.47884  0.47886  0.4789
Mesh C-distorted - 0.47298 0.47849 0.47884  0.47886
Mesh A-regular 0.48279 0.47869 0.47884 0.47886  0.47886
0.1 Mesh B-distorted - 0.47818 0.47883 0.47886  0.47886
Mesh C-distorted - 0.47786 0.47883 0.47886  0.47886
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Table V. SS1 square plate: Dimensionless results of central deflection w, /(gL* /100D)

and moment M, /(qu/ 10D) obtained by element HDF-P8-233 and HDF-P8-SS1 (Example 4.3)

Mesh density Analytical
h/L Mesh type 1x1 2%x2 4x4 8x8 16x16 solutions
we /(gL* /100D)
Mesh A-regular 0.40925  0.40698 0.40678 0.40658  0.40631
102°~0.001  Mesh B-distorted - 0.40691 0.40656 0.40648 0.40634  0.4062
Mesh C-distorted - 0.40695 0.40657 0.40643  0.40637
Mesh A-regular 0.47047 0.46388 0.46220 0.46186 0.46187
0.1 Mesh B-distorted - 0.46265 0.46191 0.46181 0.46187 0.4617
Mesh C-distorted - 0.46223 0.46182 0.46181 0.46189
M. /(gL* /10D)
Mesh A-regular 0.44896 0.48035 0.47937 0.47917  0.47893
102°~0.001 Mesh B-distorted - 0.47518 0.47896 0.47906  0.47895  0.4789
Mesh C-distorted 2 0.47420 0.47882 0.47900  0.47898
Mesh A-regular 0.45202 0.51146 0.50995 0.50972  0.50974
0.1 Mesh B-distorted - 0.50959 0.50970 0.50967  0.50974  0.5096
Mesh C-distorted - 0.50909 0.50963 0.50968  0.50976
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Table VI. Results of deflections and principal moments

at the center of Morley’s 30° skew plate (L/h=1000)

Engineering Computations

Morley’s
Mesh NxN 4x4 8x8 16x16 32x32  solutions for thin
plate
(a) Central deflection  w,/(¢L*/1000D)
QHS8-398 0416 0.422 0.420 0417 0.408
HDF-P4-113 0.462 0.426 0.419 0416
S8R 0.181 0.279 0.326 0.356
Present 0.423 0.419 0.417 0.415
(b) Central max principal moment Mmax/(qu/ 100D)
QHS8-398 1.911 1.936 1.938 1.933 1.910
HDF-P4-113 2.197 1.873 1.935 1.930
S8R 1.241 1.517 1.671 1.757
Present 1.932 1.902 1.925 1.925
(c) Central min principal moment M,/ (qu/ 100D)
QHS8-398 0.966 1.136 1.131 1.122 1.080
HDF-P4-113 1.399 1.104 1.169 1.125
S8R 0.492 0.705 0.802 0.889
Present 1.121 1.109 1.119 1.112

QHB8-398 (Li et al. 2015);
HDF-P4-11p (Cen et al. 2014),
S8R (4baqus 2009);,

Morley (1963)
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Table VII. Results of deflections and principal moments

at the center of Morley’s 30° skew plate (L/h=100)

Morley’s
Mesh NxN 4x4 8x8 16x16 32x32  solutions for 3D Solution

thin plate

(a) Central deflection  w,/(¢L*/1000D)

QH8-398 0.418 0.425 0.425 0.424 0.408 0.423

HDF-P4-113 0.463 0.427 0.421 0.420

S8R 0.262 0.328 0.377 0.406

Present 0.427 0.425 0.424 0.424

(b) Central max principal moment M,,./(¢L*/100D)

QH8-398 1.919 1.941 1.950 1.954 1.910

HDF-P4-11B 2.198 1.882 1.942 1.937

S8R 1.717 1.705 1.828 1.904

Present 1.956 1.931 1.949 1.954

(c) Central min principal moment M,;,/(¢L*/100D)

QHS8-398 0.963 1.134 1.143 1.143 1.080

HDF-P4-11B 1.400 1.108 1.157 1.130

S8R 0.777 0.818 0.964 1.076

Present 1.148 1.144 1.146 1.144

QHS8-398 (Li et al. 2015);
HDF-P4-11p (Cen et al. 2014),
S8R (Abaqus 2009);,

Morley (1963);

3D (Babuska and Scapolla 1989)
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(SS1) circular plates subjected to a uniform load

Table VIII. Normalized center deflection w,. / wyr and moments M, / Mi.¢ of simply-supported

Mesh N 1 3 12 48 Analytical

(a  W/R=0.02 (h=0.1) W,/ Weet
DONEA 0.9690 0.9980 0.9997 — 1.0000
Kuang — 0.9945 0.9967 0.9992 (the reference
QH-398 — 1.0276 1.0075 1.0025 value is 39831.5)
S8R 0.9524 1.0070 0.9998 1.0000
HDF-P4-113 — 1.0242 1.0065 1.0017
Present 1.0002 1.0008 1.0001 1.0000

Mc/ Alref
Kuang — 0.9864 0.9922 0.9961 1.0000
QH-398 — 0.9149 0.9922 0.9990 (the reference
S8R 1.1000 1.2424 1.0087 1.0027 value is 5.15625)
HDF-P4-113 — 1.0262 1.0046 1.0012
Present 1.0152 1.0041 1.0003 1.0000
(b)  A/R=0.2 (h=1) W, ! Wrer
Kuang — 0.9907 0.9975 0.9988 1.0000
QH-39p — 1.0841 1.0312 1.0120 (the reference
S8R 0.9594 1.0012 0.9999 1.0000 value is 41.5994)
HDF-P4-11B — 1.0206 1.0048 1.0010
Present 1.0002 1.0010 1.0001 1.0000

Mc/ Alref
Kuang — 0.9864 0.9922 0.9981 1.0000
QH-39p — 0.8408 0.9920 0.9990 (the reference
S8R 1.1468 1.0771 1.0156 1.0040 value is 5.15625)
HDF-P4-11B — 1.0170 1.0030 1.0007
Present 1.0060 1.0008 1.0000 1.0000

DONEA (Donea and Lamain 1987);

Kuang (Zhang and Kuang 2007);

QHS8-39B (Li et al. 2015);

HDF-P4-11B (Cen et al. 2014);

S8R (4baqus 2009);,
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subjected to a uniform load

Table IX. Normalized center deflection w, / w,.r and moments M, / M,r of clamped circular plates

Mesh N 1 3 12 48 Analytical

(a  W/R=0.02 (h=0.1) W/ Weet
DONEA 0.2960 1.0130 1.0020 — 1.0000
S8R 0.1042 0.8621 0.9619 0.9971 (the reference
Kuang — 0.9620 0.9957 0.9998 value is 9783.48)
HDF-P4-113 — 0.7985 0.9484 0.9871
Present 0.9965 0.9983 0.9999 1.0000

M(T/ Alref
S8R 0.1599 0.8169 1.0082 1.0083 1.0000
Kuang — 0.9901 0.9951 0.9999 (the reference
HDF-P4-113 — 0.9151 0.9727 0.9933 value is 2.03125)
Present 1.0557 1.0050 1.0008 1.0001
(b)  A/R=0.2 (h=1) W/ Weer
S8R 0.9698 0.9992 0.9993 1.0000 1.0000
Kuang — 0.9931 0.9955 0.9974 (the reference
HDF-P4-113 — 0.8200 0.9512 0.9871 value is 11.5513)
Present 0.9984 0.9985 0.9999 1.0000

M(T/ Alref
S8R 1.5142 1.1410 1.0390 1.0101 1.0000
Kuang — 0.9951 0.9992 0.9995 (the reference
HDF-P4-113 — 0.8924 0.9686 0.9918 Value is 2.03125)
Present 1.0310 1.0008 1.0000 1.0000

DONEA (Donea and Lamain 1987);

Kuang (Zhang and Kuang 2007);

QHS8-39B (Li et al. 2015);

HDF-P4-11B (Cen et al. 2014);

S8R (4Abaqus 2009);
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Table X. The dimensionless results of displacements and resultants at certain positions for the

SFSF square plate

Mesh NxN 2x2 4x4 8x8 12x12 16x16 FEMOL Kant
HDF-P4-FREE — 0.01311 0.01311  0.01311  0.01311
e 4D S8R 0.01311 0.01311 0.01311  0.01311  0.01311  0.01311 0.0131
a Present 0.01311 0.01311 0.01311  0.01311  0.01311
HDF-P4-FREE — 0.01507  0.01507 0.01507  0.01507
¥p 4D S8R 0.01512 0.01507 0.01507  0.01507  0.01507  0.01507 0.0150
a“ Present 0.01507 0.01507  0.01507 0.01507  0.01507
HDF-P4-FREE — 0.02650  0.02675  0.02680  0.02681
A:a‘f S8R 0.02851 0.02731 0.02695  0.02688  0.02686  0.02683 0.0268
Present 0.02576 0.02656  0.02676  0.02680  0.02681
HDF-P4-FREE — 0.1229 0.1226 0.1225 0.1225
‘ZC S8R 0.1273 0.1237 0.1228 0.1226 0.1226 0.1225 0.1220
a“ Present 0.1235 0.1227 0.1225 0.1225 0.1225
HDF-P4-FREE — 0.1304 0.1304 0.1304 0.1304
—’Vf S8R 0.1361 0.1322 0.1312 0.1309 0.1308 0.1304 0.130
w“ Present 0.1308 0.1305 0.1304 0.1304 0.1304
HDF-P4-FREE — 0.00000  0.00000  0.00000  0.00000
M‘WZA S8R 0.01676 0.01795 0.01415 0.01124  0.00910 NA NA
qa Present 0.00000 0.00000  0.00000 0.00000 0.00000
T HDF-P4-FREE — 0.4381 0.4552 0.4609 0.4634
o S8R 0.4286 0.4286 0.4678 0.4679 0.4679 0.4679 0.463
2 Present 0.4431 0.4612 0.4659 0.4671 0.4675
HDF-P4-FREE — 0.00000  0.00000  0.00000  0.00000
& S8R 0.01362 0.04750  0.03875  0.03053  0.02468 NA NA
7 Present 0.00000 0.00000  0.00000 0.00000 0.00000
) FEMOL (Yuan 1993);
[ Kant (Kant and Gadgil 2002; Kant and Hinton 1983);
) HDF-P4-FREE (Shang et al. 2015);
[} S8R (Abaqus 2009);
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Table XI. The dimensionless results of displacements and resultants at certain positions for the

SS'SS’ square plate

Mesh NxN 2x2 4x4 8x8 12x12 16x16 Kant
HDF-P4-SS1 — 0.00410 0.00410 0.00410 0.00411
e .4D S8R 0.00412 0.00411 0.00411 0.00411 0.00411 0.0041
R Present 0.00411 0.00411 0.00411 0.00411 0.00411
HDF-P4-SS1 — 0.04806 0.04809 0.04810 0.04811
q;zc S8R 0.05193 0.04901 0.04834 0.04822 0.04818 0.0481
Present 0.04814 0.04812 0.04813 0.04813 0.04813
HDF-P4-SS1 — 0.04821 0.04822 0.04824 0.04825
”ZC S8R 0.05253 0.04913 0.04848 0.04836 0.04832 0.0482
a Present 0.04815 0.04827 0.04827 0.04827 0.04827
HDEF-P4-SS1 — 0.00000 0.00000 0.00000 0.00000
A’ZA S8R -0.02648 —0.02547 —0.01941 —-0.01528 —-0.01232 NA
qa Present 0.00000 0.00000 0.00000 0.00000 0.00000
7 HDF-P4-SS1 — —5.087 -5.074 —5.047 —-5.039
24 S8R -0.772 -1.325 -2.207 -2.834 -3.289 -5.214
4 Present -5.504 -5.441 -5.346 -5.252 -5.197
HDF-P4-SS1 — 0.3076 0.3154 0.3179 0.3208
22 S8R 0.5224 0.3975 0.3394 0.3392 0.3392 0.333
qa Present 0.3415 0.3335 0.3371 0.3383 0.3387
HDF-P4-SS1 — 0.4226 0.4095 0.3875 0.3697
Lo S8R 0.3978 0.3563 0.3708 0.3810 0.3883 0.419
% Present 0.4178 0.4157 0.4129 0.4133 0.4137

®  Kant (Kant and Gadgil 2002; Kant and Hinton 1983);
®  HDF-P4-FREE (Shang et al. 2015);

® S8R (4baqus 2009);
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16 Figure 1. Timoshenko’s beam element(curved)
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Figure 2. Shape-free 8-node quadrilateral plate bending element

http://mc.manuscriptcentral.com/engcom

o,

xy

Page 38 of 54



Page 39 of 54

©CoO~NOUTA,WNPE

Engineering Computations

E=1000.0; u=0.3;h

y |40,26)

=0.04,0.4,4;a=20;b=10.

3 (2a, 2b)

1(0,0)

@
2 (24, 0) X
Mesh A

5:(8,4) 5:(8, 4) 5:(8,4)
6: (32, 6) 6: (20, 9) 6: (18, 11)
7: (32, 14) 7: (32, 14) 7: (32, 14)
8: (16, 14) 8: (16, 14) 8: (16, 14)
M,=1
S /- B BRARARSRREREN
' t —~ b
M=y M~M~1 tM=1 M1 My=1 M,
' i = o

wi
Wxi
Yyi

— —> — — > — > — P

M,=1

(a) Bending (M,=1).

ERFTFTTNTY

(b) Twist (M,s=1).

BC: wi=w,=w3=0

P ® w,=a,+ax,+a,y, +ﬂ3x12 +a,x.y, +a5y,.2 +06X,.3 +a7xl,2y,. Jragx,.yi2 +d9yi3
v, = ; (Bag+ay)+a, +2ax, +a,y, +3ax’ +2a,x,y, + a,y;
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Figure 3. Patch tests, geometry, loads and meshes
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Figure 5. Convergence of the central deflections and moments and contour plot for

square plates subjected to uniform load (Clamped BC, Mesh A)
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Figure 6. Convergence of the central deflections and moments and contour plot for
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Figure 7. Convergence of the central deflections and moments and contour plot for
square plates subjected to uniform load (SS1 BC, Mesh A)
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Figure 8. Distorted meshes and normalized results for a quarter of clamped square plate

(omitting middle nodes)
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24 Figure 9. Mesh 4x4 for Morley’s 30° skew plate
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Figure 11. Circular plate problem

C is the central point of the plate
Radius R=5
E=10.92; 1=0.3;
Uniform loading: ¢g=1
Displacement BCs:
w=0 (SS1) along A-D-B
w=y,=w,=0 (Clamped) along A-D-B
Symmetrical conditions
v, =0 along CA
¥, =0 along CB
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Figure 12. Convergence of the central deflections and moments and contour plot for
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Figure 13. Convergence of the central deflections and moments and contour plot for
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Figure 14. The typical meshes and the arrangement for the square plate with two opposite edges
hard simply-supported (SS2) and the other two free or soft simply-supported (SS1)
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Figure 15. Distributions, contour plots and comparisons of the shear force 7, for the SFSF case
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Figure 16. Distributions, contour plots and comparisons of the twisting moment M,,, and the shear

force T, for the SFSF case
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Figure 17. Distributions, contour plots and comparisons of the shear force 7, for the SS*SS* case
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