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Ecological dynamics can produce a variety of striking patterns. On ecologi-

cal time scales, pattern formation has been hypothesized to be due to the

interaction between a species and its local environment. On longer time

scales, evolutionary factors must be taken into account. To examine the evol-

utionary robustness of spatial pattern formation, we construct a spatially

explicit model of vegetation in the presence of a pathogen. Initially, we com-

pare the dynamics for vegetation parameters that lead to competition

induced spatial patterns and those that do not. Over ecological time

scales, banded spatial patterns dramatically reduced the ability of the

pathogen to spread, lowered its endemic density and hence increased the

persistence of the vegetation. To gain an evolutionary understanding, each

plant was given a heritable trait defining its resilience to competition; greater

competition leads to lower vegetation density but stronger spatial patterns.

When a disease is introduced, the selective pressure on the plant’s resilience

to the competition parameter is determined by the transmission of the dis-

ease. For high transmission, vegetation that has low resilience to

competition and hence strong spatial patterning is an evolutionarily stable

strategy. This demonstrates a novel mechanism by which striking spatial

patterns can be maintained by disease-driven selection.

1. Introduction
Various diverse plant communities produce a range of striking regular spatial

patterns, including spots, stripes and labyrinths [1]. A number of mechanistic

explanations have been proposed for the occurrence of these patterns, many

involving spatial plant competition mediated by the environment such as com-

petition for nutrients or water [2–5]. These spatial structures can increase the

density of vegetation locally as well as sustain a community that would other-

wise be barren under homogeneous (non-spatial) assumptions [6]. It remains

an open problem how such forms of spatial pattern help to regulate other pro-

cesses, such as disease spread [7]. There is also a question as to how

interspecific interaction influences the resulting spatial pattern and how pattern

formation is maintained on evolutionary time scales [8].

Hosts and their parasites form a system where the resulting spatial pattern of

either the host or parasite is subject to strong evolutionary pressures. For example,

fragmentation of its host population places severe constraints on the ability of the

infection to spread, favouring pathogens that can persist in small isolated host

populations. Additionally, parasites or infections can evolve to limit their own

spread, slowing the depletion of the host species and hence increasing their

long-term persistence [9]. Local clustering of hosts can lead to pathogens with

low virulence, while a coevolution of both parasite and host leads to hosts with

high resistance as well as parasites with low virulence [10]. Compared to a homo-

geneous landscape, local clustering of plants leads to rapid initial growth of

infection as it invades a single dense cluster; however, clustering can reduce the

invasion of an infection on longer time scales as the pathogen must spread

& 2016 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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from one cluster to another [11]. This shows that the ability of a

species to distribute itself with a fragmented spatial pattern

greatly affects the outcome of a disease.

Here, we explore the dynamics of host–pathogen inter-

action in spatial systems using a simple model, developed

to yield generalizable results, but our study is primarily

motivated by the case of seagrass and its major wasting dis-

ease. Seagrasses comprise approximately 60 species of marine

angiosperms, with a near-global distribution [12]. They are

recognized as major ecosystem service providers [13], as

well as being globally threatened by coastal development,

pollution and infectious disease [14]. Several species of sea-

grass suffer from a wasting disease that has the potential to

cause massive die-back over oceanic scales. Most notably,

approximately 90% of the major species of the north Atlantic,

Zostera marina, was lost in the epidemic of the 1930s [15].

More recently, wasting disease has resulted in severe but geo-

graphically limited seagrass die back [16]. This disease has

since been attributed to the marine slime mould-like protist,

Labyrinthula zosterae [17]. The pathogen L. zosterae has been

isolated from over 80% of seagrass populations sampled in

northern European waters [18], and shown to contribute to

long-term regulation of seagrass population dynamics [19].

Currently, the pathogen is seen in an endemic state in

many seagrass species, with the pathogen being success-

fully isolated from all of 11 species tested [20]. Little is

known about the triggers of epidemic outbreak, although

environmental factors including water temperature, ambient

light and salinity are implicated in pathogenicity [15]. This

host–pathogen system, therefore, makes an excellent case

study for eco-evolutionary research in a relatively simple

but widespread marine system of high ecosystem value

[21]. The seagrass pathogen, L. zosterae, causes disease by

spreading through the host tissue from a focal infection

point on a seagrass leaf. Transmission has been shown to

occur through direct leaf-to-leaf contact, with occasional

longer range transmission through drifting infected plant

material [22].

Our model is also intended to capture dynamics operating

in other sessile marine organisms. For example, mussels,

which are known to self-organize into complex spatial patterns

at the landscape level [23], are also susceptible to large-scale

dieback from bacterial pathogens. Much of the research into

their epidemiology comes from studies in aquaculture [24]

but several pathogenic species of Vibrio are found in natural

bivalve populations. Little is known about their transmission

but survival is relatively poor outside of their hosts, or as

part of biofilms [25], making this another host–pathogen

system where our model is potentially relevant.

Models where diseases evolve into a critical state such

that host cluster sizes are scale-free have been previously con-

sidered [26]; in contrast, here we consider the evolution of the

sessile host species in response to a virulent disease. Using a

Probabilistic Cellular Automata (PCA) model, we initially

show that the host’s resilience to competition from other

hosts in the local environment determines the type of spatial

pattern observed. We then use this model to test our hypoth-

esis that if the individual’s resilience to competition is a

heritable trait then this factor is under strong selection in

the presence of disease. This leads to dynamics where if

there is no disease locally a plant is more successful if it

has low mortality due to spatial competition, as this will

allow its offspring to proliferate at a higher rate. Whereas if

there is a strong local disease prevalence, low resilience to

competition provides a way of isolating offspring from

other patches that are in a diseased state, thus increasing

reproductive success.

The methods and results are split into two main sections.

In the first section, the impact of regular pattern formation on

the dynamics of a host–pathogen system is investigated. In

particular, the role of regular banding in vegetation in limit-

ing the spread and impact of a virulent disease is explored

using a PCA model. The second section of the paper focuses

on the evolution and maintenance of spatial banding in the

presence of a pathogen from an evolutionary viewpoint.

The main hypothesis is that banding in vegetation can be

viewed as an evolved trait in the sessile host species in the

presence of a disease. In which case, we assess under what

conditions would such an evolved trait be expected to rise

and how generally does banding impact the spread and

distribution of the disease.

2. Material and methods
2.1. Disease-vegetation model
A PCA model was used to capture the spatial interactions

between plant and disease [27,28]. This model is an extension

of one that has previously been used to model the spatial evol-

ution of seagrass [29]. It can be considered as a PCA extension

to the model in [30], which is a generally applicable model of

vegetation dynamics in the presence of spatial competition. The

system is a N �N lattice, where each lattice site can be in one

of three states: E, O, D. E stands for an empty site; O is a site

occupied with healthy vegetation and D is a site occupied with

vegetation in a diseased state. The vegetation is considered to

have a primarily clonal form of growth with a local reproduction

kernel kr. There is also a spatial competition process, such as

competition for resources, that is mediated by a local competition

kernel kc [3,31,32]. The competition kernel has an offset such that

the maximum impact of competition occurs at a distance r and

direction u due to a geographical gradient, such as prevalent

wind-direction or current (figure 1). For sufficiently large offset

and strength of competition, regular bands of vegetation

emerge (an example of which can be seen in figure 1b), whereas

for smaller values of competition and offset the model produces

more patchy spatial patterns. Examples of both forms of pattern

formation qualitatively match with observed natural patterns

(figure 1c,d).

In addition to the vegetative growth, we also consider a dis-

ease process that has a spatial transmission scale kd and a rate of

infection b (noting that all rates are scaled such that the rate of

local vegetative growth is one). There is also assumed to be a con-

stant low background rate e of disease importation, this was to

ensure that the disease could never be completely eradicated,

thus clusters of disease emerge spontaneously throughout the

lattice. This importation process is biologically justified as some

long-range infection events may occur that are not captured by

the local spreading term. For example, in seagrass, diseased

shoots can become detached and float on currents where

they can come into contact with susceptible leaves [22]. The

background rate was set to e ¼ 10�5 unless otherwise stated.

Simulations were performed on a lattice with toroidal boun-

dary conditions and updated synchronously. The dynamics

for the competition model can be written according to the rate

of a site located at x transitioning from state A to state B in a

time-step as

rðEx ! OxÞ ¼
X

i:occupied

krðx� oiÞ, ð2:1aÞ
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rðOx ! DxÞ ¼ eþ b
X

i:diseased

kdðx� diÞ
 !

, ð2:1bÞ

rðOx ! ExÞ ¼
X

i:occupied

kcðx� oiÞ

0
@

1
A

k

ð2:1cÞ

and rðDx ! ExÞ ¼ g, ð2:1dÞ

where oi and di represent the location of the ith occupied and

diseased site, respectively. The kernel kr represents reproduction

due to local clonal reproduction and takes the form of a Gaussian

with zero mean and variance sr. The transition from occupied

site to unoccupied is due to death from competition and is

mediated via the competition kernel kc, which is also Gaussian

with a mean of displacement r and angle u and a variance sc.

This represents death due to competition factors such as

hydrological scouring and resource depletion. The mean displace-

ment comes due to exogenous environmental factors such as

gradient or prevailing current. Key to the vegetation behaviour

is a dimensionless parameter k, which represents the resilience

to competition and controls the kurtosis of the competition

kernel. For low k, the effect of the competition is stronger. For

larger k, the competition is weaker going to 0 as k! 1. The dis-

ease propagates with a kernel kd, which is again Gaussian with

zero mean and variance sd. Finally, the death of an individual

due to disease is assumed to occur with constant rate g. As

such, the expected duration of infection is g�1.

Parameter studies were conducted on both models. Although

the model has not been rigorously parametrized against data

owing to the more theoretical nature of the study, certain par-

ameters were chosen to reflect the biological details of seagrass

beds. These were mean annual rhizome elongation of

26 cm yr– 1 and L. zosterae spread of 1 mm h– 1 [34,35].

2.2. Evolutionary model
The dominance of competition traits was explored by adapting

the previous model so that each individual has its own heritable

resilience value, k(x). High k is associated with high resilience

(and limited impact of spatial competition), whereas low k
implies low resilience and strong competitive effects. Asexual

reproduction is assumed such that the offspring inherit the

resilience of their associated parent. Initially, we assume that k
can take one of two distinct values: either high or low

ðkfL,Hg ¼ f0:01, 100gÞ and at a birth event there is some small

probability l that the trait switches from low to high or vice

versa by random mutation. Thus, each lattice site can be in one

of four states: E-empty site; L-occupied with low resilience

trait; H-occupied with high resilience trait; D-diseased.

The transition rates are defined as

rðEx ! LxÞ ¼
X
i:L

krðx� liÞ þ l
X
i:H

krðx� hiÞ, ð2:2aÞ

rðEx ! HxÞ ¼
X
i:H

krðx� liÞ þ l
X
i:L

krðx� hiÞ, ð2:2bÞ

rðfH,Lgx ! DxÞ ¼ eþ b
X

i:diseased

kdðx� diÞ
 !

, ð2:2cÞ

rðfH,Lgx ! ExÞ ¼
X
i:H

kcðx� hiÞ þ
X
i:L

kcðx� liÞ
" #kfH,Lg

ð2:2dÞ

N

10 10 20 30 40 m0

sr

sd

q

r

(a) (b)

(c) (d )

Figure 1. (a) Schematic of the regular banding model. The local reproduction kernel is shown in green with standard deviation sr. The competition kernel is shown in
red, with standard deviation sd and with an offset at angle u and displacement r. (b) Example of spatial distribution from a single simulation with high competition on
300 � 300 lattice with wrap-around boundary conditions ( parameters: sr ¼ 0.5, sd ¼ 1.0, k ¼ 0.1, u ¼ p/4, r ¼ 10). Although the direction of the offset is
constant throughout the whole lattice, locally the direction and strength of the banding can vary. (c,d) Pattern formation is ubiquitous in nature and the product of a
diverse set of interactions. Examples of regular banding in two diverse ecosystems are shown here. (c) Seagrass banding from The Isles of Scilly, UK, with vegetation
shown in green, patch borders in black and barren sand shown in white [33]. (d ) An aerial photograph of mussels near Bangor, UK (adapted from [23]).
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and rðDx ! ExÞ ¼ g: ð2:2eÞ

Kernels and rates are the same as the first model. Each trait

has a distinct value for the dimensionless parameter given as

kfL,Hg ¼ f0:01, 100g. These dynamics also assume that reproduc-

tion may only occur when an individual is not infected. As we

are considering a highly virulent pathogen this approximation

is reasonable; however, for a low virulence pathogen, the

diseased state may also need to be considered to propagate.

3. Results
3.1. Competition in regulating disease spread
As a first investigation of how spatially distributed compe-

tition affects disease spread we compare the disease

dynamics for a system which has no competition ðk ¼ 1Þ,
to a system where there is strong competition with offset

such that banding is exhibited (k ¼ 0.1) (figure 2). For a

system that has no competition ðk ¼ 1Þ, there are regular epi-

demics that spread throughout the population leading to a

reduced density of the vegetation population with a high

degree of variability and a high level of disease

(figure 2a,c). For this no competition limit, the model is simi-

lar to the forest fire model, where the system evolves into a

self-organized critical state producing a heavy-tailed patch-

size distribution with patches that are frequently destroyed

by diseases [36,37]. By contrast, when competition is strong

(k ¼ 0.1), but all other parameters are the same as the pre-

vious example, the vegetation forms into a banded

structure even in the absence of disease. In this case, the dis-

ease remains endemic at far lower levels as diseased patches

are constrained due to the banding structure, meaning the

disease cannot continue to propagate attacking other healthy

patches, thus giving previously diseased patches time to

recover (figure 2b,d).

In order to determine how the strength of competition

affects the prevalence of disease, simulations were performed

over a range of k values. For each k [ f0:2, 0:4, . . . , 4g,
100 replicate simulations were carried out for 104 time-

steps, with other parameters held constant, the disease

process occurred on the same spatial scale as the

competition and vegetative growth was primarily local

ðsr ¼ 0:5, sc ¼ sd ¼ 1, r ¼ 10, u ¼ p=4, g ¼ 0:2, b ¼ 2Þ. The

endemic level of infection increases with k: competition and

the spatial pattern that emerges therefore helps to regulate

the incidence of endemic disease (figure 3). For low compe-

tition resilience (low k), bands of vegetation form that are

susceptible to infection and hence death due to disease, this

leads to the population performing large excursions away

t
5000 10 000

t
5000 10 000

de
ns

ity

0

0.05

0.10

0.15

0.20

0.25

0.30

high resilience (k = 10)(a) (b)

(c) (d)

low resilience (k = 0.1)

0

0.05

0.10

0.15

0.20

0.25

0.30
diseased
vegetation

Figure 2. Realization of dynamics for the model described by equation (2.1) (with parameters sr ¼ 0.5, sd ¼ 1, g ¼ 0.2, b ¼ 2) for high competition resi-
lience (k ¼ 10) (a,c) and low competition resilience (k ¼ 0.1) (b,d). The figures on the top (a,b) show a typical snapshot of the spatial distribution of healthy
vegetation (in green), the diseased state (in black) and the empty site (in yellow). The bottom figures (c,d) show the time series for vegetation and disease. For high
competition resilience, there are constant epidemics leading to a high density of diseased vegetation and anti-persistent vegetation dynamics. Where competition
resilience is low the vegetation dynamics are more persistent and the disease prevalence is far lower.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160463

4

 on October 14, 2016http://rsif.royalsocietypublishing.org/Downloaded from 



from the mean as large bands are infected leaving gaps that

recover slowly due to the lower fecundity of the vegetation

caused by the enhanced competition.

3.2. Evolutionary model
Simulations were performed on a 150 � 150 lattice for 104

time-steps and each set of parameters simulations were

repeated 100 times. For the initial conditions, 20% of sites

are occupied and one half of the lattice had low resilience

(L), while the other half had high resilience (H ). The simu-

lations were allowed to evolve under the dynamics

described in equation (2.2).

Keeping other parameters constant and changing the

value of b, the model displays a sharp transition from the

H population dominating to L (figure 4a). When b

approaches a critical point, an increase in the time for a

single trait to dominate is observed. For values of b far

away from the critical point, one strategy quickly dominates

thus the relaxation time is short. Near the critical point, there

is a transient coexistence of the two vegetation types. Fluctu-

ations of the two vegetation types also increase sharply

around the critical value (figure 4b). Population variance of

the disease are high when b is lower than the critical point,

increases sharply at the critical point and then reduces to a

lower value for larger values of b. Population variance of

the density of vegetation also peak around the critical point.

Sensitivity analysis was performed on both the dur-

ation of infectious period ðg�1Þ and the rate of importation

of disease ðeÞ. It was found that for fixed b, the import-

ation rate does not alter the dominance of L strategy until it

reaches a critical value (approx. 1021 for b ¼ 2), where the

host population collapses. Very similar results were found

for the duration of infectious period, g�1 as for the transmis-

sibility, b. For fixed b ¼ 1.7, there is a sharp transition

between H being the dominant strategy and L dominating

(figure 4c).

To gain a greater understanding of the evolution of the

resilience trait k, the model was further extended by allowing

the strength of resilience to occupy a continuous range of

values (between 0.1 and 10) as opposed to just high and

low as was previously considered and to allow these values

to mutate. When a mutation event occurred, a new value

for k was drawn from a normal distribution with a mean of

the parent value and a variance of one. Although biologically,

the variance of the mutation is relatively high, this allowed

for rapid mutation over time scales that are computationally

feasible. New k-values were also kept in the range [13,36]. A

very similar transition occurred as for the two-trait model as

the virulence of the disease changed (figure 4d ). For infection

rate b , 1.5, the average value of the competition trait is high

and thus there is little spatial competition. However, there

was found to be a mixture of k-values as the upper and

lower percentiles of the ensembles indicate. This is due to

mutations arising that spread as a population and thus

alter the average value of k. For intermediate values of viru-

lence (1.3 , b , 1.6), there was found to be a large range of

values the competition population averages can take. For

these intermediate values, neither trait strongly out competes

the other, thus leading to populations with a greater mixture

of traits. For large b, competition trait is minimized, thus

when the disease is highly transmissible banding still remains

an uninvadable strategy.

4. Conclusion
The interaction between disease dynamics and vegetation

dynamics was explored in a system with strong and weak

spatial competition. The importance of competition processes

within the vegetation in regulating the spread of disease was

assessed by measuring the prevalence of disease over a range

of strengths of competition, including those that induce band-

ing in the vegetation. Increased competition and hence spatial

banding was found to limit the prevalence of the diseased

state, but increase the variance of the vegetation population

due to bands of susceptible vegetation becoming infected lead-

ing to a collapse of a significant proportion of the total

vegetation population. In the limit where there is no competition,

the model is akin to the forest fire model [36] where the system

naturally evolves into a critical state, where there can be a large

cascade of epidemic events and the distribution of the size of

disease outbreaks follows a power-law distribution.

Regular spatial patterns in vegetation have often been

associated with environmental factors, such as nutrient

levels or ground water or with biotic interactions [1,38].

These spatial patterns have been shown to provide global

benefit to species, by allowing them to exist in environments

that would otherwise be unfavourable and not permit their

existence. Here, we have shown that as the amount of spatial

competition, and thus banding increases, the prevalence of

disease decreases. This would naturally lead to areas of veg-

etation with banding having a higher survival probability in

the presence of disease, while areas of vegetation with no

k
1 2 3 4

po
pu

la
tio

n

0

0.05

0.10

0.15

0.20

vegetation
disease

competition

Figure 3. Mean and variance (shown as bars) for the population of veg-
etation and diseased vegetation over a range of competition resilience k,
leaving other demographic parameters fixed at sr ¼ 0.5, sc ¼ sd ¼ 1,
r ¼ 10, u ¼ p/4, g ¼ 0.2, b ¼ 2. Increasing resilience to competition
(increasing k) leads to lower density of healthy vegetation and higher disease
prevalence. This in turn also leads to a lower variance in the disease popu-
lation. Vegetation dynamics with strong competition was found to go on
longer excursions than in the low competition regime where clusters quickly
grow and are then invaded and quickly eradicated by disease.
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banding being more likely to go extinct. This shows that at

the population level, one group has a higher survival

probability than the other group.

The evolutionary mechanism underpinning banding in

the presence of disease was explored by considering a veg-

etation population with two traits: high and low resilience

to competition with surrounding vegetation. For small

infection rates, the high resilience trait dominates and the

dynamics are akin to Lotka–Volterra competition. There

is a critical infection rate, however, after which the low resili-

ence trait dominates and can be sustained even for relatively

large offset of the competition. Previous work has considered

pattern formation as an evolved phenotype [8]. Our unique

contribution here is to demonstrate (i) how banding

stabilizes a sessile community in the presence of a highly

transmissible pathogen, and (ii) under what conditions

do we expect banding to emerge if resilience to spatial

competition is an adaptive trait.

The model considered here is one where competition is

altruistic in the sense that an individual with increased com-

petition has a higher mortality rate, thus the sacrifice of the

individual in suffering greater effects of competition leads

to a spatial pattern that increases the long-term success of

its progeny. The antithesis of this is when the competi-

tion trait is selfish, where higher competition leads to an

increase in the mortality of other individuals. One possible

mechanism of this could be where plants are able to, through

toxins or other means, decrease the reproductive success

of vegetation in the surrounding area. An example of auto-

allelopathy can be found in white clover, where its presence

has been shown to decrease the density of surrounding

vegetation including itself [39] as well as alfalfa [40]. An inter-

esting extension to this model then, would be to consider

when competition is selfish as opposed to altruistic.

The main focus of this study has been on the evolution of

the host in the presence of a pathogen with varying degrees

of transmissibility or virulence. As such, the evolution of

the pathogen has not been considered as has been for pre-

vious studies [41,42]. These show that if there is a link

between transmission and virulence, then the pathogen

evolves such that the combined transmission and virulence

maximizes the basic reproductive number of the disease

[43]. An interesting extension then, would be what strategies

emerge in the presence of a pathogen that is co-evolving with

the host.

One of the assumptions is the mechanism that transmits

the effects of competition is spatially independent of the

mechanisms that transmit the disease. This would be justified

for direct-contact and root-affecting pathogens [44]. For

example, wasting disease in seagrass has been shown to
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Figure 4. (a) Ensemble-averaged proportion of occupied sites in H state with 95 percentile values for the discrete trait model. Parameters are g ¼ 0.1, sr ¼ 0.5,
sc ¼ 2, sd ¼ 1, l ¼ 1027, r ¼ 2 and rate of import of infection e ¼ 10�5. (b) Ensemble-averaged runs for increasing transmission. Around the critical trans-
mission value, there is a slowing down of the time taken for the population to fixate. (c) Ensemble-averaged realizations of proportion of occupied sites in state H for
the discrete trait model. Parameters are b ¼ 1.7, sr ¼ 0.5, sc ¼ 2, sd ¼ 1, l ¼ 1027, r ¼ 2 as g21 is varied between 0 and 10. (d ) Averaged realizations,
with upper and lower 95 percentiles, where the competition trait is allowed to mutate in a continuous manner. Results are broadly similar to the discrete trait
model, where for low virulence high competition resilience traits dominate ðk � 10Þ, and for large virulence low resilience traits dominate ðk � 1Þ. However, for
intermediate values, the upper and lower percentiles show a high degree of variation between simulation runs where clusters of differing k values are transient.
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transmit primarily through leaf-to-leaf contact [35]. Although

long-range disease transmission through rafting of infected

host material has also been postulated for seagrass, to our

knowledge it has never been demonstrated/observed. How-

ever, for wind- or water-borne pathogens, competition and

disease transmission may not be spatially separate and the

processes would need to be considered correlated.

Our results show a unique mechanism under which regu-

lar pattern formation can arise due to evolutionary pressure

from a pathogen. We have shown that the ability of a species

to self-organize into a regular geometry greatly affects its

ability to regulate disease. Further, we have demonstrated

that if such a mechanism is heritable then there is a sharp

transition (akin to a second-order phase transition in

physics), where one trait dominates over another. We have

demonstrated how the presence of a highly transmissible

pathogen can lead to regular pattern formation in a

vegetation or sessile organism system.
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