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Abstract

An atomistic multiscale modelling approach is used to simulate the nonlinear pullout behaviour of interlinked single walled
carbon nano tubes (SWCNT) and single layer graphene sheets (SLGS) embedded in an epoxy polymer. The pullout forces have
been computed for various configurations of nanocomposites (SWCNT-SWCNT, SLGS-SLGS and hybrid SLGS-SWCNT),
also by evaluating the effect provided by three different interlink compounds. The interfacial strength due to fibre pullout
predicted by the hybrid atomistic-FE model is compared against experimental and molecular dynamics results available in open
literature. The results show the specific deformation characteristics (localised auxetics) that provide an increase of pullout
forces and interfacial strength with the use of the links.

c© 2016 Published by Elsevier Ltd.

Keywords: Graphene sheets; carbon nanotubes; nanocomposites; finite element; shear strength;

1. Introduction

Carbon based nanomaterials such as graphene sheets and CNTs display exceptional mechanical [1–10] and

electrical [11–16] properties. These nanostructures can be used to reinforce polymers and in general multifunc-

tional composites and devices [17–24]. Graphene sheets can be mechanically exfoliated from graphite, chemically

modified and then be embedded in polymer solution [25], or dispersed in an organic solution and then used as stable

fillers in polymers [26]. CNT reinforced polymer composites can be produced by casting in a polymer [27], or typ-

ically by dispersing CNTs in a solvent by sonication followed by mix in a polymer liquid with ensuing evaporation

of the initial solvent [28].The demand for nanocomposites in industrial applications is ramping up [29], however

some drawbacks are still present in the modern production of carbon-based structural materials.More specifically,

some of the main problems are represented by an inadequate bonding between the matrix and reinforcement, the

difficulty of producing an uniform dispersion within the matrix, and in general the generation of homogeneous

∗Corresponding author. Tel: +44 (0)1792 602088, Fax: + 44 (0)1792 295676
Email address: S.Adhikari@swansea.ac.uk (S Adhikari)
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dispersions in large-scale composite structures. However, the molecular bridging between nano structures within

the polymer can enhance the structural performance of the composite [30] and overcome the drawback represented

by the inadequate bonding strength.

To reduce the capital costs involved in the manufacturing of nanocomposites with additional chemical and

functionalization groups it is essential to evaluate the aspects of fibre bridging at simulation level. The computa-

tional modelling of the mechanical properties of graphene sheets and CNTs at atomic scale has been performed by

several researchers using Finite Element techniques [1, 2, 5, 6, 31–34]. The Finite Element-based atomistic simula-

tion techniques to represent general carbon nanostructures have been used for example by Scarpa et al [1, 7, 8, 31]

and Pour et al [2, 35]. Scarpa and co-authors in particular have developed a multiscale hybrid atomistic FE tech-

nique to represent the interaction existing between C-C sp2 and sp3 bonds, van der Walls interactions [1, 8, 36],

the influence of hydrogenated bonds [37], and recently extended the technique to simulate the mechanics of DNA

strands [38]. Atomistic-FE methods have also been used to describe the nonlinear and fracture propeperties of

graphene and carbon nanotubes [39, 40], as well as the mechanical behaviour of nanocomposites and graphene re-

inforcements [6, 41–43] Nanocomposites based on SLGS/SWCNT reinforcement can be considered as two-phase

or multiphase materials, represented at their most basic configuration by the presence of a nanoinclusion and a sur-

rounding matrix. At meso and nanoscales the polymer matrix can be considered as a continuous structure. Using

the hybrid atomistic-FE approach the SLGS/SWCNT nanoinclusions can be represented numerically by an array

of hexagonally oriented beam elements (Bernoulli [44] or Timoshenko [31]), with their nodes being the carbon

atoms. The polymer matrix at micro scale can be approximated by 3D solid tetrahedral elements (see Fig. 1).

The molecules of the polymer matrix are connected to carbon atoms through van der Waals forces represented by

Lennard-Jones (LJ) potentials, when no functional groups are present. From the numerical standpoint, the LJ po-

tential attractive and repulsive forces between the fibre and the matrix can be transferred through nonlinear spring

elements [6, 45].

This work aims at investigating the effects due to the presence of molecular inter-linkers between different

combinations of nano fillers (SWCNT/SWCNT, SLGS/SLGS and SWCNT/SLGS - Subfig. 2(a), Subfig. 2(b) and

Subfig. 2(c) respectively) on the overall pullout force and strength of the composite material. The hybridization of

the fillers has been done, since such composites are multiphase in nature. Exploitation of such multiphase compos-

ite systems has become a major topic of interest in recent years [46–48]. The use of aliphatic diamines and aromatic

phenylenediamine as connecting functional groups between single wall carbon nanotubes within a polyethylene

matrix has been observed to produce a significant increase of the pullout tensile force and the energy dissipated

at the interface between the matrix and the carbon nanotubes [49]. The present work explores further the concept

by using a modified multiscale approach based on the atomistic - FE approach to produce Representative Volume

Elements (RVEs) that describe the polymer matrix, nanomaterial reinforcements, chemical group interlinks and

van der Walls interactions within a nonlinear materials, geometry and failure criteria modelling framework. In this

work we will consider three different types of inter-linkers (Fig. 1): aliphatic diamines (CH2)3N2H4, long chain

aliphatic diamines (CH2)10N2H4 and Phenylenediamine (referred to as PDA). In Fig. 1 the black atoms are referred
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(a) Aliphatic diamine (CH2)3N2H4 (Inter-linker-1)

(b) Aliphatic diamine (CH2)10N2H4 (Inter-linker-2)

(c) Aromatic Phenylenediamine (PDA)

Fig. 1. Inter-linkers used to bridge fillers in nano-composite RVEs.

to carbon, the blue atoms represent nitrogen, the white atoms are indicative of hydrogen, while the red atoms are

representative of the connections between the polymer and the fillers. To the best of the Authors’ knowledge,

the work presented in this paper features two levels of novelty. The first is related to the multiscale model, that

incorporates the simulation of chemical groups interconnecting matrix and the carbon nanostructures within an

atomistic - FE method. The results of the proposed model are benchmarked against analogous data from open

3
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(a) SWCNT-SWCNT nano-composite (b) SLGS-SLGS nano-composite

(c) Hybrid nano-composite

Fig. 2. Multiscale model of hybrid nano-composite with interlinkers: Three different types of inter-linkers have been simulated (refer Fig. 1)

literature produced suing other molecular mechanics models. The second novelty lies within the prediction of the

tensile pullout and shear strength of graphene/graphene and hybrid graphene/carbon nanotube reinforcements, and

the assessment of the mechanical performance against interlinked SWCNT configurations already evaluated by

other researchers. To the best of the Authors’ knowledge these aspects have not been described in open literature

so far.

2. Multiscale model of the nanocomposite structures

The sp2 covalent bonds of the SWCNT and SLGS structures are represented here using deep shear Timoshenko

with six degrees of freedom (3 translational and 3 rotational) beams [1, 31]. The element type B31 from the

ABAQUS element library has been used to simulate covalent bonds. The length of each beam is 0.142 nm (the

equilibrium length of C-C sp2) and the diameter (thickness) is 0.089 nm [31]. The equivalent mechanical properties

of the beams representing the C-C bonds are calculated based on the energy equivalence between the beams’ strain

4
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Table 1. Element properties for the beam elements used to represent CC bonds. d stands for the diameter, l is the length, A is the cross sectional

area, E represents the Young’s modulus, ν is Poisson’s ratio and φ is the shear correction factor [31].

Property Value

d 0.089 nm

l 0.142 nm

A 1.01 nm2

E 19.5 T Pa

ν 0.23

φ 0.37

energy and the stoichiometric harmonic potential calculated through force constant methods [31]:

kr

2
(δr)2 = EA

2L
(δr)2 (1)

kτ

2
(δϕ)2 = GJ

2L
(δϕ)2 (2)

kθ

2
(δθ)2 = EI

2L
4+Φ
1+Φ (δθ)2 (3)

In the above equations, kr represents the stretching force constant and kτ the out-of-plane torsional constant. The

term kθ represents a combined in-plane rotation (bending and torsion), consistent with the harmonic potential

approach [31]. The term Φ is the shear correction factor, which becomes significant if the aspect ratio of beams

is lower than 10 [50]. The numerical values of the constants mentioned in the above equations can be obtained

by using the linearised Morse potential model [31] (kr = 84.7 nN Å−1, kθ = 9.00 nN Å rad−2 and kτ = 2.78 nN

Å rad−2). For comprehensive understanding of this methodology, the readers are referred to [7, 31, 51]. The values

of the equivalent material and the element property information for C-C bonds in SLGS and SWCNT are provided

in Table 2.

In the present work the mechanical nonlinearity of the covalent bonds deformation has been ignored. The

equivalent stress-strain curve for sp2 C-C covalent bonds and graphene/carbon nanotubes can be found in various

works [39, 40, 44, 52, 53]. The single C-C bond shows a linear regime under tensile loading up to 10 % [40].

Armchair and zigzag graphene sheets in graphitic state show a substantial linearity of the tensile response also up

to 10 % in Molecular Dynamics models using AIREBO potential [54]. In a nano-composite with low loading (less

than 0.5 % wt fraction in the present work), one can also expect larger strain levels occurring in the polymer but not

in the graphene sheet. Since the maximum tensile deformation in the present simulations corresponds to around

10 % strain, the assumption of linear elastic regime with nonlinear geometric deformation for both SWCNT and

SLGS can be considered justified. Similarly to the approach used for the C-C bonds, the mechanical properties of

the other bonds in the inter-linkers can also be obtained applying the same energy equivalence, this time using the

Universal Force Field (UFF) model [38, 55]. These equivalent mechanical properties are presented in Table 2. In

order to simulate the tensile strength of interlinkers, a cutoff strain of about 20 % has been assumed. If the bonds
5
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Table 2. Thicknesses, lengths and Young’s moduli for bonds in inter-linkers [38].

Bond types Bond length (Ao) Bond thickness (Ao) Young’s Modulus [TPa]

CH 1.08 1.01 6

CN 1.39 0.79 23.5

HN 1.01 0.8 16

in the interlinkers are strained beyond this value, then the stiffness of the bonds will be reduced to zero. The 20 %

has been taken from the C-C bond inflection point of the curve present in [39]. However, during the simulation,

the bonds in the interlinker do not get strained beyond 10 %, due to contact with the polymer.

The graphene sheets are connected to the polymer matrix by van der Waals forces described by nonlinear

springs providing attractive and repulsive forces and following the force-displacement model [1, 8]:

Fi j =
∂Vi j

∂r
(4)

Where r is the atomic displacement along the ij connected carbon nanostructure/matrix atoms. The force between

the atoms (i j) can also be represented by [56]:

Fi j = −12 ǫ















(

rmin

y

)13

−

(

rmin

y

)7












(5)

Where y = rmin + δr, δr is the atomic displacement along the length ij. The rmin (in Å) is given by 2
1
6 σ, where

σ = (A/B)1/6. The terms B and A represent attractive and repulsive constants. For the carbon-polymer interaction

we adopt the values given in [6, 56, 57], (A = 3.4 × 10−4 eV× Å12 and B = 5 × 10−7 eV× Å6). The term ǫ is

equal to B2/(4A). In the multiscale models we use nonlinear spring elements to simulate the interaction between

reinforcement, with an equivalent force deflection curve calculated using Eq. 5. The type of element used in the

ABAQUS solver is SPRINGA.

The polymer matrix has been discretized using 3D continuum elements with six degrees of freedom (C3D4 in

ABAQUS). Isotropic material properties have been assumed to represent the material behavior of an epoxy matrix

(Young’s modulus OF 2.0 GPa and Poisson’s ratio of 0.3 [58]). The nonlinearity in the mechanical behaviour of

the polymer matrix has been considered by using a Ramberg Osgood approximation [58]. Relevant points of the

epoxy stress-strain curve are shown in Table 3. A damage criterion based on strain (5 %) [43] has been assigned

to ensure that the stiffness of the elements strained beyond that tensile threshold in the polymer becomes zero.

The dimensions of the RVEs are 60Å× 40Å× 110Å. The SWCNTs used in this work are of armchair type

(40,40) with a length of 98 Å. The SLGSs used consist also of an armchair type (40,40), again with a length of 98

Å. These dimensions ensure that both fillers have same surface area. As the SLGS offers a 2D surface, the contact

interface with the polymer molecules occurs at both surfaces (top and bottom of the SLGS sheets). The force

required to pull a fibre has been calculated by constraining one end of the nano-composite structure and applying a

displacement to the end of filler in opposite side, similarly to the boundary conditions applied in [43, 49]. One end

6
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Table 3. Points of the stress-strain curve for epoxy matrix based on Ramberg Osgood approximation [58].

Stress in MPa Strain in %

15 1.0

40 2.0

60 3.0

62 4.0

of the RVE is constrained and a displacement is applied at the tab end of one of the nano-reinforcements (Fig. 3).

The forces from one nanofiller are transferred to the other through the action of the inter-linker. The SWCNT-

Fig. 3. Boundary conditions on four different multiscale FE models containing two fillers.

SWCNT nanocomposite contains two SWCNTs as reinforcements, with one of them being the primary filler (the

one to which the end deformation is applied). A similar topology is applied to the SLGS-SLGS model. The SLGS-

SWCNT model has the single layer graphene sheet at the reinforcement subjected to the external displacement.

The pullout force is calculated as the reaction force measured at the end of the entire RVE where the displacement

has been applied to the primary reinforcement. A node-to-element contact definition has been assigned between

the nodes of the filler, inter-linkers and the surface of 3D elements in the polymer matrix.A nonlinear Newton-

Raphson solver with switch on large deformation effects has been used to simulate the fibre pullout [59]. The

simulation is executed until the reinforcement comes out of the matrix at a distance of 14.5 Å. Beyond this cut-off

length the elements of the reinforcement and the spring elements representing the LJ potential have been found

to be unstable. During the simulation it was essential to deactivate the interface bonds between the filler and

matrix if the deflection developed is higher than the cut-off distance of 0.85 nm [6]. It was also necessary to

generate new bonds if a displaced carbon atom comes in contact with another atom of the matrix. Within the FE

7
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code ABAQUST M version 6.10, this operation is performed by using the commands *Restart and *Modelchange

[59]. The nodal displacements in the spring elements (interface bonds) are recorded at each increment step of the

nonlinear loading. If the nodal displacement is found to be beyond the cut-off distance the analysis is stopped and

restarted with an updated position of the nodes belonging to the spring elements. Another *Restart command is

then issued to restart the run from the same increment. Activation and de-activation of the spring element sets are

performed using the commands *Modelchange,Remove and *Modelchange,Add. This process has been referred

to as the ”debonding” and ”rebonding” mechanism in the current work. Possible interlocking phenomenon due to

the interaction between the carbon nanoreinforcements and matrix are taken into by defining a contact interaction

(node to surface) between the fillers and polymer. Similar multiscale models have been developed in [45] and been

used in [41].However, these models do not describe the presence of interlinks between the nanoinclusion and the

matrix as discrete functional groups.

3. Results and discussions

The pullout forces versus the tensile deformation are shown for various types of nano-reinforcement and inter-

linkers in figures 4 and 5. The general trend of these forces is very similar for all the four boundary conditions
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(b) SLGS-SLGS

Fig. 4. Force required to pull out the fibre from the SLGS-SLGS and SWCNT-SWCNT nanocomposites.

considered, and this indicates that the two types of nano-reinforcement are quite close in terms of mechanical be-

haviour under the conditions assumed in this work. It is however possible to observe some differences in terms of

magnitudes of the pullout forces when the reinforcements are directly compared one against the other. The maxi-

mum pullout force observed for a composite with a SLGS being the primary reinforcement is 370 nN, 6% higher

compared to the case in which the single wall carbon nanotube is the primary filler (refer to Figure 4(a)). The higher

interfacial strength in the SLGS nanocomposite due to the higher contact surface area between the reinforcement

and the polymer is believed to be responsible for this behaviour. The same trend has been also observed in the other

two nanocomposite topologies (Figures 5(a) and (b)) because the primary reinforcements in the SWCNT/SLGS

8
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and SLGS/SWCNT configurations are the same as the ones in the SLGS/SLGS and SWCNT/SWCNT nanocom-

posites respectively (Figure 3). The force/displacements curves remain almost identical up to a pullout distance
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(a) Hybrid SWCNT-SLGS composite
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(b) Hybrid SLGS-SWCNT composite

Fig. 5. Force required to pull out the fibre from the hybrid nanocomposites.

of 0.2 nm, because only the primary reinforcement is bearing the load at this stage. After this threshold distance

a sudden increase in load (first peak) can be observed due to the debonding and rebonding of the van der Walls

interactions in the primary reinforcement. Beyond the 0.2 nm pullout distance the curves however diverge because

the load starts to be shared by the inter-linker groups. The composites without inter-linkers generate lower reaction

forces beyond this distance. In the case of the nanocomposites with the inter-linkers a sudden increase in load can

be observed, with its magnitude depending upon the type of inter-linker used. The model with the (CH2)10N2H4

groups generates the highest load at this point, because of its higher length that allows to transfer the load at higher

tensile displacements. The PDA inter-linker also offers an increase in terms of load to pullout, since it possess

a larger surface that facilitates the contact with the surrounding polymer. After the threshold distance the load

will be distributed uniformly in the two reinforcements. As the load is transferred to the couple of reinforcements

through the inter-linkers the walls of the carbon nanostructures distort, leading to interlocking of these walls with

the surrounding polymer. Such wall distortion in the case of the SWCNT fillers can be considered a localised aux-

etic effect [49] (Fig. 6), similarly to what observed in auxetic polymeric fibres subjected to pullout tests [60]. As

also demonstrated by MD simulations carried previously by some of the Authors [49], the auxetic effect enhances

the pullout resistance of the nano reinforcements because of the fretting of the nanofiller against the matrix system

due to the transverse tensile expansion (negative Poisson’s ratio effect), leading to increased toughness and energy

dissipation of the overall structure [61]. Further discontinuities in the load/displacement curves can be observed

around 0.75 nm as a result of the debonding/rebonding occurring within the secondary reinforcement. The reaction

force generated by the secondary filler in the SWCNT-SWCNT nanocomposite is around 160 nN, 12.5% lower

than in the case of the SLGS/SLGS configuration, and a further indication that the single layer graphene offers an

enhanced uniaxial tensile mechanical performance, also a secondary reinforcements. Similar trends can also be

9
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Fig. 6. Evidence of localised auxetic effect between the SWCNT reinforcements provided by the inter-linker effect.

noticed in the hybrid SWCNT/SLGS and SLGS/SWCNT nanocomposites.

The interfacial strength between the filler and the matrix can be calculated as [49]:

Epullout = 2πrLτid − πrτid
2 (6)

In the above equation, τi is the interfacial shear strength, r and L are the width and length of the reinforcements,

x is the axial location in which the strength of the nanocomposite is measured and d is the deformation of the

nanoreinforcement. The pullout energy in kcal/mol can be calculated by Fpullout =
∂Epullout

∂d
, in which Fpullout is the

lowest pullout force (in nN) measured during the simulation and d is deformation expressed in nm. The interfacial

strength τi measured in the current work and compared with the one determined by other authors is given in Table 4.

The magnitude of the interfacial strength computed in the present work is within the lower end of the reported

values in open literature (44 MPa - 102 MPa).There is a noticeable scatter in the values of the interfacial shear

strength, the variability attributed to the different types of force models adopted in the molecular dynamics simu-

lations, the nature of the polymer matrix and the nanoreinforcement used.The highest interfacial strength value we

have observed in open literature is 500 MPa [62]. Gou et. al. [63] have also simulated the presence of a SWCNT

reinforcement in a epoxy matrix and reported 75 MPa as the interfacial strength, 75 % higher than what has been

simulated in the present work with no use of inter-linker. The maximum interfacial strength recorded in the present

work is 102.32 MPa (obtained by interlinking SLGS fibers with PDA). This value is very close to that of conven-

tional/commercial carbon fibre composites [74–78]. It is also worth noticing that in the case of stick-slip damping
10
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Table 4. Interfacial strength reported in open literature and present work. The values of present work are from SWCNT-SWCNT and SLGS-

SLGS nano-composites only. The terms PEEK, MWCNT and rGO in the table refers to Polyether ether ketone, multiwalled carbon nano tubes

and reduced graphene oxide respectively.

Authors Filler

type

Interfacial

strength

(MPa)

Inter-linker type Matrix type Analysis type

Wagner et al. [62] MWCNT 500 - Urethane based Experimental

Gou et al. [63] SWCNT 75.00 - Epoxy MD

Liao and Li [64] SWCNT 160.00 - Polystyrene MD

Rahman and Haque [65] SLGS 88.00 - Epoxy MD

Lv et al. [66] FSLGS 70.00 - Polyethylene MD

Chowdhury and Okabe [67] SWCNT 75.00 - Epoxy MD

Barber et al. [68] MWCNT 47.00 - Polyethylene Experimental

Sager et al. [69] MWCNT 86.6 - T650 carbon-Epoxy KellyTyson model [70]

Jang et al. [71] rGO 136.6 - Polycarbonate Semi-Empirical

Tsuda et al. [72] MWCNT 14 - PEEK Experimental

Roy et al. [73] SWCNT 160 - Polyvinylalcohol Experimental

Present work SLGS 49.26 - Epoxy Atomistic

Present work SLGS 62.14 PDA Epoxy Atomistic

Present work SLGS 95.25 (CH2)3N2H4 Epoxy Atomistic

Present work SLGS 102.32 (CH2)10N2H4 Epoxy Atomistic

Present work SWCNT 44.28 - Epoxy Atomistic

Present work SWCNT 58.25 PDA Epoxy Atomistic

Present work SWCNT 88.42 (CH2)3N2H4 Epoxy Atomistic

Present work SWCNT 98.13 (CH2)10N2H4 Epoxy Atomistic

Zhang et al. [49] SWCNT 46.48 - Polyethylene MD

Zhang et al. [49] SWCNT 63.45 PDA Polyethylene MD

Zhang et al. [49] SWCNT 90.26 (CH2)3N2H4 Polyethylene MD

Zhang et al. [49] SWCNT 100.85 (CH2)10N2H4 Polyethylene MD
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provided by single wall carbon nanotubes embedded in epoxy matrix, the values of the interfacial shear strength

used to fit experimental modal loss factors values varies as low as 0.2 MPa - 2 MPa [79]. In the current work, the

interfacial strength computed for the SWCNT-SWCNT type nanocomposites is very close to that computed with

MD in [49] with similar inter-linkers and polyethylene matrix. The maximum difference is found be around 2%

(for the inter-linker ((CH2)10N2H4)). In the cases of both SWCNT/SWCNT and SLGS/SLGS nanocomposites the

configuration with the ((CH2)10N2H4) inter-linker offers the highets interfacial shear strength efficiency, while the

((CH2)3N2H4) group provides the weakest contribution due to its short length, leading to an overall lower stiffness.

4. Conclusion

The pullout and interfacial strengths in nancomposites with hybrid inter-linker reinforcements have been pre-

dicted using a numerical nonlinear tensile atomistic-FE multiscale model. The model predicts a localised geometric

distortion when the nanoreinforcements interact with the matrix because of the presence of an inter-linked (auxetic

effect), as also predicted in previous works using molecular dynamics simulations. The bridging of the nanorein-

forcements with a link molecule enhances the pullout strength by upto 30%. The stiffness and surface area of the

inter-linkers play a role in enhancing the mechanical strength of overall nanocomposites, with the (CH2)10N2H4

interlinker found to be the most in transferring the load. The composites with SWCNT acting both as primary and

secondary reinforcements show a slight enhanced pullout performance (2 % more) than the graphene layer based

and hybrid nanoreinforcements. As a secondary filler the SWCNTs also offer 10% extra pullout strength when

compared to single layer graphene sheets. The interfacial shear strength between the nanoreinforcements and the

matrix computed with the multiscale technique shows a very good agreement with analogous configurations simu-

lated using Molecular Dynamics, and also shows a correlation between the specific carbon nanostructure used and

the chemical groups used for the inter-link. The model presented in this paper and the configurations of inter-linked

nanocomposites proposed may be used to further the. The novelty of this research lies in the development of a

simulation methodology that can predict the behaviour of multiphase nanocomposites at multiple length scales in

which the nanofillers are bridged by interlinkers.
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