

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in :

TyDe 2016

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa29413

Conference contribution :

Igried, B. & Setzer, A. (2016). Programming with monadic CSP-style processes in dependent type theory. TyDe

2016, (pp. 28-38). ACM.

http://dx.doi.org/10.1145/2976022.2976032

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository.

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/78860930?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa29413
http://dx.doi.org/10.1145/2976022.2976032
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

Programming with Monadic CSP-Style
Processes in Dependent Type Theory

Bashar Igried Anton Setzer
Department of Computer Science

Swansea University
Swansea, Wales, UK

bashar.igried@yahoo.com a.g.setzer@swansea.ac.uk

Abstract
We introduce a library called CSP-Agda for representing processes
in the dependently typed theorem prover and interactive program-
ming language Agda. We will enhance processes by a monad struc-
ture. The monad structure facilitates combining processes in a mod-
ular way, and allows to define recursion as a direct operation on pro-
cesses. Processes are defined coinductively as non-well-founded
trees. The nodes of the tree are formed by a an atomic one step rela-
tion, which determines for a process the external, internal choices,
and termination events it can choose, and whether the process has
terminated. The data type of processes is inspired by Setzer and
Hancock’s notion of interactive programs in dependent type theory.
The operators of CSP will be defined rather than atomic operations,
and compute new elements of the data type of processes from ex-
isting ones.

The approach will make use of advanced type theoretic features:
the use of inductive-recursively defined universes; the definition
of coinductive types by their observations, which has similarities
to the notion of an object in object-oriented programming; the
use of sized types for coinductive types, which allow coinductive
definitions in a modular way; the handling of finitary information
(names of processes) in a coinductive settings; the use of named
types for automatic inference of arguments similar to its use in
template Meta-programming in C++; and the use of interactive
programs in dependent type theory.

We introduce a simulator as an interactive program in Agda. The
simulator allows to observe the evolving of processes following
external or internal choices. Our aim is to use this in order to
simulate railway interlocking system and write programs in Agda
which directly use CSP processes.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; D.2.4 [Software/Program Verification]: For-
mal methods; D.3.2 [Language Classifications]: Applicative (func-
tional) languages; D.3.3 [Language Constructs and Features]: Ab-
stract data types; Input/output; Patterns; D.4.1 [Process Manage-
ment (concurrency)]; F.1.2 [Modes of Comptuation]: Interactive
and reactive computation; F.3.1 [Specifying and Verifying and Rea-
soning about Programs Mechanical verification]; F.3.2 [Semantics

of Programming Languages]: Process models; CSP; F.3.3 [Stud-
ies of Program constructs]: Functional constructs; Type structure;
Agda; Dependent Type Theory; Dependently Typed Programming

General Terms Languages, Theory, Verification

Keywords Agda, CSP, Dependent Type Theory, Monadic Pro-
gramming, Process Algebras, Interactive Program, Monad, IO-
Monad, Coalgebras, Coinductive Data Types, Sized Types, Induc-
tion-Recursion, Universes.

1. Introduction
Process algebras are one of the most important concepts for de-
scribing concurrent behaviours of programs. In functional program-
ming a lot of work has been invested in developing concepts for
defining interactive, usually sequential programs. The main ap-
proach is Moggi’s IO monad [41]. Hancock and Setzer [32–34]
have developed a version of the IO monad in dependent type theory,
which for the sake of brevity we call in this paper HS-monad. The
HS-monad has been used together with other ideas for formalising
IO in Idris [14, 15]. The HS-monad covers currently only sequen-
tial programs. In this article we explore the representation of pro-
cesses in dependent type theory as a step towards concurrent inter-
active programs. We will present as well an executable interactive
program in Agda, which simulates processes. Our vision is to use
this approach for writing concurrent programs in Agda, similarly
to as it is done in the Java library JCSP [50]. The main example
we are investigating are processes in the context of the European
Rail Traffic Management System ERTMS [28], for which the first
author has carried out some initial modelling in CSP. Our vision is
that prototypes can be executed in Agda directly. Other examples
one can envisage is to develop programs for networking in Agda.

The basis of functional programming are inductive data types
and function types. In order to represent interactive programs,
which are potentially non-terminating, in pure functional program-
ming, special constructs are needed. The most commonly used
construct is Moggi’s IO monad [41]. The idea is that an element of
(IO A) is an interactive program, which may or may not terminate,
and if it terminates returns an element of type A. We can use the
monadic bind to compose a p : IO A with a function f : A→ IO B
to form an element of (IO B). The program is executed by first
running p. If p terminates with result a, one continues running
(f a). Using nicely defined syntactic constructs, one can write se-
quences of operations in a way which looks similar to sequences of
assignments in imperative style programming languages.

The HS-monad reduces the IO monad to coinductively defined
types. An element of (IO A) is either a terminated program, or
it is node of a non-well-founded tree having as label a command

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

TyDe’16, September 18, 2016, Nara, Japan
c© 2016 ACM. 978-1-4503-4435-7/16/09...$15.00

http://dx.doi.org/10.1145/2976022.2976032

28

to be executed, and as branching degree the set of responses the
real world gives in response to this command. In CSP-Agda we
will model processes in a similar way. A CSP-Agda process can
either terminate, returning a result. Or it can be a tree branching
over external and internal choices, where for each such choice a
continuing process is given. So instead of forming processes by us-
ing high level operators, as it is usually done in process algebras,
our processes are given by these atomic one step operations. The
high level operators are defined operations on these processes. This
introduces a new concept to process, namely that of a monadic pro-
cesses which when terminating returns a value. This facilitates the
combination of processes in a modular way. Since processes are
defined coinductively, we can introduce processes directly corecur-
sively without having to use the recursion combinator.

Abel, Pientka, Thibodeau and Setzer have [5, 49] developed the
notion of coinductive types as being defined by their elimination
rules or observations. This notion has now been implemented in
Agda. This has strong similarity to the notion of classes and objects
in object oriented programming. Classes are essentially defined by
their methods, and therefore given by their observations. Setzer,
Abel and Adelsberger have used this approach in order to develop
the notion of objects in dependent type theory [6, 48]. In CSP-
Agda we will make extensive use of this approach. Using a record
type, we access directly for non-terminating processes the choice
sets and corresponding subprocesses. It turns out that this makes
programming with processes much easier, since it avoids the use of
auxiliary functions.

We will make extensive use of sized types [3]. The main rea-
son is that in its puristic form, primitive corecursion or guarded
recursion doesn’t allow to apply any functions to the corecursion
hypothesis. With sized types size preserving functions can be ap-
plied and therefore coinductive programs be written in a modular
way. The index sets of processes will be given by universes, which
are defined inductive-recursively [26].

We will make use of named types, as they are used in C++
template meta programming [8], to facilitate type inference. One
example is the product type A × B. In the Agda standard library,
it translates into Σ [x ∈ A] B. If we have an element (a , b)
of this type, we cannot infer B from it, since it we know only
the instance B [x := a]. If we define A × B directly, we
can infer the type. We have two types for representing finite sets
directly, (Fin n) and (NamedElements s). If we evaluate the latter
to (Fin n), type inference cannot differentiate between the two.
Defining (NamedElements s) as a separate inductive type solves
this problem.

The structure of this paper is as follows: In Sect. 2 we review
the process algebra CSP. In Sect. 3 we give a brief introduction
into the type theoretic language of Agda. In Sect. 4 we model CSP
processes in Agda, and define the most important CSP operators in
Agda. In Sec. 5 we introduce a simulator for CSP-Agda. In Sect. 6
we investigate related work, followed by a conclusion in Sect. 7.

Literal Agda code. All display style Agda code in this paper
has been generated from type checked literal Agda files. We have
hidden in the paper bureaucratic code, such as import of libraries,
and restricted ourselves to the most important definitions. The full
code of the library can be found at [36].

2. CSP
“Process algebras” were initiated in 1982 by Bergstra and Klop
[10] in order to provide a formal semantics to concurrent systems.
A “process” is a representation of the behaviour of a concurrent
system. “Algebra” means that the system is dealt with in an alge-
braic and axiomatic way [9]. Process algebras allow to study dis-
tributed or parallel systems in an algebraic way. Most process alge-
bras have basic operators to construct finite processes, synchronisa-

tion and parallel constructs to express concurrency, and a notion of
recursion to obtain infinite behaviour. The main process algebras
approaches are Calculus of Communicating Systems (CCS) [40],
Communicating Sequential Processes (CSP) [16] and Algebra of
Communicating Processes (ACP) [11]. The process algebras CSP
[35, 45, 46] was developed by Hoare in 1978 [35].

Processes in CSP form a labelled transition system, where the
one step transitions is written as

P
µ→ Q where P,Q are processes and µ is an action,

which means that process P can evolve to process Q by event µ. The
event µ can be a label, the silent transition τ , or the termination
event X. For example, the execution of the process a → b →
STOP can be described by the LTS:

(a→ b→ STOP)
a→ (b→ STOP)

b→ STOP

The operational semantics of CSP defines processes as states,
and defines the transition rules between the states using firing rule.
In Sect. 4 we will introduce firing rules for CSP operators (taken
from [46]), and model them in Agda.

In the following table, we list the constructs for forming CSP
processes. Here Q represent CSP processes:

Q ::= STOP STOP
| SKIP SKIP
| prefix a→ Q
| external choice Q 2 Q
| internal choice Q u Q
| hiding Q \ a
| renaming Q[R]
| parallel Q X‖Y Q
| interleaving Q ||| Q
| interrupt Q 4 Q
| composition Q o

9 Q

There are as well indexed versions of 2, u, ‖, |||. They are indexed
over finite sets, and therefore can be reduced to the binary case. We
will treat explicitly in this article only the binary case.

In this article we follow the version of CSP used in [45, 46].
All rules are taken from [46]. In the rules we follow the convention
of this book that a ranges over Label ∪ {X} and µ over Label ∪
{X, τ}.

3. Agda
Agda [7, 13] is a theorem prover and dependently typed program-
ming language, which extends intensional Martin-Löf type theory
[39]. It is closely related to the theorem prover Coq [20, 21, 44].
Predicates are given as types, the elements of which are proofs of
that property. Agda has a termination and coverage checker. This
makes Agda a total language, so each Agda program terminates.
Without the termination and coverage checker, Agda would be in-
consistent. The current version of this language is Agda 2 which
has been designed and implemented by Ulf Norell in his PhD in
2007 [43]. The user interface of Agda is Emacs. This interface has
been useful for interactively writing and verifying proofs [12]. Pro-
grams can be developed incrementally, since we can leave parts of
the program unfinished, and programmers can get useful informa-
tion from Agda on how to fill in the missing parts by type checking.
Agda has a type checker which refuses incorrect proofs by detect-
ing unmatched types. The type checker in Agda shows the goals
and the environment information related to proof. The coverage
checker guarantees that the definition of a function covers all pos-
sible cases, and the termination checker verifies that all programs
terminate.

29

There are several levels of types in Agda, the lowest is for
historic reasons called Set. Types in Agda are given as dependent
function types, inductive types and coinductive types. In addition
there exist record types (which are in the newer approach used
for defining coinductive types) and a generalisation of inductive-
recursive definitions. Inductive data type are dependent versions
of algebraic data types as they occur in functional programming.
Inductive data types are given as sets A together with constructors
which are strictly positive in A. For instance the collection of finite
sets is given as

data Fin : N→ Set where
zero : {n : N}→ Fin (suc n)
suc : {n : N} (i : Fin n)→ Fin (suc n)

Here {n : N} is an implicit argument. Implicit arguments are
omitted, provided they can be uniquely determined by the type
checker. We can make a hidden argument explicit by writing for
instance zero {n}.

The above definition introduces a new type Fin : N → Set
where (Fin n) is a type with n elements. The elements of (Fin n)
are those constructed from applying these constructors. Therefore
we can define functions by case distinction on these constructors
using pattern matching, e.g.

toN : ∀ {n}→ Fin n→ N
toN zero = 0
toN (suc n) = suc (toN n)

Nested patterns are allowed. The coverage checker checks com-
pleteness and the termination checker checks that the recursive calls
follow a schema of extended primitive recursion.

There are two approaches of defining coinductive types in Agda.
The older approach is based on the notion of codata types. We
will follow the newer one, pioneered by the second author, Abel,
Pientka and Thibodeau [5, 49], which is based on coalgebras given
by their observations or eliminators. Consider

record Stream (i : Size) : Set where
coinductive
constructor cons’
field

head : N
tail : {j : Size< i}→ Stream j

open Stream

If we first ignore the arguments Size, Size< we see that the type
Stream is given as a record type in Agda. It is defined coinductively
by its observations head, tail. We have an automatically generated
constructor cons’, which is only useful for records not involving
sizes. For records involving Sizes, one can use the self-defined
constructor cons:

cons : ∀ {i}→ N→ Stream i→ Stream (↑ i)
head (cons n s) = n
tail (cons n s) = s

Here we used the notation ∀ {a} → · · · , which stands for
{a : A}→ · · · , where A can be inferred by Agda.

Elements of Stream are defined by copattern matching, i.e. by
determining the result of applying head, tail to them. Without sizes,
only recursive calls to the function being defined are possible, with
no restrictions on the arguments they are applied to. No functions

can be applied to the recursive calls. This restriction is called the
principle of guarded recursion [22] or primitive corecursion. An
example is the tail component in the pointwise addition of two
streams:

+s : ∀ {i}→ Stream i→ Stream i→ Stream i
head (s +s s’) = head s + head s’
tail (s +s s’) = tail s +s tail s’

Here we use Agda’s mechanism for mixfix operators, where
the arguments of a mixfix operator are denoted by underscore ().
s +s s’ stands for (+s s s’).

+s makes a recursive call to tail s +s tail s’. Note that s, s’
are arguments of +s , so we can apply tail to them freely. Without
the guarded recursion restriction, one could define non productive
definitions, e.g. define tail (f x) = tail (f x).

However this restriction makes it difficult to define streams in
a modular way, therefore sized types [2, 3] are used. Sizes are
essentially ordinals (without infinite branching one can think of
them as natural numbers), however there is an additional infinite
size ∞. We can explicitly only access the size ∞, the successor
operation on sizes ↑ and smaller sizes using Size<. The idea is that
for ordinal sizes i 6= ∞, a stream s : Stream i allows up to i
times of applications of tail, whereas an s : Stream ∞ allows
arbitrary many applications of tail. When defining an element f :
(i : Size) → A i→ Stream i by corecursion, tail (s (f i a)) {j}
must be an element of size ≥ j which can refer to a recursive call
(f j a’), and we can apply functions to it as long as the resulting
size is ≥ j. Since we don’t have access to any size < j (j could
be the smallest size), we are not able to eliminate on the recursive
call itself. This means that we can apply size preserving and size
increasing functions to the recursive call, which guarantees that
streams are productive. We have ∞ : Size< ∞, so a recursive
definition of elements of Stream ∞ can refer to itself. One could
say that with sized types we define two functions: One using ordinal
sizes, which is used to calculate the correct usage of sizes. The other
one is where sizes are replaced by∞.

An example of applying the size preserving function +s to
the recursion hypothesis is the stream of Fibonacci numbers as
defined e.g. in [4]:

fib : ∀ {i}→ Stream i
head fib = 1
head (tail fib) = 1
tail (tail fib) = fib +s tail fib

4. The Library CSP-Agda
In process algebras, if a process terminates, it does not return
any information except for that it terminated. 1 We want to define
processes in a monadic way in order to combine them in a modular
way. Therefore, if processes terminate, they should return some
additional information, namely the result returned by the process.

In functional programming, a monad is given by a functor M
together with morphisms�= : M A → (A → M B) → M B and
return : A→ M A such that the following laws hold:

return a�= f = f a
p�= return = p
(p�= f)�= g = p�= (λ x.f x�= g)

1 See below for a discussion on terminated processes vs terminating events
as they occur in CSP.

30

The type of interactive programs can be considered as a monad
in the following way:

• For a given set A, (M A) is the set of interactive programs which
may or may not terminate, and if they terminate, they will return
a result a : A.

• Assume P is program in (M A), and Q is a function which for
a : A returns a program in (M B). then P�= Q is the program
which executes as follows: First P is executed. If P terminates
with result a then we continue executing (Q a). The result of
the whole process is the result of (Q a) (if it terminates).

• The program (return a) will terminate without any interaction
with result a.

Processes in our approach are similar to interactive programs.
They are defined using an atomic operation, corresponding to the
next transitions they can make. Since processes can loop for ever,
they are defined coinductively. The standard CSP-operators are in
our approach defined rather than atomic as in process algebras.
Since processes are given coinductively, we can introduce pro-
cesses by primitive corecursion (also called guarded recursion).
The principle of primitive corecursion, which is enforced by Agda’s
termination checker, will guarantee processes to be productive,
which means for a process we can determine whether it terminates
or not, and, in case it terminates, the result returned, and, in case it
doesn’t terminate, which next transitions it can make, and the next
processes after firing these transitions.

Terminated processes vs termination events. In CSP termina-
tion is handled by events. A process can terminate, which is mod-
elled by an event with reserved label X. If P X→ P′, then P′ is a
deadlocked process, which is in all standard semantic models of
CSP equal to the process STOP. A first step towards a monadic
version of processes is that we add a return value to X-transitions.
This is the result returned when the process terminates, which can
be used for choosing a continuation e.g. in monadic bind. Since P′

is equal to STOP we can omit it and just write P
X,a→ for P having

a termination event with return value a.
Adapted to the monadic setting, we have the CSP process

(SKIP a) (for a return value a) which has as only transition
SKIP a

X,a→ . We want to have as well a terminated process
(terminate a) with result a, which is our name for the monadic
(return a). (terminate a) is very similar to (SKIP a), except that
(terminate a) has terminated, whereas (SKIP a) will terminate.
If we lift (o9) to a monadic �= we get SKIP a�= Q τ→ Q a,
whereas we want definitionally terminate a�= Q = Q a without
a τ -transition. Semantically this doesn’t make a difference, since in
the various semantics of CSP we have τ −→ P = P. When using
it, it makes a difference, since when composing processes we don’t
want a τ -transition in between.

Because of the equation τ −→ P = P, we could use (SKIP a)
for (terminate a) and optimise the rules to guarantee
SKIP a �= Q = Q a. However, this makes the code very
complex. It seems to be a better approach to have a separate process
(terminate a). That process will be in CSP semantics equal to
(SKIP a). When defining CSP operators applied to arguments, we
define it for the argument (terminate a) in the same way as for
the argument (SKIP a). However, if the result is a process which
has only one τ -transition to a process P, we return instead, when
the argument is (terminate a), directly process P without the τ -
transition. So we have two kinds of terminated processes in CSP-
Agda. One is the result of following a termination event X, and one
is the new terminated process (terminate a).

4.1 Representing CSP Processes in Agda
In a monadic version, a process P : Process A is either a termi-
nating process (terminate a), which has return value a : A, or
it is process (node P) which progresses. Here P : Process+ A,
where (Process+ A) is the type of progressing processes. A pro-
gressing process can proceed at any time with labelled transitions
(external choices), silent transitions (internal choices), or X-events
(termination). After a X-event, the process becomes deadlocked, so
there is no need to determine the process after that event. However,
as discussed before we will add a return value a : A to X-events.

Elements of (Process+ A) are therefore determined by

(1) an index set E of external choices and for each external choice
e the Label (Lab e) and the next process (PE e);

(2) an index set of internal choices I and for each internal choice i
the next process (PI i); and

(3) an index set of termination choices T corresponding to X-
events and for each termination choice t the return value PT t :
A.

One might consider reducing the number of components by unify-
ing the choice sets and adding τ and X to the set of labels. However,
the operators of CSP handle external, internal, and termination tran-
sitions quite differently. If we encoded them as one choice set, we
would for each operator have to select the choices corresponding to
these categories, form the new choices and recombine them. Keep-
ing them as separate entities makes programming much easier.

We define (Process+ A) as a record. Definition of elements of
it by copattern matching is very convenient, since it avoids the need
to define the components of (Process+ A) as auxiliary functions
as one would have to do when using data.

Processes need to be defined coinductively instead of induc-
tively – otherwise processes would always after finitely many tran-
sitions eventually terminate. Processes will therefore be defined by
primitive corecursion or guarded recursion. The left hand side of a
primitive corecursion scheme needs to have an observation applied
to the element of the coinductive type to be defined. We could do
this using (Process+ A). However, this would mean that for defin-
ing a process by primitive corecursion, we need to define all the 7
components. It seems to be natural to define processes by primi-
tive corecursion where we want to equate the result of applying an
eliminator to a process directly with a process formed from other
processes, without having to define all 7 components. Because of
this we introduce a third type of processes, (Process∞ A) which
has a observation forcep returning an element of (Process A).

We will develop a simulator for processes, which displays the
evolving of processes following external and internal choices. The
simulator needs to display processes as strings. Since processes
are infinite objects, we cannot directly compute such finite strings.
The solution is to add a new field Str+ to (Process+ A) which
determines the string. That string needs to be user-defined. We
need to add as well a field Str∞ to (Process∞ A). The reason
is that we can only use Str+ to obtain a string from an element
of (Process∞ A), if we have a smaller size available, which in
general is not the case. This is no artificial restriction imposed by
sizes: Without this field it is in general not possible to compute a
string. For instance, we could define elements of (Process∞ A)
corecursively without assigning to it a string directly. Then any
string computed would need to be infinite.

We model the sets of external, internal, and termination choices
as elements of an inductive-recursively defined universe Choice.
Elements c of Choice are codes for finite sets, and (ChoiceSet c)
is the set it denotes. In addition we define a string (choice2Str c)
representing c, and a function choice2Enum which computes from

31

c a list of all choices. This will be used to print a list of choices in
the simulator for CSP processes.

We require as well that the set of return values are elements of
Choice. This allows us to print the result returned when a process
terminates. However, for the return types it is not needed that they
are finite sets. We plan to introduce in future a separate universe for
return values, where we only require that a string can be computed
for each element, but drop the requirement to compute an enumera-
tion of its elements. Then we could have the set of natural numbers
as a return value, which could be useful for defining processes by
recursion over the natural numbers.

The resulting code for processes in Agda is as follows:

mutual
record Process∞ (i : Size) (c : Choice) : Set where

coinductive
field

forcep : {j : Size< i}→ Process j c
Str∞ : String

data Process (i : Size) (c : Choice) : Set where
terminate : ChoiceSet c → Process i c
node : Process+ i c → Process i c

record Process+ (i : Size) (c : Choice) : Set where
constructor process+
coinductive
field

E : Choice
Lab : ChoiceSet E → Label
PE : ChoiceSet E → Process∞ i c
I : Choice
PI : ChoiceSet I → Process∞ i c
T : Choice
PT : ChoiceSet T → ChoiceSet c
Str+ : String

An example of a process is as follows:

P = node (process+ E Lab PE I PI T PT "P")
: Process String where

E = code for {1, 2} I = code for {3, 4}
T = code for {5}
Lab 1 = a Lab 2 = b PE 1 = P1

PE 2 = P2 PI 3 = P3 PI 4 = P4

PT 5 = "STOP"

P1
a

b

P2 P3 P4P1

2
3 τ

5
Xτ

"STOP"

4

The universe of choices is given by a set Choice of codes for
choice sets, and a function ChoiceSet, which maps a code to the
choice set it denotes. Universes were introduced by Martin-Löf
(e.g. [39]) in order to formulate the notion of a type consisting
of types. Universes are defined in Agda by an inductive-recursive
definition [23–26]: we define inductively the set of codes in the
universe while recursively defining the decoding function.

We give here the code expressing that Choice is closed un-
der fin,]’, ×’, subset’, Σ’ and namedElements. Closure un-
der other operations can easily be added as needed. The type
(NamedElements l) is essentially (Fin (length l)). The func-
tion choice2Str will for elements of this set print the nth ele-
ment of l, giving them more meaningful names. We don’t equate

(NamedElements l) with (Fin (length l)). This facilitates type
inference. subset A f is the set of a : A such that (f a) is true.

We could have defined Choice simply as the collection of finite
sets (Fin n). However, then the indices of choice sets would loose
connection with the actual types constructed. For instance in case
of external choice P 2 Q, in our setting a choice (inj1 x) refers to
P, and a choice (inj2 x) refers to Q.

data NamedElements (s : List String) : Set where
ne : Fin (length s)→ NamedElements s

mutual
data Choice : Set where

fin : N→ Choice
]’ : Choice→ Choice→ Choice
×’ : Choice→ Choice→ Choice

namedElements : List String→ Choice
subset’ : (E : Choice) → (ChoiceSet E → Bool)

→ Choice
Σ’ : (E : Choice) → (ChoiceSet E → Choice)

→ Choice

ChoiceSet : Choice→ Set
ChoiceSet (fin n) = Fin n
ChoiceSet (s]’ t) = ChoiceSet s] ChoiceSet t
ChoiceSet (E ×’ F) = ChoiceSet E × ChoiceSet F
ChoiceSet (namedElements s) = NamedElements s
ChoiceSet (subset’ E f) = subset (ChoiceSet E) f
ChoiceSet (Σ’ A B) = Σ[x ∈ ChoiceSet A]

ChoiceSet (B x)

choice2Str : {c : Choice}→ ChoiceSet c → String
choice2Str {fin n} m = showN (toN m)
. . .

choice2Enum : (c : Choice)→ List (ChoiceSet c)
choice2Enum (fin n) = fin2Option0 n
. . .

(Lab P) can return the same value for different elements of
(Lab P), therefore a process can have several transitions with the
same label. This is in accordance with CSP. One could instead
demand that for each label there is at most one transition possible,
and replace processes having several transitions with the same label
by one which has one transition followed by silent transitions to the
different choices.

4.2 Sequential Composition
In CSP the semi-colon operator (o9) is used for sequencing two
processes, where, if the first process terminates, control is passed
to a second one. The rules for sequential composition in CSP are as
follows:

P X→ P̄
P o

9 Q τ→ Q

P
µ→ P̄ [µ 6= X]

P o
9 Q

µ→ P̄ o
9 Q

In CSP-Agda we have monadic composition P�=Q, where Q
depends on the return value of P. We obtain therefore in monadic
form SKIP a �= Q τ→ Q a as only transition. (terminate a)
should behave as (SKIP a), however we omit unnecessary τ -
transitions. Therefore we define terminate a �= Q = Q a. If
P has a X, a-event, we cannot define P �= Q = Q a, since
P could have other external or internal choices. Therefore, a τ -
transition before continuing with (Q a) will be added, as it happens

32

in original CSP. In the following code choice2Str2Str converts a
function ChoiceSet c→ String into a meaningful string, making a
case distinction on the argument. In P′ := (P �=+ Q), external
choices of P become external choices of P′ using a recursive call,
similarly for internal choices. For termination events of P with
return value PT P c = a, we get additional internal choice
transitions P′ τ→ Q a.

�=Str : {c0 : Choice}→ String
→ (ChoiceSet c0→ String) → String

s�=Str f = s ++s ";" ++s choice2Str2Str f

mutual
�=∞ : {i : Size}→ {c0 c1 : Choice}

→ Process∞ i c0
→ (ChoiceSet c0→ Process∞ i c1)
→ Process∞ i c1

forcep (P�=∞ Q) = forcep P �= Q
Str∞ (P�=∞ Q) = Str∞ P�=Str (Str∞ ◦ Q)

�= : {i : Size}→ {c0 c1 : Choice}
→ Process i c0
→ (ChoiceSet c0→ Process∞ (↑ i) c1)
→ Process i c1

node P �= Q = node (P�=+ Q)
terminate x �= Q = forcep (Q x)

�=+ : {i : Size}→ {c0 c1 : Choice}
→ Process+ i c0
→ (ChoiceSet c0→ Process∞ i c1)
→ Process+ i c1

E (P�=+ Q) = E P
Lab (P�=+ Q) = Lab P
PE (P�=+ Q) c = PE P c �=∞ Q
I (P�=+ Q) = I P]’ T P
PI (P�=+ Q) (inj1 c) = PI P c �=∞ Q
PI (P�=+ Q) (inj2 c) = Q (PT P c)
T (P�=+ Q) = ∅’
PT (P�=+ Q) ()
Str+ (P�=+ Q) = Str+ P�=Str (Str∞ ◦ Q)

The above code introduces a pattern of defining operators on
Process by defining simultaneously operators on the three cate-
gories of processes Process∞, Process, and Process+, where the
qualifier∞, p, + attached to the operator refer to the 3 categories
of processes, respectively. We often omit p, and omitted it in case
of �= . We have as well a string forming operation indicated
by Str, and sometimes a result type forming operation indicated by
Res. For some binary operators we need versions where the argu-
ments are from different categories of processes, in which case we
add two qualifiers to the operators. We will in the following only
present the main cases of the operators. Especially, we will omit
the functions involving Process∞, which in most cases follow the
same pattern as the definition of �=∞ above, and the string
forming operation, which is easy to define. The full code can be
found at [36].

4.3 The Recursion Operator
We can define recursion in a similar way to �= . The operation
takes an s : String, f : ChoiceSet c0 → Process+ i
(c0]’ c1) and an a : ChoiceSetc0 and returns a process
(rec s f a) which operates as follows: We start with process (f a)
and follow its external and internal choices. If it terminates with re-

sult (inj2 x), the recursion terminates with result x. If it terminates
with result (inj1 a’), we recursively start again, with a replaced by
a’.

However, in case (f x) terminates immediately, this procedure
(unless we put a τ -transition after each loop iteration) will result
potentially in a black hole recursion. To avoid this we require
f x : Process+, which is the type of processes which have

not terminated. We have an argument s which is the name of the
resulting process, since an automatically generated name would in
most cases be unreadable.

The Agda code is as follows ((renameP name P) renames the
Str+ component of process P to name):

mutual
rec : {i : Size}→ {c0 c1 : Choice}

→ (s : String)
→ (ChoiceSet c0→ Process+ (↑ i) (c0]’ c1))
→ ChoiceSet c0
→ Process∞ i c1

forcep (rec s f a) = renameP s
(f a�=+p recaux s f)

Str∞ (rec s f a) = s

recaux : {i : Size}→ {c0 c1 : Choice}
→ (s : String)
→ (ChoiceSet c0→ Process+ (↑ i) (c0]’ c1))
→ (ChoiceSet c0] ChoiceSet c1)
→ Process∞ i c1

recaux s f (inj1 x) = rec s f x
recaux s f (inj2 x) = delay (terminate x)

4.4 STOP, SKIP, Terminate, DIV
The STOP process in CSP is the deadlocked process, which refuses
all communication. It has no transition rule. It can be modelled as a
process which has empty external, internal and termination choice
sets ∅’. The components Lab, PE, PI, PT have as domain the empty
set, and can be given by the function efq (for ex falsum quodlibet)
which is defined by the empty case distinction, as denoted by ().
The name of STOP is "STOP".

efq : {A : Set}→ Fin 0→ A
efq ()

STOP+ : {i : Size}→ (c : Choice)→ Process+ i c
STOP+ c = process+ ∅’ efq efq ∅’ efq ∅’ efq "STOP"

The CSP process SKIP terminates immediately. Its only transi-
tion is

SKIP
X→ STOP

In CSP we have that SKIP o
9 P τ→ P instead of SKIP o

9 P = P.
Therefore SKIP is not the process (terminate a) but a process
which has no external or internal choices and only one X choice
with a given return value. Let>’ = fin 1 be the one element choice
set. SKIP is defined as follows:

SKIP+ : {i : Size}→ {c : Choice}→ (a : ChoiceSet c)
→ Process+ i c

SKIP+ a
= process+ ∅’ efq efq ∅’ efq >’ (ń → a)

("SKIP(" ++s choice2Str a ++s ")")

33

We have as well the terminating process given by
terminate: {i : Size}→ (c : Choice)→ (a : ChoiceSet c)

→ Process+ i c
Direct divergence in the sense of black hole recursion does not

occur in CSP-Agda, since productivity is guaranteed by Agda’s
termination checker. Note that in case of recursion, productivity
is guaranteed by referring to the type of not-terminated processes
Process+. However one can easily define a process which has
infinitely many τ transitions to itself:

mutual
DIV∞ : {i : Size}→ {c : Choice}→ Process∞ i c
forcep DIV∞ = node (process+ ∅’ efq efq >’

(ń → DIV∞) ∅’ efq "DIV")
Str∞ DIV∞ = "DIV"

4.5 Prefix
The prefix operator a→ P has only one transition

(a→ P)
a→ P

So it is the process with one external choice with label a and
continuation P, and empty internal and X-choices:

−→+ : {i : Size} → {c : Choice} → Label
→ Process∞ i c → Process+ i c

l −→+ P = process+ >’ (ń → l) (ń → P) ∅’ efq ∅’ efq
(l −→Str Str∞ P)

4.6 Internal Choice
The internal choice operator has the following transitions:

P u Q τ→ P P u Q τ→ Q

It is modelled in CSP-Agda by having as internal choice set bool
and otherwise empty choices:

bool : Choice
bool = fin 2

if then else : {A : Set}→ ChoiceSet bool→ A→ A→ A
if zero then a else b = a
if (suc zero) then a else b = b
if (suc (suc ())) then a else b

u+ : {i : Size}→ {c : Choice}→ Process∞ i c
→ Process∞ i c→ Process+ i c

P u+ Q =
process+ ∅’ efq efq bool (ń b→ if b then P else Q) ∅’ efq

(Str∞ P uStr Str∞ Q)

4.7 External Choice
External choice allows the environment to make the choice between
the behaviour of the processes. For instance, the process (a →
P 2 b → Q) can engage in either of the events a or b. If the first
event chosen was a, the posterior behaviour is described by P, and
if it was b, the process will behave as Q. The inference rules for
external choice are as follows (having an inference rule with two
conclusions is an abbreviation for two inference rule, one deriving
the first and one deriving the second conclusion):

P a→ P̄
P 2 Q a→ P̄

Q 2 P a→ P̄

P τ→ P̄
P 2 Q τ→ P̄ 2 Q

Q 2 P τ→ Q 2 P̄

Assume processes P : Process i c0 and Q : Process i c1 and
consider P 2 Q. If P or Q terminates, then P 2 Q can terminate
with the return value of that process. In case both processes are of
the form terminate we need to be consistent with the behaviour we
would have if both processes were SKIP: in that case the process
could have two X-events corresponding to each of the two return
value. So we get again return values in c0 or c1. The result returned
is therefore always in c0 or c1, i.e. an element of the disjoint union
(c0] c1) of c0 and c1. In case P and Q have not terminated the
defining equations are obvious from the rules. The only problem is
that we have to map the return values of the processes (PE P c) to
the return value of P 2 Q. We do this by using the function fmap
defined below.

If both processes terminate, as said before we obtain a process
which can terminate with each of two given return values. So
we obtain (2-X a b) which is the process which can make X
transitions for return values (inj1 a) and (inj2 a). We would
prefer to return (terminate (a „ b)), but being consistent with
that (terminate a) should be semantically equal to (SKIP a)
requires this choice. In case of (terminate a 2 P) we get a
more complex behaviour: (1) the combined process can terminate
with result a; (2) it can follow an internal choice of P, after which
the possibility having a transition as in (1) remains; (3) we can
have a termination event of P, in which case the result returned
is that of P; (4) we can have an external choice of P, in which case
information about termination of the first process is lost. What we
get is that the combined process behaves as P, but the return value
needs to be mapped to the return value of the combined value. In
addition, we need to add using addTimedX a timed tick event,
which provides the possibility of having a transition

X,a→ , as long
as the process hasn’t performed an external choice operation. We
obtain the following code:

mutual
2 : {c0 c1 : Choice}→ {i : Size}→ Process i c0
→ Process i c1→ Process i (c0]’ c1)

node P 2 Q = P 2+p Q
P 2 node Q = P 2p+ Q
terminate a 2 terminate b = 2-X a b

2+p : {c0 c1 : Choice}→ {i : Size}
→ Process+ i c0→ Process i c1
→ Process i (c0]’ c1)

P 2+p terminate b = addTimedX (inj2 b)
(node (fmap+ inj1 P))

P 2+p node Q = node (P 2+ Q)

2+ : {c0 c1 : Choice}→ {i : Size}
→ Process+ i c0→ Process+ i c1
→ Process+ i (c0]’ c1)

E (P 2+ Q) = E P]’ E Q
Lab (P 2+ Q) (inj1 x) = Lab P x
Lab (P 2+ Q) (inj2 x) = Lab Q x
PE (P 2+ Q) (inj1 x) = fmap∞ inj1 (PE P x)
PE (P 2+ Q) (inj2 x) = fmap∞ inj2 (PE Q x)
I (P 2+ Q) = I P]’ I Q
PI (P 2+ Q) (inj1 c) = PI P c 2∞+ Q
PI (P 2+ Q) (inj2 c) = P 2+∞ PI Q c
T (P 2+ Q) = T P]’ T Q
PT (P 2+ Q) (inj1 c) = inj1 (PT P c)

34

PT (P 2+ Q) (inj2 c) = inj2 (PT Q c)
Str+ (P 2+ Q) = Str+ P 2Str Str+ Q

We used here the function which adds the possibility of termi-
nating with result a, which is only available, as long as the process
hasn’t performed an external choice

addTimedX+ : ∀ {i}→ {c : Choice}
→ (a : ChoiceSet c)
→ Process+ i c→ Process+ i c

E (addTimedX+ a P) = E P
Lab (addTimedX+ a P) = Lab P
PE (addTimedX+ a P) s = PE P s
I (addTimedX+ a P) = I P
PI (addTimedX+ a P) s =

addTimedX∞ a (PI P s)
T (addTimedX+ a P) = >’]’ T P
PT (addTimedX+ a P) (inj1) = a
PT (addTimedX+ a P) (inj2 c) = PT P c
Str+ (addTimedX+ a P) =

addTimedXStr a (Str+ P)

The process having two tick events for two values is defined as
follows:

2-X+ : ∀ {i}→ {c0 c1 : Choice}→ (a : ChoiceSet c0)
→ (a’ : ChoiceSet c1)→ Process+ i (c0]’ c1)

2-X+ a a’ = process+ ∅’ efq efq ∅’ efq bool
(ń b→ if b then (inj1 a) else (inj2 a’))
(2-XStr a a’)

The function fmap mapping (Process i c0) to (Process i c1)
by applying a function (f : ChoiceSet c0 → ChoiceSet c1) to the
return values can be defined using monadic composition:
fmap : {c0 c1 : Choice}→ {i : Size}
→ (f : ChoiceSet c0→ ChoiceSet c1)
→ Process i c0→ Process i c1

fmap f P = P�= (delay ◦ terminate ◦ f)

4.8 Renaming
The renaming operator takes a process and renames the external
choice labels by applying a function to them. It is modelled in CSP-
Agda as follows:

Rename+ : {i : Size}→ {c : Choice}
→ (f : Label→ Label)
→ Process+ i c→ Process+ i c

E (Rename+ f P) = (E P)
Lab (Rename+ f P) c = f (Lab P c)
PE (Rename+ f P) c = Rename∞ f (PE P c)
I (Rename+ f P) = I P
PI (Rename+ f P) c = Rename∞ f (PI P c)
T (Rename+ f P) = T P
PT (Rename+ f P) c = PT P c
Str+ (Rename+ f P) = RenameStr f (Str+ P)

4.9 Parallel Operator, Interleaving, and Interrupt
The parallel and interleaving operators enforce two processes to
work together and interact through synchronous events. The Agda-
code for the parallel operator is quite long (see the CSP-library
[36] for its code), and therefore we present in this short paper only
the interleaving operator. In the library one can find as well the

interrupt operator which we omit because of lack of space in this
article. The interleaving operator executes the external and internal
choices of its arguments P and Q completely independently of each
other. The CSP rules are as follows:

P X→ P̄ Q X→ Q̄

P ||| Q X→ P̄ ||| Q̄

P
µ→ P̄ µ 6= X

P ||| Q
µ→ P̄ ||| Q

Q ||| P
µ→ Q ||| P̄

The definition in CSP-Agda is as follows:

mutual
||| : {i : Size}→ {c0 c1 : Choice}→ Process i c0
→ Process i c1→ Process i (c0 ×’ c1)

node P ||| node Q = node (P |||++ Q)
terminate a ||| Q = fmap (ń b→ (a „ b)) Q
P ||| terminate b = fmap (ń a→ (a „ b)) P

|||++ : {i : Size}→ {c0 c1 : Choice}
→ Process+ i c0→ Process+ i c1
→ Process+ i (c0 ×’ c1)

E (P |||++ Q) = E P]’ E Q
Lab (P |||++ Q) (inj1 c) = Lab P c
Lab (P |||++ Q) (inj2 c) = Lab Q c
PE (P |||++ Q) (inj1 c) = PE P c |||∞+ Q
PE (P |||++ Q) (inj2 c) = P |||+∞ PE Q c
I (P |||++ Q) = I P]’ I Q
PI (P |||++ Q) (inj1 c) = PI P c |||∞+ Q
PI (P |||++ Q) (inj2 c) = P |||+∞ PI Q c
T (P |||++ Q) = T P ×’ T Q
PT (P |||++ Q) (c „ c1) = PT P c „ PT Q c1
Str+ (P |||++ Q) = Str+ P |||Str Str+ Q

When processes P and Q haven’t terminated, then P ||| Q will
not terminate. The external choices are the external choices of P
and Q. The labels are the labels from the processes P and Q,
and we continue recursively with the interleaving combination.
The internal choices are defined similarly. A termination event can
happen only if both processes have a termination event.

If one process terminates but the other not, the rules of CSP
express that one continues as the other other process, until it has
terminated. We can therefore equate, if P has terminated, P ||| Q
with Q. However, we record the result obtained by P, and therefore
apply fmap to Q in order to add the result of P to the result of Q
when it terminates. If both processes terminate with results a and
b, then the interleaving combination terminates with result (a „ b).

4.10 Hiding
Hiding allows to hide some external transitions and replace them
by silent ones in order to hide them from other processes. The
behaviour of the hiding operator is shown by the following firing
rules:

P a→ P̄ [a ∈ A]
P \ A τ→ P̄ \ A

P
µ→ P̄ [µ /∈ A)]

P \ A
µ→ P̄ \ A

In our approach we model this operator as follows (the parame-
ter hide determines whether a label is hidden or not):

Hide+ : {i : Size}→ {c : Choice}
→ (hide : Label→ Bool)→ Process+ i c
→ Process+ i c

E (Hide+ f P) = subset’ (E P) (¬ b ◦ f ◦ (Lab P))
Lab (Hide+ f P) c = Lab P (projSubset c)
PE (Hide+ f P) c = Hide∞ f (PE P (projSubset c))

35

I (Hide+ f P) = I P]’ subset’ (E P) (f ◦ Lab P)
PI (Hide+ f P) (inj1 c) = Hide∞ f (PI P c)
PI (Hide+ f P) (inj2 c) =

Hide∞ f (PE P (projSubset c))
T (Hide+ f P) = T P
PT (Hide+ f P) = PT P
Str+ (Hide+ f P) = HideStr f (Str+ P)

Here ¬ b is Boolean negation. In our approach the external
choice E P is the subset of the external choices for which is Lab P
is not hidden, and the internal choice I P is the union of the internal
choice and the subset of the external choice for which Lab P is
hidden. Informally:

PE′ = {x ∈ PE | Label(x) is not hidden }
PI′ = {x ∈ PE | Label(x) is hidden }+ PI

5. A Simulator of CSP-Agda
We have written a simulator in Agda. It turned out to be more
complicated than expected, since we needed to convert processes,
which are infinite entities, into strings, which are finitary. The
solution was to add string components to Process and Process∞.
The need to add it to Process∞ was unexpected, since Process+
already seemed to have this information – however, one can only
access it only if one has a smaller size available. We needed as well
to add a conversion of choice sets to labels and restrict result sets
to choice sets to make them printable.

The simulator does the following: It will display to the user the
selected process, the set of termination choices with their return
value (we don’t allow the user to follow them, because it will
always deadlock), and allows the user to choose an external or
internal choice as a string input. If the input is correct, then the
program continues with the process which is obtained by following
that transition, otherwise an error message is returned and the
program asks again for a choice. The simulator is implemented
using a cut down version of the IO library of ooAgda [6], which
makes use of the HS-monad. The IO library defines a version
IOConsole of the IO monad with console commands (putStrLn s)
for writing a string to console with a return type Unit, and getLine
for getting user input with return type String.

The simulator displays the process as a string. Then it computes
and displays the set of X-events and their results, and of external
and internal choices together with their labels. We use the function
choice2Enum to compute the list of choices and choice2Str to
create a string representing a choice. Then the simulator asks for
a user input, a string. The input is then compared with the choices
available, yielding a Maybe applied to the list of external and
internal choices. If the input was correct, the program continues
with the next process, otherwise the user is asked to enter another
choice. X-events are only displayed but one cannot follow them,
because afterwards the system would stop.

mutual
simulator : ∀ {i}→ {c0 : Choice}
→ Process∞ c0→ IOConsole i Unit

forceIO (simulator P) =
do’ (putStrLn (Str P)) ń →
do (putStrLn ("Termination-Events:"

++s showTicks P)) ń →
do (putStrLn

("Events" ++s showLabels1 P)) ń →
do (putStrLn ("Choose Event")) ń →
do getLine ń s →
simulator1 P (lookupChoice

(processToE P)
(processToI P) s)

simulator1 : ∀ {i}→ {c0 : Choice}
→ (P : Process∞ c0)
→Maybe ((ChoiceSet (processToE P))
] (ChoiceSet (processToI P)))

→ IOConsole i Unit
forceIO (simulator1 P nothing) =

do’ (putStrLn
"please enter a choice amongst") ń →

do (putStrLn (showLabels1 P)) ń →
simulator P

simulator1 P (just c1) =
simulator (processToSubprocess P c1)

main : NativeIO Unit
main = translateIOConsole (simulator myProcess)

An example run of the simulator is as follows:

Internal choice and termination events are labelled by "i-" and
"t-", respectively. Since it is difficult to type in on the terminal
inj1, inj2, we use the traditional names inl and inr instead. We have
in the first step one X-event (inr (inr 0)), one external choice
(inl 0), and two internal choices (inr (inl 0) and (inr (inl 1). In
this run the user chose one internal choice and then one external
choice. We used a more complex version of fmap, which displays
a more readable string.

6. Related Work
There have been several successful approaches of combining func-
tional programming with the CSP process Algebra. Brown [17] in-
troduced a library (Communicating Haskell Process library, CHP)
in Haskell. Since Haskell lacks explicit support for concurrency,
he used a Haskell monad to provide a way to explicitly specify
and control sequence and effects. Brown et al. [18] present a new
technique in order to generate CSP models of Haskell implemen-
tations using the CHP library. This approach is characterised by
the need for a detailed semantics of the Haskell language. In order
to check the model generated by this approach against deadlock
(using the FDR and ProB tools) they used it as well to perform
refinement checks. López et al. [38] gave further examples of com-
bining functional programming with process algebras. They used
the functional program Eden in order to translate VPSPA specifi-
cation into Eden programs. Eden extends Haskell, and is consid-
ered as a concurrent functional language. Similarly, Fontaine [29]
gave another successful attempt of implementing the operational
semantics of CSP [45] using the functional programming language
Haskell. He presented a new tool for animation and model check-
ing for CSP. Fontaine used a monad in order to model Input/Output,
partial functions, state, non-determinism, monadic parser and pass-
ing of an environment. Sellink [47] gave a successful attempt to

36

represent process algebras in type theory. Sellink used µCRL, a
language for reasoning about the Algebra of Communicating Pro-
cesses, in order to implement it in the type theoretic proof assistant
Coq [21, 44].

Cleaveland et al. [19] gave an earlier attempt to implement
process algebras in type theory. They implemented the Calculus
for Communicating Systems [40] in the proof assistant Nuprl [1],
which is similar to Agda, but based on extensional Martin-Löf type
theory. Elliott [27] proposed an approach of representing concur-
rent programs in the dependently typed programming language
Idris, and compiling them into the functional programming lan-
guage Erlang using the Actor Model of Erlang. This allows to pro-
duce verified concurrent programs. Conceptually Erlang is similar
to the Occam programming language. CSP was highly influential
in the design of Occam.

Goncharov et al. in [30] defined a framework for concurrent pro-
cesses where atomic steps have side effects. Goncharov et al. used
the monadic principle in order to encapsulate the effects. Processes
in that approach are modelled as infinite resumptions using a final
coalgebra. The main result of this paper is a corecursion scheme
over the base language and a new semantics for operators on pro-
cesses such as parallel composition. They extended the framework
to cover safety properties. Mossakowski et al. [42] gave a good
example of using coalgebras in order to extend the specification
language CASL. Goncharov et al. [31] also developed a semantic
framework that combines monads, operations and recursive defi-
nitions. Their metalanguage for effectful recursion definitions was
inspired by Moggi’s computational metalanguage. They integrated
the coalgebraic and monad aspects of the computations into a sin-
gle framework. Using the notion of a complete Elgot monad, the au-
thors developed a metalanguage. The work closest to our research is
Goncharov et al. [31], who have also formalised corecursive defini-
tions of process algebraic operations on processes with side effects
using a new metalanguage.

7. Conclusion
The aims of this research is to give the type theoretic interactive
theorem prover Agda the ability to model and in a next step verify
concurrent programs by representing the process algebra CSP in
monadic form. The set of processes forms a monad (Process A),
which depends on a set A. Using this we can define a dependent
composition (monadic bind) and a dependent loop construct rec
for processes.

In our approach we define processes coinductively. The termina-
tion checker of Agda guarantees productivity of processes. This al-
lows to define processes recursively without having to reduce them
to the recursion combinator. The processes in our approach are
formed from an atomic one step iteration. The operators of CSP are
defined operations, which combine processes defined from atomic
operations.

Future work. We have already defined trace semantics and
bisimilarity for a previous version of CSP-Agda and verified se-
lected laws of CSP with respect to those semantics. In that ver-
sion Process+ was defined by using data rather than record, which
caused problems since lots of auxiliary functions had to be defined.
First experiments with adapting it to our new approach show that
these definitions become much cleaner, and we are working on con-
verting all of them and include the other CSP-semantics. A partic-
ular focus will be on showing that the laws regarding the interplay
between different operators hold in our setting. One should note
that the laws only hold subject to renaming of the results by a bi-
jection. For instance in case of commutativity of ||| one needs to
switch from result choice set (c0 ×’ c1) to (c1 ×’ c0).

As a case study, we are planning to implement CSP-processes,
which the first author has developed for modelling elements of the

European Rail Traffic Management System ERTMS [28], in CSP-
Agda and verify their properties. Here we can build on Kanso’s
PhD thesis [37] in which he verified real world railway interlock-
ing systems in Agda. Verifying larger examples might require to
upgrade the integration of SAT solvers into Agda2, which has been
developed by Kanso [37], to the current version of Agda. We plan
as well to integrate the CSP model checker FDR2 into Agda. One
future project is to write prototypes of programs, e.g. of some ele-
ments of the ERTMS, in Agda and make them directly executable
in Agda. This uses the unique feature of Agda of being both a the-
orem prover and a dependently typed programming language, and
that in Agda there is no distinction between proofs and programs,
between data types and propositions.

Acknowledgments
This research was supported by the CORCON FP7 Marie Curie
International Research Project, PIRSES-GA-2013-612638; COM-
PUTAL FP7 Marie Curie International Research Project, PIRSES-
GA-2011-294962; and by CA COST Action CA15123 European
research network on types for programming and verification (EU-
TYPES).

References
[1] E. Aaron. A user-level introduction to the Nuprl proof de-

velopment system. Technical Report (CIS) 822, University of
Pennsylvania, Department of Computer Science, 2001. URL
http://repository.upenn.edu/cis reports/822.

[2] A. Abel. A Polymorphic Lambda-Calculus with
Sized Higher-Order Types. PhD thesis, Ludwig-
Maximilians-Universität München, 2006. URL
http://www2.tcs.ifi.lmu.de/∼abel/publications.html.

[3] A. Abel. Compositional coinduction with sized types. In I. Hasuo, edi-
tor, Coalgebraic Methods in Computer Science, pages 5–10. Springer,
2016. ISBN 978-3-319-40370-0. doi: 10.1007/978-3-319-40370-0 2.

[4] A. Abel and B. Pientka. Wellfounded recursion with copatterns: a
unified approach to termination and productivity. In G. Morrisett
and T. Uustalu, editors, ACM SIGPLAN International Conference on
Functional Programming, ICFP’13, pages 185–196. ACM, 2013.

[5] A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: Pro-
gramming infinite structures by observations. In R. Giacobazzi and
R. Cousot, editors, Proceedings of POPL’13, pages 27–38. ACM,
2013. ISBN 978-1-4503-1832-7. doi: 10.1145/2429069.2429075.
URL http://doi.acm.org/10.1145/2429069.2429075.

[6] A. Abel, S. Adelsberger, and A. Setzer. Interactive Pro-
gramming in Agda – Objects and Graphical User Interfaces.
To appear in Jour. Functional Programming, 2016. URL
http://www.cs.swan.ac.uk/∼csetzer/articles/
ooAgda.pdf.

[7] Agda Community. The Agda Wiki. 2015. URL
http://wiki.portal.chalmers.se/agda/pmwiki.php.

[8] A. Alexandrescu. Modern C++ design: generic programming and
design patterns applied. Addison-Wesley, 2001.

[9] J. Baeten, D. A. van Beek, and J. Rooda. Process algebra. Hand-
book of Dynamic System Modeling, pages 19–1, 2007. URL
http://mate.tue.nl/mate/pdfs/8509.pdf.

[10] J. A. Bergstra and J. W. Klop. Fixed point semantics in
process algebras. CWI technical report, Stichting Math-
ematisch Centrum. Informatica-IW 206/82, 1982. URL
http://oai.cwi.nl/oai/asset/6750/6750A.pdf.

[11] J. A. Bergstra and J. W. Klop. Process algebra for synchronous
communication. Information and control, 60(1):109–137, 1984.

[12] A. Bove and P. Dybjer. Language engineering and rigorous soft-
ware development. In A. Bove, L. S. Barbosa, A. Pardo, and J. S.
Pinto, editors, Language Engineering and Rigorous Software Devel-

37

opment, pages 57–99. Springer, 2009. ISBN 978-3-642-03152-6. doi:
10.1007/978-3-642-03153-3 2.

[13] A. Bove, P. Dybjer, and U. Norell. A brief overview of Agda — a
functional language with dependent types. In Proceedings of TPHOLs
’09, pages 73–78. Springer, 2009. ISBN 978-3-642-03358-2. doi:
10.1007/978-3-642-03359-9 6.

[14] E. Brady. Idris, a language with dependent types – Extended abstract.
2008. URL
http://www.cs.st-and.ac.uk/∼eb/drafts/ifl08.pdf.

[15] E. Brady. Idris, a general-purpose dependently typed program-
ming language: Design and implementation. Journal of Func-
tional Programming, 23:552–593, 9 2013. ISSN 1469-7653. doi:
10.1017/S095679681300018X.

[16] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of
communicating sequential processes. J. ACM, 31(3):560–599, June
1984. ISSN 0004-5411. doi: 10.1145/828.833.

[17] N. C. C. Brown. Communicating Haskell processes: Composable
explicit concurrency using monads. In The thirty-first Communicating
Process Architectures Conference, CPA 2008, pages 67–83, 2008. doi:
10.3233/978-1-58603-907-3-67.

[18] N. C. C. Brown. Automatically generating CSP models for
communicating Haskell processes. ECEASST, 23, 2009. URL
http://eceasst.cs.tu-berlin.de/index.php/eceasst
/article/view/325.

[19] R. Cleaveland and P. Panangaden. Type theory and concurrency.
International Journal of Parallel Programming, 17(2):153–206, 1988.

[20] Coq Community. The Coq Proof Assistant. 2015. URL
https://coq.inria.fr/.

[21] Coq Development Team. The Coq proof assistant. Reference manual.
https://coq.inria.fr/distrib/current/refman/, 2015.

[22] T. Coquand. Infinite objects in type theory. In H. Barendregt and
T. Nipkow, editors, Types for Proofs and Programs, volume 806, pages
62–78. LNCS, 1994. doi: 10.1007/3-540-58085-9 72.

[23] P. Dybjer. Inductive sets and families in Martin-Löf’s type theory
and their set-theoretic semantics. In G. Huet and G. Plotkin, editors,
Logical frameworks, pages 280 – 306. Cambridge University Press,
1991.

[24] P. Dybjer. Universes and a general notion of simultaneous inductive-
recursive definition in type theory. In B. Nordström, K. Peters-
son, and G. Plotkin, editors, Proceedings of the 1992 workshop
on types for proofs and programs, Båstad, June 1992. URL
http://www.lfcs.inf.ed.ac.uk/research/types-bra/
proc/proc92.ps.gz.

[25] P. Dybjer. A general formulation of simultaneous inductive-recursive
definitions in type theory. Journal of Symbolic Logic, 65(2):525 – 549,
June 2000.

[26] P. Dybjer and A. Setzer. Induction-recursion and initial algebras.
Annals of Pure and Applied Logic, 124:1 – 47, 2003.

[27] A. S. Elliott. A concurrency system for IDRIS & ERLANG.
Bachelors Dissertation, University of St Andrews, 2015. URL
http://lenary.co.uk/publications/dissertation/.

[28] ERTMS. The European Rail Traffic Mangement System. 2013. URL
http://www.ertms.net/.

[29] M. Fontaine. A Model Checker for CSP-M. PhD thesis, Universitäts-
und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf,
2011. URL http://docserv.uni-duesseldorf.de/servlets/
DerivateServlet/Derivate-21671/
dissertation marc fontaine.pdf.

[30] S. Goncharov and L. Schröder. A coinductive calculus for asyn-
chronous side-effecting processes. Inf. Comput., 231:204–232, Oct.
2013. ISSN 0890-5401. doi: 10.1016/j.ic.2013.08.012.

[31] S. Goncharov, L. Schröder, and C. Rauch. (Co-)algebraic foundations
for effect handling and iteration. CoRR, abs/1405.0854, 2014.

[32] P. Hancock and A. Setzer. The IO monad in dependent type
theory. In Electronic proceedings of the workshop on dependent

types in programming, Göteborg, 27-28 March 1999, 1999. URL
http://www.md.chalmers.se/Cs/Research/Semantics/
APPSEM/dtp99.html.

[33] P. Hancock and A. Setzer. Interactive programs in dependent type
theory. In P. Clote and H. Schwichtenberg, editors, Computer Science
Logic, LNCS, Vol. 1862, pages 317 – 331, 2000. doi: 10.1007/3-540-
44622-2 21.

[34] P. Hancock and A. Setzer. Specifying interactions with de-
pendent types. In Workshop on subtyping and dependent
types in programming, Portugal,7 July 2000, 2000. URL
http://www-sop.inria.fr/oasis/DTP00/Proceedings/
proceedings.html. Electronic proceedings.

[35] C. A. R. Hoare. Communicating sequential processes. Com-
mun. ACM, 21(8):666–677, Aug. 1978. ISSN 0001-0782. doi:
10.1145/359576.359585.

[36] B. Igried and A. Setzer. CSP-Agda. Agda library, 2016. URL
http://www.cs.swan.ac.uk/∼csetzer/software/agda2/
cspagda/.

[37] K. Kanso. Agda as a Platform for the Development of Verified
Railway Interlocking Systems. PhD thesis, Dept. of Computer Sci-
ence, Swansea University, Swansea, UK, August 2012. Available
from http://www.swan.ac.uk/csetzer/articlesFromOthers /index.html
and http://cs.swan.ac.uk/∼cskarim/files/.

[38] N. López, M. Núñez, and F. Rubio. Stochastic pro-
cess algebras meet Eden. In Proceedings of IFM ’02,
pages 29–48. Springer, 2002. ISBN 3-540-43703-7. URL
http://dl.acm.org/citation.cfm?id=647983.743555.

[39] P. Martin-Löf. Intuitionistic type theory. Bibliopolis, Naples, 1984.
ISBN 88-7088-105-9.

[40] R. Milner. A Calculus of Communicating Systems. Springer, 1982.
ISBN 0387102353.

[41] E. Moggi. Notions of computation and monads. Information and Com-
putation, 93(1):55 – 92, 1991. ISSN 0890-5401. doi: 10.1016/0890-
5401(91)90052-4.

[42] T. Mossakowski, L. Schröder, M. Roggenbach, and H. Reichel.
Algebraic-coalgebraic specification in CoCasl. J. Log. Algebr. Pro-
gram., 67(1-2):146–197, 2006. doi: 10.1016/j.jlap.2005.09.006.

[43] U. Norell. Towards a practical programming language based on de-
pendent type theory. PhD thesis, Department of Computer Science and
Engineering, Chalmers University of Technology, September 2007.

[44] C. Paulin-Mohring. Introduction to the coq proof-assistant for practi-
cal software verification. In B. Meyer and M. Nordio, editors, Tools for
Practical Software Verification: LASER, pages 45–95. Springer, 2012.
ISBN 978-3-642-35746-6. doi: 10.1007/978-3-642-35746-6 3.

[45] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice
Hall, 1997. ISBN 0136744095.

[46] S. Schneider. Concurrent and Real Time Systems: The CSP Approach.
John Wiley, 1st edition, 1999. ISBN 0471623733.

[47] M. P. A. Sellink. Verifying process algebra proofs in
type theory. In Proceedings of the International Work-
shop on Semantics of Specification Languages (SoSL), pages
315–339. Springer, 1994. ISBN 3-540-19854-7. URL
http://dl.acm.org/citation.cfm?id=645878.672054.

[48] A. Setzer. Object-oriented programming in dependent type theory.
In Conference Proceedings of TFP 2006, 2006. Available from
http://www.cs.nott.ac.uk/∼nhn/TFP2006/
TFP2006-Programme.html and
http://www.cs.swan.ac.uk/∼csetzer/index.html.

[49] A. Setzer, A. Abel, B. Pientka, and D. Thibodeau. Unnesting of
copatterns. In G. Dowek, editor, Rewriting and Typed Lambda Calculi,
volume 8560, pages 31–45. LNCS, 2014. ISBN 978-3-319-08917-1.
doi: 10.1007/978-3-319-08918-8 3.

[50] P. H. Welch, N. Brown, J. Moores, K. Chalmers, and B. H. Sputh.
Integrating and extending JCSP. In CPA, volume 65, pages 349–370,
2007.

38

