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Abstract 

 

Ductility regression is the main concern in using Ti-834 titanium alloy at temperatures above 500ºC 

for aerospace applications. The reduction of ductility in titanium alloys at high temperatures is 

strongly correlated to the exposure time. In the current study the effect of prolonged exposure at 

500oC on the tensile ductility of two differently processed Ti-834 alloys was investigated. In order 

to simulate actual Ti-834 processing routes, forged and centrifugally cast materials were used. The 

tensile tests were conducted on various specimens exposed at 500ºC for 100, 200 and 500 hours to 

observe microstructure feature changes. Moreover, the effect of microstructure, microtexture, α-

case, α2 and silicide precipitate coarsening during high temperature exposure was studied 

thoroughly. The cast alloy was found to have a minimum ductility and failed at 1.8% strain after 

exposure at 500oC/500 hour when the α-case layer was retained during testing, whilst, the ductility 

of the forged alloy was unaffected. The effects of individual microstructural parameters on the 

ductility regression in Ti-834 alloy were quantified. The results showed that 7.1% strain differences 

between the cast and forged alloy are related to microstructural variations including; morphology, 

lath widths, grain size and shape, grain orientations and microtexture. A total of 9.6 % strain loss 
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was observed in centrifugally cast Ti-834 after aging at 500ºC/500h and quantified as follow; 3.6% 

due to α-case formation during high temperature exposure, 0.2% due to α2-precipitates coarsening, 

4.4% due to further silicide formation and coarsening, 1.4% due to additional microstructure 

changes during high temperature exposure. Furthermore, silicide coarsening on α/β phase 

boundaries caused large void formation around the precipitates. A theoretical model supported by 

experimental observations for silicide precipitation in fully colony and duplex microstructures was 

established. The element partitioning during exposure caused Al and Ti depletion in the vicinity of 

the β phase in the lamellae, i.e., αs area. This resulted in lowering the strength of the alloy and 

facilitated the formation of Ti3(SiZr)2 precipitates. The Al depletion and nano-scale partitioning 

observed at the αs/β boundaries resulted in easy crack initiation and promoted propagation in the 

centrifugally cast colony microstructure and reduced the basal slip τcrss. Furthermore, silicides were 

not formed in αp (high Al, Ti and low Zr areas) in the forged duplex microstructure that promoted 

superior mechanical performance and ductility over the cast alloy.  

 

Keywords: Ti-834 Alloy, Ductility, Microstructure, Silicide, Alpha Case. 

  

1. Introduction 

 

Near alpha titanium alloys such as Ti-6242S and Ti-834 are extensively used for intermediate to 

high temperature applications in the gas turbine. These types of high temperature alloys are selected 

due to their balance of strength, fatigue and creep properties. The near alpha titanium alloys are 

designed to have low volume fractions of beta phase (β), which is achieved through limiting the 

amount of β stabilizing elements with increasing alpha (α) stabilizing elements [1]. In general, 

silicon is also added to near alpha titanium alloys to improve their creep resistance and strength at 

elevated temperatures. Titanium alloys exposed to high temperatures (above 500ºC) for extended 

periods are known to experience a reduction in mechanical properties; including a loss of ductility 
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[2], a reduction in fatigue performance [3] and reduced creep resistance [4]. It is reported that the 

reduction in fatigue life [5] [6] and creep resistance [4] can largely be attributed to the formation of 

an oxygen rich phase at the surface. This hard and brittle oxygen rich layer; commonly known as α-

case [7] forms simultaneously with an oxide scale (TiO2) at the surface during prolonged exposure 

at temperatures in excess of 480oC [8]. Inward diffusion of oxygen proceeds through this oxide 

scale due to the high affinity of titanium to absorb oxygen. This stabilizes the α phase resulting in a 

region below the surface free of β phase [7], [9]. The loss of ductility is not well understood and 

cannot solely be correlated to α-case formation. Other studies [2] [10] have attributed the loss in 

ductility to the precipitation of coherent Ti3Al, i.e., α2 particles in conjunction with the formation of 

silicides. It is believed that the precipitation of coherent α2 particles is encouraged by the presence 

of tin, resulting in higher volume fractions of α2 precipitates in titanium alloys [1]. It is also 

reported that the α2 particles become effective obstacles to dislocation creep [1], [2], [10]. In 

general, using near alpha titanium alloys above α2 solvus temperature is not recommended, 

especially where creep resistance is required. It should be noted that the solvus temperature of the 

α2 precipitates is composition dependent, thus in Ti-6242S is ~ 650oC while in Ti-834 it is ~ 750oC 

[11]. Silicon on the other hand is usually present in solid solution following final processing. 

However as reported in [2],[10],[12] the transformation of β phase during cooling can result in α2 

and fine silicide particles formation in titanium alloys. It should be emphasised here, that silicide 

solvus temperatures are much higher than the α2 phase and have been determined for Ti-6242S and 

Ti-834 to be ~ 945oC and 990oC, respectively [10],[12].  

    

Since its introduction in the 1980’s, the microstructurally optimised near α Ti-834 alloy has been 

mainly utilised for elevated temperature applications in the gas turbine. Initially, the Ti-834 alloy 

was developed as a wrought alloy [13], having a microstructure consisting of primary alpha (αp) in 

addition to a transformed β structure, used in rotating structural applications [14]. It was originally 

designed to maximize creep and low cycle fatigue performance up to temperatures of approximately 
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600oC. This was achieved through a combination of alloying and heat treatments in addition to 

microstructure optimisation. It is reported that maximum ductility for the alloy in the forged 

condition was found to correspond with a volume fraction of ~20% αp, which delivers satisfactory 

creep and fracture toughness performance and providing good crack propagation resistance [12]. 

Recently, Ti-834 alloy is being reconsidered for use in cast form for static structural applications. In 

contrast to the wrought material, the cast form of Ti-834 exhibits a colony β-transformed 

microstructure [15]. This variation in microstructure results in a different balance of mechanical 

properties to the forged material. It was shown that the strength of cast Ti-834 at room and elevated 

temperatures were comparable to the wrought material, and the cast alloy provided better creep 

resistance than its wrought equivalent [14]. However, the same study reported that the cast alloy 

showed less ductility, especially at room temperature, compared to the forged material. 

Furthermore, the low cycle fatigue performance of the cast alloy was also found to be inferior to 

that of the wrought form of the alloy [11].  

 

Environmental legislation and the desire to reduce operating costs have resulted in a sustained drive 

from manufacturers to improve aero engine efficiency and reduce emissions [16], [17]. This can be 

achieved via increased engine operating temperatures, which reduce both greenhouse gas emissions 

and fuel consumption. For higher combustion and turbine entry temperatures to become a reality, 

temperatures must be increased in the intermediate compressor region of the engine. With current 

compressor operating temperatures of up to 450ºC, Ti 6242S is currently the preferred alloy for 

manufacturing compressor casings. However it is desirable to increase thermodynamic efficiency, 

to increase operating temperatures towards 500ºC in the intermediate compressor section. As a 

result Ti 6242S will need to be replaced with an alternative alloy with higher operating temperature 

capabilities. The impracticalities and excessive cost implications of manufacturing casings 

exclusively from forged material is a major issue. Therefore, an alternative to the Ti-6242S alloy in 

a cast form is a more desirable choice for intermediate compressor casings in the wake of increasing 
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demand of cost effective hotter engine. Ductility is a key property for intermediate compressor 

casings, which are required to absorb high energies in the event of an engine failure; therefore in the 

current study the effect of long time exposure at 500ºC on ductility regression of centrifugally cast 

Ti-834 was investigated.  

 

In general, the forged material in the intermediate compressor casing is found in the form of rolled 

rings. The initial forging procedure consists of an upset forging operation where billet undergoes 

large reductions that are typically performed above the β transus to avoid cracking. The billet is 

then pierced through the center to create a cylinder. Further work in the α+β field is then applied to 

the material in the form of two rings that apply a uniform pressure and turn the cylinder. The 

internal diameter of the cylinder increases while its thickness is reduced until the final shape of the 

ring is achieved [1], [7], [11], [13]. However, in the wake of recent developments in centrifugal 

casting, the demand to replace forged materials with the cast from of the alloy has increased. 

Centrifugal casting utilizes centrifugal forces that are created when the mold is rotated around its 

axis at high speed (300 to 3000 rpm). Molten metal is forced to the mold wall where it freezes in 

order to form the desired shape. Hot Isostatic Pressing (HIP) is used to eliminate any internal 

porosity after casting [18]. Therefore, the current study is mainly focused on comparing detailed 

microstructure and mechanical property differences between the forged and centrifugal cast Ti-834 

alloys. Furthermore, the effect on α-case, microstructure including α2 and silicide volume fractions 

and distributions; α and β morphology on ductility during tension were investigated. The Ti-834 

alloy was exposed to various times at 500ºC in order to observe the microstructure changes and 

corresponding mechanical property in cast and forged alloys.      

 

2. Experimental Procedures 
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The chemical composition of the Ti-834 used in this study was: Ti 5.8 Al - 4.0 Sn - 3.5 Zr - 0.7 Nb - 

0.5 Mo - 0.35 Si wt %. Billets from the same population were used as feedstock for both the forged 

and cast material. The centrifugal cast samples was produced and supplied by Doncaster Settas/UK 

in the form of 25mm diameter cast bars. The centrifugal cast Ti-834 test bars were HIP’d (Hot 

Isostatic Pressing) at 965°C under 100MPa for 2h; then vacuum heat treated at 965°C/1h, Ar gas 

fan cool to 150°C; then aged at 621°C/2h, Ar gas fan cool to 150°C. The forged alloy was produced 

and supplied by Forgital Group S. P. A./Italy, in the form of sections of forged rings. After forging, 

the rings were hot expanded to final size by Forgital Italy. Sections of the forged rings were heat 

treated by TIMET UK: solution treatment at 1025°C/1h, AC, then aged 621°C/2h, AC.  

 

Cylindrical tensile specimens were prepared with the geometry shown in Figure 1a. A number of 

both centrifugally cast and forged specimens were then exposed to an elevated temperature of 

500oC for 100, 200 and 500 h followed by Air Cooling (AC) to determine the effect different 

exposure times had on the monotonic performance. Further procedures were conducted in order to 

identify the effects of α-case, α2 particles and silicides separately on the tensile ductility. First, in 

order to understand the exact influence of α-case on the alloys ductility, tensile tests were 

performed on the specimens with the resulting α-case retained, followed by tensile testing 

specimens with the α-case removed. This is conducted through initially machining samples with the 

diameter of 0.5 mm oversize and subsequently machining to the correct diameter; removing the α-

case accordingly. Further heat treatments were conducted on the centrifugally cast alloy to gain a 

better understanding of the effects of silicide and α2 precipitates on tensile ductility of Ti-834. A 

number of the originally exposed (500ºC/500h) oversized specimens were subjected to further heat 

treatments at 800oC/2h AC and 1000ºC/2h AC in order to dissolve the α2 precipitates and silicides 

present in the alloy, respectively. Following the heat treatments, standard tensile tests were 

performed. All tensile tests were conducted using a Schenck electric screw machine utilising a 

Dartec 9610 control system. Tensile tests were performed at room temperature in accordance with 
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BS EN 2002-1:2005 utilising a side-mounted extensometer with a gauge length of 25mm. A dual 

strain rate was employed with a strain ramp shortly after yield point during the tensile test. This is a 

typical industrial testing practise, which is mainly because most of the fracture in aerospace 

component occurred in high strain rate rather than in low strain rate, however, in order to obtain 

reliable data in elastic region a lower strain rate is used before yielding. In general titanium alloys 

show strain rate sensitivity during loading. For instance, Ti-834 alloy showed that both yield 

strength and UTS increased, while total elongation decreased in line with higher strain rates [19]. 

Therefore it would be reasonable to expect that the UTS and elongation recorded during this 

investigation could be affected similarly to the findings in [19]. Nonetheless, the same strain rate 

and strain ramp are used for both cast and forged alloys during tensile tests, therefore, any effect of 

strain ramp that might have on ductility would be the same on both alloys. Moreover, in the current 

study, the results are reported in strain (%) as the authors believe this provides a more accurate 

measurement of tensile ductility when compared to elongation over 4D. Errors can be introduced 

when using 4D method as the fractured specimens are required to be re-joined in order to measure 

elongation. The 4D elongation method measures the percentage elongation over a gauge length of 

4D; where 4D equates to 4 times the diameter of the specimen gauge length.  

 

The microstructure and microtexture characterisation of as-received and post failed specimens were 

carried out for both forged and centrifugally cast Ti-834 samples using optical and Scanning 

Electron Microscope (SEM) in addition to Electron Backscatter Diffraction (EBSD) and Energy 

Dispersive Spectroscopy (EDS). To aid in metallographic analysis, the specimens were mounted in 

conductive Bakelite prior to a series of grinding and polishing steps culminating in a final polish 

performed with a Beuhler VibroMet 2 vibration polisher, using a non-crystallising colloidal silica 

solution (0.04 µm) for 15 to 60 minutes. The final step carried out in the metallographic preparation 

was to etch the surface of the material to enable the microstructure to be viewed through an Optical 

Microscope (OM). Krolls Reagent with a composition of 1-2% HF, 8-9% HNO3 and remainder 
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H2O was used for this purpose. The etching process involved submerging the surface of the alloy in 

the etchant for ~ 25 seconds. Subsequently, the specimens were thoroughly rinsed under running 

water. A Reichart MeF3 microscope in conjunction with Nikon Imaging Software was then used to 

observe the microstructure and α-case on both forged and cast processed alloys. The average grain 

size of the cast alloy was determined using the Mean Linear Intercept (M.L.I.) method. A variation 

of the M.L.I. method was used to calculate the average αp grain size of the cast alloy. This method 

takes into account the volume fraction of αp grains (VV,α) via Equation 1. 

 

 𝑀. 𝐿. 𝐼.= !!,!  !!
!!

        …………………………….…. (1) 

 

Where LT and Nα equal the total test line length and number of αp grains, respectively. Following 

OM and SEM observations, the EBSD data were collected using a Nordlys EBSD detector and 

HKL Technology Channel 5 EBSD system interfaced to a Phillips FEI XL30 SEM. The SEM 

operating voltage used was 20 kV to optimise the quality of the diffraction patterns. The analysis 

was conducted using standard HKL-EBSD Channel 5 software package. Furthermore, high-

resolution imaging and EDS analysis were performed on a JOEL 7800 FEG-SEM equipped with 

AZTEC data acquisition and analysis software. The forged and ring rolled alloys were received 

from Forgital Group in cylindrical shapes. The EBSD scans area of the forged alloy is shown in 

Figure 1b. For comparison purposes the testing loading direction aligned with forged and casting 

directions. In order to obtain a 3D EBSD map from the Area of Interest (AOI), subsequent EBSD 

scans were performed at 10, 50, 100 and 200 µm below the sample surface by removing material 

using conventional grinding and polishing technique. This quasi-3D construction of an EBSD map 

was necessary to identify the crystallographic information from individual maps as well as the crack 

initiation location and propagation path in 3D.  
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3. Results and Discussion 

 

3.1 Microstructure Investigation of the Original and Exposed Materials 

 

The as-received microstructures of centrifugally cast and forged Ti-834 alloys are shown in Figures 

2a and 2b, respectively. It is evident from the figures that the cast and forged materials display 

vastly different microstructures; exhibiting fully lamellar (widmanstatten) and duplex 

microstructures, respectively. The cast microstructure exhibits an equiaxed prior β grain structure 

with an average size of approximately 850µm in diameter. The β grains are surrounded by a 

continuous layer of Grain Boundary α (GBα) several microns in width. As shown in Figure 2a, each 

prior β grain typically contains a few α colonies produced from a large number of individual aligned 

α lamellaes with an average width of ~ 4µm. Whilst, the wrought, i.e., forged microstructure 

exhibits a homogenous duplex microstructure with equiaxed αp grains distributed in a transformed β 

matrix, see Figure 2b. The transformed regions contain a combination of aligned α colony and 

basketweave morphology within the β matrix. Furthermore, the wrought material was found to 

consist of ~ 36% αp volume fraction with an average αp grain size of approximately 20 ± 3 µm.  

 

As shown in Figures 2b and 2d, the exposure of Ti-834 at the elevated temperature of 500oC had no 

significant effects on the microstructure of forged material. The exposure temperature was well 

below β-transus temperature, therefore, the slight variation of the average prior β grain size of the 

cast alloy following exposure may be related to microstructure heterogeneity of the processed 

alloys. Moreover, a slight change of 1 ± 0.4 µm in the GBα width and 1 ± 0.7 µm in α lath width 

were observed in the centrifugally cast alloy, see Figures 2a and 2c. Similar observations were 

found in the forged alloy, where an increase of ~ 0.8% in αp volume fraction was recorded and the 

average αp grain size remained similar; within  ± 0.9 µm range variation. 
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3.2 The Effects of Microstructure on the overall Ductility in Ti-834 Alloy 

 

As shown in Figures 3 and 4, the forged material in the unexposed and exposed for 100, 200 and 

500 h conditions is stronger and more ductile than its centrifugally cast equivalent. The table shown 

in Figures 3 and 4 show UTS (MPa), 0.2% Proof Stress (MPa), Modulus (GPa) and strain (%) 

values, generated during each tensile test. It is clear from the figures that the forged material in the 

unexposed condition has a significantly higher tensile strength with both the UTS and 0.2% proof 

stress values being approximately 10% higher than those recorded for the centrifugally cast 

material. Ductility was also far greater in the forged material; with a failure strain of 18.4% 

compared to 11.3% for the cast material. It was also evident that exposure at 500oC has a dramatic 

effect on the tensile ductility of the cast material. As shown in Figure 3, the ductility was reduced to 

1.8% from 11.3% after 500 hours exposure; intermediate values of 6.2% and 5.1% were recorded 

after 100 and 200 hours exposure, respectively. Moreover, the low UTS value recorded after 500 

hours exposure is a result of the premature fracture limiting the tensile strength. However, slight 

increases are seen in 0.2% proof stress and modulus as exposure times increase. Unlike the Ti-834 

cast material no loss of ductility was recorded in line with increasing exposure times for the forged 

alloy, see Figure 4. However, as occurred with the cast alloy a similar variability for 0.2% proof 

stress and modulus values were also observed in forged alloy.  

 

It is clear from Figures 3 and 4, that the forged Ti-834 alloy displayed better monotonic properties 

than the centrifugally cast alloy in the unexposed condition. The microstructure differences between 

the two processed alloys shown in Figure 2 play a vital role in the plastic deformation and failure 

mechanisms. It was evident from Figures 2b and 2d that the duplex microstructure in the forged 

material has a small equiaxed αp grain size and a narrow width of the lamellaes (αs) within the 

transformed β matrix. This provides very short effective slip lengths within the α phase and crack 

retardation at αp/transformed β boundaries. In contrast the colony microstructure for the cast alloy 
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shown in Figure 2a and 2c provides long effective slip lengths. Previous studies [20], [21] on Ti-

6Al-4V have shown that the misorientation angles between α lamellae in titanium alloys can be 

extremely small. This was also found to be the case in the cast Ti-834 alloy shown in the EBSD 

orientation map in Figure 5, where a large number of α lamellar within each colony have very 

similar orientations, resulting in very low angle grain boundaries between them. The misorientation 

angles are shown for L1 (Line 1) and L2 (Line 2) in the same figure. It is clear that the average 

misorientation angle between the α lamellaes is 0.6º in L1 and 0.9º in L2. This results in far longer 

effective slip lengths in the cast alloy (~ 450 µm) than those in the forged alloy (~ 20 µm) using 

statistical average assumption. Thus, crack propagation within the colony microstructure, i.e., cast 

alloy, is much faster than in the duplex microstructure, i e., forged alloy. The colony morphology 

provides an easy crack path through each colony with no deviation; only arresting when they 

encounter prior β grain boundaries or other α colonies with vastly different orientations. This is in 

agreement with findings in previous studies [20] [21] [22]. Hall, [22] stated that a fine 

microstructure with short distances between interfaces, small grains and without a preferred 

crystallographic macro- or microtexture is desired for resistance to crack nucleation and early 

growth in Ti alloys. As shown in Figures 3 and 4, the microstructure parameter contributed 7.1% to 

the ductility reduction at RT test conditions. As can be seen from the same figures, 18.5% ductility 

was observed in the forged alloy, whilst only 11.4% was recorded for cast alloy. This indicates that 

the microstructure and morphology would also have an influence on ductility at high temperature 

testing as will be discussed in the next sections. It is clear from the current study that microstructure 

is strongly correlated with the mechanical properties of the alloys hence, strength and ductility.  

 

A 3D-EBSD technique was employed in order to determine exact crack initiation location in the 

cast alloy and observe the crack path within the bulk sample. As described earlier, the EBSD scans 

were carried out around the crack on the Loading Direction – Transverse Direction (LD-TD) plane 

at the surface (removing 10µm for surface preparation purposes) of the tested sample as well as 50, 
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100 and 200 µm below the sample (LD-TD) surface, see Figure 6a, 6b and 6c, respectively. The 

amount of material removed between each EBSD scan was guided by the optical and scanning 

electron microscopes. The aim was to find the original point where the crack initiated by polishing 

further down from LD-TD surface along Normal Direction (ND) to the images shown in Figure 6, 

until the crack initiation point was reached. Figure 6a-c shows Inverse Pole Figure (IPF)s // LD with 

schematic 3D hexagons added to some lamellae/colonies along the crack path for better 

visualisation of the crystallographic orientation of these critical α lamellaes. Five areas are indicated 

on the IPF maps by white dashed rectangular lines and are magnified individually to reveal more 

detail in the figures. Figures 6a.1, 6b.1 and 6c.1 represent <a> basal slip, i.e., (0002) <11-20> 

Schmid factor maps for the maps in 6a-c, with the stress axis in the horizontal direction of the 

images (LD // X-axis). Whilst, Figures 6a.2, 6b.2 and 6c.2 represent <a> prismatic slip, i.e., (10-10) 

<11-20> Schmid factor maps for the same IPF maps in 6a-c. It is clear form Figures 6c, 6c.1 and 

6c.2 that the crack was initiated at a prior β grain triple junction, where three prior β grains with 

different crystallographic orientations met. This indicates that prior β grain size and orientation 

have direct effect of crack initiation and propagation. It is reported in [20], [21] that the prior β 

triple junction was responsible for crack bifurcation in Ti alloys during low cycle fatigue tests, 

however, in the current study it appears that is also a favourable location for crack initiation during 

tensile tests.  

 

It is evident from Figure 6 that the majority of the crack propagation is of trans-lamellar nature with 

only a few segments of the crack having grown parallel to the lamellar interface (referred to as 

inter-lamellar). Looking at the five magnified areas in Figure 6 it is evident that in most cases the 

crack encounter the lamellar colonies at a 90° angle to one in-plane direction of the α lamellae 

interface. It is also clear from the Schmid factor maps that the crack easily crossed the lamellaes 

favourably oriented for <a> basal slip while lamellaes with a high Schmid factor for <a> prismatic 

slip tended to deviate or impede crack propagation. The crack arrest is clearly visible on prior β 
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boundaries (Figure 6a-c: areas 3, 4 and 5) or within (Figure 6a-c: area 1, 2 and 5) lamellae 

favourably oriented for prismatic <a> slip system activation. In the present study, statistical Schmid 

factor analysis of the EBSD maps showed that about 20% of the crack length displayed inter-

lamellar crack growth, and had grains favourably orientated for prismatic slip, whilst 80% were 

more likely to undergo basal slip and displayed trans-lamellar crack growth. 

  

It is generally believed that the crystallographic texture has a great influence on mechanical 

property, hence on deformation mechanism in titanium alloys [20-23]. Thus, in order to obtain 

statistically reliable texture measurement large EBSD mappings (5 × 5 mm) performed on both cast 

and forged alloys. It is clear from Figures 7a and 7b that the cast Ti-834 alloy has relatively stronger 

texture intensity than the forged alloy; 11.2 and 4.7 times above random texture, respectively. 

Moreover, it appears that the two alloys have very different textures. From the IPFs, PFs and ODFs 

in Figure 7a, it is evidence that the strongest texture component in the cast alloy is 30° away from 

typical deformation Basal texture component (0001) <10-10>. The cast alloy also has a weak 

texture intensity of Transverse texture component (10-10) <0001>, see Figure 7c for schematic 

representation of typical texture components in Ti alloys. It is generally believed that 25-35° away 

from (0001) indicates on recrystallisation occurrence during processing [24]. The appearance of 

recrystallisation texture components in the cast alloy is expected, as dynamic and static 

recrystallisations are likely to occur during casting and following heat treatment, respectively. From 

Figure 7b, it seems that the strongest texture component in the forged alloy is 8° away from typical 

deformation texture component of (11-20) <0001> with weak shear texture components. 

Furthermore, the forged alloy has also a relatively weak 5° away from <0001> − Fibre and 

relatively strong <10-10> − Fibre textures which indicate on severe deformation during processing. 

This is also expected, as shear deformation is prone to occur during heavy deformation such as ring 

rolling and forging. The shear deformation occurred during forging, may have weakened the overall 

texture intensity of forged alloy compared to the cast alloy. Overall, the high texture intensity in the 
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cast alloy with strong near Basal texture component has accelerated an easy activation of (0002) 

<11-20> slip system in the vast majority of the lamellaes within individual colonies as shown in 

Figures 6a1, 6b1 and 6c1. It appears that this strong texture is greatly assisted in easy crack 

propagation through the lamellaes in the colony microstructure, and hence contributed in ductility 

reduction. 

 

It seems that the microstructure and overall texture differences between the cast and forged alloys 

have a great effect on crack initiation and propagation. It is well established that a columnar 

lamellar microstructure can provide long unrestricted slip paths [22], [23], resulting in poor low 

cycle fatigue resistance compared to a lamellar microstructure with a basket-weave morphology 

which provide a more tortuous crack path and lower growth rate [25], [26]. It is evident from the 

current study that this approach is also true for crack path in Ti-834 during tensile testing. The 

presence of basket-weave morphology within transformed β matrix in the duplex forged 

microstructure has assisted in crack retardation and diversion greatly. This is because the lamellaes 

in basket-weave microstructure have more random orientation than the lamellaes in the fully colony 

microstructure where there is no crack diversion or retardation observed in large numbers of 

lamellaes which provided unrestricted slip path, see Figure 6. It is well established that equiaxed αp 

showed easy activation of prismatic <a> slip in comparison to easy basal <a> slip in αs lamellae in 

Ti-alloys [24], which is more related to Al content, as will be discussed in Section 3.5. This may 

also have assisted in better crack propagation resistance in the forged duplex microstructure. 

 

3.3 The α-Case effects on Overall Ductility in Ti-834 Alloy 

 

As illustrated in Figures 8a and 8b both the centrifugally cast and forged materials had developed a 

relatively uniform α-case layer (5-7µm in depth) after 500 h exposure at 500oC. This brittle α-case 

layer can be easily cracked during loading; resulting in a large number of cracks developing at the 
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surface of the exposed cast and forged specimens as shown in Figure 8. It is evident from Figures 

8c and 8d, that the extended cracks from α-case to the bulk material in the centrifugally cast alloy 

were much longer than seen in forged Ti-834 alloy. As shown in the Figure 8c, the crack easily 

propagated through the α colony with negligible crack deviation at αs/αs lamellae low angle 

boundaries. As discussed earlier, this was facilitated by the long slip length in the colony 

microstructure in the cast alloy. Cracks were found up to 60 µm in length in the cast alloy, whilst 

cracks were found to be much shorter (approximately 10µm) in the forged alloy, see Figure 8d. 

These findings in conjunction with the tensile results for the cast and forged materials, Figures 3 

and 4, would suggest that the majority of ductility lost in the centrifugally cast Ti-834 alloy is 

strongly related to bulk microstructure and not entirely dependent on α-case formation at the 

surface.  

 

As described in Section 2, the α-case was removed prior to testing from a number of the exposed 

tensile specimens in order to understand the exact contribution of the α-case on reduced ductility. 

As shown in Figure 9, a proportion of the ductility lost in the cast material due to exposure for 500 

hours is recovered when the α-case layer is removed prior to testing. The tensile test results showed 

a ductility of 5.4% at 100h, 4.7% at 200h and 5.4% at 500h exposure times. It appears that α-case 

layer correlation with ductility is time dependent. For instance, the ductility was similar or slightly 

reduced after removing the α-case at 100h and 200h (from 6.2% to 5.4% at 100h, from 5.1% to 

4.7% at 200h, respectively). However, the ductility increased from 1.8% to 5.4% after removing the 

α-case from the specimen exposed for 500 h at 500ºC. It is evident that the α-case contributed a 

3.6% ductility increment at maximum exposure time in this study. It appears that the brittle nature 

of α-case can cause deteriorating effects on fatigue property at its early stage formation as reported 

in [5]. However, comparing the tensile results from current study with the fatigue results in earlier 

investigations suggest that the α-case effect on failure mechanism is significantly different between 

the tensile and fatigue tests.  
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3.4 The Effect of Ti3Al (α2) Precipitates on Ductility in Ti-834 Alloy 

 

Ti3Al, i.e., α2, precipitate has a DO19 structure and is an ordered intermetallic form of the α phase. 

In general, α2 precipitates enhances titanium alloy’s strength and creep resistance via precipitation 

hardening mechanism. However, as any other intermetallic phases, α2 is brittle and can cause 

reduction in ductility. It is reported that mobile dislocations are able to shear α2 precipitates during 

tensile deformation; leading to a reduction in the local resolved shear stress on active slip planes 

[27]. However dislocation mobility is retarded on other (not activated) planes leading to planar slip 

and cause dislocation pile ups against grain boundaries in titanium alloys [28]. Thus, it is generally 

believed that α2 phase is anisotropic, prone to localisation of slip and poor ductility [27] [28]. 

Therefore, the maximum amount of aluminium is limited in order to restrict the exceeded 

proportion of the DO19 phase, which can result in low ductility and toughness if present above a 

critical volume fraction. Originally, Ti-834 and Ti-6242S were designed to limit α2 formation by 

restricting Al to ~ 6% and supplementing this aluminium with tin and zirconium to achieve greater 

overall strength without loss of toughness through excessive DO19 (α2) formation.  

 

Experimentally, dissolving the precipitates into the solid solution is an effective way to fully 

understand the effects of α2 precipitates and silicides on mechanical properties. The silicide and α2 

precipitates solvus temperatures were calculated using JMatPro programme. As shown in Figure 10, 

the solvus temperature of α2 phase and silicide in Ti-834 were determined to be 675ºC and 1050ºC, 

respectively. These solvus temperature were slightly different from the findings in [11], however, 

this is probably related to exact chemical composition variants for Ti-834 alloy used in their 

calculations. As described in Section 2, further heat treatments were conducted on exposed alloys at 

800oC and 1000oC in order to dissolve any α2 precipitates and silicides present in the material. First, 

in order to determine the effect α2 precipitation on the ductility of centrifugally cast Ti-834, 
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previously exposed (500oC/500h) tensile specimens were subjected to a heat treatment at 800oC for 

2 hours to dissolve the α2 precipitates. It should be emphasised here, that the 800ºC heat treatment 

temperature was selected aiming to dissolve all α2 that existed in the alloy. Figures 11a and 11b 

show high-resolution JOEL 7800 SEM images of α2 precipitates distribution in the centrifugally 

cast Ti-834 ally exposed at 500oC/500h prior and subsequent to 800ºC/2h heat treatment, 

respectively. As shown in Figure 11a, following the initial exposure the α lamellae was densely 

populated by α2 precipitates with a range of 10-80 nm sizes in diameter. The image in Figure 11b 

shows that the vast majority of the α2 precipitates were dissolved following 800oC/2h heat 

treatment. However there are still some precipitates up to 40nm in diameter present, see the same 

figure. The observed α2 precipitates after the 800oC/2h heat treatment are likely to have precipitated 

during cooling from the annealing temperature. As predicted from the phase diagram in Figure 10, 

it is expected that all of the pre-existing α2 precipitates dissolve during this heat cycle where the 

temperature was well above the α2 solvus temperature. Moreover, the observed particles after the 

heat treatment have different (smaller) measured sizes and distribution, which suggests new α2 

particles were formed during cooling, see Figure 11b.   

 

Figure 12 shows the tensile results for the centrifugally cast Ti-834 alloy after the heat treatments. It 

is clear from Figure 12 that α2 precipitation coarsening effects on the ductility of the centrifugally 

cast Ti-834 after 500ºC/500h exposure is not significant. These results contrast significantly with 

the work in [27] on Ti-60, [29] on Ti-834 and [10] on Ti-1100, Ti-6242S and Ti-834 where 

significant portions of lost ductility in lamellar structures was attributed to the presence of α2 

precipitates. The tensile ductility following 800ºC/2h heat treatment was found to be almost 

identical (5.5%) to the prior results obtained at 500ºC/500h with α-case removed (5.4% strain), see 

Figure 9. This aspect was further investigated through heat treating the originally 500ºC/500h 

exposed specimen at 1000ºC/2h. As shown in Figure 11c the alloy contains not only a higher 

concentration of α2 precipitates than those found in the originally exposed material, but they are 
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generally coarser with diameters of up to 100nm. This also suggests that although the α2 re-

precipitated in bigger sizes during cooling, they did not effect, i.e., reduce the tensile ductility, see 

Figures 11c and 12. On the other hand, the forged material which retained its ductility after 

500ºC/500h exposure was found to have a high concentration of α2 precipitates with much finer 

sizes than those found in the centrifugally cast Ti-834 alloy; with diameters of 10-20 nm, see Figure 

11d. It appeared that the homogenous distribution of the very fine α2 precipitates and their high 

coherency with the α phase matrix may have assisted in alloy strengthening of the Ti-834 forged 

alloy with no reduction in alloy’s ductility. It is difficult to ascertain the effect of heat treatment at 

800oC/2h on the reduced ductility of the centrifugally cast material. Previous studies [2][10] have 

stated that the precipitation of α2 particles significantly reduces the ductility of the Ti-834 alloy after 

long term exposure at similar working temperatures to this work. However, from the current heat 

treatment and following microstructure characterisation and tensile results, shown in Figure 12 it 

appears that dissolving the existed and coarsened α2 precipitates during high temperature exposure 

and homogenous re-precipitate α2 in much smaller sizes could only recover ~ 0.2% of the lost 

ductility during high temperature exposure. 

 

3.5 The Effect of Silicides on Ductility in Ti-834 Alloy 

 

It appeared that heating the cast material to 800oC in order to dissolve the α2 precipitates had no 

significant effect on tensile ductility. However as shown in Figure 12, the majority of the lost 

ductility was recovered when specimens were heat treated at 1000oC/2h to dissolve silicides.  These 

results indicate that the presence of silicides has a vital contribution in the ductility regression in the 

centrifugally cast Ti-834 alloy. Figure 13a and 13d show high-resolution backscatter SEM images 

for centrifugally cast Ti-834 prior and after 500ºC/500h exposure, respectively. The 2D EDS silicon 

and zirconium maps for Figure 13a are shown in 13b and 13c and for Figure 13d in 13e and 13f, 

respectively. As shown in Figure 13a, small size silicides (~ 400-900 nm in diameter) with irregular 
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shapes are located on the α/β phase boundaries throughout the cast material prior to any exposure. 

Figure 13d-f, show the concentration of silicides was increased in the centrifugally cast alloy after 

500oC/500h exposure. The silicides were also found to be much coarser than those seen in the 

unexposed material; up to 2.3µm in diameter. Furthermore, the exposure at 500oC for 500h caused 

the existing silicides to coarsen on α/β phase boundaries. It is evident from Figure 13g, that the 

silicide coarsening on α/β phase boundaries caused large voids formation around the precipitates. 

This is an indication that the silicide lost its coherency with the α matrix at this stage.  

 

It is reported that silicon and zirconium present in near α alloys combine with titanium to form 

silicides of varying compositions [30] [31]. Singh, et al., [31] identified silicide phase composition 

that formed at high temperature in near α titanium alloy, and they established that even with small 

quantities of β stabilising elements only silicides with a composition of (TiZr)6Si3 were precipitated. 

The composition of the silicides found in this work was investigated using EDS analysis. Further 

analytical methods were used in this study to identify the precipitates, as all the EDS element peak 

intensities contained minor quantities of Al. This is expected from SEM-EDS data, and it suggests 

that not only the silicides but also the spectrums from surrounding matrix were collected even at 

high-resolution data collection. Here, in order to determine the correct silicide composition, 

titanium, zirconium, silicon and tin contents were plotted against aluminium wt% quantity. The 

results were then extrapolated to find zero values for aluminium and reveal the corresponding 

content of titanium, zirconium, silicon and tin correctly. In order to avoid unreliable EDS data 

acquisition a Monte Carlo simulation was performed using free online tool CASINO V3.3 software 

and it appears that the interaction volume for X-ray generation is ~ 150 – 200 nm in Ti-834 alloy 

using 8 kV acceleration voltage. Thus, only large silicide precipitates (> 0.5 µm) were selected for 

the chemical analysis in an attempt to keep the interaction volume (150 – 200 nm) within the 

silicide itself. Furthermore, in order to obtain a reliable data 12 silicide point data were analysed 

and averaged to obtain exact chemical composition.    
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Figure 14 shows backscatter SEM images and EDS 2D maps for forged Ti-834 alloy prior (Figure 

14a-c) and post 500ºC/500h exposure (Figure 14d-e). As shown in Figure 14a, silicides were also 

found in the forged material prior to exposure. However, silicides were only present in the 

transformed β area, i.e., on the αs/β boundaries, and not within equiaxed αp areas, see the same 

figure. It was evident that the early silicide precipitation occurred on the β phase in both forged and 

cast Ti-834 samples, see Figures 13 and 14. The silicides in the forged material have a similar 

irregular shape to those found in the cast alloy; however some were much smaller in size; in the 

range of 80nm – 170nm, see Figure 14b-c. Some precipitates up to 200nm in diameter were also 

found on αs/β phase boundaries. The fine silicide size in the wrought alloy may be attributed to the 

smaller volume fraction and width of β phase in between α lamellaes in the bimodal microstructure 

of the forged material. Although attempts were made to chemically analyse the silicides found in 

the forged material, see Figure 14c, the silicides were too small for EDS analysis from 2D EDS 

maps. Figure 14d-e shows the microstructural and chemical analysis of the forged material after 

500ºC/500h exposure. It appears there is no significant increase in the overall concentration of 

silicides present in the duplex microstructure. This further explains the ductility preservation 

(17.8% strain) of the forged Ti-834 alloy after 500oC/500h exposure. It is also rather apparent that 

the existing silicides have not coarsened during the exposure; their diameters remained unchanged 

at approximately 140-200 nm. Therefore, in order to obtain a reliable chemical composition data for 

silicide in this study, the chemical analyses was fully dependent on the cast alloy as the silicide 

precipitates were much larger in size (up to 2.5 µm) than in the forged alloy. Figure 14f shows the 

average EDS chemical data collected from 12 large (> 0.5 µm) silicide precipitates from the cast 

sample. The relatively low wt% of detected Aluminium shows that the point investigation was 

successful in isolating the silicide chemistry, although some Aluminium counts were inevitable 

from stray X-Rays from the rest of the sample. In contrast to the previous work in [30] [31] a 

silicide composition of SiTi1.5Zr or Ti3(ZrSi)2 was identified by the EDS results in this study. This 
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composition was similar to JMatPro phase prediction shown in Figure 10.   

 

Figure 15a-c shows the microstructure (a) and EDS chemical analyses (b and c) of centrifugally cast 

Ti-834 alloy following 500ºC/500h exposure and heat treatment at 800ºC/2h. It is clear from the 

figure that 800oC/2h heat treatment has enabled further silicide precipitation and coarsening of the 

existing silicides to occur. As shown in Figure 15d, further voids were formed on silicide/matrix 

boundaries after 800ºC/2h annealing. An area in Figure 15d was further magnified and showed in 

15h; it shows that the early silicide precipitation occurred on the β phase. It appears that further 

silicide precipitation; coarsening and debonding during 800ºC/2h annealing has greater effect on the 

ductility and overcome most of the recovery that might have occurred from dissolving the α2 

precipitates. Figure 15e-g shows the microstructure and chemical analyses of centrifugally cast Ti-

834 alloy following 500ºC/500h exposure and 1000ºC/2h heat treatment. As shown in the figures 

the vast majority of the widmanstatten colony microstructure was free from silicides. It is apparent 

that the 1000oC heat treatment intended to dissolve all of the silicides had a dramatic effect on the 

tensile ductility of the centrifugally cast alloy; with 80% of the lost ductility recovered, see tensile 

results in Figure 12. Further analysis of the microstructure; see Figure 15e-g, showed that there 

were however isolated regions that still contained some silicides after the 1000ºC/2h heat treatment. 

This may be correlated to the heterogeneous distribution of the alloying element, where some areas 

have nominally higher silicon content than other areas. This occurs due to the high partitioning 

coefficient silicon has in titanium, which allows it to partition to the last areas to freeze on cooling. 

Furthermore, the silicide solvus temperature calculated using JMATPro is 1050ºC, see Figure 10, 

50º above the heat treatment temperature used here. Therefore, a small volume fraction of silicide is 

expected after 1000ºC/2h annealing.  

 

The absence of silicides in αp as shown in Figure 14 was one of the focus point in the current study. 

Further high resolution imaging and EDS analysis were conducted in this study in order to 
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understand the silicide segregation in the transformed β area, and in particular on αs/β boundary. 

The alloying element partitioning can clearly be seen in Figure 16. Using high resolution imaging a 

location of a 250 nm width β phase (Figure 16a) was selected as reference for all the EDS element 

intensity profile position in the same figure. It is clear from Figure 16b that Ti showed very low 

intensity in the centre of the β phase with a width of 110 nm line profile. Whereas, Al showed the 

lowest intensity within β and the adjacent αs lamellae, covering 580 nm width of lowest intensity, 

Figure 16c. This is accompanied with significant partitioning of molybdenum into the β phase with 

exact width as β, Figure 16f. Whilst, Zr and Si have the highest concentration within the silicide 

particles, shown in Figure 16d and 16e, respectively. However, a high intensity Zr in a width of 

630nm was found in β and adjacent αs. In order to verify this 2D EDS results, line EDS scans were 

performed using a minimum SEM beam diameter (spot size of 5nm) to reduce electron interaction 

volume and obtain high resolution and accurate EDS point data. Figure 17 shows Al, Mo, Ti and 

Nb EDS element line scan profiles for a selected area in the cast alloy. It is clear from Figure 17a, 

silicide particles formed on the αs/β boundary, separated from α matrix and large voids were formed 

around them. A magnified area is shown in Figure 17b where the EDS line scans were performed. It 

is clear from the Al line profile that the partitioning creates an aluminium-depleted zone extending 

to approximately 2.5µm in the both sides of the β laths, see Figure 17a-b. Al concentration was 

reduced from 5.5 wt% in the centre of αs to ~2 wt% in β phase centre. The same trend was found for 

Ti, but to a less extent, where 84 wt% in αs centre reduced to ~ 72 wt% in β centre. In contrast 

molybdenum and niobium peak intensities were found to be highest in the centre of β phase centre; 

9.5 and 4.5 wt% respectively. It should be noted no partitioning or intensity change was observed 

for Sn (6 wt% ± 0.5) in the line scans conducted for the same area in Figure 17b.  

 

The alloying element partitioning was further investigated in the forged alloy in order to study the 

microstructure effect on partitioning mechanism. Figure 18 show EBSD maps and EDS analysis of 

Ti-834 alloy after 500ºC/500h exposure. It is clear from Figure 18a-d, that highest Al concentration 
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was found in αp and lowest in the β transformed matrix, i.e., αs lamellae structure. In contrast, Zr 

highest intensity was found in αs lamellae region and lowest within the αp equiaxed grain. The high 

magnified transformed β area in Figure 18e-f, showed that basket-weave morphology was present 

in some area of the β-transformed region in between αp grains. Further EDS 2D maps and line scans 

were performed on the αp and β-transformed boundary, see Figure 18g-h. From the figure, the high 

Al and low Zr intensities in αp is further demonstrated. It is also evident from the EBSD derived IPF 

map in Figure 18f, that the lamellaes in the β-transformed area possessed different orientations, 

separated by high angle grain boundary and forming basket-weave morphology structure. As stated 

earlier this basket-weave morphology can provide superior crack propagation resistance compared 

to the lamellae colony microstructure present in the cast alloy, which show low misorientation 

angels between the aligned lamellaes, see Figure 5. This attributed to further strengthening and 

increased plasticity of the forged Ti-834 alloy. 

 

3.6 Element Partitioning Effects on Silicide Formation, Coarsening and its Composition  

 

All the collected 2-D EDS maps and line scans data are illustrated schematically in Figure 19. It is 

evidence that considerable amount of element partitioning was occurred during Ti-834 alloy 

solution heat treatment and aging. Further partitioning occurred during exposure at 500ºC/500h, 

which enhanced silicide/matrix debonding and particles coarsening. It is clear from the figure that 

Al and Ti partitioned in αp; resulting in high concentrations in αp and low concentrations in αs 

lamellae. These results are also in agreement with Salem, et al, findings [32]. However, in this 

study Al and Ti displayed even lower concentrations and created Al depleted zones in the vicinity 

of αs and the lowest level for both elements within β phase.  

 

It is well established in literature that the αs lamellaes are softer than equiaxed αp grains as a 

consequence of the alloy element partitioning effects [32], [33]. The Al partitioning makes αp 
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stronger, and αs weaker. Moreover, the Al depletion and nano-scale partitioning observed in the αs/β 

boundaries resulted in easy crack initiation and promotes propagation in the centrifugally cast 

colony microstructure as demonstrated in Figure 6a-c. However, it appears that the Al and Ti 

partitioning in the forged alloy could not reduce the ductility of the alloy due to the exhibition of 

duplex microstructure with basket-weave morphology of αs in some areas of the β-transformed 

region. It is reported that an increase to 5.2 atomic % of Al almost doubles the τcrss or yield strength 

for basal slip [32-37]. Therefore the Al depletion level from 5.5 in the αs centre to 1.8 wt% in the β 

phase center, shown in Figures 16 and 17 have theoretically reduced the basal slip τcrss by nearly 

half. It should be also noted that in the current study the tensile tests were conducted at RT (20ºC); 

where basal slip activation is even easier than at high temperature [1] and in αs than in αp [20]. This 

facilitated easy basal slip activation in the αs as it is predicted by the EBSD derived Schmid factor 

maps in Figure 6.    

 

As shown in Figure 17 and illustrated in Figure 19a, molybdenum and niobium were partitioned in 

the β phase with 10 and 4 wt%, respectively and zero wt% concentration in αs centre. This is 

expected, as Mo is strong β stabiliser and the solid solubility of Mo in the α phase is very low (1%) 

compared to V (3%) [1], [7], [11]. Mo is used in preference to V in creep resistant Ti alloys, in 

order to improve both creep resistance and oxidation resistance. In Ti-834, compared with Ti-

6242S, Mo was partly replaced with Nb, for a further improvement to oxidation resistance. It is 

clear from Figures 16 and 19 that Si has very low concentration in both α and β phases. This is also 

expected as Si has limited solubility in Ti, and is added to Ti-834 to improve creep resistance, 

however it is maintained between 0.25 to 0.35 wt% in the alloy to avoid excessive brittle silicide 

formation. Although it is generally believed that Zr behaves neutrally as it has complete solubility 

in α and β phases in Ti, however, it has high concentration on αs/β phase boundary (4.5 wt% and 

αs/β boundary and 2 wt% within αs), see Figures 16 and 19b. This facilitated an easy diffusion of Zr 

from high Zr zones to silicide particles and causes coarsening and further formation of new 
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particles. The high affinity of Zr to Si allowed the highest concentration of Si and Zr with the 

lowest concentration of Ti on αs/β boundaries to form hard Ti3(SiZr)2 precipitates. This is also in 

agreement with phase predictions in Figure 10. The partitioning of Ti, Si and Zr facilitated a 

thermodynamically preferred condition to form Ti3(SiZr)2 in transformed β, i.e., αs region but not in 

αp regions. This is caused the centrifugally cast Ti-834 with a fully colony microstructure to have a 

higher volume fraction of silicides than in the forged alloy, i.e., duplex microstructure, where it has 

36% of αp silicide free region. Thus, the volume fraction of αp can play a vital role in strengthening 

and increasing ductility of the alloy. From the current study, a high volume fraction (~ 35%) with 

small size of equiaxed αp (~ 20 µm) in duplex microstructure provided an optimum strength and 

ductility for Ti-834 at both RT and HT exposures. It also appears that the basket-weave morphology 

in some areas of the β-transformed region in forged duplex alloy allowed less silicide coarsening. 

This may be due to different partitioning level between fully colony and basket-weave morphology.     

 

It is evident that the alloying element partitioning is strongly microstructure dependant. In the 

forged alloy, the silicide particles were small in size, coherent and homogenously distributed in the 

duplex microstructure, in particular in β-transformed areas, see Figure 14. The precipitated and 

slightly coarsened silicide particles were remained relatively coherent during 500°C/500h exposure 

and unlike in colony microstructure, the surrounding voids were not formed. It seems that the high 

volume fraction of αp in the forged alloy, played a vital role in this relatively uniform partitioning 

across the bulk materials. On other hand, in the absence of αp, as in the cast colony microstructure, 

the element partitioning during heat treatment and aging allowed much higher Al content in the 

centre of the lamellaes and stronger partitioning of Zr, Si, Mo and Nb into or in the vicinity of β 

phase. This caused the silicide coarsening and debonding from the matrix during 500°C/500h 

exposure in the cast alloy. It should be emphasized here that in this near α alloy, the amount of β 

phase is limited and it is appeared that minimum amount of partitioning was occurred where there 

was no β phase and low misorientation angles (> 1°) in between lamellaes. Furthermore, a 
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maximum amount of partitioning in the cast alloy occurred in the very large width lamellae areas 

(indicated by red dashed circles in Figure 2). It seems that these areas replaced αp in enhancing the 

partitioning effect. However as can be seen from the same figure they are not homogenously 

distributed across the microstructure and thus caused further silicide heterogonous distribution in 

the cast alloy.  

 

In summary, to the authors’ best knowledge this is a first comprehensive study to quantify the 

effects of each microstructural parameter individually on the ductility regression in the Ti-834 

alloy. This type of microstructure parameters effects’ quantification will assist greatly in optimising 

the mechanical properties of the alloy during processing. Furthermore, determining the parameters 

intercorrelations using this method will also assist in materials design, hence the chemical 

composition modification of the alloy. Figure 20 summarises the results in the current study and 

illustrates the comparison between strain/stress data for as-received forged and as-received 

centrifugally cast Ti-834 prior to heat exposure. A total of 16.7% ductility regression observed in 

centrifugal cast microstructure can be quantified as follow. It is evident from the figure that the 

7.1% strain differences between the cast and forged alloy are related to microstructural variations 

including; morphology, lath widths, grain size and shape, grain orientations, texture intensity and 

components as well as microtexture, Section 3.2. A total of 9.6 % strain loss in the centrifugally 

cast Ti-834 after aging at 500ºC/500h can be quantified as; 3.6% due to α-case formation during 

high temperature exposure, Section 3.3; 0.2% due to α2-precipitates coarsening, Section 3.4; 4.4% 

due to further silicide formation and coarsening, Section 3.5; 1.4% due to further microstructure 

changes during high temperature exposure such as lath width, αlamellae/αlamellae and αlamellae/β grain 

boundary weakening though further void formation and alloying element segregation, further Al 

and Ti partitioning during again, MC carbide formation coarsening, overall texture alteration and 

easy <c+a> slip system activation at high temperature. It should be emphasised here, other 
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processing conditions and testing environments including O2 content are not considered in this 

study.  

 

4. Conclusions 

 

In the current study the effect of high temperature exposure on the reduction in ductility of the Ti-

834 alloy is investigated. The microstructure characterisation of two differently processed alloys, 

namely centrifugally cast and forged Ti-834 alloys, were carried out prior and following mechanical 

testing, heat treatment and various exposure time and temperatures. The conclusions from this study 

are bulleted below:  

• It is shown that the forged alloy is stronger and more ductile than its cast equivalent in the 

unexposed condition; having significantly higher strength with both the UTS and 0.2% proof 

stress values being approximately 10% higher than those of the cast material. The wrought alloy 

is also more ductile recording a failure strain of 18.4% compared to 11.3% for the cast alloy. 

Exposure at 500oC for extended times does not affect the tensile ductility of the wrought form of 

Ti-834. 

• Exposure at 500oC/500 h was found to develop a uniform layer of α-case between 5-7µm in 

depth in both forged and cast alloys. 

• The EBSD studies suggest that α lamellae orientated favourably for basal <a> slip provided the 

easiest path for trans-lamellar crack propagation. In addition, lamellae unfavourably oriented for 

basal <a> slip and favourably oriented for prismatic <a> slip tended to deflect or arrest the crack. 

• In the centrifugally cast Ti-834 alloy, which has a fully colony microstructure, the crack 

initiation occurred at a prior β grain triple junction, where three or more prior β grains with 

different crystallographic orientations meet. 

• Exposure at 500oC for extended periods of time greatly affects the tensile ductility of the cast 

form of Ti-834.  A reduction in ductility of approximately 84% is seen when the alloy is exposed 
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at 500oC for 500 hours if the α-case layer is retained. Intermediate loses in ductility are seen 

when the alloy is exposed for 100 and 200 h. Removing the α-case layer prior to the testing 

could recover 3.6% of the lost ductility. It appears that α-case formation has less pronounced 

effects on tensile ductility than its effects of fatigue crack initiation and propagation reported in 

the literature.  

• It appears that α2 precipitation does not have a significant effect on the tensile ductility of the 

cast alloy as only a recovery of ~ 0.2% of lost ductility is seen after heat-treating the alloy at 

800oC.   

• Fine incoherent silicides of composition Ti3(SiZr)2  are found at αs/β phase boundaries in both 

the cast and wrought alloy before any exposure. The silicides found in the cast material being far 

coarser than those seen in the wrought alloy. Moreover, the existing silicides in the cast material 

coarsen and new silicides were formed and precipitated during exposure at 500oC/500h.  

• The silicide solvus temperature of the cast alloy appears to be higher than 1000oC, this results in 

small regions retaining silicides after the 1000ºC/2h heat treatment. Silicide precipitation and 

coarsening was responsible for a 4.4% ductility loss after prolonged exposure at 500oC/500h of 

the cast alloy.   

• A model for silicide precipitation in fully colony and duplex microstructures was established. It 

was evident that Al and Ti depletion in the vicinity of the β phase in the fully lamellae structure, 

i.e., αs area, reduces the strength of the alloy and facilitates the formation of Ti3(SiZr)2  

precipitates. Furthermore, the silicides were not formed in αp (high Al, Ti and low Zr areas) in 

the forged duplex microstructure, which allowed better mechanical performance and ductility 

than that of the cast alloy, i.e. fully colony microstructure.  

• A high volume fraction (~ 35%) with small size of αp (~ 20 µm) in duplex microstructure 

provides optimum strength and ductility for Ti-834 at RT and HT exposures. 
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Figure 1: (a) The cylindrical tensile specimen geometry used in the current study, (b) the forged 

specimen coordinate axes with reference to EBSD scan area.  

Figure 2: Optical micrographs showing the microstructure of Ti-834 as a) Centrifugally cast alloy 

in unexposed condition, b) wrought alloy in unexposed condition, c) Cast alloy post exposure at 

500oC/500h, d) wrought alloy post exposure at 500oC/500h. 

Figure 3: Stress-Strain curves showing the effect of exposure time on the tensile properties of Ti- 

 834 centrifugally cast alloy.   

Figure 4: Stress-Strain curves showing the effect of exposure time on the tensile properties of Ti- 

 834 forged alloy.  

Figure 5: EBSD orientation map of centrifugally cast Ti-834 alloy highlighting low 

 misorientation angle between neighbouring lamellaes (αs) in colony microstructure.   

Figure 6: 2D EBSD-IPF//LD maps from 3D-EBSD volume showing crack interaction with grain 

orientation at a) 50 µm, b) 100 µm and c) 200 µm below the surface, visualizing the crack initiation 

at prior β triple junction (3D crystal viewer superimposed on the maps). Five areas are indicated on 

the IPF maps by white dashed rectangular lines and are magnified individually. a1), b1) and c1) 

show EBSD-derived (0002) <11-20> and a2), b2) and c3) (10-11) <11-20> Schmid factor maps for 

the same area in (a, b and c). 

Figure 7: EBSD-derived IPF//Y, Pole Figures, Inverse Pole Figures and ODFs for Cast (a) and (b) 

Forged alloys, (c) schematic representation of standard (0001) and (10-10) pole figures for ideal 

Basal and Transverse texture components.   

Figure 8: Optical micrographs illustrating α-case formation after exposure at 500oC/500h on Ti-834 

  a) cast, b) forged alloy. The surface crack initiation and propagating through c) cast and d) 

  wrought alloy are shown. 

Figure 9: Stress-Strain curves showing the effect of α-case removal on the tensile ductility of 

 exposed centrifugally cast Ti-834 alloy. 
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Figure 10: Simulated JMatPro phase diagram showing temperature versus wt% of the phases in Ti-

834. 

Figure 11: High-resolution SEM images showing α2 precipitates in a) cast alloy after 500ºC/500h 

exposure, b) after 800oC/2h and c) 1000oC/2h heat treatment, d) wrought alloy after 500ºC/500h 

exposure. 

Figure 12: Stress-Strain curves showing the effect of heat-treatment temperature on the tensile 

ductility of the exposed cast Ti-834 alloy.  

Figure 13: High-resolution SEM images of centrifugally cast Ti-834, a) prior to, d) after 

500ºC/500h exposure. b) and c) show 2D EDS maps of silicon and zirconium, respectively for area 

in (a). e) and f) show 2D EDS maps of silicon and zirconium, respectively for area in (d). g) present 

void formation due to  silicide coarsening on αs/β phase boundary. 

Figure 14: High-resolution SEM image of wrought alloy, a) and b) prior to exposure, d) after 

500ºC/500h exposure, c) chemical analysis of the area in (b), e) represent the chemical analysis for 

area (d), (f) show the composition of silicides observed in cast alloy.  

Figure 15: High-resolution SEM image of 500ºC/500h exposed centrifugally cast Ti-834, a) after 

800oC/2h heat treatment, b) and c) show 2D EDS silicon and zirconium maps for area (a), d) show 

the brittle nature of coarsened silicide and void formation around it, e) after 1000oC/2h heat 

treatment, f) and g) 2D EDS silicon and zirconium maps for area in (e), h) shows silicide early stage 

formation on β phase.  

Figure 16: Alloying element partitioning of (b) Ti, (c) Al, (d) Zr, (e) Si and (f) Mo in the vicinity of 

β phase shown in the SEM images in (a) for cast Ti-834 alloy.  

Figure 17: Silicide formation on β and Al depleted zone in αs shown in (a), the magnified area is 

  shown in (b) where Al, Mo, Ti and Nb EDS lines scans are performed for cast Ti-834 alloy. 

Figure 18: ESBD-derived band contrast (a) IPF//X (b) maps, EDS maps for Al (c) and Zr (d) for 

forged Ti-834 alloys after 500ºC/500h exposure. EBSD-derived band contrast (e) IPF//X (f) maps, 
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the EDS 2D maps for high-magnified area of β-transformed area showing the basket-weave 

morphology, (h) Al and Zr EDS lines scan profiles for the purple and yellow lines indicated in (g). 

Figure 19: Schematic illustration of the alloying element partitioning in Ti-834 following the 

  exposure at 500ºC/500h. 

Figure 20: Quantification of the microstructural parameter effects on the tensile ductility of the 

centrifugally cast Ti-834 alloy. The stress-strain curves illustrate the as-received forged (blue curve) 

and centrifugally cast (red curve) Ti-834 prior to high temperature exposure. 
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