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Analytical solution for the lubrication force between two spheres in a bi-viscous fluid

A. Vázquez-Quesada1, a) and M. Ellero1, b)

Zienkiewicz Centre for Computational Engineering (ZCCE),

Swansea University, Bay Campus, Swansea SA1 8QQ,

United Kingdom.

Tel.: +44 (1792) 295514

An analytical solution for the calculation of the normal lubrication force acting be-

tween two moving spheres embedded in a shear-thinning fluid represented by a bi-

viscous model is provided. The resulting force between the suspended spheres exhibits

a consistent transition between the Newtonian constant-viscosity limits and it reduces

to the well-know standard Newtonian lubrication theory for viscosity-ratio approach-

ing one. Effects of several physical parameters of the theory are analyzed under

relevant physical conditions, i.e. for a prototypical case of two non-colloidal spheres

immersed in a non-Newtonian fluid with rheology parameterized by a bi-viscosity

model. Topological results for high/low-viscosity regions in the gap between spheres

are also analyzed in detail showing a rich phenomenology. The presented model

enables the extension of lubrication dynamics for suspensions interacting with non-

Newtonian matrices and provides a clean theoretical framework for new numerical

computations of flow of dense complex particulate systems.

a)Electronic mail: A.Vazquez-Quesada@swansea.ac.uk
b)Electronic mail: M.Ellero@swansea.ac.uk
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I. INTRODUCTION

Particulate suspensions are ubiquitous in nature and industrial applications, and the un-

derstanding of their flow properties represents therefore a challenging academic and relevant

technical problem1,2. Although the dilute and semidilute rheological behaviors for suspen-

sion with a Newtonian matrix are well understood3–6, when the solid concentration becomes

sufficiently large many new issues arise7,8. In very dense systems, particles under flow can

get very close to each other, entering the so-called lubrication regime. From a computational

perspective, reproducing correctly the lubrication force acting between two particles within

a very thin separation gap is a very challenging task: when direct numerical simulations

(DNS) are considered, correct description of the lubrication is possible only at the price of

a significant increase of the numerical resolution in the gap and therefore CPU resources.

Although this approach has been frequently adopted9,10, it appears to be limited in its appli-

cation to systems with a small number of suspended particles, whereas realistic large-scale

dense systems - with multiple near-contact lubrication-interactions - are out of the current

DNS capabilities. In order to bypass some of these technical issues, simulations are usually

performed by separating long-range hydrodynamics interactions between particles - obtained

conventionally from explicit-solvent11,12 or implicit-solvent models13 - from the short-range

hydrodynamic interactions which are instead taken into account resorting to exact analyt-

ical solutions for the squeezing Stokes flow between close spheres. In the case of simple

Newtonian solvents, this framework has been further developed in recent years in order

to integrate efficiently the resulting equations of motion and speed-up the simulations14,15,

with the result that systems containing thousands of fully lubricated particles are becoming

accessible16.

On the other hand, the non-Newtonian nature of real suspending media increases sig-

nificantly the complexity of the lubrication problem. Note that non-Newtonian matrices

characterized, for example, by non-constant shear-viscosity, presence of normal stresses or

viscoelastic memory effects are not restricted to the flow of complex fluids, e.g. polymer

suspensions, melts, emulsions, micelles etc., but might include also so-called ’simple’ flu-

ids where complex rheology is still expected, though under extreme flow conditions17. It

is therefore important to generalize current analytical results for interparticle lubrication

forces, in order to incorporate also non-Newtonian matrix effects and target complex par-
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ticulate systems18.

Although the problem of nearly touching spheres in a Newtonian solvent has been widely

studied19–28, there is a scarce number of analytical works focusing on this geometry for a

non-Newtonian liquid. In Rodin 29 an asymptotic solution was found for the lubrication force

between spheres suspended in a power-law fluid. The final set of equations, however, was

obtained in terms of the β function which, in general, needs numerical evaluation. Moreover,

the model predicted the presence of an unphysical force singularity for coefficients of the

power-law fluid equal to 1/3. Such a behavior was corrected later on by a semi-analytical

approximation in Lian et al. 30 using a Gaussian integration.

For the case of the tangential lubrication force between spheres in a power-law fluid, an

analytical solution is given in Huang et al. 31 which, however, diverges for shear thinning

solvents, being physically finite only for power-law fluids with exponents larger than one. The

authors suggest that such a divergent behavior is caused because the contribution to the force

of the outer regions of the gap can not be neglected. On the other hand, numerical solutions

have been reported for the case of two close interacting spheres suspended in Herschel-

Bulkley fluid32, power-law fluid with slip boundary conditions33 or Bingham liquids34.

In this work we present a fully analytical solution of the normal lubrication force acting

between two spheres moving through a non-Newtonian fluid described by the so-called bi-

viscosity model. This was originally introduced35,36 to model viscoplastic fluids, i.e. systems

characterized by the existence of a yield stress such as toothpaste, paint or several food

products37–39, with a purely viscous regularisation. It can however be used to approximate

also the high shear-rate non-Newtonian behavior of many ’simple’ fluids such as oil lubricants

or other low-molecular weight silicone liquids40–42, where the viscosity exhibits a physical

Newtonian plateau up to very large shear rates, followed by a sudden significant viscous

drop. The shear viscosity η of a bi-viscous fluid model reads

η =



















η0, if |γ̇| < γ̇c

η1, if |γ̇| ≥ γ̇c

(1)

where typically η1 < η0 and γ̇c is a critical shear rate parameter. |γ̇| = [1
2
(γ̇ : γ̇)]1/2 is the

magnitude of the local symmetrized shear rate tensor. Although the rheology of the solvent

is relatively simple, a very rich phenomenology emerges in the context of inter-particle
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FIG. 1. Scheme of the problem of a bilayer fluid under a pressure gradient between two planar

walls.

lubrication.

The paper is structured as follows: in Sec. II, as a corollary the preliminary result for

the flow of a bi-viscous fluid driven by a constant pressure gradient between two parallel

plates is discussed. This result is generalized in Sec. III, where the calculation of the normal

lubrication force between two spheres in a bi-viscous fluid is presented. In order to study

the effect of the different physical parameters on the calculated force, we consider a realistic

case of non-colloidal spherical particles suspended in polydimethylsiloxane-liquids in Sec. IV.

Effect of relative particle velocity, viscosity ratio η1/η0 as well as choice of shear rate γ̇c are

explored and the results discussed in Sec. IVA and Sec. IVB. In Sec. IVC the local topology

of the regions with different viscosities is analyzed. Finally conclusions are provided in

Sec. V.

II. SOLUTION OF A BI-VISCOUS FLUID UNDER A PRESSURE

GRADIENT BETWEEN TWO PLANAR WALLS

Let us consider first two separate fluids with different viscosities η0 and η1 defined between

two planar walls located at a distance Lz. We will consider the system of reference {r, z}
as it is shown in Fig. 1. The bottom and top walls are at the positions z = z1 and z = z2

respectively. The center of the channel is at z = c = (z1 + z2) /2. The fluid with viscosity
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FIG. 2. Velocity profile of a bilayer fluid between two parallel walls.

η0 is located in the region |z − c| < zc whereas the fluid with viscosity η1 is in the region

|z − c| ≥ zc. We assume that a pressure gradient ∂p/∂r is applied in the direction r, driving

the flow.

If the velocity of the fluid is considered to depend only on the coordinate z, the stationary

Navier-Stokes equations for the different layers with viscosities η0 and η1 are respectively

given by

η0
ρ

∂2

∂z2
u0 =

1

ρ

∂p

∂r

η1
ρ

∂2

∂z2
u1 =

1

ρ

∂p

∂r
(2)

where ρ is the density and u0 and u1 are the velocities in the r direction for the fluids

with viscosities η0 and η1 respectively. The integration of these equations together with the

conditions for the continuity of the velocity field along z, i.e.

u1(z1) = u1(z2) = 0

u0(c− zc) = u1(c− zc)

u0(c+ zc) = u1(c+ zc) (3)

lead us to the following solution

u0(z) =
1

2η0

∂p

∂r

[

(z − c)2 − z2c
]

+
1

2η1

∂p

∂r

[

z2c − L2
z/4

]

u1(z) =
1

2η1

∂p

∂r
(z − z1)(z − z2). (4)

Note that the condition of continuity of the stress is also held given that

η0
∂u0(c± zc)

∂z
= η1

∂u1(c± zc)

∂z
(5)
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FIG. 3. Scheme of the problem of lubrication between two spheres.

The typical velocity profile of such a system is depicted in the Fig. 2.

If we now consider a single fluid which variable viscosity, i.e. depending on the applied

shear rate as defined in Eq. (1), we obtain a similar velocity profile where the distance zc,

however, does depend now on γ̇c. The local shear rate of a Newtonian fluid of viscosity η0

in such a system is given by

γ̇0(z) =
1

η0

∂p

∂r
(z − c) (6)

thus, if we suppose that η1 < η0, given that γ̇0(z) < γ̇1(z), we can calculate zc as

zc = γ̇c
η0

|∂p/∂r| (7)

(note that zc is not a coordinate, but a distance). Of course, if zc > Lz/2 we should just

consider a Newtonian fluid with single viscosity η0.

III. NORMAL LUBRICATION FORCE BETWEEN TWO SPHERES IN A

BI-VISCOUS FLUID

Let us consider now the squeezing flow of two very close spheres of radius a1 and a2

immersed in a bi-viscous model fluid with rheology defined by Eq. (1). The normal relative

velocity between the spheres is V . The system of reference and the different parameters of

the problem are summarized in Fig. 3.

If we consider only small gaps between spheres, their surfaces can be approximated by

paraboloids, thus the distance between them can be defined as h(r) = h0

(

1 + r2

2ah0

)

, where
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1
a
= 1

a1
+ 1

a2
and h0 is the distance between surfaces at r = 043. The value of zc depends now

on r and is given by

zc(r) = − γ̇cη0
∂p
∂r
(r)

(8)

where we have assumed that the pressure gradient, whose formal expression still needs to

be determined, is negative. As in the lubrication force calculation between two spheres in a

Newtonian fluid43, we can consider that the squeezing fluid is moving uni-directionally along

the r coordinate if the velocity V is sufficiently small. Depending on the value of the pressure

gradient at a given position r, the fluid can behaves either as Newtonian (“mono-viscosity”)

or non-Newtonian (“bi-viscosity”). The velocity profile is given then by

u(r, z) =



















u(r, z)|m, if r ∈ Rm

u(r, z)|b, if r ∈ Rb

(9)

where Rm is the region of the space where the fluid is mono-viscous, and Rb where it is

bi-viscous. The use of m and b subscripts will be used along this work with the meaning

defined in the equation above.

The expressions of the velocity in such a regions are therefore given by

u(r, z)|m =
1

2η0

∂p

∂r
(z − z1(r))(z − z2(r)) (10)

u(r, z)|b =



















1
2η0

∂p
∂r

[

(z − c(r))2 − z2c (r)
]

+ 1
2η1

∂p
∂r

[z2c (r)− h2(r)/4] , if |z − c(r)| < zc(r)

1
2η1

∂p
∂r
(z − z1(r))(z − z2(r)), if |z − c(r)| ≥ zc(r)

Note that now the quantities z1, z2 and c generally depend on the r coordinate. For the

shake of simplicity, the dependency of ∂p/∂r on r has not been explicitly written.

The pressure gradient can be calculated by using the mass conservation law, which is

written in the coordinates r in the region Rm as

πr2V




m
= 2πr

∫ z2(r)

z1(r)

u(r, z)dz = − πr

6η0

∂p

∂r









m

h3(r) (11)

Thus, the pressure gradient within the region Rm derives from the last equation as

∂p

∂r
(r)









m

= −6η0rV

h3(r)
(12)
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FIG. 4. The maximum shear rate γ̇s(r) depending on r of a Newtonian fluid. The pressure gradient

of the fluid will be different than the Newtonian one in the region r1 < r < r2.

The maximum shear rate γ̇s for a given position r is located at the surfaces of the spheres,

and it is given by

γ̇s(r) =
−1

η0

∂p

∂r
(r)









m

h(r)

2
=

3rV

h2(r)
(13)

This function, which has been drawn in Fig. 4, is characterized by a maximum at the position

rmax =

√

2

3
ah0 (14)

and its value is given by

γ̇max
s ≡ γ̇s(rmax) =

9

8

V

h0

√

3

2

a

h0

(15)

Therefore, the condition to obtain a bi-viscosity behavior at some coordinate r is generally

defined as

γ̇c < γ̇max
s (16)

If this condition holds, from the γ̇s(r) graph in the Fig. 4, we can conclude that the region

Rb would be located between the two r coordinates r1 and r2 (with r1 < r2). Regions Rm

and Rb can then be defined as

r ∈ Rm if r ≤ r1 or r ≥ r2

r ∈ Rb if r1 < r < r2 (17)
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The conservation of mass applied to the region Rb allows us to obtain ∂p/∂r(r)|b.

πr2V




b
= 2πr

∫ z2(r)

z1(r)

u(r, z)|b dz = − πr

6η1

∂p

∂r
(r)









b

h3(r) +

4πr

3

∂p

∂r
(r)









b

z3c (r)

(

1

η1
− 1

η0

)

(18)

Using Eq. (8) and (13) we can write the last expression in terms of zc(r) as

0 =

(

1− η1
η0

)(

2zc(r)

h(r)

)3

+
η1
η0

γ̇s(r)

γ̇c

(

2zc(r)

h(r)

)

− 1 (19)

whose exact solution can be calculated with the Cardano’s method: given that the quadratic

term is null, the unique real solution to the equation is given by
(

2zc(r)

h(r)

)

= S1(r) + S2(r) (20)

S1(r) =
3

√

√

√

√

√

η0
2(η0 − η1)



1 +

√

1 +
4

27

η21
η20

η1
η0 − η1

(

γ̇s(r)

γ̇c

)3




S2(r) =
3

√

√

√

√

√

η0
2(η0 − η1)



1−

√

1 +
4

27

η21
η20

η1
η0 − η1

(

γ̇s(r)

γ̇c

)3




From this equation we can calculate, with the help of Eq. (8), the expression for the

pressure gradient ∂p/∂r, but the result is very difficult to integrate analytically. Without

any physical assumption about the value of γ̇c - which would limit significantly the range

of applications of the final formula - we have not found any regime of parameters allowing

us to simplify (19) or its solution through series expansion. Instead, given that the cubic

polynomial associated to (19)

A(x) =

(

1− η1
η0

)

x3 +
η1
η0

γ̇s(r)

γ̇c
x− 1 (21)

does not have any extremes, we can consider that the structure of such a function is sim-

ple enough to be approximated by a linear interpolation through the points (x,A(x)) =

(0, A(0)), (1, A(1)), in such a way that the equation to solve now is

0 ≈
(

1− η1
η0

(

1− γ̇s(r)

γ̇c

))(

2zc(r)

h(r)

)

− 1 (22)

whose solution reads
(

2zc(r)

h(r)

)

≈ η0

η0 − η1

(

1− γ̇s(r)
γ̇c

) (23)
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Note that the linear interpolation which leads to Eq. (22) is equivalent to approximate the

cubic term of Eq. (21) as x3 ∼ x. From Eq. (8) the pressure gradient is therefore obtained

as

∂p

∂r
(r)









b

≈ −2γ̇c (η0 − η1)h
−1(r)− 6η1V rh−3(r) (24)

As a next step, in order to obtain the pressure in a position r, we should integrate the

pressure gradient as

p(r) = −
∫ ∞

r

∂p

∂r
(r)dr (25)

which gives an expression which is multiply defined depending on the value of r, i.e.

p(r)|r<r1
= −

∫ r1

r

∂p

∂r
(r)









m

dr −
∫ r2

r1

∂p

∂r
(r)









b

dr −
∫ ∞

r2

∂p

∂r
(r)









m

dr =

3V a
[

η0h
−2(r) + (η0 − η1)

(

h−2(r2)− h−2(r1)
)]

+

2γ̇c(η0 − η1)

√

2a

h0

(

arctan

(

r2√
2ah0

)

− arctan

(

r1√
2ah0

))

;

p(r)|r1≤r≤r2
= −

∫ r2

r

∂p

∂r
(r)









b

dr −
∫ ∞

r2

∂p

∂r
(r)









m

dr =

3V a
[

η1h
−2(r) + (η0 − η1)h

−2(r2)
]

+

2γ̇c(η0 − η1)

√

2a

h0

×
(

arctan

(

r2√
2ah0

)

− arctan

(

r√
2ah0

))

;

p(r)|r>r2
= −

∫ ∞

r2

∂p

∂r
(r)









m

dr = 3η0V ah−2(r)

The force is therefore obtained simply by integration of the pressure along the tangential

plane to the surface of the sphere

F =

∫ ∞

0

p(r)2πrdr =



















F1 if h0 ≥ hlim
0

F2 if h0 < hlim
0 .

(26)

Here, the quantity

hlim
0 =

3

4
3

√

9

2

V 2a

γ̇2
c

(27)
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is calculated from the condition (16) and represents the minimum distance between spheres

surfaces where the fluid has a mono-viscous Newtonian behavior, i.e. at smaller interparticle

distances the fluid will be effectively bi-viscous. The expressions of F1 and F2 are given by

F1 = 6πη0V a2h−1
0

F2 = 2π
[

3a2η0V h−1
0 + 3a2(η0 − η1)V

(

h−1(r2)− h−1(r1)
) (

2− h0

(

h−1(r1) + h−1(r2)
))

+

2aγ̇c(η0 − η1)

[

(r2 − r1) + (h(r1)− 2h0)

√

2a

h0

(

arctan

(

r2√
2ah0

)

− arctan

(

r1√
2ah0

))]]

(28)

This is the central result of this work.

Clearly F1 is exactly the same as the usual Newtonian normal force lubrication. More

importantly, note that the correct Newtonian expression (F1) is recovered from F2 when we

take η1 = η0, which represents a consistency check of the theory.

Moreover, in the limit h0 → hlim
0 , we have that r1 → r2 (see Fig. 4) and the following

expression holds

lim
h0→hlim−

0

F2(h0) = lim
h0→hlim+

0

F1(h0) (29)

ensuring the continuity of the force as a function of h0. In fact, the ratio h0/h
lim
0 gives us

information about the importance of the bi-viscous behavior of the fluid, i.e. if h0/h
lim
0 ≥ 1

the solvent behaves exactly as a Newtonian fluid with viscosity η0, whereas if h0/h
lim
0 ≪ 1,

the solvent behaves essentially as a Newtonian fluid with viscosity η1. The fluid has a

transitional bi-viscous behavior between those two limits.

A. Calculation of r1 and r2

In order to use Eq. (28) to calculate the force acting between two spheres, we need to

have an explicit expression for r1 and r2. Such a coordinates can be found by calculating

the distances r where γ̇s(r) is equal to γ̇c (see Fig. 4), which leads us to the next equation

(

r

rmax

)4

+ 6

(

r

rmax

)2

− 16

(

γ̇max
s

γ̇c

)(

r

rmax

)

+ 9 = 0 (30)

where rmax was defined in (14). It is worth to note that the same expression can be obtained

by doing 2zc(r)
h(r)

= 1 in equation (19). Eq. (30) is a quartic equation which has unique real
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solutions given by

r1 = rmax

[

Q−
√

−3−Q2 + 4

(

γ̇max
s

γ̇c

)

1

Q

]

r2 = rmax

[

Q+

√

−3−Q2 + 4

(

γ̇max
s

γ̇c

)

1

Q

]

(31)

where

Q =

√

−1 +
1

P + P (32)

P =
3

√

√

√

√−1 + 2

(

γ̇max
s

γ̇c

)2

+ 2

(

γ̇max
s

γ̇c

)

√

(

γ̇max
s

γ̇c

)2

− 1

B. Limiting behaviors

With the full lubrication solution obtained, i.e. Eqs. (28) and (31), we can calculate now

several interesting limits. First, if we take the limit γ̇c → 0, we have that r1 → 0, r2 → ∞
and hlim

0 → ∞ so the force reduces trivially to the case of a Newtonian fluid of viscosity η1.

Another interesting limit is obtained when the spheres are almost touching h0 → 0. In

this case, by using Eqs. (14) and (15), the quartic expression (30) can be written as

1

4a2h2
0

r4 +
1

ah0

r2 − 3V

γ̇ch2
0

r + 1 = 0 (33)

In the limit h0 → 0 only the first and third terms are relevant, so the equation to solve

simplifies to

1

4a2h2
0

r4 − 3V

γ̇ch2
0

r = 0 (34)

whose solutions provide us the limits of r1 and r2 for h0 → 0, which are

lim
h0→0

r1 = 0

rlim2 ≡ lim
h0→0

r2 =
3

√

12V a2

γ̇c
(35)

In this limit the force (28) reduces to the one of a Newtonian fluid with viscosity η1

lim
h0→0

F









η1 6=0

= 6πη1V a2h−1
0 (36)

where we assume that η1 6= 0.
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Let us consider now the case where we take η1 = 0 in the equations, i.e. we have a

bi-viscous fluid characterized by a zero-resistance above a certain critical shear-rate. In this

case the force in the limit h0 → 0 reads as

Fmax ≡ lim
h0→0

F









η1=0

= 6πη0V a2d−1
0 (37)

where

d0 =
2

9
3
√
4 hlim

0 ≈ 0.35hlim
0 (38)

Note that Fmax does not depend on the gap h0 between the surfaces of the spheres, imposing

a finite limit in the lubrication force when η1/η0 → 0. This is due to the fact that, for

h0 → 0, all the lubrication force comes from the friction between the surface of the sphere

and the solvent in the region r > rlim2 . Note that rlim2 is not an artifact of the lubrication

approximation because, given a certain physical γ̇c and a, we can always choose a relative

velocity V sufficiently small such that rlim2 ≪ a is within the lubrication regime. It is worth

mentioning that in the limit η1 → 0 the local Reynolds number in the boundary layer of

vanishing viscosity remains finite, in such a way that the lubrication assumptions can still

be valid. (see Appendix B).

IV. MODEL PREDICTIONS

In this section we apply the model to do predictions about the lubrication force between

spherical particles immersed in a liquid with rheology characterized by a bi-viscous behavior.

This is a good model for a variety of complex fluids characterized by approximate constant

viscosity up to a given shear rates γ̇c, followed by a significant shear-thinning. Examples in-

clude many polymeric fluids44–47. Specifically we are going to focus on polydimethylsiloxane

(PDSM) liquids. Given their long range of shear rates where the fluid behaves as Newtonian

(> 1000 s−1) and their relatively high zero-shear viscosity40–42, they have been widely used

as a Newtonian solvent in rheological studies of suspensions48–51.

As a prototype system, we explore the particle lubrication interaction between two equal

spheres of radius R = 50 µm, which is a typical size for a non-colloidal particle in suspension.

Note that the real radius R = 2a, where a is the reduced radius defined in Sec. III. The

spheres are approaching each other along the line joining their centers of mass at a relative
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velocity V = aγ̇. γ̇ is the average shear rate around the particle and we will consider that is

ranged between 10−2 s−1 and 102 s−1 which are values typical probed in experiments using

standard rheometers.
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A. Effect of shear rate γ̇

We start studying the effect of the shear rate γ̇ on the interparticle lubrication force by

changing the relative velocity V . Fluid parameters have been chosen to match a standard

PDMS-liquid, i.e. viscosity ratio η1/η0 = 0.25 and γ̇c = 1000 s−1. In Fig. 5 we have drawn the

results for three different regimes γ̇ = 0.01, 1, 100 s−1. For this set of physical parameters,

at the lowest shear rate the fluid behaves essentially as a Newtonian with viscosity η0 (blue-

red lines, Fig. 5) in the physically interesting regime. Note that at interparticle distances

h0 < 10−4R the smooth-surface approximation becomes questionable as roughness typically

exceeds this value, even for large non-colloidal particles. Note however that high-precision

fabrication of microspheres with surface roughness < 1 nm is already possible52.

In the opposite limit, i.e. at the highest shear rate, the lubrication force is consistent with

that of a Newtonian fluid with viscosity η1 (gray-black lines, Fig. 5) in the lubrication regime,

i.e. for h0/a ≪ 1. A continuous transition between the two solutions is finally observed for

γ̇ = 1 s−1 (pink line), where the truly bi-viscous nature of the problem becomes relevant in

the lubrication regime.

This result shows also that, under the prescribed physical conditions, shear-thinning

effects in the lubrication force (transition) can practically take place for a non-colloidal

particle system in a range of macroscopic γ̇ ∈ [0.01 : 100] s−1. This could represent a

possible mechanism to explain the puzzling shear-thinning behavior often observed in non-

colloidal systems48–51.

In order to check the accuracy of the model respect to the exact analytical solution, we

have drawn in the Fig. 6 the comparison between the approximation to ∂p
∂r
(r) obtained by

Eq. (24) with the exact solution calculated from Eqs. (20) and (8) for the previous case

with γ̇ = 1 s−1, at different distances. The agreement is overall very good. This can be

viewed also as ’a posteriori’ justification of the main assumption made in Eq. (22). A more

detailed analysis of the error on the force is presented in Appendix A.

B. Effect of η1/η0 and γ̇c

By modifying the length and polydispersity of the PDMS molecules, for example, one can

practically change the rheological properties of a PDMS-liquid, such as the range of shear
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FIG. 7. Lubrication force between two equal spheres of radius R = 50 µm in different fluids with
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changing the parameter γ̇c is studied. In the second one the shear rate γ̇ = 1 s−1 while the ratio

η1/η0 is changed. Distance h0 and force F ∗
max ≡ Fmax/(6πη0RV ) given by eqs. (38) and (37) have

been also drawn as reference.

rates where it behaves as (close to) Newtonian or the onset of power-law viscosity regime41.

Such changes can be taken into account in our model by tuning the viscosity ratio η1/η0 and

the cutoff shear rate γ̇c. In the following, we study the effects of changing these parameters.

In the first graph of Fig. 7 we can see the effect of changing γ̇c between 100 s−1 and

10000 s−1 in a fluid with η1/η0 = 0.25 undergoing an average γ̇ = 1 s−1. We can observe

that by increasing γ̇c the transitional behavior (where the bi-viscous nature of the fluid
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rheology is relevant) is moved towards smaller interparticle distances.

In the second graph of the same figure we have changed the ratio η1/η0 in the range

0 to 0.5 in a fluid with γ̇c = 1000 s−1 and γ̇ = 1 s−1. This change affects the slope of

the lubrication force at short ranges, but does not influence the critical distance hlim
0 for

its onset, which does not depend on η1/η0 (see Eq. (27)). When η1/η0 → 1 the fluid is

approaching the Newtonian case with viscosity η0, as calculated already before. Note that

the range where the transition between viscosities η0 and η1 takes place, increases for smaller

ratios η1/η0, until it reaches a limit, where the lubrication force Fmax is nearly constant for

η1/η0 → 0.

Note that this limiting expression for the force can be interpreted as a possible solvent-

mediated regularization mechanism for the unrealistic diverging behavior of lubrication at

vanishing interparticle gap. This is typically explained based on the fact that the Stokes

approximation fails at small distances where either surface roughness or non-hydrodynamic

surface-surface interactions (i.e. electrostatic) occur. The present results show also that this

can happen when the fluid does not longer behave as a constant-viscosity Newtonian. As

most of simple fluids under extremely large shear rates eventually show significant shear-

thinning17, this interpretation offers a formal way to introduce a cutoff in the singular

resistance based on suspending medium rheology.

C. Low-viscosity regions

In this section we study in detail the local topology of the interface separating fluid

regions with viscosity η1, in the following termed low-viscosity regions, from those where

the viscosity is η0 (high-viscosity regions). In particular we show how these regions change

in the gap between spheres for different model parameters. As done before, we consider

the squeezing flow between two equal spheres of radius R = 50 µm in relative approaching

motion.

We start keeping fixed the following parameters: η1/η0 = 0.25, h0 = 4 × 10−3R and

γ̇ = 1 s−1, and consider uniquely the change of γ̇c in the range 100 − 500 s−1. When the

value of γ̇c is increased, the distance r2 − r1 is reduced (see Fig. 4). Simultaneously, the

low-viscosity regions are located in a vanishing area close to the sphere’s walls, i.e. between

r1 and r2 where the local shear rates are higher (see Fig. 8 where low-viscosity regions are
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FIG. 8. Low-viscosity regions for the squeezing flow between two equal spheres of radius R = 50 µm

separated by a gap h0 = 4×10−3R in a fluid with γ̇ = 1 s−1 and η1/η0 = 0.25, where γ̇c is changed

in the range 100− 500 s−1.

depicted as shadowed areas). In the limit γ̇c → γ̇max
s , r1 = r2 and the low-viscosity regions

will disappear, recovering the behavior of a Newtonian fluid of viscosity η0.

On opposite, in the limit γ̇c → 0, r1 tends to 0 and r2 to infinity, in such a way that the low

viscosity regions would occupate the whole space, recovering the behavior of a Newtonian

fluid of viscosity η1. In the insets of Fig. 8 the central region of the channel between the

particles has been drawn. There will always be a high viscosity region in the center due to

the fact that the shear rate tends to zero when approaching r = 0.

In Fig. 9 we fix the parameters: γ̇c = 100 s−1, h0 = 4× 10−3R and γ̇ = 1 s−1 and change

the ratio η1/η0 in the range 0.02 − 0.5. In this case, given that r1 and r2 do not depend

on η1/η0, they remain fixed for the three cases shown in the figure. In fact, as long as the
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FIG. 9. Low-viscosity regions for the squeezing flow between two equal spheres of radius R = 50 µm

separated by a gap h0 = 4×10−3R in a fluid with γ̇ = 1 s−1 and γ̇c = 100 s−1, where η1/η0 = 0.25

is changed in the range 0.02− 0.5.

condition (16) is held, there will be, for any ratio η1/η0, a low-viscosity region between the

coordinates r1 and r2. As η1/η0 is increased, the low viscosity region will be wider, reaching,

in the limit η1/η0 → 1, an extension whose topology can be calculated from the limit of eq.

(23) as

lim
η1/η0→1

zc(r) =
h(r)

2

γ̇c
γ̇s(r)

(39)

Note that such a region is wider when γ̇c is increased, but will never occupy the whole space

between r1 and r2, i.e. zc → h(r)/2 for all r, given that, γ̇c ≤ γ̇max
s in the coordinates

r1 < r < r2. In such a limit, independently on the topology described above, the case of

a fluid of viscosity η0 is recovered because the two viscosities are the same. In the insets
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FIG. 10. Low-viscosity regions for the squeezing flow between two equal spheres of radius R =

50 µm in a fluid with γ̇ = 1 s−1 and γ̇c = 100 s−1, and η1/η0 = 0.25 where the gap h0 is changed

in the range 2× 10−2R− 2× 10−4R.

of Fig. 9 it can better appreciated how, although the width of the low viscosity region is

decreasing when η1/η0 becomes smaller, the value of r1 remains the same.

On opposite, when η1/η0 is decreased, the low viscosity region will become increasingly

thinner. The limit η1/η0 → 0 defines a boundary layer located between r1 and r2 which will

not contribute whatsoever to the lubrication force. In this limit the only contribution to

such a force comes from the friction within the fluid at radial distances r < r1 and r > r2.

Note that, in this case of vanishing η1, if the gap is decreased to the almost touching limit,

given that r1 → 0, only the outer region of the gap, i.e, r > r2, will contribute to the friction.
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FIG. 11. Low-viscosity regions for the squeezing flow between two equal spheres of radius R =

50 µm almost on contact (h0 = 2 × 10−4R) in a fluid with γ̇c = 100 s−1, and η1/η0 = 0.25 where

γ̇ is changed in the range 1− 100.

As a further test, we consider the case where we keep fixed the parameters of the fluid to

γ̇c = 100 s−1, η1/η0 = 0.25 and γ̇ = 1 s−1, and change uniquely the gap between spheres in

the range h0 = 2×10−2R−2×10−4R (see Fig. 10). When the two spheres get closer, r1 and

r2 tend to their limits, i.e. 0 and rlim2 given by Eq. (35), and the low-viscosity regions become

wider, spreading into the bulk and reaching a maximum extension in the limit h0 → 0. This

can be calculated from the limit of zc, given by Eq. (23), as

lim
h0→0

zc(r) =
r2

4a

η0

η0 − η1

(

1−
(

rlim
2

r

)3
) (40)

As a result, the low-viscosity regions in Fig. 10 in the case where the particles are closer are
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indistinguishable from the ones in the limit h0 → 0. Note that r2/(4a) is half the gap at r,

so the low viscosity region will occupy the whole gap only if η1 = 0. In the inset of Fig. 10

it can be appreciated how the central region of the channel is substantially characterized by

low viscosity, except for the very narrow regions around r = 0 and z = c(r).

If in such a limit of vanishing h0, the relative velocity is increased, as it is shown in Fig. 11

(where we have changed γ̇ in the range 1−100 s−1), the low viscosity regions will eventually

grow. In the limit of large relative velocities (γ̇ ≫ 1) the whole gap between the spheres

will be occupied by a low-viscosity region and, again, the case of a Newtonian fluid with

viscosity η1 is recovered.

V. CONCLUSION

In this article we have presented an analytical solution for the lubrication force between

two spheres moving in a bi-viscous fluid characterized by a low shear rate viscosity η0 and a

high shear rate viscosity η1. The obtained lubrication force shows a cross-over between the

known expressions in the two limiting Newtonian cases, i.e. (i) it reduces consistently to the

case of a simple Newtonian fluid with viscosity η0 when γ̇c ≫ γ̇ and (ii) it reduces to the

case of a Newtonian fluid with viscosity η1 when γ̇c ≪ γ̇. In the limit of equal viscosities,

the standard lubrication formula is recovered.

An interesting result of the theory is that in the limit of vanishing viscosity ratio, i.e.

η1/η0 → 0, the lubrication force is not longer singular for a vanishing gap between spheres.

Technically, this is due to the fact that in this limit, a boundary layer of very low-viscosity

is formed along the spheres surfaces in their closest region, which will not contribute to

the overall dissipation. Lubrication contribution comes therefore only from regions placed

radially apart from the near-contact area, which are not longer influenced by the infinitesimal

change in the gap. The present result offers a formal way to regularize the singular resistance

due to lubrication based on non-Newtonian suspending medium rheology.

It should be remarked that the current model could be also used to study effect of vis-

coplastic suspending media characterized by apparent yield stress whith two finite viscosity-

plateaus53.

The new model for inter-particle lubrication forces presented here can also pave the

ways for novel effective lubrication-dynamics simulations to study the flow and rheology of
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complex particulate systems in the future18.
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Appendix A: Model error analysis

In this appendix we check the accuracy of the model by comparing it to the exact analyt-

ical solution. First, we demonstrate that the error in the calculated lubrication force can be

expressed by only two variables. Secondly, we compare numerically the model to the exact

analytical solution.

In order to simplify the calculations, the following dimensionless quantities are introduced

η =
η1
η0
, r =

r

rmax

, h =
h0

hlim
0

(A1)

Note that the present model requires 0 ≤ η ≤ 1. Its bi-viscous behavior is present only at

the regions r1 < r < r2 (where r1,2 = r1,2/rmax) and 0 ≤ h < 1. Let us also define the

quantity γ̇(r) = γ̇s(r)/γ̇c which can be rewritten in term of the above variables (A1) as

γ̇
(

r, h
)

=
16

9
r

[

h
3/2

(

1 +
1

3
r2
)2

]−1

(A2)

Let us consider also the following dimensionless variable zc defined as
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where
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The pressure gradient can be written as

∂p

∂r
(r)









approx, exact

b

= −C fb
(

η, r, h
)



approx,exact

∂p

∂r
(r)









m

= −C fm
(

r, h
)

(A5)

where C = 2γ̇cη0/h0 and

fb
(

η, r, h
)



approx,exact
=

z−1
c

(

η, r, h
)



approx,exact

(

1 + 1
3
r2
)

fm
(

r, h
)

=
γ̇
(

r, h
)

(

1 + 1
3
r2
) (A6)

Note that fm is always exact in the present model. Moreover, note that

lim
η→1

zc
(

η, r, h
)



approx, exact
=

1

γ̇
(

r, h
) (A7)

ensures the continuity of the pressure gradient between the mono-viscous and the bi-viscous

regions.

The pressure can be calculated as

p(r)|r>r2
= Crmax

∫ ∞

r

fm
(

r, h
)

dr

p(r)|r1≤r≤r2
= Crmax

(∫ r2

r

fb
(

η, r, h
)

dr +

∫ ∞

r2

fm
(

r, h
)

dr

)

(A8)

p(r)|r<r1
= Crmax

(∫ r1

r

fm
(

r, h
)

dr +

∫ r2

r1

fb
(

η, r, h
)

dr +

∫ ∞

r2

fm
(

r, h
)

dr

)

where, for sake of simplicity, the labels for exact and approximated results have not been

indicated here. The coordinates r1 and r2 can be written as

r1 =

[

Q−
√

−3−Q2 + 4γ̇m

(

h
) 1

Q

]

, r2 =

[

Q+

√

−3−Q2 + 4γ̇m

(

h
) 1

Q

]

(A9)

where

Q =

√

−1 +
1

P + P , P =
3

√

−1 + 2
(

γ̇m

(

h
))2

+ 2γ̇m

√

(

γ̇m

(

h
))2 − 1 (A10)

and γ̇m

(

h
)

= γ̇(1, h).

The lubrication force can be finally obtained by integration of the pressure on r variable

(see Eq. (26)). An inspection of Eqs. (A8) allows us to conclude that the relative error of

the force defined as

err =

∣

∣

∣

∣

1− F approx

F exact

∣

∣

∣

∣

(A11)
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FIG. 12. Error of the model lubrication force between two particle as a function of the dimensionless

parameters.

depends only on the two variables: η and h.

The errors in the calculation of the force for distances smaller than hlim
0 (at larger distances

the error is null) have been calculated numerically. The result is displayed in Fig. 12, where

it is clear that the greatest errors are present for small values of both η and h. It is worth

to notice that the maximum relative error obtained is bounded and always below 0.14.

Appendix B: Reynolds number in the boundary layer for η1 → 0

When the limit η1 → 0 is considered, there are two competing effects affecting the

Reynolds number in the low viscosity regions. On one hand, the Reynolds number increases

as consequence of the reduction of the viscosity. On the other hand, the width of the low-

viscosity layer decreases, becoming infinitesimal (See Sec. IVC) in the limit above, therefore

contributing to diminish the local Reynolds number. In this Appendix we demonstrate that

the Reynolds number associated to the low viscosity region tends to a finite value in the

limit of η1 → 0.

Let us define a local Reynolds number Re(r)|b dependent on r

Re(r)|b =
ρL1(r)V1(r)

η1
(B1)
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where r1 < r < r2. L1 and V1 are the typical length and velocity scales for the layer of liquid

with viscosity η1, which read

V1(r) = u(r, zmax)|b
L1(r) =

h(r)

2
− zc(r) (B2)

where u(r, z)|b is defined at Eq. (10) and zmax = (c(r) ± zc(r)). When the limit η1 → 0 is

taken, the next expression is obtained for the Reynolds number

lim
η1→0

Re(r)|b =
3

4

ρrV

η0

(

γ̇ch
2(r)

3rV
− 2 +

3rV

γ̇ch2(r)

)

(B3)

where V is the velocity of the particle. Similar to standard lubrication analysis for a mono-

viscous fluid, as long as this finite value remains small in the interval r ∈ (r1, r2), the low

Reynolds approximation will be valid for the case η1 → 0.
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