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Abstract 

A smart release chrome-free inhibiting system is utilised in an organic coating system to 

inhibit cathodic disbondment of hot dip galvanised steel.  The non-toxic smart release cation 

system is relatively cheap, easy to process and highly effective.  An in-situ scanning Kelvin 

probe is used to assess the protection offered by the cation containing pigments in a poly-

vinyl-butyral model coating.  The inhibition of cathodic delamination under the SKP testing 

conditions exceeds that of hexavalent chromate by the inhibitor system containing 

magnesium (II) ions. 

 

Introduction 

The inclusion of smart-release vehicles within coatings has relieved the constraint of 

inhibiting species forming part of sparingly soluble salts, to reservoirs of corrosion inhibiting 

ions that previously would not be considered as part of a primer system.  The current chrome 

free inhibitor Shieldex® is an ion exchanged amorphous silica, that has a reservoir of Ca
2+ 

ions, that are released in response to cations in the environment.  It is stated by the 



manufacturer that in alkaline environments, the amorphous silica will more readily 

dissolve[1], which is thought to form a protective layer via a hydrated silica gel and metal 

oxide in the case of iron or possibly zinc silicate anodically inhibiting dissolution of zinc[2]. 

The inhibitory effects of Shieldex® have been the focus of many investigations [3–6] to 

assess if it is a contender in replacing hexavalent chromate at protecting iron and zinc 

substrates, and the mechanisms of action are considered to be; to trap or delay the aggressive 

ions getting to the metal surface by exchanging them for Ca
2+ 

ions, improve cross-linking of 

the binder, silica and calcium become mobile within the coating and form a protective film 

on the metal surface[7].  Previous investigations assessing cations as inhibitors have focussed 

on in-solution cation corrosion inhibitors for zinc[8,9] and the doping of silane pretreatments 

with rare earth cations to improve the barrier and corrosion properties[10].  Williams et al. 

investigated the use of cations within the coating to inhibit cathodic disbondment of hot dip 

galvanised steel (HDG), firstly in naturally occurring Wyoming bentonite clays[11] and later 

cross-linked sulphonated polystyrene (CSP)[12].  The poor compatibility of bentonite clays 

and organic coating systems meant that the CSP Dowex® or similar could be viable ‘smart’ 

replacements for hexavalent chromate systems.   

Cathodic disbondment is the main failure mechanism of organically coated HDG investigated 

here, and the zinc corrosion cell is simplified into the anodic reaction (Equation 1) and 

cathodic reaction (Equation 2). 

Zn  Zn
2+ 

+ 2e
-                                      

Equation 1 

O2 + 2H2O +4e
-
  4OH

-                                    
Equation 2 

The anodic metal dissolution reaction takes place within the defect and the cathodic oxygen 

reduction reaction takes place under the film at the disbondment front.  The elevated pH 

within the disbonded underfilm environment results in an anodic reaction leading to zincate 



formation[13,14], as shown in the pourbaix diagram, where pH above ca. 10.5 leads to 

bizincate and at higher pH, zincate. 

The formation of zincate initiates with the dissolution of the zinc(hydr)oxide surface layer, 

producing soluble bizincate (HZnO2
-
) and zincate (ZnO2

2-
) by the following equilibrium 

reactions, 

Zn(OH)2 (s)   HZnO2
-
(aq) + H

+ 
(aq) (3) 

Zn(OH)2 (s)   ZnO2
2-

 (aq) + 2H
+ 

(aq) (4) 

for which the solubility product (Ksp) values for the most soluble (amorphous) form of 

Zn(OH)2 at 25°C are 4.27  10
-16

 M
2
 and 1.07  10

-30
 M

3
[15]

.
 

The mechanism by which certain divalent metal cation (M
2+

)
 
are principally thought to 

inhibit cathodic disbondment is through the formation of insoluble metal hydroxides by 

hydrolysis or partial hydrolysis of M
2+

 by equation 5 and 6: 

 

[M(H2O)6]
2+

 ⇌ [M(H2O)6OH]
+ 

+ H
+      

    Equation 5 

M
2+

+ 2H2O  ⇌ MOH2 + 2H
+                               

Equation 6 

 

This results in the reduction of the under film conductivity and decreases the ion mobility.   

Others have also argued that in the case of Ca
2+

 cations, the zincate anions formed in the high 

alkalinity of the cathodic disbondment corrosion cell can also react with the M
2+

 ions to form 

insoluble M(OH)2.2Zn(OH)2.2H2O or MZn2(OH)6·2H2O and thus also reduce underfilm 

conductivity[11]. 

To continue previous investigations [11,16], a different matrix system was utilised to store 

cations, investigating the effectiveness of the cations at inhibiting the corrosion driven 

cathodic delamination of coated HDG.  The matrix used was a crosslinked divinyl benzene 



matrix with a sulphonated functional group, with a commercial name of Amberlite®.  The 

form used was the IR120 which has a H
+
 counterion making it a strongly acidic ion 

exchanger.  The sulphonate maintains a negative charge and will hold the inhibiting cation in 

place until the matrix is in contact with a solution containing cations that it will exchange the 

inhibiting cation for.  The use of such ion exchange matrices are common place in effluent 

discharge for the removal of metal cations such as Ni
2+

, Zn
2+

, Ca
2+

 and Mg
2+

 [17,18].   The 

previous work looking at Dowex® as the exchange matrix, utilised a number of cations to be 

used as inhibitors and the current research assesses the effect of changing the counterion from 

Na
+
 to H

+
 making it a stronger acidic exchanger.  The aims of the investigations are: 

 

i) To answer does having H
+
 as the counterion affect the exchange efficiency and in 

turn increase the inhibition when the same cation is used. 

ii) To determine the effect of a wider range of potential inhibitors, to include group II 

cations to identify the relative importance of the formed hydroxide solubility 

product at inhibiting cathodic delamination.  

 

Experimental Details 

Materials Hot dip galvanised (HDG) steel samples consisting of 0.7 mm gauge mild steel 

coated on both sides with a 20 μm zinc layer containing 0.15 wt.% aluminium were supplied 

by Tata Steel UK.  Amberlite® IR120 (H
+
 form), Amberjet® 4200 (Cl

-
 form), sodium 

chromate 98%, calcium chloride dihydrate ACS reagent, ≥99%, barium chloride dehydrate 

ACS reagent, ≥99%, magnesium chloride hexahydrate BioXtra, ≥99.0% and strontium 

chloride hexahydrate ACS reagent >99%, cerium (III) chloride hexahydrate ≥98.0%, cobalt 

(II) chloride hexahydrate ACS reagent 98%, polyvinylbutyral-co-vinyl alcohol-co-



vinylacetate (PVB), molecular weight 70,000–100,000, were obtained from the Sigma 

Aldrich Chemical Company.   

 

Methods 

A 0.5M stock solution of each of the metal chloride solutions and sodium chromate solution 

was made using deionised water, the solutions were added to the resin beads in the ratio of 

100ml per 10g of Amberlite® IR120 (cations) or Amberjet® 4200 (chromate) resin beads.  

Each solution and bead mixture was agitated via stirring for 2 hours, after which the solution 

was decanted and replaced with fresh stock solution in the same 100ml per original 10g 

weight ratio.  The solutions were stirred for a further 2 hours and again the solution was 

replaced for fresh stock of 0.5M target metal chloride solution.  The beads were left overnight 

under stirring to ensure maximum exchange had taken place.  The beads were filtered using a 

Buchner filtration system and washed with 500ml of deionised water, to ensure any chloride 

solution was removed.  The beads were dried for 12 hours at 40ºC and then milled using a 

Retsch planetary ball mill at 350 RPM for 1 hour and sieved through a 20µm mesh.  Figure 1 

shows the as delivered Amberlite® beads (a), typically 680-820µm in diameter and after 

processing with the cation exchanged into the matrix (b) with a diameter of <20µm. 

The mass of the pigment required for each pigment volume fraction  (PVF) was ascertained 

using: 

 

𝑴𝒑𝒊𝒈 =  
∅∙𝑴𝒑𝒐𝒍 ∙𝝆𝒑𝒊𝒈

(𝟏−∅)∙𝝆𝒑𝒐𝒍 
                                                               Equation 7  

 

Where Mpig is mass of pigment, Mpol  is mass of polymer, ρpig is the density of pigment,  

ρpol is the density of polymer and ∅  is the required volume fraction of pigment.  The 



required mass of the inhibiting pigment for the associated pigment volume fraction was made 

into an ethanolic slurry, then mixed with the correct amount of PVB, dispersed using a high 

shear mixer and degassed using a sonicating bath before application to the HDG substrate. 

The sample was prepared as described by Strattmann et al[13], where two parallel strips of 

electrical insulation tape were placed on adjacent sides of the metal coupon, leaving a 15mm 

strip of bare HDG.  A strip of Scotch
TM 

tape was placed over one of the ends of the coupon, 

covering the insulation tape with the bare metal in the middle.  The PVB solution was applied 

via a drawbar method starting on the Scotch
TM 

tape.  Just before the PVB was fully dry, the 

Scotch
TM

 tape was cut along the boundary between the metal and insulation tape, then lifted 

and cut to create the lip of the electrolyte well with bare HDG behind in.  Non-corrosive 

silicon was used to provide the electrolyte well walls, holding the lip in place.  An electrolyte 

solution of 0.86 mol dm
-3

 NaCl in deionised water, adjusted to pH 7, was used.   

 

The scanning Kelvin probe (SKP) reference probe was positioned 12mm away from the 

defect and was scanned towards and perpendicular to the coating-defect boundary.  The SKP 

reference probe was a gold wire with a 125µm diameter, vibrated at 280Hz with an amplitude 

of 40µm.  Scans were taken at 0hrs and every 60 minutes up to 72 hours.  A 100µm gap 

between the reference probe and sample was used, with EKP points measured at 20 per mm.  

The environmental chamber of the SKP allows a constant humidity of 95% R.H. with the 

temperature held at 25ºC.  Full details of the SKP equipment and calibration have been 

reported previously[19]. 

 

Results and Discussion 

Delamination of an un-pigmented Strattmann type cell 



The delamination of a PVB coated HDG sample typically initiated within 2 hours of the 0.86 

mol dm
-3 

NaCl electrolyte being added to the well.  The intact potential of a PVB coated 

HDG is ca. -400mV vs. SHE, after the calibration has been applied, this is similar to 

uncoated HDG as seen previously in [12,20]. In Figure 2, the delaminated potential is seen at 

ca. -650mV vs. SHE, then a second gradual, near linear drop to around -750mV vs. SHE, 

which represents the link between the delamination front and the defect edge.  Between the 

cathodic activity at the delamination front and the anodic dissolution occurring within the 

defect, there is an ionic current within the ingressed thin layer of electrolyte beneath the 

disbonded coating.  The ionic current and rate of delamination is determined by the 

migrational mass transport of Na
+
 ions from the defect electrolyte to the delamination 

front[12].  The sharp inclination between the two is representative of the delamination front, 

with the point at half way between the intact and delamination potential being Xdel at the 

specified time.  Each line represents 1 hour, starting (i) 240 minutes, up to 780 minutes where 

the delamination front has reached 10700µm from the defect.  The inset Xdel
 
vs. time plot is 

an example of the type of curve for the un-pigmented system and then a strontium chromate 

inhibited PVB coated HDG system from the point of initiation of delamination (t-ti). 

Inhibition by cation loaded Amberlite® 

Initial investigations screened different cation exchanged matrix systems at 0.1 pigment 

volume fraction (PVF) within the PVB model coating.   Figure 3 illustrates the different rates 

of disbondment in the form of an Xdel vs. time plot, from the point of the delamination cell 

establishing itself.  The diffusion kinetics have been assumed to be parabolic and Kdel values 

have been calculated from the equation: 

                                     xdel=kdel(tdel−ti )
1 / 2  

                       Equation 8 

And are shown in table 1.  The cation loaded Amberlite® pigments all inhibit the progression 

of the delamination front excluding the Na
+ 

containing matrix, which speeds up the rate of 



delamination by ca. 15%.  The observation for the Amb-Na+ pigment demonstrates that 

the reduction in delamination rate is highly dependent upon cation type, and that stored 

group I cations, which have soluble hydroxides, have negligible inhibitory properties. 

The underlying reasons for the slight increase in delamination rate observed for Amb-

Na+ pigment are unclear at present, although one explanation may lie in the ability for 

in-coating pigments of this type to cause enhanced “short-circuiting” of underfilm ionic 

species around the PVB/particle interface at high pigment loadings.  

The observed rates show that Mg
2+

 ions reacting with the OH
- 

ions have the highest  

inhibition followed by the calcium (II) ions reacting with the OH
-
 ions.  The calcium (II) 

loaded matrix shows no delamination at 1440 minutes (24hrs) after initiation, although a 

delamination front is seen at 1680 minutes onwards, where the delamination potential is 

higher than the intact potential, due to the Ca
2+ 

ion containing matrix pushing the intact 

potential to ca. -700mV vs. SHE.  This phenomenon has been seen before with cross-linked 

sulphonated polystyrene matrices loaded with cation inhibitors[16].  The delamination front 

shows as an increase in potential not the expected potential drop usually seen for 

delamination potentials.  Figure 4 is the time dependant Ecorr plot for 0.1 PVF of Ca
2+

 

pigment addition to PVB on HDG.  The Intact potential can be seen at around -700mV vs. 

SHE and is a direct effect of the Ca
2+ 

ions in the matrix.  After 1680 minutes the delamination 

rate is ca. 46 µm min
-1 

up until 1860 minutes, after which the delamination ceased to progress. 

The decrease in intact potential was also seen for the 0.275 PVF ca
2+ 

loaded matrix in PVB, 

which also had a delamination potential at a higher Ecorr than the Eintact, Eintact for the un-

pigmented system is ca. -400mV vs. SHE where as the PVB with ca
2+ 

pigment showed an 

Eintact of ca. -700mV vs. SHE. The distance travelled by the delamination front in the case of 

the 0.275 PVF was ca. 2300µm, where as the 0.1 PVF showed ca. 4300µm.  There is a 

decrease in potential from the addition, as well as an inhibiting effect that increases with the 



pigment volume fraction of the Ca
2+

 containing pigment.  The high level of inhibition shown 

by Ca
2+ 

in Amberlite® shows an improvement on the inhibition offered by the CSP-Ca
2+

 

system tested by Williams et al.[12], and this could be attributed to the threefold difference in 

stated exchange capacity of Amberjet® IR120 (1.8 meq/ml) compared to Dowex® (0.6 

meq/ml).  The rapid high release of Ca
2+ 

ions would lead to a much higher effective 

concentration of Ca
2+

, to readily react with any OH
-
 or negatively charged intermediates of 

the cathodic oxygen reduction reaction.  Theoretically the Amberlite® could hold up to three 

times the amount of Ca
2+

 within the matrix w/w, resulting in the Amberlite® having three 

times the inhibiting power over a Dowex®-Ca
2+

 system.  It was reported that the inhibitive 

effectiveness of Ca
2+

 is depends on the total exchange capacity for delivery into the 

underfilm electrolyte[4,15], to react with the OH
-
 ions produced by the cathodic oxygen 

reduction reaction, migrating towards the anode.  The concentration of the Ca
2+ 

has to be 

sufficient to form a coherent insoluble precipitate of (Ca(OH)2 or a complex of 

[Ca(H2O)6OH]
+
) that will block the migration of the Na

+ 
within the underfilm electrolyte.   

The high concentration of Ca
2+

 in the underfilm environment after exchange with Na
+ 

would 

form a dynamic equilibrium between the two cations, providing a 2:1 exchange of Na
+ 

entering the coating versus Ca
2+

 entering the underfilm electrolyte.  The driving force behind 

the Na
+
 entering the underfilm environment is reduced, as well as the decrease in the 

difference between the Eintact  and Edelamination, resulting in complementary effects to inhibit the 

progression of the delamination front. 

Inhibition by mg
2+

 containing pigments 

The high inhibiting effect of the magnesium ions is can be attributed to the low solubility of 

the Mg(OH)2 corrosion product that would form between the OH
-
 of the cathodic oxygen 

reduction reaction and the Mg
2+

 ions released from the coating matrix into the underfilm 

environment.  The inhibitory effect seen exceeds that of 0.049 PVF SrCrO4 within the same 



testing conditions, where strontium chromate containing PVB delaminates to ca. 2850µm 

within 24 hours (inset Figure 2). 

The un-pigmented PVB coated HDG is shown by the parabolic line (0) in Figure 6, in which 

the rate limiting step in the uninhibited system is the mass transport of Na
+ 

ions to the 

delamination front[22].  It shows similar parabolic behaviour for both the 0.02 and 0.05 PVF 

Amb-Mg
2+

 systems, suggesting that it is still the rate-limiting step, which would agree with 

the hypothesis that it is insoluble Mg(OH)2 in the underfilm environment, blocking the mass 

transport of the Na
+
 ions from migrating to the delamination front.  

Figure 7 is the (t-ti)
1/2

 vs. Xdel plot for the Amb-Mg
2+

 containing coatings, which shows that 

the parabolic nature of the un-pigmented system results in a linear fit to the data, however, 

the 0.02 PVF and 0.05 PVF are not linear, representing a change in delamination kinetics 

from the un-pigmented system.  In the un-pigmented system, the rate-limiting step of the 

delamination cell is the mass transport of Na
+ 

ions to the delamination front.  The mechanism 

of inhibition by the Mg
2+

 ions is to react with OH
-
 from the cathodic oxygen reduction 

reaction forming an insoluble layer over the substrate surface, hindering the oxygen reduction 

reaction and is not reliant on the total exchange capacity, creating a blocking of Na
+ 

ions to 

the delamination front, but by being present at the cathodic delamination front.  This change 

in kinetics was not obvious from the plots in Figure 6. 

The underfilm alkaline environment at ca. -700mV vs. SHE would lead to the formation of 

zinc oxide, which is n-type semiconductor with a small band gap, which has a room 

temperature electrical conductivity.  Hausbrand et al. previously reported that electron 

transfer should be affected by semiconductor electrochemistry, which determines the electron 

concentration at the surface of the semiconductor.   The high concentration of electrons at the 

zinc oxide surface results in a high rate of electron transfer.  Magnesium hydroxide has a 

wide band gap meaning a low electron surface concentration[23], making it a preferred 



passive oxide that is an insulator, resulting in low oxygen reduction and metal dissolution in 

the delaminated area[23].  The zincate and bizincate formed during the anodic processes 

following the delamination process are soluble at elevated pH and offer little protection under 

the cathodic front alkaline conditions, where as magnesium hydroxide is stable in alkaline 

conditions.  It is likely that the Mg(OH)2 is very effective at inhibiting cathodic delamination 

by its wide band gap and stability at high pH[23]. 

Previous work found that when a magnesium rich zinc oxide was present on the zinc-

magnesium substrate, oxygen reduction was inhibited at more negative potentials, and that 

Mg
2+

ions within solution were beneficial for zinc corrosion and exposed iron[23].  Kreig et al. 

also found that Mg(OH)2 reduces oxygen reduction reactivity at the cathodic site, Mg
2+

 

cations react more efficiently with OH
-
 buffering pH[24].   Volvovitch believes that it is not 

Mg(OH)2 protecting from corrosion, but it is the Mg
2+

 ions promoting and stabilising the 

formation of simonkolleite[25],  this could be the mechanism of inhibition if Mg
2+

 ions were 

released into the defect, but simonkolleite would not form in the underfilm environment due 

to the prevention of ingress of chloride ions. An agreed mechanism of protection is the 

buffering of pH at around 10.2 by the formation of Mg(OH)2[25,26], a stable hydroxide at 

high pH, blocking electron transfer and decreasing the availability of O2 at the cathodic site.  

Similar effects are seen by the insoluble precipitates of cerium (III) ions hindering the oxygen 

reduction reaction[27]. 

 

Effect of the pigment volume fraction of the Mg
2+

 and Ca
2+ 

pigments on Kdel and Eintact 

Figure 8 shows the decrease in Kdel with increased PVF of both exchange pigments loaded 

with Ca
2+

and Mg
2+ 

ions.  At the lower PVF for the Ca
2+

 containing systems, the 0.05 PVF 

resulting Kdel does not decrease significantly from the un-pigmented system, this is likely to 

be an insufficient concentration of Ca
2+ 

within the underfilm electrolyte to be an effective 



inhibitor.  The rapid drop for the 0.1 PVF Ca
2+ 

Kdel shows that at this level there is sufficient 

exchange of the Na
+
 and Ca

2+ 
to give an effective concentration of Ca

2+ 
in the underfilm 

electrolyte to form calcium zincate.  The Mg
2+ 

containing system shows a systematic 

decrease in the Kdel with respect to PVF, and at 0.1 and 0.2 PVF the high level of inhibition is 

evident with a Kdel of 0.  The efficiency of the system is thought to be due to the highly 

insoluble precipitate formed as well as the decrease in Eintact with respect to PVF that is 

observed for both systems.  The addition of the cation containing pigment decreases the intact 

potential of the coating to near the un-pigmented PVB delaminated potential.  When 

assessing the effects of the Ca
2+ 

and Mg
2+

 containing pigments, the decrease in the intact 

potential decreases the driving force of the delamination cell by having a reduced potential 

difference.  Figure 9 shows that the higher the addition of the inhibiting pigment, the more 

negative  Eintact becomes at a minimum of ca. -700mV vs. SHE for the highest loading of both 

pigments.  The depression of  Eintact has been observed previously [11,12], and is proposed to 

be an effect of the in-coating cations on the inhibition of underfilm cathodic oxygen 

reduction.   The change in Kdel
 
follows the trend for the lowering of Eintact of the coated 

samples with increased pigment volume fraction and cannot be ruled out as a factor of the 

inhibiting effect of the pigments. 

 

Group II cation inhibition 

The insolubility of the hydroxides formed are thought to be the main inhibiting effect of 

the released metal cations into the underfilm electrolyte, if the Ksp is considered for the 

hydroxides, the Ksp for Mg(OH)2  is ca. 2 x 10-13 M3 and for Ca(OH)2 it is 5 x 10-6 M3.  The 

lower solubility of the Mg(OH)2 could explain why it is superior at inhibiting the 

cathodic delamination of the PVB on HDG.  It is well documented that the solubility of 

the hydroxides of the group two metals decreases as you move down the group.  Ba2+ 



ions and Sr2+ ions were also incorporated into the Amberlite®, to test the efficiency of 

the ions at inhibiting cathodic delamination.  Figure 10 represents the delamination 

distance versus time from initiation of the group II ions and un-pigmented PVB.  The 

magnesium and calcium containing pigments show no delamination over the 24 hour 

period, where as both the strontium and barium containing pigments both delaminate 

with limited inhibition of cathodic delamination when compared to the uninhibited 

system.  The hydroxides of calcium and magnesium are more insoluble than the 

strontium and barium hydroxides, which have a Ksp of ca. 1.5 x 10-4 M3 and ca. 5 x 10-3M3
, 

respectfully.   The Eintact of the Ba2+ and Sr2+ containing coatings is depressed at the same 

level as the Mg2+ and Ca2+ containing coatings, ca. -600-650mV vs. SHE, so this is not a 

controlling factor for the inhibition of the cathodic delamination of PVB on HDG, 

although it does contribute to the driving forces of the cell.  From the results, it suggests 

that the high inhibition by the magnesium (II) containing pigment is due to the 

insolubility of the Mg(OH)2 formed from the products of the cathodic oxygen reduction 

reaction at the cathodic front, which is represented in the schematic in Figure 10. 

 

However, given the relatively high calcium hydroxide Ksp value of 5  10-6 M3, it is more 

difficult to argue that underfilm precitation of Ca(OH)2 solely accounts for the 

significant degree of inhibition afforded by the in-coating Ca2+-Amb pigment. If the pH of 

the underfilm electrolyte is estimated to be pH 11, then precipitation will only occur 

when the underfilm Ca2+ concentration exceeds a highly unlikely 5 M threshold.  To 

investigate the possible role of ambient CO2 and the potential formation of calcium 

carbonate in the alkaline underfilm electrolyte as a means of promoting underfilm 

inhibition, additional experiments on PVB coated HDG containing Amb-Ca2+ at a 

pigment volume fraction of 0.1 were carried out, both in the presence and absence of 



carbon dioxide. In the first experiment, a continuous flow of synthetic air at 95% RH 

was introduced as a continuous flow into the SKP environmental chamber over a 24h 

period and the delamination kinetics were measured by in-situ SKP Ecorr mapping. The 

delamination rate actually decreased by ca 30% compared to the case where static lab 

air at 95% RH, containing a nominal 0.03% v/v CO2 concentration. In a separate 

experiment, an environment consisting of synthetic air at 95% RH containing CO2 at a 

0.1 v/v concentration was maintained in the SKP chamber. For this experiment, a 

delamination rate was obtained which was very similar to the control carried out in 

static lab air at the same RH. Both observations are not consistent with the argument 

that inhibition is principally due to CO2 permeating through the PVB coating, forming 

underfilm carbonate anions and precipitating insoluble calcium carbonate in the 

delaminated zone. Although these observations may not rule out an effect of CO2 over a 

longer timescale, over the 24h duration of the experiments described here, it appears 

that CO2 plays only a minor role in the underfilm inhibition mechanism of in-coating 

Ca2+ cations.  

These observations therefore beg the question as to why exactly the in-coating Ca2+ 

inhibits the cathodic disbondment process so effectively. It has been proposed 

elsewhere [11], that the underfilm formation of solid calcium zincate salts may account 

for the significant decrease rate of cathodic disbondment in the presence of in-coating 

Ca2+ inhibitor. Although the equilibrium constants given previously for equations 3 and 

4 predict that the zincate concentration [ZnO22-] will be low at moderate alkalinity (e.g. 

ca 10-6 M at pH12), nevertheless, it may be sufficient to allow precipitation of solid 

calcium zincate providing the underfilm Ca2+ concentration is high enough for the Ksp 

value to be exceeded (pK = 44.6)[21]. 

 



Conclusions 

A new smart release inhibiting pigment was utilised in a PVB coating to protect the coated 

HDG from cathodic disbondment.  It was shown that changing the counter ion of the 

sulphonate group in the organic matrix from Na
+
 to H

+
 increased the inhibitive performance, 

when Ca
2+ 

ions were utilised, showing the higher inhibitive effect when the Amberlite® 

matrix is used instead of Dowex®   From the screening tests, Mg
2+

 and Ca
2+ 

containing 

pigments were identified as high performing inhibiting pigments.  The 0.1 and 0.2 PVF 

Mg
2+

pigments showed no sign of delamination under the SKP testing conditions and the high 

level of inhibition was attributed to the highly insoluble precipitate of Mg(OH)2.  The 

analysis of the different pigment volume fractions of Mg
2+ 

containing pigments in PVB 

showed that at the 0.02 PVF and 0.05 PVF loadings, the rate limiting step had changed from 

the migrational mass transport of Na
+ 

ions.  The change in the rate limiting step leans towards 

the Mg(OH)2 hindering oxygen availability and electron transfer processes at the cathodic 

front.  From the systematic testing of Group II cations,  it was shown that the solubility of the 

hydroxide is an important factor for the inhibition of cathodic disbondment of PVB coated 

HDG. 
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Figure Legends 

 

Figure 1.  Amberlite® IR120 Resin Beads in As Delivered Form (a)  and after processing 

with the addition of inhibiting cation (b). 

 

Figure 2. Ecorr vs. distance for un-pigmented PVB on HDG, (i) is 240 minutes after addition 

of 0.86 mol dm
-3

 electrolyte to the defect and every line is 60 minutes up until (ii) 780 

minutes. Inset is a typical Xdel vs. time plot for an un-pigmented PVB system and a 0.049PVF 

addition of strontium chromate to the PVB on a HDG substrate (Inset data from [28]). 

 



Figure 3. Xdel vs. (t-ti) for the different inhibitors added to the matrices.  All additions of the 

pigments were made at 0.1 PVF to PVB on HDG.  

 

Figure 4. Time dependant Ecorr versus Xdel profile for 0.1 PVF addition of  Ca
2+ 

containing 

pigment. (i) 1680 minutes (ii)1740 minutes (iii) 1800 minutes (iv) 1860 minutes. 

 

Figure 5. Time dependant Ecorr versus Xdel profiles for Mg
2+

 containing pigments in a PVB 

coating on HDG at 0.05 PVF (a) and 0.2 PVF (b).  (a) (i) is 420 minutes, then every 3 hours 

up until 2220 minutes (a) (ii).  (b) represents the time dependant plots up to 2220 minutes. 

 

Figure 6.  Plot of delamination distance (xdel) vs. (t-ti) for different pigment volume fractions 

(0, 0.02, 0.05, 0.1, 0.2) of the Mg
2+ 

containing pigment to PVB. 

 

Figure 7. .  Plot of delamination distance (xdel) vs. (t-ti)
1/2

 for different pigment volume 

fractions (0, 0.02, 0.05, 0.1, 0.2) of the Mg
2+ 

containing pigment to PVB. 

 

Figure 8. Plot of initial Kdel vs.  ϕ pt  for (i) Mg
2+

 and (ii) Ca
2+

 containing pigments 

incorporated into the PVB coating. 

 

Figure 9. Plot of  Eintact (mV vs. SHE)  versus ϕ pt  of (i) Mg
2+

 and (ii) Ca
2+

 containing 

pigments incorporated into the PVB coating. 

 

Figure 10 Plot of delamination distance (xdel) vs. (t-ti) for PVB coated HDG (i) uninhibited 

and 0.1 PVF additions of pigments loaded with  (ii) Ba
2+ 

(iii) Sr
2+

 (iv) Mg
2+

 and (v) Ca
2+

 ions. 

 

Figure 11 Schematic representation of the inhibition of corrosion-driven cathodic 

disbondment on galvanised steel by in-coating Mg
2+

 containing pigments. 

 

 

TABLE 1. Values for parabolic rate constant and change from baseline parabolic rate 

constant for different inhibitors in the Amberlite® added at 0.1 PVF to PVB 

Inhibitor in Matrix Kdel (µm min
-1

) Δ Kdel (%) 

No Inhibitor 594 0 

Na
+
 685 15 

Zn
2+

 171 -71 

Ce
3+

 132 -77 

Co
2+

 101 -82 

CrO4
2-

 39 -93 

Ca
2+

 46 (after 1680 mins) -92 

Mg
2+

 0 -100 
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