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The Weak Gravity Conjecture, if valid, rules out simple models of Natural Inflation by restricting their 
axion decay constant to be sub-Planckian. We revisit stringy attempts to realise Natural Inflation, with 
a single open string axionic inflaton from a probe D-brane in a warped throat. We show that warped 
geometries can allow the requisite super-Planckian axion decay constant to be achieved, within the 
supergravity approximation and consistently with the Weak Gravity Conjecture. Preliminary estimates 
of the brane backreaction suggest that the probe approximation may be under control. However, there is 
a tension between large axion decay constant and high string scale, where the requisite high string scale 
is difficult to achieve in all attempts to realise large field inflation using perturbative string theory. We 
comment on the Generalized Weak Gravity Conjecture in the light of our results.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Cosmological inflation stands strong as the leading mechanism 
to provide the seeds that gave rise to the large structure we ob-
serve today in the Universe. Precision observations in the Cosmic 
Microwave Background provide a window into this very early his-
tory of the Universe. The latest results from Planck [1] are in per-
fect agreement with the simplest inflationary models, driven by 
the dynamics of a single scalar field rolling down a very flat po-
tential. Current bounds from Planck/BICEP2 on the scalar to tensor 
ratio in the CMB power spectrum are r � 0.12 (95% CL). Any future 
detection of tensor modes would have the remarkable implications, 
via the Lyth relation [2–4], that inflation occurred at scales close 
to the Planck scale:

V 1/4
inf ≈

( r

0.1

)1/4 × 1.8 × 1016 GeV (1)

and that the inflaton field had super-Planckian excursions:

�φ

M Pl
� 0.25 ×

( r

0.01

)1/2
. (2)

* Corresponding author.
E-mail addresses: Susha.Parameswaran@liverpool.ac.uk (S. Parameswaran), 

e.i.zavalacarrasco@swansea.ac.uk (I. Zavala).

“Large field” inflationary models are intriguing not only due 
to their robust prediction of high scale inflation with observable 
primordial gravitational waves. They depend sensitively on the de-
grees of freedom comprising the ultraviolet completion of gravity. 
In particular, Planck suppressed corrections to the slow-roll infla-
ton potential typically become large when the inflaton varies over 
super-Planckian scales. One idea to protect the slow-roll inflaton 
potential from dangerous quantum corrections is to invoke a shift 
symmetry in the inflaton field, for instance by identifying the in-
flaton with a Goldstone boson, the axion. The classical example in 
this vein is Natural Inflation [5], now tightly constrained by the 
latest CMB observations.1 In Natural Inflation, the axion enjoys a 
continuous shift symmetry within the perturbative approximation. 
This is broken to a discrete symmetry by non-perturbative effects, 
which generate a potential of the form:

V (φ) = V 0

(
1 ± cos

(
φ

f

))
, (3)

where f is the axion decay constant. The potential is sufficiently 
flat for slow-roll inflation provided that f � M Pl , and as a con-
sequence the axion can undergo super-Planckian field excursions. 

1 Although massive modes during inflation can change the classic NI predictions 
by generating a smaller than unity speed of sound bringing the model back to the 
allowed parameter region, as shown in [6].

http://dx.doi.org/10.1016/j.physletb.2016.05.082
0370-2693/© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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The current bound on the Natural Inflation potential (3), given by 
PLANCK from the spectral index, ns , is f /M Pl � 6.8 (95% CL) [1].

To understand whether or not such ideas are viable requires the 
embedding of large field models in a theory of quantum gravity. In 
fact, much interest has recently been generated by the possibility 
that general features of quantum gravity can constrain inflationary 
models with observable consequences. The Weak Gravity Conjec-
ture [7] roughly proposes that gravity must be the “weakest force” 
in a quantum theory of gravity, in order to avoid stable black hole 
remnants. For example, for a four dimensional theory describing 
gravity and a U (1) gauge sector with gauge coupling, g, there must 
exist a state with mass, m, which satisfies m � M Pl g. Moreover, 
the effective field theory has a new UV cutoff scale, � ∼ M Pl g. 
This conjecture was used [7] to rule out Extra Natural Inflation [8], 
where the inflaton arises from a Wilson line in a five-dimensional 
U (1) gauge theory compactified on a circle.

The Weak Gravity Conjecture might also be generalized to D
dimensions, p-form Abelian gauge fields, and their p spacetime 
dimensional charged objects. Then, in a four dimensional gravita-
tional theory with a 0-form axion, there must exist an instanton 
with action, Scl � M Pl/ f , where f is the axion decay constant. Al-
though this conjecture lacks convincing motivation from black hole 
physics, the same phenomenon was observed in [9] in several di-
verse string theoretic setups. If valid, it would essentially rule out 
single field models of inflation with super-Planckian axion decay 
constants, as instanton corrections would always introduce higher 
harmonics to the inflation potential:

en
M Pl

f einθ , (4)

effectively limiting the axion field range. Analogous arguments 
considering gravitational instantons in effective field theory lead 
to similar conclusions [10]. Moreover, the examples studied in [9]
demonstrated the difficulty in obtaining axions with large decay 
constants within the limits of perturbative string theory, and raised 
the question if this is possible at all.

Recent work has focused on whether these constraints from 
the Generalized Weak Gravity Conjecture on axion inflation can be 
evaded, in particular, by introducing multiple axion fields [11–19]. 
There has also been a large amount of work towards developing 
string theoretic models of large field inflation with sub-Planckian 
axion decay constants. These come under two main classes, firstly, 
stringy mononomial chaotic inflation scenarios where monodromy 
effects explicitly break the axion shift symmetry [20–28], and sec-
ondly, many field models where multiple axions generate an effec-
tive decay constant that is super-Planckian [29–34]. Most construc-
tions have used closed string axions in type II string theory.

In this letter, we revisit open string, single field models of axion 
inflation, in the light of quantum gravity constraints and the Weak 
Gravity Conjecture discussed above. Open string inflatons include 
Wilson lines on wrapped Dp-branes and the position moduli of 
moving Dp-branes. In fact, these scenarios are T-dual to each other. 
By considering D3-branes moving down a long warped throat, 
Baumann and McAllister pointed out a rigid, sub-Planckian upper 
bound on the field range [35,36], and this can indeed be inter-
preted as a consequence of the Weak Gravity Conjecture. However, 
single field models have been proposed with moderately super-
Planckian decay constants. Wilson lines on wrapped Dp-branes 
with sub-Planckian decay constants were studied in [37], and with 
super-Planckian decay constants in [38]. Planckian decay constants 
from wrapped Dp-branes moving down or around a warped throat 
were found, respectively, in [39] and [40].

We show that warping and wrapped volumes indeed allow 
for single field models with super-Planckian axion decay constant 
consistently with the Weak Gravity Conjecture. The large decay 

constants are generated within the perturbative limits of the su-
pergravity approximation, and initial estimates support the validity 
of the probe brane approximation used. Moreover, scalar poten-
tials that break the continuous axion shift symmetry to a discrete 
one are potentially generated by classical or loop effects [8,40–43]. 
Therefore, any non-perturbative instanton effects are by construc-
tion exponentially suppressed, and would not rule out single field, 
large field, slow-roll inflation.

Unfortunately, these results do not lead to promising models of 
large field inflation and observable primordial gravitational waves. 
This is because in explicit constructions, there is a tension between 
obtaining large decay constant and high string scale. In fact, as 
we emphasize, it is always difficult to obtain a sufficiently high 
string scale within the limits of perturbation theory. This presents 
an important challenge in building string theoretic models of large 
field inflation.

The paper is organized as follows. In the next section we in-
troduce inflation from D-branes in warped geometries and fix our 
conventions. In Section 3 we study scenarios in which the candi-
date axionic inflaton is a Wilson line on a wrapped D-brane, and 
in Section 4 we turn to the T-dual picture of the position modulus 
of a wrapped D-brane. The most attractive scenario studied can 
be found at the end of this section. Finally, in Section 5 we dis-
cuss our results, and the light they shed on the Generalized Weak 
Gravity Conjecture.

2. Open string inflation

Our starting point is a generic type IIB string warped compact-
ification from ten to four dimensions with metric (in the Einstein 
frame2):

ds2 = h−1/2(r)gμνdxμdxν + h1/2(r)gmndxmdxn , (5)

where μ, ν = 0, . . . 3, m, n = 4, . . . 9 and h(r) is the warp factor, 
possibly trivial, depending on a radial-like direction in the internal 
space. For example, for an adS5 × X5 geometry which describes 
well a generic warped throat generated by branes and fluxes in 
the mid-throat region, we have:

h(r) = L4/r4 and ds2
6 = gmndxmdxn = dr2 + r2d�2

5 , (6)

where L is the adS length scale and d�2
5 = g̃i jdφidφ j is the met-

ric on some five-dimensional Einstein–Sasaki space that ensures 
N = 1 supersymmetry. To construct a smooth, compact internal 
space out of the adS throat, we take rI R < r < rU V , where the adS 
region is glued to the tip of the throat at the IR cutoff and to a 
compact Calabi–Yau at the UV cutoff [44].

The four-dimensional Planck mass after compactification takes 
the form:

M2
Pl = 4πVw

6

g2
s

M2
s with Vw

6 l6s =
∫

d6 y
√

det gmn h , (7)

where we defined the string scale as l2s = M−2
s = (2π)2α′ , gs = eϕ0

is the string coupling and Vw
6 is the warped volume of the six-

dimensional internal space in string units. For example, assuming 
most of the volume comes from the middle region of an adS throat 
generated by N D3-branes at its tip, we have:

L4 = gs N

4V5
l4s (8)

2 Our conventions for going from string to Einstein frame are G E
MN = e

ϕ0−ϕ
2 Gs

MN , 
where ϕ is the dilaton, whose vev 〈ϕ〉 = ϕ0 defines the string coupling as gs = eϕ0 . 
In these conventions the volumes evaluated in the background are frame indepen-
dent.
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and

Vw
6 l6s = 1

2
V5L4r2

U V , (9)

with V5 = ∫
d�5 the dimensionless volume of the base of the cone.

To the above space we add a probe space-filling Dp-brane 
wrapping a (p − 3)-cycle in the internal space, with worldvolume 
coordinates ξ A (A, B = 0, . . . , p +1) and DBI action (in the Einstein 
frame):

S D B I = −T p

∫
dp+1ξ

√−det (γAB +FAB) . (10)

The tension of the brane in the Einstein frame is given by:

T p = μp g−1
s with μp = (2π)−p(α′)−

(p+1)
2 . (11)

Also, γAB = gMN∂A X M∂B X N is the pullback of the ten-dimensional 
metric onto the brane (M, N = 0, . . . 9). Finally, FAB = BAB +
2πα′ F AB , with BAB the pullback of the NSNS 2-form onto the 
brane, and F AB the field strength associated to the worldvolume 
gauge field. We will choose static coordinates for the brane, so 
ξ A = (xμ, ya) with ya the (p − 3) internal coordinates along the 
brane. We will comment on the validity of the probe approxima-
tion below.

Possible open string inflaton fields in the above system include 
Wilson line moduli associated with the worldvolume gauge field 
[37,38] and the moduli describing the position of the Dp-brane 
in the compact space [45–47]. We will consider single field, large 
field inflation and the Weak Gravity Conjecture in these setups, 
which are related to each other by T-duality.

3. Wilson line inflation

When the (p − 3)-cycle wrapped by the Dp-brane contains 
a non-trivial 1-cycle,3 parameterized by some coordinate φ, the 
brane can have a Wilson line wrapping its worldvolume:

eiθ = ei
∮

Aφdφ . (12)

Upon dimensional reduction, the DBI action (10) for the brane 
in the background (5)–(6) includes a 4D gauge kinetic term for the 
U (1) worldvolume gauge field:

S = −
∫

d4x
√−g

1

4g2
4

Fμν F μν , (13)

where the four-dimensional effective gauge coupling constant, g4, 
is computed to be:

g2
4 = (2π)gsh(3−p)/4

0 (nVp−3)
−1 . (14)

Here, h0 is the value of the warp factor evaluated at the brane 
position and Vp−3 is the unwarped volume of the (p − 3)-cycle 
wrapped by the brane in units of ls , Vp−3lp−3

s = ∫
dp−3 y

√
det gab

(notice that Vp−3 also depends on the position of the brane, see 
eq. (6)). Finally n is the wrapping number.

At the same time, the DBI action leads to a kinetic term for the 
Wilson line modulus, θ = 2π Aφ , which takes the form

S = −
∫

d4x
√−g

f 2

2
∂μθ∂μθ (15)

where the axion decay constant, f , is computed to be:

3 Note that this does not require the full six-dimensional internal space to have a 
1-cycle, see [48] for examples.

f 2 = n g−1
s

(2π)3

h(p−7)/4
0 Vp−3

R2
0

(16)

Here, 2π R0 is the unwarped length of the 1-cycle with line ele-
ment ds2 = R2

0 dφ2 = r2
0 g̃φφdφ2.

The axion, θ , has a continuous shift symmetry descending from 
the higher dimensional gauge symmetry, which may be broken to 
a discrete one. A slow-roll potential can thus be generated for the 
Wilson line axion, θ , by fluxes, brane backreaction, warping, loop 
contributions and/or other effects, including non-perturbative ones 
[8,49,37,50]. Large field excursions for θ are encoded in the field’s 
decay constant by f /M Pl > 1, with:

f 2

M2
Pl

= gs

2(2π)4

h(p−7)/4
0 l2s

R2
0

nVp−3

Vw
6

. (17)

Notice that for r0 > L, the warp factor can enhance f /M Pl , al-
though the final behaviour of the latter also depends on the 
wrapped volumes.

As a first example, consider a Dp-brane in an unwarped, possi-
bly anisotropic toroidal orientifold compactification, with j direc-
tions of size R , and 6 − j directions of size L. Taking the brane to 
wrap a (p − 3)-cycle with jb directions of size R (so j ≥ jb) and 
p − 3 − jb directions of size L (so 6 − j ≥ p − 3 − jb), and the 
Wilson line wrapping one of the R-directions (so jb ≥ 1), we have:

f 2

M2
Pl

= n gs

2(2π)4(2π)9−p

(
ls

R

)2+ j− jb
(

ls

L

)9−p− j+ jb

. (18)

A large f /M Pl would require a substring scale cycle4 R < ls and/or 
L < ls . In this limit the perturbative description breaks down, and 
the T-dual description should be used.

Next, consider a wrapped D5-brane in an adS5 × X5 warped 
throat. The axion decay constant is then:

f 2

M2
Pl

= gs

(2π)4

nV2

V5

l6s
L6

r2
0

r2
U V

l2s
R2

0

. (19)

Since V2 goes as r2
0/l2s , the possibility now arises that f /M Pl > 1

can be achieved with a brane at the top of a long throat, r0 ∼ rU V
and rU V � L.

Now let us check whether the conditions for large axion decay 
constant can be fulfilled consistently with the Weak Gravity Con-
jecture. Indeed, probe D-branes can be used to test the consistency 
of a string theory configuration by asking whether their worldvol-
ume gauge theories and charged matter satisfy the Weak Gravity 
Conjecture, wherever they are placed. The Weak Gravity Conjec-
ture implies a new UV cutoff, � = M Pl g4, which in the present 
case is:

�2 = (2π)2

gs l2s

2

h(p−3)/4
0

Vw
6

nVp−3
. (20)

Matter fields charged under the U (1) arise from strings stretch-
ing between the Wilson line Dp-brane and a separated parallel 
Dp-brane. Largest masses arise when the branes are very distant, 
with m ∼ M2

s �� and �� the brane separation. So the Weak Gravity 
Conjecture, m2 < M2

Pl g2
4 requires:

1 <
(2π)2

gs

l2s
�2
�

2

h(p−3)/4
0

Vw
6

nVp−3
. (21)

4 Vanishing cycles do occur in more general string geometries, for example when 
blowing-up a singularity. The vanishing cycles in the conifold were used in [51] to 
achieve small axion decay constants from string theory, and in [52] to achieve string 
axion N-flation models with near Planck scale axion decay constants.
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The Weak Gravity Conjecture (21) then imposes an upper limit on 
f /M Pl (see eq. (17)):

f 2

M2
Pl

<
h−1

0

(2π)2

l4s
�2
�R2

0

. (22)

Considering an adS5 × X5 throat (6) as a prototype, the warped 
length of a string stretching from a D5-brane at r0 near the top of 
the throat all the way down to the bottom of the throat is:

�� ∼
r0∫

rI R

h1/4dr = L ln

(
r0

rI R

)
. (23)

Taking rI R ∼ ls and r0 ∼ rU V we then obtain from eq. (21):

1 <
(2π)2

ngs

r2
0/l2s

(ln(r0/ls))2

r2
0 V5

l2s V2
, (24)

where again recall that V2 goes as r2
0/l2s . Note in particular that 

the Weak Gravity Conjecture does not put an upper limit on r0, so 
both the Weak Gravity Conjecture and large axion decay constant 
could indeed be satisfied with a brane at the top of a long throat.

In the above analysis, we have neglected the backreaction of 
the wrapped D5-brane onto the background geometry. In fact, 
a D5-brane would alter the warp factor and internal geometry 
(cf. (6)), and introduce a non-trivial profile for the dilaton. How-
ever, if its contribution to the Einstein equations is much smaller 
than that of the stack of N D3-branes sourcing the warped throat, 
then we can safely consider the D5-brane as a probe. The local 
contribution from a Dp-brane to the traced Einstein’s equation 
goes as [44,39]:(
T m

m − T μ
μ

)loc = (7 − p)T p�(9−p)(�p−3) (25)

where �(9−p)(�p−3) = δ(9−p)(�p−3)/
√

det g9−p is the covariant 
delta function on the wrapped (p − 3)-cycle, �p−3, with trans-
verse volume 

∫ √
det g9−p . The condition that the backreaction of 

the wrapped D5-brane is negligible can then be written as:

n

2N

T5

T3

�(4)(�2)

�(6)(�0)
� 1 . (26)

This condition ensures that the probe approximation is good when 
the probe is close to the N source D3-branes. We should exercise 
some caution as the probe becomes very distant from the source 
branes, at the top of the throat.

For example, for the D5-brane in the adS5 × X5 background, 
we can take the parameters L ∼ √

3 ls , gs ∼ 0.3, r0 ∼ rU V ∼ 500 ls , 
R0 = r0 g̃1/2

φφ ∼ ls , n ∼ 100, V2l2s ∼ πr2
0 and V5 ∼ π3. To com-

pute the backreaction, we estimate transverse volume elements as √
det g4 ∼ h0r3

0 sin θ1 and 
√

det g6 ∼ h3/2
0 r5

0 sin θ1 sin θ2, for some in-
ternal coordinate angles θ1, θ2. Thus, we can consistently achieve 
f ∼ 4.2 M Pl , Ms ∼ 1.4 × 10−5 M Pl and � ∼ 4.5 × 10−2 M Pl . Note 
that we are safely within the limit of perturbative supergravity, but 
it would be important to study in detail if the probe approximation 
remains good when the D5-brane is at the top of the long throat. 
In this sense, the scenario presented at the end of Section 4 will 
be more reliable. As we will also see there, it is also conceivable 
that more complicated warped geometries than the adS mid-throat 
geometry may allow one to achieve even higher f /M Pl .

To summarise, it is plausible that a Wilson line on a wrapped 
D5-brane can give rise to an axion with large axion decay con-
stant consistently with the Weak Gravity Conjecture. This can be 
achieved by ensuring a warped throat geometry with a 1-cycle in-
side the 2-cycle that is wrapped by the D5-brane in a region with 

small warp factor, h1/2
0 � 1, and thus requires a highly anisotropic 

long warped throat. A concrete realisation of the proposal would 
require a throat geometry with these properties. It would likely 
not, however, correspond to a stringy realisation of the Extra-
Natural Inflation proposal [8], as the string scale would probably 
turn out to be too low. Indeed, note that taking r0 ∼ rU V large to 
achieve large f /M Pl drives the string scale to smaller values. We 
will comment further on this below. First we turn to the T-dual 
description of a D-brane Wilson line, which is a D-brane position 
field. In this case, more explicit, reliable constructions are possible.

4. Brane position inflation

Once again consider a space-filling Dp-brane wrapping a 
(p − 3)-cycle, and now assume that the position of the brane in 
one of the compact angular dimensions corresponds to an inflaton 
field. Such scenarios have been studied, for example, in [53,54,39,
40,25]. Dimensional reduction of the DBI action (10) gives, in ex-
actly the same way as for the Wilson line scenario, a U (1) gauge 
group in the four-dimensional effective field theory, see (13), (14). 
It also leads to a kinetic term for the angular position modulus, θ , 
of the form (15). The axion decay constant, f , is now given by:

f 2 = (2π) g−1
s

l4s
h(p−3)/4

0 gθθ nVp−3 . (27)

A large axion decay constant requires f /M Pl > 1 with:

f 2

M2
Pl

= 1

2
gsh(p−3)/4

0 gθθ

nVp−3

l2sVw
6

. (28)

Now, taking the brane at the tip of the throat, r0 � L, we see that 
the warp factor enhances f /M Pl , although again the wrapped vol-
umes will also affect the overall behaviour.

The axion, θ , corresponds to a periodic direction and so in-
herits a discrete shift symmetry. Again, the inflaton potential may 
be induced by fluxes, brane backreaction, warping, loop contribu-
tions and/or other effects, including subleading non-perturbative 
effects. For instance, [40] found a potential of the Natural Infla-
tion form (3), by considering the forces experienced by a D-brane 
moving in the geometry of the warped resolved conifold glued to 
a compact Calabi–Yau.

The new UV cutoff implied by the Weak Gravity Conjecture is 
the same as for the Wilson line scenario, see (20). Charged mat-
ter may again arise due to strings stretching to parallel D-branes 
that are separated by a distance �� along the throat or around the 
θ -direction. The Weak Gravity Conjecture, m < g4M Pl constraint 
is the same as before, eq. (21), and implies the following upper 
bound on the axion decay constant,5 (28):

f 2

M2
Pl

< (2π)2 gθθ

�2
�

. (29)

We can now consider these constraints in some explicit con-
structions. Take first a possibly anisotropic unwarped toroidal ori-
entifold compactification, with j directions of large size R and 
6 − j directions of small size L. Consider a Dp-brane wrapping 
jb large directions and p − 3 − jb small directions, cycling a large 
direction (so jb ≤ j − 1). The position modulus has axion decay 
constant given by:

f 2

M2
Pl

= n gs

2

1

(2π)9−p

(
R

L

)2+ jb− j ( ls

L

)7−p

. (30)

5 We thank Zac Kenton and Steve Thomas for pointing out an error in the previ-
ous version of this equation.
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So a large decay constant could be achieved with a large angu-
lar direction R � L for j − jb = 1. We can test the consistency of 
the required parameters by using the Weak Gravity Conjecture. To 
this end we introduce another probe Dp-brane, separated by a dis-
tance �� ∼ π R around a large angular direction. The Weak Gravity 
Conjecture (21) then requires:

1 <
8

n gs
(2π)9−p

(
L

R

)2+ jb− j ( L

ls

)7−p

(31)

and so imposes an upper bound on the decay constant:

f 2

M2
Pl

< 4 , (32)

which is at most f ∼ 2 M Pl . For example, taking a D3-brane, with 
gs ∼ 0.3, L ∼ ls , R ∼ 1.5 × 106 ls , j = 1, jb = 0 and n = 1, we obtain 
f ∼ 1.9 M Pl , Ms ∼ 2.8 × 10−7 M Pl and � = 1.4 × M Pl . Note that to 
achieve f ∼ 2 M Pl , the string scale is very low.

Let us next consider a Dp-brane moving in a warped throat. 
The prototypical example is the Klebanov–Strassler warped throat, 
produced by placing N D3-branes at the tip of the deformed coni-
fold. Away from the conical deformation, in the mid-throat region, 
the base of the conifold can be taken to be T 1,1, and the 10D met-
ric takes the form (5), with h = L4/r4 and

ds2
6 = dr2 + 1

6
r2

(
dθ2

1 + sin2 θ1dφ2
1

)
+ 1

6
r2

(
dθ2

2 + sin2 θ2dφ2
2

)
+ 1

9
r2

(
dψ2 + cos θ1dφ1 + cos θ2dφ2

)2
. (33)

Allowing for a Zk orbifolding in the ψ direction, the volume of 
T 1,1 is given by V5 = 16

27k π3 and the adS radius of curvature (8) is:

L4 = 27k

64π3
gs Nl4s . (34)

Now consider a D5-brane wrapping a 2-cycle in the throat 6 [39]:

r = r0, ψ = ψ0, θ1 = −θ2, φ1 = −φ2 (35)

and moving in an angular direction, say, θ2.
The condition that the backreaction of the probe D5-brane can 

be consistently neglected, eq. (26), evaluates in the present case 
to78:

n

12N

L2

l2s
sin θ1 � 1 . (36)

The parameters are also constrained by the Weak Gravity Con-
jecture. To see how, we introduce another probe Dp-brane, firstly 
separated from r0 up the throat to rU V , and secondly separated 
around the throat along θ2 at r = r0. We estimate the mass of the 
corresponding charged matter, m = M2

s �� , as (cf. (23)):

m = M2
s L log

rU V

r0
, (37)

m = M2
s
π L√

6
, (38)

6 Note that for p = 3, the warp factor cancels out in f /M Pl , eq. (28), and cannot 
be used to make f /M Pl large.

7 The volume orthogonal to the D5-brane embedded into spacetime with the 
static gauge is obtained by setting θ1 = φ1 = 0.

8 Note that this condition is easier to achieve than the one required in [39], as in 
the latter the backreaction is enhanced by the brane’s velocity.

where we have taken into account that the lengths of the stretched 
strings, �� , are warped. The Weak Gravity Conjecture (21) thus 
implies that (use eqs. (9), (35), V2l2s = 4π

3 r2
0 and h0 = L4/r4

0):

1 <
32π2

3

1

nk gs

r2
U V

l2s
, (39)

where notice that this ensures that the wrapping number, n, and 
orbifold number, k, are not too large. The Weak Gravity Conjecture 
thus gives the following upper bound on f :

f 2

M2
Pl

<
4r2

0

L2
. (40)

Comparing this with result for the torus (32), we see that warp-
ing has relaxed the upper bound on the axion decay constant, and 
larger super-Planckian values may now be possible within the su-
pergravity approximation.

In fact, one can immediately infer from Eqs. (28), (34), (9), 
gθθ = r2

0/6, V2l2s = 4π
3 r2

0 and h0 = L4/r4
0 , that the axion decay con-

stant is given by:

f 2

M2
Pl

= 3 nk gs

8π2

l2s r2
0

L2r2
U V

(41)

As r0 � rU V and L > ls , in the end warping and wrapped vol-
umes conspire so that only the orbifold and wrapping numbers 
can help to increase f . With large wrapping numbers and orbifold 
numbers, moderate9 super-Planckian decay constants are attain-
able, arguably at the limits of the supergravity approximation and 
consistently with the Weak Gravity Conjecture. For example, tak-
ing gs ∼ 0.3, L ∼ √

3 ls , rU V ∼ r0 ∼ 30 ls , n ∼ 30 and k ∼ 100, we 
obtain f ∼ 3.4 M Pl , Ms ∼ 3.1 × 10−3 M Pl and � = 7.1 × 10−2 M Pl . 
Beware again, however, that the backreaction of the D5-brane may 
actually be larger than the estimate given in (36), as the brane is 
at the top of the throat, far from the source N D3-branes. Also, the 
string scale against results to be quite low (cf. eq. (1)).

More complicated warped geometries may allow for more 
reliable and even larger axion decay constants. For example, 
a D5-brane moving in the warped resolved conifold was used in 
[40] to obtain a super-Planckian decay constant, and proposed as 
a model for Natural Inflation. The 10D metric for the warped re-
solved conifold is [55,56]:

ds2
10 = h(r, θ2)

−1/2ds2
4 + h(r, θ2)

1/2ds2
6 , (42)

with

ds2
6 = κ−1(r)dr2 + 1

6
r2

(
dθ2

1 + sin2 θ1dφ2
1

)
+ 1

6

(
r2 + 6u2

)(
dθ2

2 + sin2 θ2dφ2
2

)
+ 1

9
κ(r)r2

(
dψ2 + cos θ1dφ1 + cos θ2dφ2

)2
, (43)

where

κ(r) = r2 + 9u2

r2 + 6u2
(44)

and u is the resolution parameter. The warp factor h(r, θ2) is given 
by:

h(r, θ2) = L4
∞∑

l=0

(2l + 1)Hl(r)Pl(cos θ2) , (45)

9 Larger values for f /M Pl are possible compared to [39] by considering the brane 
moving in an angular direction rather than the radial direction.
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where

Hl(r) = 2

9u2

Cβ

r2+2β 2
F1

(
β,1 + β,1 + 2β;−9u2

r2

)
(46)

and

Cβ = (3u)2β�(1 + β)2

�(1 + 2β)
and β =

√
1 + 3

2
l(l + 1) . (47)

The warped geometry is sourced by N D3-branes placed at the tip 
of the throat, at r = 0 and θ2 = 0. Very close to the branes, at 
θ2 = 0 and small r, the geometry corresponds to adS5 × S5 with 
h = L4/r4 and L given in (34). Further away from the branes, but 
still at small r < u, the warp factor is h = L4/(ru)2. Taking the 
smeared limit for the N source D3-branes, the warp factor can be 
approximated by the l = 0 mode as [55,56]:

h(r) = 2L4

9r2u2
− 2L4

81u4
log

(
1 + 9u2

r2

)
. (48)

Using this approximation to compute the warped volume, one ob-
tains

V w
6 = s

64π3

81k
L4r2

U V (49)

with

s = 2 + 1

9

r2
U V

u2

(
1 − log

(
1 + 9u2

r2
U V

))

− 1

81

r4
U V

u4
log

(
1 + 9u2

r2
U V

)
. (50)

The string scale is then given by:

M2
s = M2

Pl
81k

4(2π)4s

g2
s l6s

L4r2
U V

. (51)

In the near-tip region where the warp factor is h0 = L4/(r0u)2, 
gθθ = u2 and the wrapped volume is V2l2s = 4πu2, taking u ∼ rU V , 
the axion decay constant becomes10:

f 2

M2
Pl

= 6561 nk gs

32π2(171 − 10 log 10)

l2s u

L2r0
. (52)

The possibility now emerges that small r0 < u could correspond to 
super-Planckian values [40].

The condition that the backreaction of the probe D5-brane be 
much smaller than that of the N D3-branes (26) can now be writ-
ten as:

1

2

n

N

L2

l2s

r

u
sin θ1 � 1 . (53)

As the probe brane is close to the tip and the source N D3-branes, 
this should be a good indication of the reliability of the probe ap-
proximation. See also [40] for a more systematic check.

Also, the Weak Gravity Conjecture (21) now implies that:

1 <
128(171 − 10 log 10)π2

6561

1

gsnk

r2
0

l2s
. (54)

10 This result differs from that in [40] since we use h = L4

(ru)2 valid for θ2 �= 0, in 
contrast to h = L4

r4 , used in [40]. This latter warp factor is also used to compute the 
warped volume of the throat up to the UV cutoff in [40].

where we used that the masses of warped strings stretching be-
tween probe D-branes separated up the throat and around the 
throat are, respectively (cf. (37), (38)):

m = M2
s

rU V∫
r0

drh1/4κ−1/2 , (55)

m = M2
s π L

u1/2

r1/2
0

. (56)

Notice again that the Weak Gravity Conjecture (54) ensures that 
the wrapping number, orbifold number and string couplings are 
not too large, as expected. It leads to a simple upper bound on the 
axion decay constant (see eq. (52)):

f 2

M2
Pl

<
4 r0u

L2
. (57)

It is now possible to achieve large f /M Pl within the limits 
of perturbative control, small brane backreaction and consistently 
with the Weak Gravity Conjecture. For example, taking gs ∼ 0.3, 
L ∼ √

3 ls , u ∼ rU V ∼ 65 ls , r0 ∼ 2ls , n ∼ 10 and k ∼ 10, we find 
f ∼ 6.8 M Pl , Ms ∼ 2.1 × 10−4 M Pl and � = 1.2 × 10−2M Pl , consis-
tently with (53) and (54).

Although we have seen that warping and non-trivial internal 
geometries allow one to consistently obtain axions with large ax-
ion decay constant in string theory, these axions cannot be used 
for large field inflation because the corresponding string scales are 
too small. Large field inflation for observable tensor modes im-
plies that inflation occurs at least at GUT scale Minf ∼ 10−2 M Pl
(see eq. (1)), so the string scale should be at least around Ms ∼
10−1M Pl , for a supergravity analysis to be valid during inflation.11

In fact, as is well known, dimensional reduction gives the follow-
ing relation between the string scale and Planck scale in any string 
model:

M2
s = M2

Pl
g2

s

4πVw
6

. (58)

Thus a string scale Ms � 10−1 M Pl is difficult to achieve within the 
limits of supergravity. This renders questionable all models of large 
field inflation in perturbative string theory, even those with sub-
Planckian decay constants like axion monodromy.12

5. Discussion

We have shown that single open string axions coming from 
D-branes in warped geometries can enjoy super-Planckian axion 
decay constants consistently with the Weak Gravity Conjecture and 
within the limits of the supergravity approximation. The most ex-
plicit realisation is the model proposed by Kenton and Thomas 
[40] for Natural Inflation, using the position modulus of a wrapped 
probe D-brane moving in a compact angular direction near the tip 

11 Strictly speaking, a hierarchy of scales Minf < Mc < Ms � M Pl , where Mc is the 
compactification scale, is needed in order to consistently work in the four dimen-
sional, low energy supergravity limit of string theory [36,57], and moduli must also 
be stabilised.
12 Factors like (2π) might help in general to achieve higher string scales within 

the perturbative limits, but explicit constructions enhance this problem. For exam-
ple, in the original axion monodromy proposal [26], increasing Vw

6 by using throats 
within throats to prevent brane anti-brane annihilation and suppress brane backre-
action [58,59] will drive the string scale down. The Large Volume Scenario used in 
the D7-brane chaotic inflation model of [25] would also make a high string scale 
difficult to achieve. See also [60].
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of the warped resolved conifold. Here, initial estimates of the back-
reaction of the brane, which is close to the source branes at the 
tip, also indicate that the probe approximation is reliable, though 
it would be important to verify this with explicit computation of 
the backreaction.

However, none of the constructions considered here can be 
used for large field inflation, as their string scales are too low 
compared to the inflationary scale (1). Indeed, we stress that one 
of the biggest challenges in realising large field inflationary mod-
els and observable gravitational waves within string theory is to 
identify appropriate compactifications with sufficiently high string 
scale, within the limits of four dimensional supergravity (or, al-
ternatively, to evade the Lyth bound). Within the perturbative su-
pergravity limit of string theory, dimensional reduction of the 10D 
Einstein–Hilbert term relates the string scale and Planck scale as 
in (58). Assuming gs � 0.3 and Vw

6 � 1 for the weak coupling and 
α′ expansions, implies Ms � 0.08M Pl . Moreover, assuming a cur-
vature scale l such that (ls/l)2 � 0.3 for a reliable α′ expansion, 
implies Mkk � 0.04M Pl . Although numerical coefficients like factors 
of 2π could help, the required hierarchy Minf � Mkk � Ms , seems 
very difficult to achieve for high scale inflation Minf ∼ 0.01M Pl . 
We could try to increase the string coupling and/or reduce the in-
ternal volumes to drive the string scale up, but then the relation 
(58) would not apply. In this case though, one could always du-
alize to an equivalent weak coupling, weak curvature description 
where (58) holds again, and return to the bounds Ms � 0.08M Pl , 
Mkk � 0.04M Pl .

Although the open string axions with large decay constant stud-
ied here cannot be used for large field inflation, they may give 
some insight into the Generalized Weak Gravity Conjecture. The 
D-brane axions have interpretation as (or are related to) gauge 
fields in higher dimensions, and so would be directly subject to 
the Weak Gravity Conjecture.13 Furthermore, the Generalized Weak 
Gravity Conjecture, in its mild form, states that among any instan-
tons, i, coupling to an axion with coupling f i , there must exist at 
least one with action Si

cl � M Pl/ f i . The strong form states, addi-
tionally, that this instanton must be the one with smallest action.

However, we have seen that for open strings in warped ge-
ometries a large axion decay constant is generated within the 
limits of supergravity, where instanton effects must be exponen-
tially suppressed. Indeed, the known instantons that couple to the 
Dp-brane Wilson line and position open string moduli are Eu-
clidean Eq-branes wrapping (q + 1)-cycles on the internal space. 
These instantons usually couple to the D-brane moduli with ax-
ion decay constant f , and their actions go as g−1

s and the vol-
ume of the wrapped (q + 1)-cycle.14 Thus they have Scl > M Pl/ f , 
and contributions are exponentially suppressed within the super-
gravity approximation. There then seems to be three likely possi-
bilities: (i) In the presence of warping, the Eq-instantons couple 
to the open string axions with a suppressed effective axion cou-
pling f ′ < f , such that they satisfy the Generalized Weak Gravity 
Conjecture with large action. (ii) There are new stringy instanton 
effects that couple to the D-brane moduli with a suppressed ef-
fective axion coupling f ′ < f , which satisfy the Generalized Weak 
Gravity Conjecture15 with large action, S ′

cl � M Pl/ f ′ , either mildly 

13 See the contemporaneous paper [61] for a further discussion on the Weak 
Gravity Conjecture and dimensional reduction and the Generalized Weak Gravity 
Conjecture for axions.
14 See [62] for an explicit computation of the instanton generated scalar poten-

tial for open string moduli in toroidal orbifold compactifications with magnetized 
D-branes.
15 This is similar – but slightly different – to the loophole discussed in [14] to 

achieve Natural Inflation consistently with the strong form of the Generalized Weak 
Gravity Conjecture.

(S ′
cl > Scl) or strongly (S ′

cl < Scl). (iii) The Generalized Weak Grav-
ity Conjecture is incorrect. We hope this letter will help to shed 
light on these issues.
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