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In this paper, we are concerned with the stochastic averaging principle for stochastic
differential equations (SDEs) with non-Lipschitz coefficients driven by fractional Brown-
ian motion (fBm) of the Hurst parameter H ∈ ( 1

2
, 1). We define the stochastic integrals

with respect to the fBm in the integral formulation of the SDEs as pathwise integrals
and we adopt the non-Lipschitz condition proposed by Taniguchi (1992) which is a much
weaker condition with wider range of applications. The averaged SDEs are established.

We then use their corresponding solutions to approximate the solutions of the original
SDEs both in the sense of mean square and of probability. One can find that the similar
asymptotic results are suitable for those non-Lipschitz SDEs with fBm under different
types of stochastic integrals.

Keywords: Stochastic differential equations; non-Lipschitz coefficients; fractional Brow-
nian motion; stochastic averaging; pathwise integrals.

AMS Subject Classification: 34F05, 37H10, 60H10, 93E03

1. Introduction

We are concerned with the following SDEs with non-Lipschitz coefficients driven
by fractional Brownian motion (fBm) on R

X(t) = X(0) +
∫ t

0

b(s,X(s))ds+
∫ t

0

σ(s,X(s))dBH(s), t ∈ [0, T ], (1.1)
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where the initial data X(0) = X0 is a random variable and E|X0|2 < ∞, 0 < T <

∞, the process BH(t) represents the fBm with Hurst index H ∈ (1
2 , 1) defined in a

complete probability space (Ω,F , P ) and b(t,X(t)) : [0, T ]×R→ R is a measurable
function, σ(t,X(t)) : [0, T ]×R → R×R is a measurable function and

∫ t

0 · dBH(s)
stands for the stochastic integral with respect to fBm.

The above mentioned fBm, which is a family of Gaussian processes, was intro-
duced by Kolmogorov [11], Hurst [8] and Mandelbrot and Van Ness [16]. Due to the
long-range dependence of the fBm (expecially for 1

2 < H < 1), the SDEs driven by
fBm have been used as models of a number of practical problems [2, 3, 19]. How-
ever, the powerful tools for the classical SDEs theory are not applicable, because
the fBm is neither a semi-martingale nor a Markov process. This motivates us to
investigate other techniques to study such SDEs with fBm.

Now, we would like to mention that the theory of the stochastic averaging for
SDEs has been studied intensively. In Khasminskii [10], the author initiated to
study a stochastic averaging method for SDEs with Gaussian random fluctuations.
Stoyanov and Kolomiets [12, 20] investigated the stochastic averaging method for
SDEs driven by Poisson noises. Xu [24, 26–28] proved the stochastic averaging for
SDEs driven by Lévy noise or by fBm, where an averaged system is presented to
replace the original one both in the sense of convergence in mean square and in
probability.

In all the above works, one notices that the coefficients of SDEs are usually
assumed to satisfy the Lipschitz condition. However, many practical models of SDEs
do not satisfy the Lipschitz condition. For example, the one-dimensional semi-linear
SDEs with Markov switching

dy(t) = a(r(t))y(t)dt+ b̃(r(t))σ̃(|y(t)|)dW (t), t ∈ [0, T ],

where the processW (t) represents Brownian motion (Bm), r(t) is a continuous-time
Markov chain and σ̃ : R+ → R+ is defined in the following manner

σ̃(u) =

{
u
√− ln(u), 0 ≤ u ≤ e−1,

e−1 + 0.5(u− e−1), u > e−1.

Such models appear widely in many branches of science, engineering, industry and
finance [4, 6, 13]. In view of the pressing need, the importance, and the impact
on many diverse applications, it is necessary and also significant to consider some
weaker conditions than the Lipschitz one. Fortunately, Yamada [29] and Taniguchi
[21] have given much weaker conditions which are regarded as the so-called non-
Lipschitz conditions.

Up to now, there are only a few results on the stochastic averaging of non-
Lipschitz SDEs [25] and most of the papers concentrated on the case of the Lipschitz
condition. Given the widespread applications of the long-range dependence of the
fBm and non-Lipschitz SDEs, in this paper, we will make the first attempt to study
the stochastic averaging for SDEs driven by fBm with non-Lipschitz coefficients
proposed. Let us also point out that, the SDEs driven by fBm could not be treated
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by the method for SDEs driven by Bm. For example, due to the fact that the
stochastic integral with respect to fBm is no longer a martingale, we definitely lost
good inequalities such as Burkholder–Davis–Gundy inequality which is crucial for
SDEs driven by Bm. This point motivates us to carry out the present study. As
expected, our obtained convergence results is in general weaker than those results
for SDEs driven by Bm.

We close this section by mentioning the paper Lan and Wu [14] for the most
recent account of SDEs with (much weaker) non-Lipschitizian coefficients driven
by Brownian motion. It would be interesting to investigate the stochastic averaging
for SDEs with weaker non-Lipschitz coefficients, for instance, of Lan and Wu type,
driven by fBm. This topic will be addressed in different work.

2. Preliminaries

In this section we present some notations, conceptions on the pathwise integrals
with respect to fBm and we also introduce non-Lipschitz condition proposed by
Taniguchi [21].

2.1. Fractional Brownian motion

Let ϕ : R+ ×R+ → R+ be defined by

ϕ(t, s) = H(2H − 1)|t− s|2H−2, t, s ∈ R+,

where H is a constant with 1
2 < H < 1. Let g : R+ → R be Borel measurable.

Define

L2
ϕ(R+) =

{
g : ‖g‖2

ϕ =
∫

R+

∫
R+

g(t)g(s)ϕ(t, s)dsdt <∞
}
.

If we equip L2
ϕ(R+) with the inner product

〈g1, g2〉ϕ =
∫

R+

∫
R+

g1(t)g2(s)ϕ(t, s)dsdt, g1, g2 ∈ L2
ϕ(R+),

then L2
ϕ(R+) becomes a separable Hilbert space.

Let S be the set of smooth and cylindrical random variables of the form

F (ω) = f

(∫ T

0

ψ1(t)dBH
t , . . . ,

∫ T

0

ψn(t)dBH
t

)
,

where n ≥ 1, f ∈ C∞
b (Rn) (i.e. f and all its partial derivatives are bounded), and

ψi ∈ H, i = 1, 2, . . . , n. H is the completion of the measurable functions such that
‖ψ‖2

ϕ <∞ and {ψn} is a sequence in H such that 〈ψi, ψj〉ϕ = δij . The elements of H
may not be functions but distributions of negative order. Thanks to this reason, it
is convenient to introduce the space |H| of measurable function h on [0, T ] satisfying

‖h‖2
|H| =

∫ T

0

∫ T

0

|h(t)||h(s)|ϕ(t, s)dsdt <∞.

And it is not difficult to show that |H| is a Banach space with the norm ‖·‖2
|H|.
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The Malliavin derivativeDH
t of a smooth and cylindrical random variable F ∈ S

is defined as the H-valued random variable:

DH
t F =

n∑
i=1

∂f

∂xi

(∫ T

0

ψ1(t)dBH(t), . . . ,
∫ T

0

ψn(t)dBH(t)

)
ψi(t).

Then, for any p ≥ 1, the derivative operator DH
t is a closable operator from

Lp(Ω) into Lp(Ω;H). In addition, we denote DH,k
t as the iteration of the derivative

operator for any integer k ≥ 1. And the Sobolev space Dk,p is the closure of S with
respect to the norm, for any p ≥ 1 (

⊗
denotes the tensor product)

‖F‖p
k,p = E|F |p + E

k∑
j=1

‖DH,j
t F‖p

HN
j .

Similarly, for a Hilbert space U , we denote by Dk,p(U) the corresponding Sobolev
space of U -valued random variables. For any p > 0 we denote by D1,p(|H|) the
subspace of D1,p(H) formed by the elements h such that h ∈ |H|.

Now, we introduce the ϕ-derivative of F :

Dϕ
t F =

∫
R+

ϕ(t, v)DH
v Fdv.

Biagini [2], Alos [1], Hu [7] and Borkowska [9] have given more details about the
fBm.

2.2. The pathwise integrals with respect to fBm

There are several ways to define integrals with respect to fBm. Here we follow
[2] (see Definition 6.1.15 on p. 154 there) to introduce the forward and backward
integrals, and the reader is referred to [2] for more detailed explanations.

Definition 1. ([18]) Let u(t) be a stochastic process with integrable trajectories.

(D1) The symmetric integral of u(t) with respect to BH(t) is defined as

lim
ε→0

1
2ε

∫ T

0

u(s)[BH(s+ ε) −BH(s− ε)]ds,

provided that the limit exists in probability, and is denoted by∫ T

0
u(s)d◦BH(s).

(D2) The forward integral of u(t) with respect to BH(t) is defined as

lim
ε→0

∫ T

0

u(s)
[
BH(s+ ε) −BH(s)

ε

]
ds,

provided that the limit exists in probability, and is denoted by∫ T

0
u(s)d−BH(s).
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(D3) The backward integral of u(t) with respect to BH(t) is defined as

lim
ε→0

∫ T

0

u(s)
[
BH(s− ε) −BH(s)

ε

]
ds,

provided that the limit exists in probability, and is denoted by∫ T

0
u(s)d+BH(s).

Remark 1. ([2], Proposition 6.2.3, p. 159) Let u(t) be a stochastic process in the
space D1,2(|H|), and satisfies∫ T

0

∫ T

0

|DH
s u(t)||t− s|2H−2

dsdt <∞,

then the symmetric integral coincides with the forward and the backward integrals.
In terms of the result of Proposition 6.2.3 in [20], we obtain Remark 1.

Definition 2. The space Lϕ[0, T ] of integrands is defined as the family of stochastic
processes u(t) on [0, T ], such that E‖u(t)‖2

ϕ <∞, u(t) is ϕ-differentiable, the trace
of Dϕ

s u(t) exists, 0 ≤ s ≤ T , 0 ≤ t ≤ T , and

E

∫ T

0

∫ T

0

[Dϕ
t u(s)]2dsdt <∞,

and for each sequence of partitions (πn, n ∈ N) such that |πn| → 0 as n→ ∞,
n−1∑
i=0

E

[∫ t
(n)
i+1

t
(n)
i

∫ t
(n)
j+1

t
(n)
j

|Dϕ
s u

π(t(n)
i )Dϕ

t u
π(t(n)

j ) −Dϕ
s u(t)Dϕ

t u(s)|dsdt
]

and

E[‖uπ − u‖2
ϕ],

tend to 0 as n→ ∞,where πn = t
(n)
0 < t

(n)
1 < · · · < t

(n)
n−1 < t

(n)
n = T .

2.3. Non-Lipschitz condition

Hypothesis 1. There exists a function G(t, x) : [0,+∞) ×R+ → R+ such that

(a) for any fixed x ≥ 0, t ∈ [0,+∞) 	→ G(t, x) ∈ R+ is locally integrable, and for
any fixed t ≥ 0, x ∈ R+ 	→ G(t, x) ∈ R+ is continuous, non-decreasing, concave,
and fulfills G(t, 0) = 0 and for any fixed t,

∫
0+

1
G(t,x)dx = ∞,

(b) for any fixed t ∈ [0, T ], b(t, ·), σ(t, ·) ∈ D1,2(|H|) ∩ Lϕ[0, T ], we have

|b(t,X) − b(t, Y )|2 + |σ(t,X) − σ(t, Y )|2 + |Dϕ
t (σ(t,X) − σ(t, Y ))|2

≤ G(t, |X − Y |2),
(c) for any constant K > 0, if a non-negative function Z(t) satisfies that

Z(t) ≤ K

∫ t

0

G(s, Z(s))ds,

for all t ∈ R+, then Z(t) ≡ 0.

1750013-5
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Hypothesis 2. There exists a function H(t, x) : [0,+∞) ×R+ → R+ such that

(a) H(t, x) is locally integral in t ≥ 0 for any fixed x ≥ 0 and is continuous monotone
non-decreasing concave in x for any fixed t ≥ 0,

(b) for any fixed t ∈ [0, T ], b(t, ·), σ(t, ·) ∈ D1,2(|H|) ∩ Lϕ[0, T ], we have

|b(t,X)|2 + |σ(t,X)|2 + |Dϕ
t σ(t,X)|2 ≤ H(t, |X |2),

(c) for any constant K > 0, the differential equation

dx

dt
= KH (t, x),

has a global solution for any initial value x0.

To obtain more detailed descriptions about the above non-Lipschitz condition,
see e.g., [15, 17, 21–23].

Remark 2. Let G(t, x) = λ(t)Γ(x), t ≥ 0, x ∈ R+, where λ(t) : [0,∞) → R+ is a
locally integrable function, Γ(x) is non-decreasing, continuous and concave function
from R+ to R+ such that Γ(0) = 0 and∫

0+

1
Γ(x)

dx = ∞.

Then the function G(t, x) satisfies Hypothesis 1.

Now, we give some concrete examples of the function Γ. Let K > 0 and let
µ ∈ ]0, 1[ be sufficiently small.

Define

Γ1(x) = Kx, x ≥ 0.

Γ2(x) =

{
x log(x−1), 0 ≤ x ≤ µ,

µ log(µ−1) + Γ′
2(µ−)(x − µ), x > µ,

Γ3(x) =

{
x log(x−1) log log(x−1), 0 ≤ x ≤ µ,

µ log(µ−1) log log(µ−1) + Γ′
3(µ−)(x − µ), x > µ,

where Γ′ denotes the derivative of function Γ. They are all concave and non-
decreasing functions satisfying∫

0+

1
Γi(x)

dx = ∞, i = 1, 2, 3.

In particular, we see clearly that if let Γ(x) = x, λ(t) = K then the non-Lipschitz
Hypotheses 1–2 reduce to Lipschitz condition. In other words, non-Lipschitz con-
dition is weaker than the Lipschitz condition.
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Hypothesis 3. Suppose that there exist functions b̄(X), σ̄(X) ∈ D1,2(|H|) ∩
Lϕ[0, T ], we have

1
T1

∫ T1

0

|b(s,X) − b̄(X)|ds ≤ ϕ1(T1)ρ(|X |), (2.1)

1
T1

∫ T1

0

|σ(s,X) − σ̄(X)|2ds ≤ ϕ2(T1)ρ(|X |2), (2.2)

where T1 ∈ [0, T ] and ϕi(T1) are positive bounded functions with limT1→∞ ϕi(T1) =
0, i = 1, 2, ρ(·) is a non-decreasing, continuous and concave function from R+ to
R+ and σ̄ : R→ R, b̄ : R→ R are all measurable functions.

3. The Stochastic Averaging Principle

In this paper, we are concerned with SDEs involving forward stochastic integral
with respect to fBm. One can follow [2, 21] to verify the existence and uniqueness
of the solutions of the SDEs under Hypotheses 1–2 introduced in the previous
section. We present the existence and uniqueness results and their proofs in the
Appendix.

Now, we consider the approximate solutions for non-Lipschitz SDEs (the forward
integral case) with fBm as follows:

Xε(t) = X(0) + ε2H

∫ t

0

b(s,Xε(s))ds+ εH

∫ t

0

σ(s,Xε(s))d−BH(s), (3.1)

where X(0) = X0 is a given random variable as the initial condition, t ∈ [0, T ] and
the coefficients satisfy Hypotheses 1–2, and ε ∈ (0, ε0] is a positive parameter with
ε0 a fixed number.

Let us present some auxiliary results.

Lemma 1. If u(t) ∈ D1,2(|H|) ∩ Lϕ[0, T ], then the symmetric integral is well
defined and the following relations hold

∫ T

0

u(s)d◦BH(s) =
∫ T

0

u(s)♦dBH(s) +
∫ T

0

Dϕ
s u(s)ds, (3.2)

where ♦ denotes the Wick product (see Duncan [5], p. 588). Moreover, the forward
and backward integrals are also well defined, and by Remark 1, they both coincide
with the symmetric integral under the condition of Lemma 1.

Lemma 1 can be found in the work of Biagini and Hu et al. ([2], Theorem 6.2.5).
By Remark 1, the symmetric integral coincides with the forward and backward
integrals under the condition of Lemma 1, so three types of pathwise integrals have
same relations as Eq. (3.2).
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Lemma 2. Let BH(t) be a fBm with 1
2 < H < 1, and u(t) be a stochastic process

in D1,2(|H|) ∩ Lϕ[0, T ], then for every T <∞, there exists a constant C such that

E

[∫ T

0

u(s)d−BH(s)

]2

≤ 2HT 2H−1E

[∫ T

0

|u(s)|2ds
]

+ 4CT 2.

Proof. We have

E

[∫ T

0

u(s)d−BH(s)

]2

= E

[∫ T

0

u(s)♦dBH(s) +
∫ T

0

Dϕ
s u(s)ds

]2

≤ 2E

[∫ T

0

u(s)♦dBH(s)

]2

+ 2E

[∫ T

0

Dϕ
s u(s)ds

]2

≤ 2HT 2H−1E

[∫ T

0

|u(s)|2ds
]

+ 4E

[∫ T

0

Dϕ
s u(s)ds

]2

≤ 2HT 2H−1E

[∫ T

0

|u(s)|2ds
]

+ 4TE
∫ T

0

[Dϕ
s u(s)]2ds.

≤ 2HT 2H−1E

[∫ T

0

|u(s)|2ds
]

+ 4CT 2.

This completes the proof.

The detailed proof of Lemma 2 can be found in the authors’ work [26].

Remark 3. In the same conditions with Lemmas 1–2, and under Remark 1, the
symmetric, forward and backward integral cases have same conclusions.

In the rest of the paper, Kl are all constants, l = 1, 2, 3, 4, 5, 6, 7. Our main
result is the following.

Theorem. If Hypotheses 1–3 are satisfied and Zε(t) denotes the solution process
to the SDEs

Zε(t) = X(0) + ε2H

∫ t

0

b̄(Zε(s))ds+ εH

∫ t

0

σ̄(Zε(s))d−BH(s), (3.3)

then for a given arbitrarily small number δ1 > 0, there exist ε1 ∈ (0, ε0], such that
for any ε ∈ (0, ε1], t ∈ [0, T ],

E(|Xε(t) − Zε(t)|2) ≤ δ1.

Proof. Through Eqs. (3.1) and (3.3), taking expectation and employing the fol-
lowing inequality for m ∈ N+ and x1, x2, . . . , xm ∈ R:

|x1 + x2 + · · · + xm|2 ≤ m(|x1|2 + |x2|2 + · · · + |xm|2), (3.4)
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we obtain that

E|Xε(t) − Zε(t)|2 ≤ 2ε4HE

∣∣∣∣
∫ t

0

[b(s,Xε(s)) − b̄(Zε(s))]ds
∣∣∣∣
2

+ 2ε2HE

∣∣∣∣
∫ t

0

[σ(s,Xε(s)) − σ̄(Zε(s))]d−BH(s)
∣∣∣∣
2

= I2
1 + I2

2 ,

where [0, t] ⊆ [0, ũ] ⊆ [0, T ], Ii, i = 1, 2 denote the above terms respectively.
Firstly, we apply inequality (3.4) for I2

1 to yield

I2
1 = 2ε4HE

∣∣∣∣
∫ t

0

[b(s,Xε(s)) − b̄(Zε(s))]ds
∣∣∣∣
2

≤ 4ε4HE

∣∣∣∣
∫ t

0

[b(s,Xε(s)) − b(s, Zε(s))]ds
∣∣∣∣
2

+ 4ε4HE

∣∣∣∣
∫ t

0

[b(s, Zε(s)) − b̄(Zε(s))]ds
∣∣∣∣
2

= I2
11 + I2

12.

By Cauchy–Schwarz inequality for I2
11 and Hypothesis 1(b), we arrive at

I2
11 ≤ 4ε4HE

(
t

∫ t

0

|b(s,Xε(s)) − b(s, Zε(s))|2ds
)

≤ 4ε4H ũE

∫ t

0

G(s, |Xε(s) − Zε(s)|2)ds.

Then, for I2
12, using Eq. (2.1) and ϕ1(T1) a positive bounded function to yield:

I2
12 ≤ 4ε4Ht2E

[
1
t

∫ t

0

|b(s, Zε(s)) − b̄(Zε(s))|ds
]2

≤ 4ε4H ũ2

(
sup

0≤t≤ũ
ϕ2

1(t)
)
E

[
ρ

(
sup

0≤t≤ũ
|Zε(t)|

)]2
.

Now, we employ inequality (3.4) for I2
2 to obtain

I2
2 ≤ 4ε2HE

∣∣∣∣
∫ t

0

[σ(s,Xε(s)) − σ(s, Zε(s))]d−BH(s)
∣∣∣∣
2

+ 4ε2HE

∣∣∣∣
∫ t

0

[σ(s, Zε(s)) − σ̄(Zε(s))]d−BH(s)
∣∣∣∣
2

= I2
21 + I2

22.
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By, Lemma 2 and Hypothesis 1(b), we obtain

I2
21 = 4ε2HE

∣∣∣∣
∫ t

0

[σ(s,Xε(s)) − σ(s, Zε(s))]d−BH(s)
∣∣∣∣
2

≤ 4ε2H

{
2Ht2H−1E

∫ t

0

[σ(s,Xε(s)) − σ(s, Zε(s))]
2ds+ 4Cũ2

}

≤ 8ε2H ũ2H−1K1

(
E

∫ t

0

G(s, |Xε(s) − Zε(s)|2)ds
)

+ 16ε2HK2ũ
2.

Due to Eq. (2.2), we have

I2
22 = 4ε2HE

∣∣∣∣
∫ t

0

[σ(s, Zε(s)) − σ̄(Zε(s))]d−BH(s)
∣∣∣∣
2

≤ 4ε2H

{
2Hũ2H−1E

[∫ t

0

|σ(s, Zε(s)) − σ̄(Zε(s))|2ds
]

+ 4Cũ2

}

≤ 8ε2HHũ2H−1tE

{
1
t

∫ t

0

|σ(s, Zε(s)) − σ̄(Zε(s))|2ds
}

+ 16ε2H ũ2K3

≤ 8ε2HHũ2H

(
sup

0≤t≤ũ
ϕ2(t)

)
E

[
ρ

(
sup

0≤t≤ũ
|Zε(t)|2

)]
+ 16ε2H ũ2K3.

Therefore, from the above discussions, and G(t, x) is concave in x for any fixed
t ≥ 0, we get

E|Xε(t) − Zε(t)|2 ≤ (4ε4H ũ+ 8ε2H ũ2H−1K1)
∫ t

0

G(s, E|Xε(s) − Zε(s)|2)ds

+ 4ε4Hũ2

(
sup

0≤t≤ũ
ϕ2

1(t)
)
E

[
ρ

(
sup

0≤t≤ũ
|Zε(t)|

)]2

+ 8ε2HHũ2H

(
sup

0≤t≤ũ
ϕ2(t)

)
E

[
ρ

(
sup

0≤t≤ũ
|Zε(t)|2

)]

+ 16ε2Hũ2K2 + 16ε2H ũ2K3.

Note that there exist a(t) ≥ 0, b(t) ≥ 0, such that

G(t, x) ≤ a(t) + b(t)x,
∫ T

0

a(t)dt <∞,

∫ T

0

b(t)dt <∞,

we have

E|Xε(t) − Zε(t)|2

≤ (4ε4H ũ+ 8ε2H ũ2H−1K1)
(

sup
0≤t≤ũ

a(t)
)

+
(
4ε4H ũ+ 8ε2H ũ2H−1K1

)(
sup

0≤t≤ũ
b(t)
)∫ t

0

E|Xε(s) − Zε(s)|2ds

+ 4ε4H ũ2K4 + 8ε2H ũ2HK5 + 16ε2H ũ2K2 + 16ε2Hũ2K3

1750013-10
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≤ (4ε4H ũK6 + 8ε2H ũ2H−1K1)
∫ t

0

E|Xε(s) − Zε(s)|2ds+ 4ε4HK7ũ

+ 8ε2H ũ2H−1K1 + 4ε4H ũ2K4 + 8ε2H ũ2HK5

+ 16ε2Hũ2K2 + 16ε2H ũ2K3

= (4ε4H ũK6 + 8ε2H ũ2H−1K1)
∫ t

0

E|Xε(s) − Zε(s)|2ds

+ 4ε2H(K7ε
2H ũ+K1ũ

2H−1 +K4ε
2H ũ2 +K5ũ

2H +K2ũ
2 +K3ũ

2).

Now by the Gronwall–Bellman inequality, we obtain

E|Xε(t)−Zε(t)|2 ≤ 4ε2H [K7ε
2H ũ+K2ũ

2 + ũ2H−1(K1 +K5ũ) + (K4ε
2H +K3)ũ2]

× exp(4ε4H ũ2K6 + 8ε2H ũ2HK1).

Select β ∈ (0, 1), L > 0, such that for all t ∈ [0, Lε−Hβ ] ⊆ [0, T ], we have

E|Xε(t) − Zε(t)|2 ≤ Qε1−Hβ ,

where

Q = 4ε2H+Hβ−1 exp(4ε4H−2HβL2K6 + 8L2Hε2H−2H2βK1)[K7ε
2HLε−Hβ

+K2L
2ε−2Hβ +L2H−1ε−Hβ(2H−1)(K1 +K5Lε

−Hβ)+L2(K4ε
2H +K3)ε−2Hβ ]

is a constant.
Consequently, given any number δ1 > 0, we can select ε1 ∈ (0, ε0], such that for

every ε ∈ (0, ε1], and for t ∈ [0, Lε−Hβ] ⊆ [0, T ],

E|Xε(t) − Zε(t)|2 ≤ δ1.

This completes the proof.

Corollary. Assume that the original SDEs (3.1) and the averaged SDEs (3.3) both
satisfy the Hypotheses 1–3. Then for any number δ2 > 0, there exist L > 0 and
β ∈ (0, 1), such that

lim
ε→0

P (|Xε(t) − Zε(t)| > δ2) = 0.

Proof. On the basis of Theorem and Chebyshev–Markov inequality, for any given
number δ2 > 0, one can have

P (|Xε(t) − Zε(t)| > δ2) ≤ 1
δ22
E|Xε(t) − Zε(t)|2 ≤ Qε1−Hβ

δ22
.

Let ε→ 0 and the required result follows.
This completes the proof.

Remark 4. Similarly, we get the same results for three types of pathwise integrals
of SDEs.
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Remark 5. We would like to compare our main result with the corresponding
result for SDEs with standard Brownian motion (H = 1

2 ) in which the stochastic
integral is just the usual Itô integral. In fact, in the Brownian motion case, we have

E

(
sup

t∈[0,Lε−1]

|Xε(t) − Zε(t)|2
)

≤ δ1.

However, due to the fact that stochastic integral with respect to fBm is no longer
a martingale (Itô integral is a martingale but it is not well defined with respect to
fBm), we definitely lose good inequalities such as Burkholder–Davis–Gundy inequal-
ity which is crucial for SDEs driven by Bm. So we cannot obtain the uniform con-
vergence result. As expected, our obtained convergence result is in general weaker
than those results for SDEs driven by Bm as follows:

E|Xε(t) − Zε(t)|2 ≤ δ1, t ∈ [0, Lε−Hβ].

The obtained convergence result in this paper is in general weaker than that of Bm
case, but this is an interesting theoretical result to study the solution of complex
equations with fBm through the solution of simplified equation.

Remark 6. In this paper, Hypotheses 3 are to ensure that the coefficients between
original Eq. (3.1) and averaged Eq. (3.3) can be controlled. If not, we cannot obtain
the convergence for the solution. Here, we mainly emphasize the convergence of the
solutions. In fact, the rate of convergence in this result is about −Hβ compared
with −1 in Brownian motion case (namely, H = 1/2).

Finally, let us give an example of SDEs driven by fBm to illustrate the compu-
tation of σ̄ and b̄. We also derive the associated averaging process.

Example. Consider the following SDEs driven by fBm:

dXε = −ε2HλXε sin2(t)dt+ εHd−BH(t), (3.5)

where Xε(0) = X0 and E|X0|2 < ∞, t ∈ [0, T ], b(t,Xε) = −λXε sin2(t), σ(t,Xε) =
1, and λ is a positive constant, BH(t) is a fBm. Then

b̄(Xε) =
1
π

∫ π

0

b(t,Xε)dt = −1
2
λXε, σ̄(Xε) = 1,

and define a new averaged SDEs

dZε = ε2H b̄(Zε)dt+ εH σ̄(Zε)d−BH(t),

namely,

dZε = −1
2
ε2HλZεdt+ εHd−BH(t). (3.6)

Obviously, Zε(t) is the well-known Ornstein–Uhlenbeck process, and the solution
process can be obtained as:

Zε(t) = exp
(
−1

2
ελt

)
X0 +

√
ε

∫ t

0

exp
(
−1

2
ελ(t− s)

)
d−BH(t).
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As all the Hypotheses 1–3 are satisfied for functions b, σ, b̄, σ̄ in SDEs (3.5)–(3.6),
thus the Theorem and Corollary hold. That is,

E(|Xε(t) − Zε(t)|2) ≤ δ1,

and consequently, as ε→ 0,

|Xε(t) − Zε(t)| → 0 in probability.

Appendix: Existence and Uniqueness of Solutions of SDEs with
Forward Stochastic Integrals

We are concerned with the following SDEs

X(t) = X0 +
∫ t

0

b(s,X(s))ds+
∫ t

0

σ(s,X(s))d−BH(s), t ∈ [0, T ], (A.1)

with the initial data X0 being a random variable. Following [2, 21], we have the
following.

Theorem A. Under the assumption Hypotheses 1–2, there is a unique solution of
(A.1).

Proof. By using an iteration of the Picard type, we construct an approximate
sequence of stochastic process {Xk(t), k ∈ N+} as follows:

Xk+1(t) = X0 +
∫ t

0

b(s,Xk(s))ds+
∫ t

0

σ(s,Xk(s))d−BH(s), t ∈ [0, T ], (A.2)

where X1(t) = X0 is the initial condition with E|X0|2 <∞.
By Lemmas 1–2 and Hypothesis 2(b), we have

E|Xk+1(t)|2 ≤ 3E|X0|2 + 3E
∣∣∣∣
∫ t

0

b(s,Xk(s))ds
∣∣∣∣
2

+ 3E
∣∣∣∣
∫ t

0

σ(s,Xk(s))d−BH(s)
∣∣∣∣
2

≤ 3E|X0|2 + 3TE
∫ t

0

|b(s,Xk(s))|2ds+ 6HT 2H−1E

∫ t

0

|σ(s,Xk(s))|2dt

+ 12TE
∫ t

0

|Dϕ
s σ(s,Xk(s))|2dt

≤ 3E|X0|2 + CT,H

∫ t

0

H(s, E|Xk(s)|2)ds, (A.3)

for all t ∈ [0, T ], where the constant CT,H only depends on T,H .
Next, by Hypothesis 2(c) and inequality (A.3), there is a u(t), t ∈ [0, T ] satisfying

u(t) = 3E|X0|2 + CT,H

∫ t

0

H(s, u(s))ds.

By induction, we obtain for any k ∈ N+,

E|Xk+1(t)|2 ≤ u(t) ≤ u(T ) <∞.

This proves the uniform boundedness of {Xk(t), 0 ≤ t ≤ T, k ∈ N+}.
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On the other hand, by the same way as above, for t ∈ [0, T ], we have

E|Xk+1(t) −Xm+1(t)|2 ≤ 2E
∣∣∣∣
∫ t

0

[b(s,Xk(s))ds− b(s,Xm(s))]ds
∣∣∣∣
2

+ 2E
∣∣∣∣
∫ t

0

[σ(s,Xk(s)) − σ(s,Xm(s))]d−BH(s)
∣∣∣∣
2

≤ 2TE
∫ t

0

|b(s,Xk(s))ds− b(s,Xm(s))|2ds

+ 4HT 2H−1E

∫ t

0

|σ(s,Xk(s)) − σ(s,Xm(s))|2dt

+ 8TE
∫ t

0

|Dϕ
s [σ(s,Xk(s)) − σ(s,Xm(s))]|2dt

≤ CT,H

∫ t

0

G(s, E|Xk(s) −Xm(s)|2)ds,

where CT,H is also a constant.
To proceed, it is routine to derive

sup
0≤s≤t

E|Xk+1(s) −Xm+1(s)|2

≤ CT,H

∫ t

0

G

(
s, sup

0≤s1≤s
E|Xk(s1) −Xm(s1)|2

)
ds. (A.4)

Let

Z(t) = lim sup
k,m→∞

sup
0≤s≤t

E|Xk+1(s) −Xm+1(s)|2, (A.5)

then Eqs. (A.4)–(A.5) together with Fatous lemma yield

Z(t) ≤ CT,H

∫ t

0

G(s, Z(s))ds. (A.6)

At last, through the above inequality (A.6) and Hypothesis 1(c), we immediately
get Z(t) ≡ 0, i.e.

Z(t) = lim
k,m→∞

sup
0≤s≤t

E|Xk+1(s) −Xm+1(s)|2 = 0,

indicating that {Xk(t), 0 ≤ t ≤ T, k ∈ N+} is a Cauchy sequence. The limit is
denoted byX(t). Let k → ∞ in (A.2) yields thatX(t) satisfies (A.1) for all t ∈ [0, T ].
In other words, we have shown the existence of solutions of (A.1). Then, by the
same way, we obtain the uniqueness of solution of (A.1).
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1. E. Alòs and D. Nualart, Stochastic integration with respect to the fractional Brownian
motion, Stochast. Stochast. Rep. 75 (2003) 129–152.

2. F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic Calculus for Fractional
Brownian Motion and Applications (Springer-Verlag, 2008).

3. N. Chakravarti and K. L. Sebastian, Fractional Brownian motion models for polymers,
Chem Phys Lett. 267 (1997) 9–13.

4. J. C. Cox, J. E. Ingersoll and S. A. Ross, A theory of the term structure of interest
rates, Econometrica. 53 (1985) 385–407.

5. T. E. Duncan, Y. Hu and B. Pasik-Duncan, Stochastic calculus for fractional Brownian
motion I. Theory, SIAM. J. Control. Optim. 38 (2000) 582–612.

6. S. Heston, A closed-form solution for options with stochastic volatility with applica-
tions to bond and currency options, Rev. Fin. Stud. 6 (1993) 327–343.

7. Y. Hu and S. Peng, Backward stochastic differential equation driven by fractional
Brownian motion, SIAM. J. Control. Optim. 48 (2009) 1675–1700.

8. H. E. Hurst, Long-term storage capacity in reservoirs, Trans. Amer. Soc. Civil. Eng.
116 (1951) 400–410.

9. K. Jaczak-Borkowska, Generalized BSDEs driven by fractional Brownian motion, Stat.
Probab. Lett. 83 (2013) 805–811.

10. R. Z. Khasminskii, A limit theorem for the solution of differential equations with
random right-hand sides, Theory. Probab. Appl. 11 (1963) 390–405.

11. A. N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im
Hilbertschen, Raum. C. R. Acad. Sci. URSS. 26 (1940) 115–118.

12. V. G. Kolomiets and A. I. Mel’nikov, Averaging of stochastic systems of integral-
differential equations with Poisson noise, Ukr. Math. J. 2 (1991) 242–246.

13. Y. K. Kwok, Pricing multi-asset options with an external barrier, Int. J. Theor. Appl.
Fin. 1 (1998) 523–541.

14. G. Lan and J. L. Wu, New sufficient conditions of existence, moment estimations and
non confluence for SDEs with non-Lipschitzian coefficients, Stoch. Proc. Appl. 124
(2014) 4030–4049.

15. J. Luo and T. Taniguchi, The existence and uniqueness for non-Lipschitz stochastic
neutral delay evolution equations driven by Poisson jumps, Stoch. Dyn. 9 (2009) 135–
152.

16. B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises
and applications, SIAM Rev. 10 (1968) 422–427.

17. B. Pei and Y. Xu, Mild solutions of local non-Lipschitz stochastic evolution equations
with jumps, Appl. Math. Lett. 52 (2016) 80–86.

18. F. Russo and P. Vallois, Forward, backward and symmetric stochastic integration,
Probab. Theory Relat. Field 97 (1993) 403–421.

19. R. Scheffer and F. R. Maciel, The fractional Brownian motion as a model for an
industrial airlift reactor, Chem. Eng. Sci. 56 (2001) 707–711.

1750013-15

St
oc

h.
 D

yn
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

O
R

T
H

W
E

ST
E

R
N

 P
O

L
Y

T
E

C
H

N
IC

 U
N

IV
E

R
SI

T
Y

 o
n 

06
/0

4/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

May 31, 2016 15:5 WSPC/S0219-4937 168-SD 1750013 16–16

Y. Xu, B. Pei & J.-L. Wu

20. I. M. Stoyanov and D. D. Bainov, The averaging method for a class of stochastic
differential equations, Ukr. Math. J. 26 (1974) 186–194.

21. T. Taniguchi, Successive approximations to solutions of stochastic differential equa-
tions, J. Differential Equations 96 (1992) 152–169.

22. T. Taniguchi, The existence and asymptotic behaviour of solutions to non-Lipschitz
stochastic functional evolution equations driven by Poisson jumps, Stoch. 82 (2010)
339–363.

23. T. Taniguchi, The existence and uniqueness of energy solutions to local non-Lipschitz
stochastic evolution equations, J. Math. Anal. Appl. 340 (2009) 197–208.

24. Y. Xu, J. Duan and W. Xu, An averaging for stochastic dynamical systems with Lévy
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