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Abstract 

This work addresses the integrated optimisation of upstream and downstream processing strategies 

of a monoclonal antibody (mAb) under uncertainty. In the upstream processing (USP), the 

bioreactor sizing strategies are optimised, while in the downstream processing (DSP), the 

chromatography sequencing and column sizing strategies, including the resin at each 

chromatography step, the number of columns, the column diameter and bed height, and the number 

of cycles per batch, are determined. Meanwhile, the product’s purity requirement is considered. 

Under the uncertainties of both upstream titre and chromatography resin yields, a stochastic mixed 

integer linear programming (MILP) model is developed, using chance constrained programming 

(CCP) techniques, to minimise the total cost of goods (COG). The model is applied to an 

industrially-relevant example and the impact of different USP:DSP ratios is studied. The 

computational results of the stochastic optimisation model illustrate its advantage over the 

deterministic model. Also, the benefit of the integrated optimisation of both USP and DSP is 

demonstrated. The sensitivity analysis of both the confidence level used in the CCP model and the 

initial impurity level is investigated as well. 

Keywords: biopharmaceutical manufacturing, integrated optimisation, uncertainty, chance 

constrained programming, mixed integer linear programming 
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1. Introduction 

Monoclonal antibodies (mAbs) represent one of the fastest growing groups of therapeutic 

biopharmaceutical drugs. The total global sales revenue of all mAb drugs in 2013 was almost 

US$75 billion, approximately half of the total sales of all biopharmaceutical drugs, and the growth 

of the sales of mAb drugs will continue in the near future
1
. The upstream processing (USP) of 

mAbs manufacturing process is becoming more challenging, due to the significant improvements 

in USP productivities with higher mAb upstream titres being achieved in cell culture. The 

downstream processing (DSP), in which chromatography operations are critical steps representing 

a large proportion of the total manufacturing cost, needs to match the increased titres in the USP
2
. 

Thus, it is critical to identify cost-effective manufacturing processes to overcome manufacturing 

bottlenecks through the optimisation of the design and operation of both upstream fermentation and 

downstream chromatography steps.  

 

Optimisation-based decision-support tools have been developed for the biopharmaceutical 

manufacturing using mathematical programming techniques in the literature, e.g., on the 

biopharmaceutical production planning and scheduling
3-7

, capacity planning
8
, purification process 

synthesis
9-12

. Several optimisation-based approaches have been developed for the optimal design of 

downstream purification processes. A meta-heuristic optimisation approach was developed using 

genetic algorithms, and applied it to a case study on the production of mAbs, focusing on the 

optimal purification sequences and chromatography column sizing strategies, in order to cope with 

different configurations of upstream and downstream trains and product impurity loads
13

. A real-

world problem concerned with the discovery of cost-effective equipment sizing strategies for 

purification processes was addressed, which was formulated as a combinatorial closed-loop 

optimisation problem and solved using evolutionary algorithms (EA)
14-16

. In addition, a mixed 

integer linear programming (MILP) model was developed for the optimal chromatography column 

sizing decisions in the mAb manufacturing, considering an objective of the minimisation of cost of 

goods per gram (COG/g) as the above work, for different facility configurations
17

. Later, the above 

work was extended to a mixed integer nonlinear programming (MINLP) model for the facility 

design with the current titre and facility fit with higher titres
18

. The authors further optimised both 

chromatography sequencing and column sizing decisions using mixed integer linear fractional 
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programming (MILFP) and Dinkelbach’s algorithm with decision variables as discrete or 

continuous
19,20

. Another work developed a mixed-integer dynamic optimisation model for optimal 

development of bioprocesses, which was solved by a hybrid simulation-optimisation 

decomposition algorithm
21

. These works have focused on optimising DSP but not optimising USP 

and DSP simultaneously, which is one of the objectives of this paper. 

 

In industrial practice, the upstream fermentation titre and downstream chromatography resin yield 

are usually uncertain, which can affect the performance of the whole manufacturing process 

significantly, and should be taken into account in the optimisation model. The chance constrained 

programming (CCP) approach, firstly introduced by Charnes and Cooper
22

, and has been widely 

used in engineering applications to deal with uncertainties
3,23-28

. Under the CCP approach, the 

optimal solution ensures a specified probability of complying with constraints, i.e., the confidence 

level of being feasible. Compared to stochastic programming, the CCP approach usually requires 

much fewer constraints and equations that are similar in number to the deterministic model, and 

has a better performance in terms of ease of solution. This work aims to develop an optimisation 

framework by extending our previous work
17-20

 to address the integrated optimisation of strategies 

for both USP and DSP for the mAb manufacturing, using CCP techniques to deal with the 

uncertainties of the upstream titre and chromatography resin yield. In the USP, the optimal design 

of the upstream facilities is considered by determining the optimal bioreactor volumes with given 

configurations of USP and DSP trains, while in the DSP we consider the optimisation of both the 

chromatography columns sizing and chromatography sequencing strategies. Due to the interactions 

among the manufacturing operations, these strategies should be optimised simultaneously to obtain 

the optimal decisions.    

 

The rest of this paper is organised as follows: Section 2 describes the integrated optimisation 

problem of both USP and DSP design. The mathematical formulation of the proposed stochastic 

integrated optimisation model is presented in Section 3. In Section 4, an industrially-relevant 

example is presented, and its computational results and discussion are given in Section 5. Finally, 

the concluding remarks are made in Section 6.  
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2. Problem Statement 

This work addresses the integrated optimisation of the mAb manufacturing strategies, including the 

bioreactor sizing strategies in the USP, and the column sequencing and sizing strategies in the 

DSP. Fig. 1 shows a typical mAb platform process studied in this work. After mammalian cells 

expressing the mAb are cultured in bioreactors in the USP (see “Cell culture” in Fig. 1), the mAb is 

recovered, purified and cleared from potential viruses by a number of DSP operations, including 

three packed-bed chromatography steps, i.e. capture, intermediate purification and polishing steps. 

These DSP steps operate in a non-overlapping mode, which means when a DSP step is operating, 

other DSP steps are idle. 

 

 

Fig. 1. A typical mAb manufacturing process 

 

Here, the optimal volumes of bioreactors in the USP are considered as decision variables for 

optimisation, rather than pre-determined as in the literature. With given configurations of USP and 

DSP trains, it is assumed that all bioreactors have the same volume, and they operate in the 

staggered pattern.  

 

There are a number of candidate resins from different types to be selected at each chromatography 

step in the DSP for the optimal chromatography sequencing decisions. In order to use the 

orthogonal separation mechanisms, it is assumed that no more than one resin from the same type 

can be used in the sequence. In addition, at each chromatography step, the column sizing strategies 

are to be optimised, including the bed height, diameter, number of cycles and number of columns 

to run in parallel, whose optimal values are to be chosen from a set of discrete candidate values.  

 

In addition, the purity requirement of final product is considered. The host cell proteins (HCPs) are 

considered as the critical impurities, which may cause antigenic effects in patients and must be 

removed during DSP
29

. A target level of the HCPs in the final product specification is to be met by 
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the selected chromatography sequence, where each resin will have a different HCP reduction 

capability.  

 

In this problem, the upstream titre and chromatography step yield with each resin are considered as 

uncertain parameters which follow triangular distributions
14-16,30

. It is assumed that the upstream 

titre and step yields remain the same for different batches. The given annual demand should be met 

by the annual output. In our previous work
17-20

, the optimisation objective was to minimise the 

COG/g, which is equal to the annual total cost divided by the annual total output. However, in this 

problem, as the annual demand is required to be met, i.e. the total output is equal to the demand, 

the minimisation of COG/g is equivalent to the minimisation of the total cost of goods (COG), 

which comprises of both direct and indirect operating costs. 

 

The problem addressed in this work can be described as follows.  

Given: 

 process sequence of a mAb product; 

 a number of USP trains, and upstream titre; 

 candidate chromatography resins at each step, and their key characteristics (e.g. yield, linear 

velocity, buffer usage, dynamic binding capacity, HCP reduction value); 

 key characteristics of non-chromatography steps (e.g. yield, time, buffer usage); 

 cost data (e.g., reference equipment costs, labour wage, resin, buffer and media prices); 

 candidate column diameters and heights, numbers of cycles and columns; 

 initial and target HCP levels; 

 probability distributions of both titre and chromatography step yield; 

determine: 

 bioreactor sizing strategies; 

 chromatography step sequencing strategies (i.e., resin for each step); 

 chromatography column sizing strategies (i.e. column diameter and bed height, number of 

columns per step, and number of cycles per batch) at each chromatography step; 

 product mass and volume, and buffer usage volume; 

 number of total completed batches; 

 annual total processing time; 
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so as to: 

minimise the annual total COG, including both direct and indirect costs. 

 

3. Mathematical Formulation 

In this section, a deterministic MILP model for the optimal USP bioreactor sizing, DSP 

chromatography sequencing and sizing decisions is initially presented. Then, it is extended to a 

stochastic CCP model to deal with uncertainties in upstream titre and chromatography resin yields. 

Both models are developed based on the MILP model for DSP optimisation
19

, which is presented 

in the Supporting Information. The proposed model for the whole biopharmaceutical 

manufacturing process involves an unavoidable complexity with a large number of constraints and 

variables to track the product mass, product volume, buffer volume and processing time of each 

downstream operation, calculate many direct and indirect cost terms, and linearise the nonlinear 

constraints. Only the newly developed equations in this work are presented in this section.  

 

3.1. Deterministic Formulation  

Firstly, a deterministic MILP model was developed using exact linearisation and piecewise 

linearisation techniques to maximise the total COG. The key difference between the proposed 

model and the literature model
19

 lies in modelling the bioreactor size as a variable. Thus, only the 

constraints related to the bioreactor size are presented here. Please refer to the appendix for other 

constraints involved. 

 

3.1.1. Protein Mass 

In each batch, the initial protein mass going out of the upstream processes depends on the titre of 

the product, 𝑡𝑖𝑡𝑟𝑒, and the working volume of bioreactor: 

𝑀0 = 𝑡𝑖𝑡𝑟𝑒 ⋅ 𝛼 ⋅ 𝐵𝑅𝑉        (1) 

where 𝛼 is the working volume ratio, and 𝐵𝑅𝑉 is a variable for single bioreactor volume. 

  

An auxiliary variable, 𝑈𝑀̅̅ ̅̅
�̅�𝑛 ≡ 𝑈𝑠𝑟 ⋅ 𝑀𝑠−1 , is introduced to calculate the protein mass at 

chromatography step s, 𝑀𝑠, supported by the following constraints:  

𝑈𝑀̅̅ ̅̅
�̅�−1,𝑟 ≤ 𝑡𝑖𝑡𝑟𝑒 ⋅ 𝛼 ⋅ 𝑚𝑎𝑥𝑏𝑟𝑣 ⋅ 𝑈𝑠𝑟 ,   ∀𝑠 ∈ 𝐶𝑆, 𝑟 ∈ 𝑅𝑠        (2) 
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∑ 𝑈𝑀̅̅ ̅̅ ̅
𝑠−1,𝑟𝑟∈𝑅𝑠

= 𝑀𝑠−1,    ∀𝑠 ∈ 𝐶𝑆    (3) 

where 𝑀𝑠 is the product mass per batch after operation s, and binary variable 𝑈𝑠𝑟 is equal to 1 if 

resin r is selected for chromatography step s. 

 

Another auxiliary variable 𝑍𝑀̅̅̅̅̅
𝑠𝑛 ≡ 𝑍𝑛 ⋅ 𝑀𝑠 , is introduced for the calculation of annual product 

output, 𝐴𝑃, with the following auxiliary constraints: 

𝑍𝑀̅̅̅̅̅
𝑠𝑛 ≤ 𝑡𝑖𝑡𝑟𝑒 ⋅ 𝛼 ⋅ 𝑚𝑎𝑥𝑏𝑟𝑣 ⋅ 𝑍𝑛,   ∀𝑠 = 𝑏𝑓, 𝑛 = 1, … , 𝑞   (4) 

𝑍𝑀̅̅̅̅̅
𝑠𝑛 ≤ 𝑀𝑠,   ∀𝑠 = 𝑏𝑓, 𝑛 = 1, … , 𝑞    (5) 

𝑍𝑀̅̅̅̅̅
𝑠𝑛 ≥ 𝑀𝑠 − 𝑡𝑖𝑡𝑟𝑒 ⋅ 𝛼 ⋅ 𝑚𝑎𝑥𝑏𝑟𝑣 ⋅ (1 − 𝑍𝑛),   ∀𝑠 = 𝑏𝑓, 𝑛 = 1, … , 𝑞   (6) 

where 𝑍𝑛 is a binary variable to indicate whether if the nth digit of the binary representation of 

variable 𝐵𝑁 is equal to 1. 

 

Different from the literature models
17-20

, the annual product output is required to meet the annual 

demand in this work, to avoid unreasonably large bioreactor size. In this case, more bioreactors 

may result in more batches with smaller batch size, i.e. smaller bioreactor volume. 

𝐴𝑃 = 𝑑𝑒𝑚       (7) 

 

3.1.2.  Product Volume 

For each batch, the initial product volume from the USP, 𝑃𝑉0, is equal to the working volume of 

the bioreactor. 

𝑃𝑉0 = 𝛼 ⋅ 𝐵𝑅𝑉      (8) 

 

3.1.3. Purity 

The purity of the mAb product after the purification processes should meet certain requirements. 

HCPs, which are produced or encoded by the organisms and unrelated to the intended mAb product, 

are considered as the critical impurities in the considered processes. In the USP, the initial level of 

the HCPs, 𝑖𝑛𝑖ℎ𝑐𝑝 (in ng of HCP per mg of mAb product), is known. In the DSP, the ability to 

remove HCPs by each resin is measured in terms of log reduction value (LRV), 𝑙𝑟𝑣𝑠𝑟. The selected 

purification process should be able to reduce the HCP level below a target value, 𝑡𝑎𝑟ℎ𝑐𝑝, in order 

to meet the purity requirement of the final product.  
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𝑖𝑛𝑖ℎ𝑐𝑝

10
∑ ∑ 𝑙𝑟𝑣𝑠𝑟⋅𝑈𝑠𝑟𝑟∈𝑅𝑠𝑠∈𝐶𝑆

≤ 𝑡𝑎𝑟ℎ𝑐𝑝      (9) 

which is equivalent to the following linear constraint by applying the logarithm operation: 

lg 𝑖𝑛𝑖ℎ𝑐𝑝 − ∑ ∑ 𝑙𝑟𝑣𝑠𝑟 ⋅ 𝑈𝑠𝑟𝑟∈𝑅𝑠𝑠∈𝐶𝑆 ≤ lg 𝑡𝑎𝑟ℎ𝑐𝑝    (10) 

 

3.1.4. Costs 

The media cost is determined by the media overfill allowance, 𝜃 , the media price, 𝑚𝑒𝑝𝑐 , the 

bioreactor working volume, 𝛼 ⋅ 𝐵𝑅𝑉, and the number of batches, 𝐵𝑁: 

𝑀𝐸𝐶 = 𝜃 ⋅ 𝑚𝑒𝑝𝑐 ⋅ 𝛼 ⋅ 𝐵𝑅𝑉 ⋅ 𝐵𝑁     (11) 

which is  linearised by introducing 𝑍𝐵𝑅𝑉̅̅ ̅̅ ̅̅ ̅̅
𝑛 ≡ 𝑍𝑛 ⋅ 𝐵𝑅𝑉 and the following constraints: 

𝑍𝐵𝑅𝑉̅̅ ̅̅ ̅̅ ̅̅
𝑛 ≤ 𝑚𝑎𝑥𝑏𝑟𝑣 ⋅ 𝑍𝑛,   ∀𝑛 = 1, … , 𝑞    (12) 

𝑍𝐵𝑅𝑉̅̅ ̅̅ ̅̅ ̅̅
𝑛 ≤ 𝐵𝑅𝑉,   ∀𝑛 = 1, … , 𝑞    (13) 

𝑍𝐵𝑅𝑉̅̅ ̅̅ ̅̅ ̅̅
𝑛 ≥ 𝐵𝑅𝑉 − 𝑚𝑎𝑥𝑏𝑟𝑣 ⋅ (1 − 𝑍𝑛),   ∀𝑛 = 1, … , 𝑞     (14) 

 

Thus, we rewrite Eq. (11) as follows: 

𝑀𝐸𝐶 = 𝜃 ⋅ 𝑚𝑒𝑝𝑐 ⋅ 𝛼 ⋅ ∑ 2𝑛−1 ⋅ 𝑍𝐵𝑅𝑉̅̅ ̅̅ ̅̅ ̅̅
𝑛

𝑞
𝑛=1     (15) 

 

The utilities cost, 𝑈𝐶, is assumed to have three parts, which are proportional to the total bioreactor 

volume, 𝑏𝑟𝑛 ⋅ 𝐵𝑅𝑉, number of completed batches by single bioreactor volume, 𝐵𝑅𝑉 ⋅ 𝐵𝑁, and 

annual buffer volume, 𝐴𝐵𝑉, respectively.  

𝑈𝐶 = 𝑎 ⋅ 𝑏𝑟𝑛 ⋅ 𝐵𝑅𝑉 + 𝑏 ⋅ 𝐵𝑅𝑉 ⋅ 𝐵𝑁 + 𝑐 ⋅ 𝐴𝐵𝑉    (16) 

where a, b, c are coefficient to calculate the utilities cost. Given Eqs. (12)-(14), the bilinear term 

𝐵𝑅𝑉 ⋅ 𝐵𝑁 can be linearised, and Eq. (16) can be replaced by: 

𝑈𝐶 = 𝑎 ⋅ 𝑏𝑟𝑛 ⋅ 𝐵𝑅𝑉 + 𝑏 ⋅ ∑ 2𝑛−1 ⋅ 𝑍𝐵𝑅𝑉̅̅ ̅̅ ̅̅ ̅̅
𝑛

𝑞
𝑛=1 + 𝑐 ⋅ 𝐴𝐵𝑉    (17) 

 

The fixed capital investment consists of the capital investment for bioreactors, chromatography 

columns, as well as other equipment in DSP, whose cost is assumed to be proportional to the 

bioreactor cost. Here, Lang factor, 𝑙𝑎𝑛𝑔, is used to approximate the fixed capital investment
31

. In 

addition, the general equipment factor, gef, is used to take into account the costs of support 

equipment, spares, utilities equipment and vessels.  

𝐹𝐶𝐼 = 𝑙𝑎𝑛𝑔 ⋅ (1 + 𝑔𝑒𝑓) ⋅ (𝑏𝑟𝑛 ⋅ 𝐵𝑅𝐶 + ∑ ∑ 𝑐𝑐𝑠𝑖 ⋅ 𝐶𝑁𝑠𝑖𝑖𝑠∈𝐶𝑆 + 𝑜𝑒𝜆 ⋅ 𝑏𝑟𝑛 ⋅ 𝐵𝑅𝐶)   (18) 
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where 𝑐𝑐𝑠𝑖 = 𝑟𝑒𝑓𝑐𝑐 ⋅ (
𝑑𝑚𝑠𝑖

𝑟𝑒𝑓𝑑𝑚
)

𝑐𝑓

, in which 𝑟𝑒𝑓𝑐𝑐 is the cost of a chromatography column with a 

reference diameter of 𝑟𝑒𝑓𝑑𝑚, and  𝑐𝑓 is the scale-up factor for chromatography column cost. Also, 

gef refers to the general equipment factor taking into account the costs of support equipment, 

spares, utilities equipment and vessels. 

 

In addition, variable 𝐵𝑅𝐶 in Eq. (18) is the cost of one bioreactor, which is dependent on the 

bioreactor volume. Here, we use piecewise linearisation approximation to calculate 𝐵𝑅𝐶. Given a 

number of discrete bioreactor volumes, 𝑑𝑏𝑟𝑣𝑚, their corresponding bioreactor costs are given by 

𝑑𝑏𝑟𝑐𝑚 = 𝑟𝑒𝑓𝑏𝑟𝑐 ⋅ (
𝑑𝑏𝑟𝑣𝑚

𝑟𝑒𝑓𝑏𝑟𝑣
)

𝑏𝑟𝑓

, where 𝑟𝑒𝑓𝑏𝑟𝑣 is the reference volume of one bioreactor; 𝑟𝑒𝑓𝑏𝑟𝑐 

is the cost of one bioreactor with a volume of 𝑟𝑒𝑓𝑏𝑟𝑣; and 𝑏𝑟𝑓 is the scale-up factor for bioreactor. 

Thus, by introducing a SOS2 variable, Λ𝑚, we have: 

𝐵𝑅𝐶 = ∑ 𝑑𝑏𝑟𝑐𝑚 ⋅ Λ𝑚𝑚        (19) 

𝐵𝑅𝑉 = ∑ 𝑑𝑏𝑟𝑣𝑚 ⋅ Λ𝑚𝑚       (20) 

∑ Λ𝑚𝑚 = 1       (21) 

 

The general utilities cost, 𝐺𝑈𝐶, included in the other indirect costs, depends on the total bioreactor 

volume, i.e., the product of the number of bioreactors and the bioreactor volume. 

𝐺𝑈𝐶 = 𝑔𝑢 ⋅ 𝑏𝑟𝑛 ⋅ 𝐵𝑅𝑉      (22) 

 

3.1.5. Objective Function 

The objective of this optimisation problem is to minimise the total COG, including both direct and 

indirect costs (as defined in Eq. (S.84) in the Supporting Information). 

𝑂𝐵𝐽 = 𝐶𝑂𝐺      (23) 

 

Overall, the optimisation problem is formulated as a deterministic MILP model (denoted as DM) 

with Eqs. (1)-(8), (10), (12)-(15), (17)-(22), as well as Eqs. (S.1)-(S.7), (S.9), (S.10), (S.13), (S.17)-

(S.28), (S.30)-(S.69), (S.71)-(S.75), (S.77), (S.79)-(S.81), (S.83) and (S.84) in the Supporting 

Information, as constraints, and Eq. (23) as the objective function.   

 

3.2. Stochastic Formulation  



10 
 

Based on the above deterministic formulation, the uncertain upstream titre and chromatography 

resin yields, which follow a triangular probability distribution, were taken into account for the 

stochastic formulation. The classic CCP approach was used to tackle these uncertainties. In the 

CCP approach, the decision maker firstly expresses a risk tolerance, i.e., a permissible probability 

of violation in the constraints involving uncertain parameters. Expressed by the inverse cumulative 

distribution function, the developed chance constraints are transformed into their deterministic 

equivalent formulations. The details of the new chance constraints under uncertainty in the CCP 

approach are presented in this section.  

 

3.2.1. Chance constraints under uncertain titre 

To develop a chance constraint for the uncertain parameter, titre, the constraint Eq. (1) in the 

previous section, should be firstly converted into an inequality as shown in Eq. (24), as 𝑀0  is 

maximised to satisfy the demand.  

𝑀0 ≤ 𝑡𝑖𝑡𝑟𝑒 ⋅ 𝛼 ⋅ 𝐵𝑅𝑉       (24) 

 

The corresponding chance constraint of Eq. (24) is formulated as follows: 

Pr(𝑀0 ≤ 𝑡𝑖𝑡𝑟𝑒 ⋅ 𝛼 ⋅ 𝐵𝑅𝑉) ≥ 𝐴𝑡      (25) 

where 𝐴𝑡 is a minimum prespecified probability that Eq. (24) will hold true, greater than 50%. 

 

The above Eq. (25) can be written as follows: 

Pr (𝑡𝑖𝑡𝑟𝑒 ≥
𝑀0

𝛼⋅𝐵𝑅𝑉
) ≥ 𝐴𝑡       (26) 

which is equivalent to 

1 − Pr (𝑡𝑖𝑡𝑟𝑒 ≤
𝑀0

𝛼⋅𝐵𝑅𝑉
) ≥ 𝐴𝑡       (27) 

 

Here, it is assumed that the upstream titre follows a triangular probability distribution, 

Tr(𝑡𝑖𝑡𝑟𝑒𝑙𝑜 , 𝑡𝑖𝑡𝑟𝑒𝑚𝑜 , 𝑡𝑖𝑡𝑟𝑒𝑢𝑝) , where 𝑡𝑖𝑡𝑟𝑒𝑙𝑜  and 𝑡𝑖𝑡𝑟𝑒𝑢𝑝  are lower and upper bounds of the 

fermentation titre, and 𝑡𝑖𝑡𝑟𝑒𝑚𝑜  is the mode. Its cumulative distribution function is denoted as 

Φ(𝑥). Thus, we rewrite Eq. (27) as: 

Φ (
𝑀0

𝛼⋅𝐵𝑅𝑉
) ≤ 1 − 𝐴𝑡      (28) 

Thus, the deterministic equivalent formulation of Eq. (24) is as follows: 
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𝑀0 ≤ Φ−1(1 − 𝐴𝑡) ⋅ 𝛼 ⋅ 𝐵𝑅𝑉      (29) 

 

For a special case of the isosceles triangular distribution that 𝑡𝑖𝑡𝑟𝑒𝑢𝑝 − 𝑡𝑖𝑡𝑟𝑒𝑚𝑜 = 𝑡𝑖𝑡𝑟𝑒𝑚𝑜 −

𝑡𝑖𝑡𝑟𝑒𝑙𝑜 = ∆𝑡𝑖𝑡𝑟𝑒, when 𝐴𝑡 > 50%, we have: 

Φ−1(1 − 𝐴𝑡) = 𝑡𝑖𝑡𝑟𝑒𝑙𝑜 + √2(1 − 𝐴𝑡) ⋅ ∆𝑡𝑖𝑡𝑟𝑒   (30) 

 

3.2.2. Chance constraints under uncertain yields 

It is assumed that the realisation of uncertain chromatography yield for each resin depends on the 

chromatography step it is selected for. To model the uncertainty of chromatography yield, we 

introduce an uncertain parameter, 𝑐𝑦𝑑𝑠 , to denote the deviation of the selected resin from its 

standard value at chromatography step s. Thus, we can rewrite the constraint involving the resin 

yield, (Eq. S.10 in Supporting Information), as follows: 

𝑀𝑠 = ∑ 𝑐𝑦𝑠𝑟𝑟∈𝑅𝑠
⋅ 𝑈𝑀̅̅ ̅̅

�̅�−1,𝑟 ⋅ 𝑐𝑦𝑑𝑠,   ∀𝑠 ∈ 𝐶𝑆     (31) 

 

Similarly, the above constraint is converted into inequality, and its corresponding chance constraint 

can be formulated as: 

Pr(𝑀𝑠 ≤ ∑ 𝑐𝑦𝑠𝑟𝑟∈𝑅𝑠
⋅ 𝑈𝑀̅̅ ̅̅

�̅�−1,𝑟 ⋅ 𝑐𝑦𝑑𝑠) ≥ 𝐴𝑠
𝑦

,   ∀𝑠 ∈ 𝐶𝑆    (32) 

 

It is assumed that 𝑐𝑦𝑣𝑠  follows a triangular distribution Tr(𝑐𝑦𝑑𝑠
𝑙𝑜 , 𝑐𝑦𝑑𝑠

𝑚𝑜 , 𝑐𝑦𝑑𝑠
𝑢𝑝), in which the 

mode 𝑐𝑦𝑑𝑠
𝑚𝑜 = 100%, 𝑐𝑦𝑑𝑠

𝑙𝑜  and 𝑐𝑦𝑑𝑠
𝑢𝑝

 are lower and upper bounds of the yield deviation at 

chromatography step s, and its cumulative distribution function is denoted as Φ̅𝑠(𝑥). Thus, Eq. (32) 

can be reformulated as: 

Φ̅𝑠 (
𝑀𝑠

∑ 𝑐𝑦𝑠𝑟𝑟∈𝑅𝑠 ⋅𝑈𝑀̅̅ ̅̅ ̅𝑠−1,𝑟
) ≤ 1 − 𝐴𝑠

𝑦
,   ∀𝑠 ∈ 𝐶𝑆     (33) 

 

Using the inverse cumulative distribution function expression, we have: 

𝑀𝑠 ≤ Φ̅𝑠
−1(1 − 𝐴𝑠

𝑦
) ⋅ ∑ 𝑐𝑦𝑠𝑟𝑟∈𝑅𝑠

⋅ 𝑈𝑀̅̅ ̅̅ ̅
𝑠−1,𝑟 ,    ∀𝑠 ∈ 𝐶𝑆   (34) 

 

In particular, if 𝑐𝑦𝑣𝑠 follows an isosceles triangular distribution that 𝑐𝑦𝑑𝑠
𝑢𝑝 − 𝑐𝑦𝑑𝑠

𝑚𝑜 = 𝑐𝑦𝑑𝑠
𝑚𝑜 −

𝑐𝑦𝑑𝑠
𝑙𝑜 = ∆𝑐𝑦𝑑𝑠, when 𝐴𝑠

𝑦
> 50%, we have:   
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Φ̅𝑠
−1(1 − 𝐴𝑠

𝑦
) = 𝑐𝑦𝑑𝑠

𝑙𝑜 + √2(1 − 𝐴𝑠
𝑦

) ⋅ ∆𝑐𝑦𝑑𝑠,   ∀𝑠 ∈ 𝐶𝑆   (35) 

 

In summary, the deterministic equivalent formulation is an MILP model (denoted as SM) with Eqs. 

(2)-(8), (10), (12)-(15), (17)-(22), (29), (34), as well as Eqs. (S.1)-(S.7), (S.9), (S.13), (S.17)-(S.28), 

(S.30)-(S.69), (S.71)-(S.75), (S.77), (S.79)-(S.81), (S.83) and (S.84) in the Supporting Information, 

as constraints, and Eq. (23) as the objective function.   

 

4. An Illustrative Example 

In this section, an industrially-relevant example is presented, based on a biopharmaceutical 

company using a platform process for mAb purification. The considered mAb product has an 

annual demand of 500 kg. There are 11 candidate commercial resins from five chromatography 

types, including affinity chromatography (AFF), cation-exchange chromatography (CEX), anion-

exchange chromatography (AEX), mixed-mode chromatography (MM) and hydrophobic 

interaction chromatography (HIC). The characteristics of the resin candidates are shown in Table 1. 

Here, each resin/resin type candidate can be suitable for more than one chromatography step, and 

its yield, as well as the HCP reduction capability, varies with the chromatography step where it is 

used. The resin utilisation factor is 0.95, and the resin overpacking factor is 1.1. 

 

Table 1. Characteristics of the candidate resins  

Resin Type Mode 

Binding 

capacity 

(g/L) 

Eluate 

volume 

(CV) 

Buffer 

volume 

(CV) 

Linear 

velocity 

(cm/h) 

Matrix 

lifetime 

(cycle) 

Matrix 

price 

(£/L) 

Standard yield HCP LRV 

Cap. Int. Pol. Cap. Int. Pol. 

R1 AFF BE 50 2.3 37 150 100 9200 91% 95% - 3 1.5 - 

R2 AFF BE 30 2.3 37 300 100 6400 91% 95% - 3 1.5 - 

R3 AFF BE 50 2.3 37 800 100 9900 91% 95% - 3 1.5 - 

R4 AFF BE 30 2.3 37 1000 100 9000 91% 95% - 3 1.5 - 

R5 CEX BE 120 1.4 26 500 100 2500 86% - - 2 - - 

R6 CEX BE 40 1.4 26 300 100 400 86% 92% 92% 2 1 0.5 

R7 AEX FT 100 0 10 300 100 700 - 95% 95% - 0.5 0.3 

R8 MM FT 150 0 10 375 100 3500 - 90% 90% - 1.2 0.6 

R9 MM BE 50 1.4 26 100 100 1900 - 90% 90% - 1.5 0.8 

R10 MM BE 35 1.4 26 250 12 2700 - 90% 90% - 2 1 

R11 HIC BE 27.5 1.4 26 175 100 2500 - 89% 89% - 2 0.5 
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As to the chromatography column sizing decisions, there are 11 discrete potential bed heights and 

10 discrete potential diameters (as given in Table 2), and therefore one column has 110 potential 

volumes. The number of cycles per batch can be up to 10, while at most 4 parallel columns are 

permitted at each chromatography step.  

 

Table 2. Candidate values of the chromatography column sizing strategies  

Decision Candidate values 

Bed height (cm) 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 

Diameter (cm) 50, 60, 70, 80, 90, 100, 120, 160, 180, 200 

Number of cycles 1, 2, 3, 4, 5 , 6, 7, 8, 9, 10  

Number of columns 1, 2, 3, 4 

 

To calculate the fixed capital investment for the bioreactors and chromatography columns, the 

reference equipment sizes, costs, and scale-up factors in Table 3 are used. To approximate the 

bioreactor cost, the bioreactor volumes and costs at given discrete points in the piecewise linear 

function are presented in Table 4.  

 

Table 3. Reference volumes, costs and scale-up factors  

 Reference volume Reference cost (£) Scale-up factor 

Bioreactor Volume = 2000 L 612,000 0.6 

Chromatography column Diameter = 100 cm 170,000 0.8 

 

 

Table 4. Discrete bioreactor volumes and costs for piecewise linear approximation  

m Bioreactor volume, brvm (L) Bioreactor cost, brcm (£) 

1 2,000 612,000 

2 10,000 1,607,500 

3 20,000 2,436,500 

4 50,000 4,222,000 

 

The equipment lifetime, 𝑒𝑙, is 10 years, and the interest rate, 𝑟, is 10%. Here, several cases of 

multiple USP trains feeding one DSP train are investigated, considering four scenarios: 

1USP:1DSP, 2USP:1DSP, 4USP:1DSP and 6USP:1DSP, i.e. 𝑏𝑟𝑛 =1, 2, 4 and 6, respectively. As 

to the HCP levels, the initial value at USP is 100,000 ng/mg, and the target value after DSP is set to 

100 ng/mg. More data of case study are given in the Supporting Information (Tables S1 and S2). 
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The lower and upper bounds of fermentation titre are 2 and 4 g/L, respectively, i.e., the uncertain 

parameter, titre, follows the triangular distribution Tr(2, 3, 4). Also, at each chromatography step, 

the chromatography resin yield can be at most 5% higher or lower than its standard value, which 

means that the yield deviation, 𝑐𝑦𝑑𝑠,  follows the distribution, Tr(95%, 100%, 105%) . The 

unsatisfied demand penalty, γ, is set to £1000/g. 

 

5. Results and Discussion 

The proposed MILP models are implemented in GAMS 24.4
32

 on a 64-bit Windows 7 based 

machine with 3.20 GHz six-core Intel Xeon processor W3670 and 12.0 GB RAM, using CPLEX as 

MILP solver. The optimality gap is set to 1%.  

 

5.1. Optimisation and Monte Carlo Simulation 

In this section, we solve the optimisation models SM and DM, and conduct stochastic analysis to 

examine the impact of variability on their solutions by implementing Monte Carlo (MC) 

simulation
33

.  

 

5.1.1. Optimal Solutions 

To solve model SM, the confidence level of chance constraint feasibility in model SM was set to 

90%, i.e., 𝐴𝑡 = 𝐴𝑠
𝑦

= 90%. Under the given 90% confidence level, Φ−1(1 − 𝐴𝑡) in Eq. (29) is 

approximately equal to 2.45, and Φ̅𝑠
−1(1 − 𝐴𝑠

𝑦
) in Eq. (34) is approximately equal to 97.24%, 

according to Eqs. (30) and (35), respectively.  

 

The model statistics and computational performance of model SM in all four scenarios are 

presented in Table 5. Similar to the findings in our previous work
17-20

, the optimal COG increases 

with the number of bioreactors. The computational time spent for solving the problems varies from 

339 to 1613 seconds (s). 

 

 

 

 



15 
 

Table 5. Computational performance of model SM in all scenarios 

 1USP:1DSP 2USP:1DSP 4USP:1DSP 6USP:1DSP 

No of equations 26,940 27,612 28,284 28,284 

No of continuous variables 11,172 11,396 11,620 11,620 

No of discrete variables 28.661 28,662 28,663 28,663 

COG (million £, m£) 43.0 49.1 57.7 66.2 

CPU (s) 339 423 1613 1287 

 

The optimal solutions obtained by model SM are compared with those of model DM, in which the 

mean values of uncertain parameters are used. The key decisions obtained by models SM and DM 

are given in Fig. 2. As the number of cycles per batch are related to the process operation and can 

be determined after the realisation of uncertain parameters, here we focus on the decisions related 

the process design which should be implemented in advance, including bioreactor volume, 

chromatography sequence, and diameter, bed height and number of chromatography columns. In 

each scenario, the gridded cylinder represents the bioreactor. The area of each gridded cylinder is 

proportional to the bioreactor volume, and the number in the gridded cylinder is the single 

bioreactor volume (in L) in the optimal solution. The filled cylinders represent the chromatography 

columns. Here, the number of the filled cylinders represents the number of columns at each 

chromatography step, while its width and height are proportional to the column diameter and bed 

height, respectively. The number in the top area is the column diameter (in cm), and that at the side 

is the column bed height (in cm). Comparing the optimal solutions of both models, to deal with the 

variability of the upstream titre and chromatography resin yields, model SM selects 30% larger 

bioreactor volumes in all scenarios. In the DSP, both models select only one column at each step in 

all scenarios. As to the chromatography sequence, CEX (R5), AEX (R7) and MM (R8) are selected 

in all scenarios, in which CEX (R5) is selected at the capture step in all scenarios by both models. 

The difference among the selected sequences comes from the switch between AEX (R7) and MM 

(R8) at the last two chromatography steps. In scenarios 2USP:1DSP and 6USP:1DSP, models SM 

and DM choose different sequences.  
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Fig. 2. Optimal solutions by models a) SM and b) DM in all scenarios (initial HCP level = 100,000 ng/mg)  

 

5.1.2. MC Simulation  

MC simulation analysis was implemented on the solutions obtained by both models SM and DM. 

After obtaining the optimal solutions of optimisation models DM and SM, an MC simulation 

analysis was conducted by solving a deterministic optimisation model with fixed design variables, 

including variables for bioreactor volume, 𝐵𝑅𝑉, chromatography sequence, 𝑈𝑠𝑟, column volume, 

𝑋𝑠𝑖, and number of columns, 𝐶𝑁𝑠𝑖, while all other operational variables are free to be re-optimised, 

with different realisations of uncertain parameters, 𝑡𝑖𝑡𝑟𝑒 and 𝑐𝑦𝑑𝑠. The performance measures in 

the MC analysis are the average values of COGs and unsatisfied demands obtained in all 
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simulation runs, which mimics the expected value of COG and unsatisfied demand. The procedure 

of MC simulation (as illustrated in Fig. 3) is described as follows: 

1. Solve the proposed MILP model (DM or SM) to minimise COG, and then fix the obtained 

bioreactor volume, chromatography sequence, column volume and the number of columns; 

2. Generate the realisations of uncertain titre and yields, both following triangular probability 

distributions; 

3. Solve the modified MILP model (denoted as DM-USD), which considers unsatisfied demand 

by replacing Eqs. (7) and (23) in model DM by the following Eqs. (36) and (37), respectively:  

𝑈𝑆𝐷 ≥ 𝑑𝑒𝑚 − 𝐴𝑃      (36) 

𝑂𝐵𝐽 = 𝐴𝐶 + 𝛾 ∙ 𝑈𝑆𝐷     (37) 

where the unsatisfied demand, 𝑈𝑆𝐷, is formulated and penalised in the objective function to be 

included in the annual cost, and 𝛾 is the unit penalty cost for unsatisfied demand. 

4. Repeat the above two steps for maxiter times. In this problem, after 200 simulation runs, the 

average objective of all runs has converged to a stable status. Thus, maxiter  is set to 200 here. 

 

Fig. 3. Procedure of MC simulation  

 

Fig. 4 shows the optimal COG by model SM is slightly higher than the average COG obtained in 

the MC simulation, because the chance constraints in model SM slightly overestimate the 

realisation of uncertain parameters. In contrast, the average COG values of the MC simulation 

become much higher than the optimal solutions by model DM, mainly due to the high penalty cost 

of unsatisfied demand. Comparing to model DM, the solutions of model SM obtain smaller average 
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COG values in the MC simulation, with 30-40% difference, and smaller variance, even though 

model SM generates much higher costs in the optimisation. Thus, model SM is much more robust 

than model DM, facing the uncertainties in titre and yields. 

 

 

Fig. 4. COG of the optimisation and MC simulation of models SM and DM in all scenarios. 

 

Focusing on the two extreme scenarios 1USP:1DSP and 6USP:1DSP, the comparison of 

unsatisfied demand in the MC simulation results between the solutions of models DM and SM are 

presented in Fig. 5. The MC simulation of model SM in scenario 1USP:1DSP achieves an annual 

unsatisfied demand of 1.5 kg, while model DM loses over 33.0 kg demand, nearly 7% of the 

annual demand, which is one order of magnitude higher than model SM. In scenario 6USP:1DSP, 

the average unsatisfied demand of MC simulation for model SM is 1.8 kg, which is also one order 

of magnitude lower than that of model DM, 33.0 kg. Thus, it can be observed that the optimal USP 

and DSP designs of model DM cannot cope with the uncertainties very well, and lose more sales 

than the optimal design of model SM, which leads to much higher penalty cost and COG. 
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Meanwhile, the designs of model SM have much better performance and only lose less than 0.5% 

of the annual demand. 

 

Fig. 5. Unsatisfied demand of the MC simulation on the optimal solutions of models SM and DM in scenarios 

1USP:1DSP and 6USP:1DSP 

 

In the MC simulation, the number of cycles per batch is optimised in each run, with fixed design 

variables and given random generations of titre and yields. Thus, we examine its value in the MC 

simulation, as shown in Fig. 6. In scenario 1USP:1DSP, for the solutions of model SM, the latter 

chromatography step requires more cycles, while for model DM, an average of 4-5 cycles are 

needed for each step. In scenario 6USP:1DSP, 1 or 2 cycles are enough at each step for all the MC 

simulation runs, while the solutions of SM require more cycles than those of model DM. 

 

 

Fig. 6. Number of cycles per batch of the MC simulation on the optimal solutions of models SM and DM in scenarios 

1USP:1DSP and 6USP:1DSP 
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The number of batches is also significantly affected by the uncertainties of titre and yield. When 

both titre and yield are higher, fewer batches are required to satisfy the annual demand, while if 

both titre and yield become lower, more batches need to complete with unsatisfied demand 

occurred. The mean and variability of number of batches in the MC simulation are presented in Fig. 

6. In both scenarios, the solution of model SM requires fewer average batches, 16.4 vs 19.2 in 

scenario 1USP:1DSP and 78.4 vs 96.4 in scenario 6USP:1DSP. In scenario 1USP:1DSP, the 

average number of batches of model DM is very close to the maximum value, which is 20, while 

the solution of SM requires fewer batches to satisfy all demands due to the larger bioreactor 

volumes. In scenario 6USP:1DSP, a maximum of 120 batches are available. However, because of 

the higher DSP time than the tight DSP window in scenario 6USP:1DSP, nearly 100 batches are 

finished by model DM, while model SM meets most of the demand using only about 80 batches in 

average. Note that the variability of the solution of model DM is much less than that of model SM. 

The reason is that the solution of model DM is driven to meet the demand by completing all 

possible batches in many MC simulation runs, and has less flexibility to change the completed 

number of batches. Meanwhile, the number of batches required by the solution of model SM is 

affected more significantly by the realised values of uncertain parameters.  

 

Fig. 7. Number of batches of the MC simulation on the optimal solutions of models SM and DM in scenarios 

1USP:1DSP and 6USP:1DSP 
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Overall, the developed CCP based model SM is able to cope with the uncertainties of the 

parameters, upstream titre and downstream resin yields in this problem, achieving lower average 

COG and unsatisfied demand than model DM. 

 

5.1.3. Sensitivity Analysis of Confidence Levels  

The confidence levels used in the chance constraints indicate the probability of the obtained 

solutions being feasible, and have a significant impact on the optimal solutions of the CCP model. 

The example of 1USP:1DSP scenario was taken to investigate the effect of confidence level on the 

performance of the optimal solutions. Without loss of generality, assuming that all chance 

constraints use the same confidence level, we test five different confidence levels, i.e. 80%, 85%, 

90%, 95% and 99%. Table 6 shows the optimal solutions of model SM with the above five 

confidence levels. A higher confidence level, preferred by a risk-averse decision maker, allows the 

chance constraints to remain hold with higher probability. Thus, as shown in Table 6, in order to 

cope with lower titres, the optimal solution of model SM with higher confidence levels select larger 

bioreactor volumes, and incur higher COG and indirect costs. Note that the chromatography 

sequence is affected by the choice of confidence level. Higher conference levels (≥90%) result in 

different chromatography sequences from lower ones (<90%). 

 

Table 6. Optimal solutions of model SM in scenario 1USP:1DSP with different confidence levels 

 
Confidence level 

80% 85% 90% 95% 99% 

COG (m£) 39.8 41.2 43.0 45.6 49.7 

Indirect costs (k£) 15.8 16.1 16.7 17.5 18.8 

Bioreactor volume (L) 28,237 29,557 31,251 33,694 37,452 

Resin R5/R7/R8
a
 R5/R7/R8

a
 R5/R8/R7

a
 R5/R8/R7

a
 R5/R8/R7

a
 

Column diameter (cm) 160/50/50
a
 120/50/50

a
 100/60/60

a
 100/60/60

a
 100/50/50

a
 

Column bed height (cm) 24/24/15
a
 22/25/17

a
 16/15/18

a
 21/21/15

a
 16/19/20

a
 

No. of columns 1/1/1
a
 1/1/1

a
 1/1/1

a
 1/1/1

a
 1/1/1

a
 

    a 
Capture/intermediate purification/polishing step 

 

The MC simulation results with different confidence levels are shown in Fig. 8. As expected, the 

higher the confidence level is, the lower average unsatisfied demand achieved from MC simulation 

is. The average unsatisfied demand reduces from 5.5 kg to 0.05 kg, with increasing confidence 

levels from 80% to 99%. Meanwhile, comparing the average COG, a higher confidence level 
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requires larger bioreactors and indirect costs, while a lower confidence level incurs higher penalty 

cost due to higher unsatisfied demand. In addition, with increasing higher confidence level, the 

variance of COG in MC simulation decreases. It can be seen from Fig. 8 that the confidence level 

of 90% can achieve a balance between the indirect costs and unsatisfied demand penalty cost, 

obtaining the lowest average COG in MC simulation, and thus is recommended for this problem.  

 

 

Fig. 8. COG and unsatisfied demand of MC simulation on SM solutions in scenario 1USP:1DSP  

 

5.2. Scenario Analysis 

In this section, two specific scenarios are investigated to further discuss the proposed model SM. 

Firstly, the model is compared to an approach with a rule-based pre-determined bioreactor volume 

and an optimisation model with only DSP optimisation, to demonstrate the benefit of integrated 

optimisation of both USP and DSP design. Secondly, the effect of initial HCP level is studied by 

examining a higher initial HCP level. 

 

5.2.1. Pre-determined Bioreactor Volume 

One of the novelties of this work is the integrated optimisation of both USP and DSP design, 

including the bioreactor size at the USP and chromatography decisions at the DSP, which is 

missing in our previous work
17-20

. In this section, we investigate the advantage of the simultaneous 
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integrated optimisation. Firstly, we introduce a rule-based method to estimate the single bioreactor 

volume
12,17,18

, using the formulation as follows:  

𝐵𝑅𝑉 =
𝑑𝑒𝑚

𝛼⋅𝑡𝑖𝑡𝑟𝑒𝑚𝑜⋅𝑚𝑎𝑥𝑏𝑛⋅𝜎⋅∏ min𝑟 𝑐𝑦𝑠𝑟𝑠∈𝐶𝑆 ⋅∏ 𝑛𝑐𝑦𝑠𝑠∉𝐶𝑆
    (38) 

where 𝑑𝑒𝑚 is the annual demand; 𝛼 is the bioreactor working volume ratio; 𝑡𝑖𝑡𝑟𝑒𝑚𝑜 is the mode of 

the titre triangular distribution, which is also its mean value for the case study; 𝑚𝑎𝑥𝑏𝑛 is the 

maximum number of batches allowed; 𝜎 is the batch success rate; 𝑐𝑦𝑠𝑟is the standard value of the 

yield of resin r at chromatography step 𝑠 ∈ 𝐶𝑆, while 𝑛𝑐𝑦𝑠 is the yield of non-chromatography step 

𝑠 ∉ 𝐶𝑆 . Thus, the multiplication of the two product function is an estimation of the overall 

manufacturing yield. The above pre-determined bioreactor volume and its optimal value by model 

SM for our case study are given in Table 7. The estimated bioreactor volume is 20% less than the 

optimal volume in the first three scenarios, while in the last scenario 6USP:1DSP, it is over 30% 

less. 

 

Table 7. Pre-determined and optimal value of single bioreactor volume (L) in all scenarios 

 1USP:1DSP 2USP:1DSP 4USP:1DSP 6USP:1DSP 

Pre-determined bioreactor 

volume by Eq. (38) 
25,016 12,508 6254 4169 

Optimal bioreactor volume by 

model SM 
31,251 15,625 7813 6188 

 

Then, the proposed integrated optimisation (model SM) is compared with the DSP optimisation, in 

which the DSP chromatography strategies are optimised by model SM with variable BRV fixed to 

the pre-determined value obtained by Eq. (38). In order to allow the unsatisfied demand with the 

fixed bioreactor volume, Eqs. (36) and (37) are used to replace Eqs. (7) and (23) in model SM. 

Here, we still take the two extreme scenarios, 1USP:1DSP and 6USP:1DSP, as examples to 

compare the optimal solutions of model SM for DSP optimisation and the integrated optimisation 

of both USP and DSP. The optimal chromatography decisions obtained by DSP optimisation are 

given in Fig. 9. It can be observed that compared with the optimal solution of integrated 

optimisation as decision values in Fig. 2a, different chromatography sequences are selected in both 

scenarios, resulting in different column diameters and bed height as well.  
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Fig. 9. Optimal solution by model SM with pre-determined bioreactor volume in scenarios 1USP:1DSP and 

6USP:1DSP 

 

The MC simulation is conducted on the solutions of both the integrated optimisation and DSP 

optimisation with bioreactor volume pre-determined, as descried in section 5.1.2. The comparison 

on the running average COG and unsatisfied demand obtained in the MC simulation is shown in 

Fig. 10. In scenario 1USP:1DSP, the average unsatisfied demand (9.1 kg) of MC simulation of the 

solution of DSP optimisation is much higher than that of integrated optimisation (1.5 kg), which 

increases the average COG by 17% from £40.2m to £47.1m. While in scenario 6USP:1DSP, the 

advantage of the integrated optimisation is much more significant, as the average unsatisfied 

demand of MC simulation of DSP optimisation is (30.7 kg) is one order of magnitude higher than 

that of the integrated optimisation (1.8 kg). As to the obtained average COG in MC simulation, 

DSP optimisation obtains an average COG of £93.4m, which is over 50% higher than that of the 

integrated optimisation (£61.5m).  
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Fig. 10. Convergence of the average COG and unsatisfied demand of MC simulation on the optimal solutions of 

USP/DSP integrated optimisation and DSP optimisation with bioreactor volume pre-determined by model SM in 

scenarios 1USP:1DSP and 6USP:1DSP 

 

The above comparison demonstrates a clear benefit of the integrated optimisation, which 

synchronises the demand, bioreactor volume and DSP time, and is able to find an optimal solution 

to meet the demand using larger bioreactor volume and fewer batches, while the rule-based method 

for bioreactor volume calculation (Eq. 38) underestimates the bioreactor volume and leads to much 

higher unsatisfied demand, especially when there are more bioreactors and tighter DSP window, 

such as the scenario 6USP:1DSP. Compared to the DSP optimisation with the pre-determined 

bioreactor volumes, the proposed integrated optimisation of both USP and DSP is able to achieve 

much lower unsatisfied demand and COG. Thus, it is important and necessary to consider the 

optimisation of USP bioreactor volumes simultaneously together with the DSP chromatography 

strategies.  

 

Note that if the worst case scenario is considered by replacing the mean by the lower bound of 

uncertain parameters either in the pre-calculation of bioreactor sizes or in the mode DM, the 

unsatisfied demand of both DSP optimisation and model DM in the MC simulation will become 

lower than that of model SM, but the overall COG is still higher than that of model SM. The 

conclusions on the benefits of model SM and the integrated optimisation are still valid. 
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5.2.2. Higher Initial HCP Level  

Lastly, we investigate the effect of the initial HCP level on the optimal solution of SM. We let the 

initial HCP level increase by 15 times to 1,500,000 ng/mg. The optimal solution obtained by model 

SM with this high initial HCP level is given in Fig. 11. Compared with Fig. 2a whose initial HCP 

level is 100,000 ng/mg, a different chromatography sequence is selected, which includes AFF (R3) 

for capture, CEX (R6) for intermediate purification, and AEX (R7) for polishing for all scenarios. 

R3 selected at the capture step is much more expensive than R5 selected with lower initial HCP 

level, and has a higher HCPs reduction ability with a HCP LRV of 3, higher than 2 for R5. 

Although, at the intermediate purification step, R6 is cheaper and has less HCP reduction ability 

than, R8, the total HCP LRV of the optimal sequence in Fig. 11 is 4.3, higher than the sequences in 

Fig. 2a (3.1 for the sequence of R5/R7/R8 or 3.5 for the sequence of R5/R8/R7). So it is clear that 

when the initial HCP level is increased, in order to enforce that the same target HCP level is met, 

the resins with higher HCP reduction abilities are selected, even though they may cost more. In 

addition, as the selected resins in Fig. 11 have higher yields than those in Fig. 2a, which leads to 

less protein loss during processes, the optimal single bioreactor volume becomes smaller for each 

scenario in Fig. 11, but the same annual demand is achieved.  

 

Fig. 11. Optimal solution by model SM in all scenarios (initial HCP level = 1,500,000 ng/mg) 

 

Due to the more expensive price of the selected resins in Fig. 11, especially the resin R3, the direct 

cost for the optimal process with high initial HCP level is higher than that with the low initial HCP 
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level. Meanwhile, as smaller bioreactor volumes are selected with the high initial HCP level in Fig. 

11, lower indirect cost is incurred as shown in Fig. 12. According to the above discussions, the 

initial HCP level has a significant impact on the optimal bioreactor sizing and chromatography 

sequencing decisions. 

 

 

Fig. 12. COG of the optimisation of model SM with low (100,000 ng/mg) and high (1,500,000 ng/mg) initial HCP 

levels, inihcp, in all scenarios. 

 

6. Concluding Remarks 

This paper addressed the integrated optimisation of the both upstream and downstream processing 

of mAb products, considering bioreactor sizing, chromatography sequencing and column sizing 

strategies, simultaneously. The purity requirement of the final product has been taken into account 

as well, to make sure that the final HCP level is below the target. Extended from our previous 

work
17-20

, a stochastic CCP model has been developed, based on a deterministic MILP model, to 

minimise the total COG considering the uncertainties of upstream titre and chromatography resin 

yield. An industrially-relevant example has been investigated for cases with different USP:DSP 
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configurations. The computational results have shown that the stochastic CCP model results in 

larger bioreactor volume and higher indirect cost, but is able to deal with the variability of 

uncertain parameters in a much better manner than the deterministic model, validated by MC 

simulation approach. Also, sensitivity analysis on the confidence level shows its effects on the 

expected cost and unsatisfied demand in the MC simulation. Through scenario analysis, the 

advantage of the integrated optimisation of both USP and DSP decisions is demonstrated through 

MC simulation, achieving lower average COG and unsatisfied demand, compared to the DSP 

optimisation with pre-determined bioreactor volume, which is underestimated by a rule-based 

estimation method. Finally, the initial HCP level is demonstrated to have significant impacts on the 

optimal bioreactor sizing and chromatography sequencing decisions. This work can be extended by  

modelling each batch separately to account for the random realisation of the uncertain parameters 

in each batch, while the proposed stochastic CCP model ignores the variations among batches in 

the real practice. 

 

Supporting Information  

More data of the case study and the literature model
19

 are provided in the Supporting Information. 
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Nomenclature 

Indices 

i  column size 

m  bioreactor volume 

n  digit of the binary representation 

r  resin 

s  downstream step 
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Sets 

CS  set of chromatography steps, = capture, intermediate purification, polishing 

𝑅𝑠  set of resins suitable to chromatography step s 

 

Parameters 
a, b, c  utilities cost coefficients 

𝐴𝑡     confidence level in chance constraint for initial mass 

𝐴𝑠
𝑦

  confidence level in chance constraint for mass after chromatography step s 

𝑏𝑟𝑓  scale-up factor of bioreactor cost 

𝑏𝑟𝑛  number of bioreactors 

𝑐𝑐𝑠𝑖  column cost of size i at chromatography step s, £ 

𝑐𝑓  scale-up factor of column cost 

𝑐𝑦𝑠𝑟  product yield of resin r at chromatography step s 

𝑐𝑦𝑑𝑠
𝑙𝑜  lower limit of triangular distribution of yield deviation at chromatography step s 

𝑐𝑦𝑑𝑠
𝑚𝑜  mode of triangular distribution of yield deviation at chromatography step s 

𝑐𝑦𝑑𝑠
𝑢𝑝

  upper limit of triangular distribution of yield deviation at chromatography step s 

𝑑𝑏𝑟𝑐𝑚  bioreactor cost at discrete point m, £ 

𝑑𝑏𝑟𝑣𝑚  bioreactor volume at discrete point m, L 

𝑑𝑒𝑚  annual demand, g 

𝑑𝑚𝑠𝑖  diameter of column size i at chromatography step s, L 

𝑔𝑒𝑓  general equipment factor 

𝑔𝑢  general utility unit cost, £/L 

𝑖𝑛𝑖ℎ𝑐𝑝  initial HCP level, ng/mg 

𝑙𝑎𝑛𝑔  Lang factor 

𝑙𝑟𝑣  HCP log reduction value 

𝑚𝑎𝑥𝑏𝑛 maximum number of batches 

𝑚𝑎𝑥𝑏𝑟𝑣 maximum bioreactor volume 

𝑚𝑒𝑝𝑐   media price, £/L 

𝑛𝑐𝑦𝑠  product yield of non-chromatography step s 

𝑜𝑒𝜆  other equipment cost ratio to the bioreactor cost 

𝑞  maximum digit number in the binary representation of number of batches,   

 ⌈log2 𝑚𝑎𝑥𝑏𝑛⌉ 
𝑟𝑒𝑓𝑏𝑟𝑐 reference cost of a bioreactor, £ 

𝑟𝑒𝑓𝑏𝑟𝑣 reference volume of a bioreactor, L 

𝑟𝑒𝑓𝑐𝑐  reference cost of a chromatography column, £ 

𝑟𝑒𝑓𝑑𝑚  reference diameter of a chromatography column, cm 

𝑡𝑎𝑟ℎ𝑐𝑝 target HCP level, ng/mg 

𝑡𝑖𝑡𝑟𝑒  upstream product titre, g/L 

𝑡𝑖𝑡𝑟𝑒𝑙𝑜  lower limit of triangular distribution of upstream product titre, g/L 

𝑡𝑖𝑡𝑟𝑒𝑚𝑜 mode of triangular distribution of upstream product titre, g/L 

𝑡𝑖𝑡𝑟𝑒𝑢𝑝 upper limit of triangular distribution of upstream product titre, g/L 

𝛼  bioreactor working volume ratio 

𝛾  penalty of unsatisfied demand, £/g 

𝜃  media overfill allowance 



30 
 

𝜎  batch success rate 

Φ  triangular cumulative distribution function of uncertain titre 

Φ̅𝑠  triangular cumulative distribution function of uncertain resin yield deviation 

 

Continuous Variables 

𝐴𝐵𝑉  annual buffer volume, L 

𝐴𝑃  annual product output, g 

𝐵𝑅𝐶  bioreactor cost, £ 

𝐵𝑅𝑉  single bioreactor volume, L 

𝐶𝑂𝐺  annual cost of goods, £ 

𝐹𝐶𝐼  fixed capital investment, £ 

𝐺𝑈𝐶  general utility cost, £ 

𝑀0  initial product mass entering downstream processes per batch, g 

𝑀𝑠  initial product mass per batch after step s, g 

𝑀𝐸𝐶  media cost, £ 

𝑂𝐵𝐽  objective 

𝑃𝑉0  initial product volume entering downstream processes per batch, L 

𝑈𝐶  utilities cost, £ 

𝑈𝑆𝐷  unsatisfied demand, g 

Λ𝑚  SOS2 variable for piecewise linearization of bioreactor cost  

 

Binary Variables 

𝑈𝑠𝑟  1 if resin r is selected at chromatography step s; 0 otherwise 

𝑋𝑠𝑖  1 if column size i is selected at chromatography step s; 0 otherwise 

𝑍𝑛   1 if the nth digit of the binary representation of variable 𝐵𝑁  is equal to 1; 0 

otherwise 

 

Integer Variables 

𝐵𝑁  number of completed batches 

𝐶𝑁𝑠𝑖  number of columns of size i at chromatography step s 

 

Auxiliary Variables 

𝑈𝑀̅̅ ̅̅
�̅�−1,𝑟 ≡ 𝑈𝑠𝑟 ⋅ 𝑀𝑠−1 

𝑍𝐵𝑅𝑉̅̅ ̅̅ ̅̅ ̅̅
𝑛  ≡ 𝑍𝑛 ⋅ 𝐵𝑅𝑉 

𝑍𝑀̅̅̅̅̅
𝑠𝑛  ≡ 𝑍𝑛 ⋅ 𝑀𝑠 
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