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Two-loop six gluon all plus helicity amplitude

David C. Dunbar and Warren B. Perkins
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We present an analytic expression for the six-point all-plus helicity amplitude in QCD at two-
loops. We compute the rational terms in a compact analytic form organised by their singularity
structure.

PACS numbers: 04.65.+e

INTRODUCTION

Computing scattering amplitudes is a key challenge in
confronting theories of particle physics to their predic-
tions and the physical world. For example, the detailed
comparison of data from colliders such as the LHC with
standard model predictions requires not only leading or-
der computations but NLO and, increasingly, NNLO cal-
culations. Great strides have been made in computing
NLO processes however NNLO computations in QCD
remain extremely challenging with analytic results only
known for a small number of four and a single five-point
process. (Reference [? ] gives a description of current
progress and challenges.)

In this letter we present a proposal for the six-point
two-loop amplitude in QCD for a particular helicity con-
figuration. The helicity amplitude we present, where all
six external gluons have positive helicity, is a particu-
larly simple and symmetric amplitude where the (color-
stripped) amplitude has full cyclic symmetry. (Although
this amplitude is a two-loop amplitude it does not con-
tribute at NNLO because the tree amplitude vanishes).
In theories with maximal extended supersymmetry the
enhanced symmetries and corresponding simplifications
have enabled six-point processess to be computed at two-
loop [? ].

Many direct computational methods, such as Feyn-
man diagrams, which divide amplitudes into a large num-
ber of computable pieces produce extremely complex fi-
nal forms which hide the structure and symmetry of
the amplitude. Methods which use the singular struc-
ture of the amplitude can produce much simpler expres-
sions. Using singularities to reconstruct amplitudes is a
well established method [? ] whose deeper understand-
ing is still developing [? ]. The singular structure be-
comes most apparent when we consider amplitudes to be
functions of complex momenta and in particular when
twistor variables are used [? ]. The amplitude then
has poles corresponding to physical factorisations and
collinear limits and has cuts corresponding to the dis-
continuities associated with polylogarithms. Tree am-
plitudes only have poles while cuts arise in loop ampli-
tudes. Amplitudes also have well-defined singular be-

haviour due to “Infra-Red” (IR) and “Ultra-Violet” (UV)
singularities whose form, in dimensional regularisation, is
known from general considerations [? ]. We have used a
multi-technique approach where the IR singular term is
first identified, unitarity is then used to reconstruct the
“cut-constructible” part of an amplitude [? ? ] and fi-
nally “augmented recursion” which is an extended form
of Britto-Cachazo-Feng-Witten (BCFW) [? ] recursion
is used to compute the remaining rational terms. By
focusing upon the singular structure we are able to or-
ganise this helicity amplitude into a compact analytic
form. Although this is a very particular helicity con-
figuration, such configurations provide windows through
which to study higher order effects and very special cases
to benchmark numerical studies.

The four [? ] and five-point [? ] all-plus two-loop
amplitudes have been previously computed. The five-
point amplitude was rewritten in a very elegant form in [?
]. In [? ] we were able to re-derive this result using a
knowledge of the “Infra-Red” (IR) singularities together
with unitarity and “augmented recursion”. The unitarity
used four-dimensional cuts for which the one-loop all-
plus amplitude is indivisible and acts rather like a vertex.
In this letter we present the results of applying these
combined techniques to compute the six-point amplitude.
The result is quite remarkable: from the first 2 −→ 3
two-loop QCD process we have been able to bootstrap a
2 −→ 4 process.

The leading in color component of the two-loop n-point
all-plus amplitude can be expressed

A(2)
n (1+, 2+, · · · , n+) = gn+2 (NccΓ)

2×( ∑
σ∈Sn/Zn

tr(T aσ(1)T aσ(2) · · ·T aσ(n))

A(2)
n (σ(1)+, σ(2)+, · · · , σ(n)+)

)
. (1)

The result we present is for the color-stripped two-loop

amplitude A
(2)
6 (1+, 2+, · · · , 6+). The factor cΓ is defined

as Γ(1 + ε)Γ2(1 − ε)/Γ(1 − 2ε)/(4π)2−ε. Sn/Zn are the
cyclically-distinguishable permutations of the n-legs and
T ai are the color-matrices of SU(Nc).
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The IR and UV behaviour of the n-point amplitude

is very-well specified [? ] and allows us to split A
(2)
n

into singular terms plus a finite remainder function, F
(2)
n ,

which is to be determined:

A(2)
n =A(1)

n I(1)
n + F (2)

n +O(ε) , (2)

where

I(1)
n =

[
−

n∑
i=1

1

ε2

(
µ2

−si,i+1

)ε
+
nπ2

12

]
. (3)

Since the corresponding one-loop amplitude is finite there
are no ε−1 IR terms in this unrenormalised amplitude [?

]. In this equation A
(1)
n is the all-ε form of the one-loop

amplitude [? ? ]. Although the one-loop amplitude is
rational to O(ε0), the all-ε expression contains polyloga-
rithms which, when combined with the ε−2 factor gener-

ate finite polylogarithms in the two-loop amplitude. F
(2)
n

contains further polylogarithmic terms, P
(2)
n and rational

terms R
(2)
n :

F (2)
n = P (2)

n +R(2)
n . (4)

In [? ] a form for F
(2)
n was proposed based upon uni-

tarity. This is valid for all-n and is a simple compact
analytic expression. In this letter we present a compact
analytic expression for the rational remainder function

R
(2)
6 . This was derived using augmented recursive meth-

ods and is presented in a form emphasising its factorisa-
tion structure.

For n = 6 the ansatz for P
(2)
n reduces to

P
(2)
6 = − i

3

6∑
i=1

∑2
r=1 cr,iF

2m
6:r,i

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 6〉 〈6 1〉
, (5)

where the coefficients, cr,i, simplify for n = 6 to

c1,i = −si+2,i+3si+3,i+4 +
〈i− 1|KQK|i+ 1〉
〈i− 1 i+ 1〉

,

c2,i = si+3,i+4
〈i− 1|ki+4ki+3|i+ 2〉

〈i− 1 i+ 2〉
, (6)

where K = ki+2 + ki+3 + ki+4 and Q = ki+2ki+3 +
ki+2ki+4 + ki+3ki+4. The F 2m

6:r,i are defined as

F 2m
6:r,i = F 2m[t

[r+1]
i−1 , t

[r+1]
i , t

[r]
i , t

[4−r]
i+r+1] (7)

where

t
[r]
i = (ki + ki+1 + · · ·+ ki+r−1)2 (8)

are kinematic invariants. Specifically t
[1]
i = 0, t

[2]
i = (ki+

ki+1)2 = si,i+1 and t
[3]
i = (ki+ki+1+ki+2)2 ≡ ti,i+1,i+2 [?

]. The F 2m are combinations of polylogarithms given by

F 2m[S, T,K2
2 ,K

2
4 ] = Li2[1− K2

2

S
] + Li2[1− K2

2

T
]

+ Li2[1− K2
4

S
] + Li2[1− K2

4

T
]

−Li2[1− K2
2K

2
4

ST
] + Log2(S/T )/2 . (9)

The F 2m are related to scalar one-loop integral functions,
specifically the two-mass-easy boxes. They are not the
four-dimensional scalar integrals but can be thought of as
either the eight dimensional box integrals or the four di-
mensional boxes truncated to remove singularities (and
scaled) [? ? ]. For r = 1 the two-mass function re-
duces smoothly to the corresponding one-mass box inte-
gral function.

EXPLICIT FORM OF R
(2)
6

We now present the explicit expression for R
(2)
6 which

completes the six-point amplitude. This was calculated
using augmented recursion. In augmented recursion,
modified BCFW recursion is applied to the rational part
of the two-loop amplitude. This is complicated by the
fact that the rational terms contain double poles and
consequently a knowledge of the sub-leading pole is re-
quired. There are currently no theorems which specify
this sub-leading pole but it may be computed using some
off-shell information in a case by case manner [? ? ? ].
Additionally, the BCFW shift of a pair of momenta gives
a contribution from asymtotically large shifts which is
not readily determined, so an alternate shift [? ] must
be used [? ]. The shift introduces an arbitrary refer-
ence spinor, η, and breaks cyclic symmetry by selecting
three legs to shift. Recovering cyclic symmetry and η-
independence are non-trivial consistency checks [? ].

The resulting expression for R
(2)
6 can be written

R
(2)
6 =

i

36

6∑
i=1

G[i, i+ 1, i+ 2, i+ 3, i+ 4, i+ 5]

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 6〉 〈6 1〉
(10)

where the summation is over the six-cyclic permutations
of the legs. The function G[a, b, c, d, e, f ] is organised
according to its singular structures,

G[a, b, c, d, e, f ] =G1 +G2 +G3 +G4 +G5 . (11)

The first of these,

G1 =
4 〈a f〉 〈c d〉 [d f ] sdf

tabc
×(

[c a]− [d c] sbc
[d|Kbc|a〉

− [a f ] sab
[f |Kab|c〉

)
, (12)
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where Kab = ka+kb etc. This contains the multi-particle
pole in tabc. These only appear for six or more legs. As
tabc −→ 0, G1 factorises into the product of two one-loop
amplitudes (both of which are purely rational)

G1 −→ A
(1)
4 (a+, b+, c+, P+)

i

P 2
A

(1)
4 (−P−, d+, e+, f+) .

(13)

The function R
(2)
6 has double poles (in complex mo-

menta) as 〈a b〉 −→ 0. These are contained in the func-
tions G2 and G3. Where

G2 = Hb,c,a,f +Hc,d,a,f +Hd,e,a,f (14)

with

Hd,e,a,f =
[d e] [a f ]

〈d e〉 〈a f〉

(
−6 〈a d〉2 〈e f〉2

+
52

3
〈a d〉 〈e f〉 〈a e〉 〈d f〉 − 28

3
〈a e〉2 〈d f〉2

)
(15)

and

G3 = −4 ([b c] [e|Kaf |c〉+ [b e] 〈e d〉 [e d])×
[e b] [a f ] 〈a b〉 〈e f〉 〈a e〉 〈b f〉
〈a f〉 [b|Kaf |e〉[e|Kaf |b〉

. (16)

The 〈a f〉−1
and 〈d e〉−1

poles in these functions combine
with the prefactor to yield double poles.

The combination G1 +G2 +G3 has many of the correct
physical poles but has unphysical coplanar singularities
when e.g. [d|Kbc|a〉 −→ 0. These are removed by adding
G4, where

G4 = −2
Ka,b,c,d,e,f +Ka,f,e,d,c,b

[a|Kbc|d〉[d|Kbc|a〉
(17)

with

Ka,b,c,d,e,f = 2[a|Kbc|d〉 [b d] 〈a b〉
(
−(sed + saf )sbd

− [b c] 〈b d〉 〈a c〉 [a d]
)

− [d|KafKed|a] 〈a d〉 [d c] [a b] 〈c a〉 〈b d〉

+ [b c]
2

[a d]
2 〈c d〉 〈b a〉 〈b d〉 〈c a〉 . (18)

The final term is pole free and when combined with
the prefactor in eq. (??) only contributes single poles as
〈a b〉 −→ 0,

G5 = sab

(
−4sab +

8

3
scd +

68

3
tbcd + 28tcde

− 4sad + 24sbe

)
+

22

3
tabctbcd . (19)

The function R
(2)
6 has all the correct collinear limits,

factorisations and symmetries. The expression was ini-

tially computed using recursion yielding a considerably
more complex expression which was simplified by organ-
ising terms according to their singular structure. The
unphysical singularities cancel amongst the terms.

CONCLUSIONS

In this letter we have completed a proposal for one
of the six-point two-loop helicity amplitudes in QCD.
This has been bootstrapped from lower point amplitudes.
There are some assumptions regarding this : we have as-
sumed that we can identify the poles for complex mo-
menta and that the shift vanishes at infinity. We also as-
sume the one-loop amplitude is written in a form which
satisfies one-loop factorisation to all orders in ε. Nonethe-
less the final form is rather compelling and satisfies a wide
variety of consistence checks. We have recently learned
that a forthcoming computation using a local integrand
representation of the complete D-dimensional amplitude
has verified the rational form [? ].

The techniques we have applied are essentially one-
loop techniques: the higher transcendality polyloga-
rithms lie within the singular terms and the remainder
function has the transcendality of one-loop amplitudes.
With these techniques we have been able to compute the
first six-point QCD two-loop amplitude. Although this
is a very particular, highly symmetric configuration, fur-
ther processes may be amenable to these techniques and
we may be opening a window into the analytic structure
of multi-loop amplitudes.
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