
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in :

The European Physical Journal C

                                            

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa28023

_____________________________________________________________

 
Paper:

Langfeld, K., Lucini, B., Pellegrini, R. & Rago, A. (2016).  An efficient algorithm for numerical computations of

continuous densities of states. The European Physical Journal C, 76(6)

http://dx.doi.org/10.1140/epjc/s10052-016-4142-5

 

 

 

 

 

 

 

 

_____________________________________________________________
  
This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository. 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/78859765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa28023
http://dx.doi.org/10.1140/epjc/s10052-016-4142-5
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 
Eur. Phys. J. C (2016) 76:306
DOI 10.1140/epjc/s10052-016-4142-5

Regular Article - Theoretical Physics

An efficient algorithm for numerical computations of continuous
densities of states

K. Langfeld1,a, B. Lucini2,b, R. Pellegrini3,c, A. Rago1,d

1 Centre for Mathematical Sciences, Plymouth University, Plymouth PL4 8AA, UK
2 College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
3 School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK

Received: 15 February 2016 / Accepted: 16 May 2016 / Published online: 2 June 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract In Wang–Landau type algorithms, Monte-Carlo
updates are performed with respect to the density of states,
which is iteratively refined during simulations. The partition
function and thermodynamic observables are then obtained
by standard integration. In this work, our recently introduced
method in this class (the LLR approach) is analysed and fur-
ther developed. Our approach is a histogram free method
particularly suited for systems with continuous degrees of
freedom giving rise to a continuum density of states, as it is
commonly found in lattice gauge theories and in some sta-
tistical mechanics systems. We show that the method pos-
sesses an exponential error suppression that allows us to
estimate the density of states over several orders of mag-
nitude with nearly constant relative precision. We explain
how ergodicity issues can be avoided and how expectation
values of arbitrary observables can be obtained within this
framework. We then demonstrate the method using com-
pact U(1) lattice gauge theory as a show case. A thorough
study of the algorithm parameter dependence of the results
is performed and compared with the analytically expected
behaviour. We obtain high precision values for the critical
coupling for the phase transition and for the peak value of
the specific heat for lattice sizes ranging from 84 to 204. Our
results perfectly agree with the reference values reported in
the literature, which covers lattice sizes up to 184. Robust
results for the 204 volume are obtained for the first time.
This latter investigation, which, due to strong metastabili-
ties developed at the pseudo-critical coupling of the system,
so far has been out of reach even on supercomputers with
importance sampling approaches, has been performed to high
accuracy with modest computational resources. This shows
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the potential of the method for studies of first order phase
transitions. Other situations where the method is expected to
be superior to importance sampling techniques are pointed
out.
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1 Introduction and motivations

Monte-Carlo methods are widely used in theoretical physics,
statistical mechanics and condensed matter (for an overview,
see e.g. [1]). Since the inception of the field [2], most of
the applications have relied on importance sampling, which
allows us to evaluate stochastically with a controllable error
multi-dimensional integrals of localised functions. These
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methods have immediate applications when one needs to
compute thermodynamic properties, since statistical aver-
ages of (most) observables can be computed efficiently with
importance sampling techniques. Similarly, in lattice gauge
theories, most quantities of interest can be expressed in the
path integral formalism as ensemble averages over a positive-
definite (and sharply peaked) measure, which, once again,
provide an ideal scenario for applying importance sampling
methods.

However, there are noticeable cases in which Monte-Carlo
importance sampling methods are either very inefficient or
produce inherently wrong results for well understood rea-
sons. Among those cases, some of the most relevant situ-
ations include systems with a sign problem (see [3] for a
recent review), direct computations of free energies (com-
prising the study of properties of interfaces), systems with
strong metastabilities (for instance, a system with a first order
phase transition in the region in which the phases coexist)
and systems with a rough free energy landscape. Alterna-
tives to importance sampling techniques do exist, but gener-
ally they are less efficient in standard cases and hence their
use is limited to ad hoc situations in which more standard
methods are inapplicable. Noticeable exceptions are micro-
canonical methods, which have experienced a surge in inter-
est in the past 15 years. Most of the growing popularity of
those methods is due to the work of Wang and Landau [4],
which provided an efficient algorithm to access the density
of states in a statistical system with a discrete spectrum.
Once the density of states is known, the partition function
(and from it all thermodynamic properties of the system) can
be reconstructed by performing one-dimensional numerical
integrals. Histogram-based straightforward generalisations
of the Wang–Landau algorithm to models with a continuum
spectrum have been shown to break down even on systems
of moderate size [5,6], hence more sophisticate techniques
have to be employed, as done for instance in [7], where the
Wang–Landau method is used to compute the weights for a
multi-canonical recursion (see also [8]).

A very promising method, here referred to as the logarith-
mic linear relaxation (LLR) algorithm, was introduced in [9].
The potentialities of the method were demonstrated in subse-
quent studies of systems afflicted by a sign problem [10,11],
in the computation of the Polyakov loop probability distri-
bution function in two-colour QCD with heavy quarks at
finite density [12] and—rather unexpectedly—even in the
determination of thermodynamic properties of systems with
a discrete energy spectrum [13].

The main purpose of this work is to discuss in detail some
improvements of the original LLR algorithm and to formally
prove that expectation values of observables computed with
this method converge to the correct result, which fills a gap in
the current literature. In addition, we apply the algorithm to
the study of compact U(1) lattice gauge theory, a system with

severe metastabilities at its first order phase transition point
that make the determination of observables near the transition
very difficult from a numerical point of view. We find that
in the LLR approach correlation times near criticality grow
at most quadratically with the volume, as opposed to the
exponential growth that one expects with importance sam-
pling methods. This investigation shows the efficiency of the
LLR method when dealing with systems having a first order
phase transition. These results suggest that the LLR method
can be efficient at overcoming numerical metastabilities in
other classes of systems with a multi-peaked probability dis-
tribution, such as those with rough free energy landscapes (as
commonly found, for instance, in models of protein folding
or spin glasses).

The rest of the paper is organised as follows. In Sect. 2 we
cover the formal general aspects of the algorithm. The inves-
tigation of compact U(1) lattice gauge theory is reported in
Sect. 3. A critical analysis of our findings, our conclusions
and our future plans are presented in Sect. 4. Finally, some
technical material is discussed in the appendix. Some pre-
liminary results of this study have already been presented
in [14].

2 Numerical determination of the density of states

2.1 The density of states

Owing to formal similarities between the two fields, the
approach we are proposing can be applied to both statisti-
cal mechanics and lattice field theory systems. In order to
keep the discussion as general as possible, we shall intro-
duce notations and conventions that can describe simultane-
ously both cases. We shall consider a system described by
the set of dynamical variables φ, which could represent a set
of spin or field variables and are assumed to be continuous.
The action (in the field theory case) or the Hamiltonian (for
the statistical system) is indicated by S and the coupling (or
inverse temperature) by β. Since the product βS is dimen-
sionless, without loss of generality we will take both S and
β dimensionless.

We consider a system with a finite volume V , which will
be sent to infinity in the final step of our calculations. The
finiteness of V in the intermediate steps allows us to define
naturally a measure over the variables φ, which we shall call
Dφ. Properties of the system can be derived from the function

Z(β) =
∫

Dφ eβS[φ],

which defines the canonical partition function for the statis-
tical system or the path integral in the field theory case. The
density of state (which is a function of the value of S[φ] = E)
is formally defined by the integral
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ρ(E) =
∫

Dφ δ
(
S[φ] − E

)
. (2.1)

In terms of ρ(E), Z takes the form

Z(β) =
∫

dE ρ(E) eβE .

The vacuum expectation value (or ensemble average) of an
observable O which is a function of E can be written as1

〈O〉 = 1

Z(β)

∫
dE O(E) ρ(E) eβE . (2.2)

Hence, a numerical determination of ρ(E) would enable us to
express Z and 〈O〉 as numerical integrals of known functions
in the single variable E . This approach is inherently different
from conventional Monte-Carlo calculations, which relies on
the concept of importance sampling, i.e. the configurations
contributing to the integral are generated with probability

Pβ(E) = ρ(E) eβE/Z(β) .

Owing to this conceptual difference, the method we are
proposing can overcome notorious drawbacks of importance
sampling techniques.

2.2 The LLR method

We will now detail our approach to the evaluation of the
density of states by means of a lattice simulation. Our initial
assumption is that the density of states is a regular function
of the energy that can be always approximated in a finite
interval by a suitable functional expansion. If we consider the
energy interval [Ek, Ek+δE ], under the physically motivated
assumption that the density of states is a smooth function
in this interval, the logarithm of the latter quantity can be
written, using Taylor’s theorem, as

ln ρ(E) = ln ρ

(
Ek + δE

2

)
+ d ln ρ

dE

∣∣∣
E=Ek+δE/2

×
(
E − Ek − δE

2

)
+ Rk(E), (2.3)

Rk(E) = 1

2

d2 ln ρ

dE2

∣∣∣
Ek+δE/2

(
E − Ek − δE

2

)2

+ O(δ3
E ).

Thereby, for a given action E , the integer k is chosen such
that

Ek ≤ E ≤ Ek + δE , Ek = E0 + k δE .

1 The most general case in which O(φ) cannot be written as a function
of E is discussed in Sect. 2.3.

Our goal will be to devise a numerical method to calculate
the Taylor coefficients

ak := d ln ρ

dE

∣∣∣
E=Ek+δE/2

(2.4)

and to reconstruct from these an approximation for the den-
sity of states ρ(E). By introducing the intrinsic thermody-
namic quantities, Tk (temperature) and ck (specific heat) by

d ln ρ

dE

∣∣∣
E=Ek+δE/2

= 1

Tk
= ak,

d2 ln ρ

dE2

∣∣∣
E=Ek+δE/2

= − 1

T 2
k ck

1

V
. (2.5)

we expose the important feature that the target coefficients ak
are independent of the volume while the correction Rk(E)

is of order δ2
E/V . In all practical applications, Rk will be

numerically much smaller than ak δE . For a certain param-
eter range (i.e., for the correlation length smaller than the
lattice size), we can analytically derive this particular vol-
ume dependence of the density derivatives. Details are left to
the appendix.

Using the trapezium rule for integration, we find in par-
ticular

ln
ρ(Ek+1 + δE/2)

ρ(Ek + δE/2)
=
∫ Ek+1+ δE

2

Ek+ δE
2

d ln ρ

dE
dE

= δE

2
[ak + ak+1] + O(δ3

E ). (2.6)

Using this equation recursively, we find

ln
ρ(EN + δE

2 )

ρ(E0 + δE
2 )

= a0

2
δE +

N−1∑
k=1

ak δE

+ aN
2

δE + O(δ2
E ). (2.7)

Note that N δE = O(1). Exponentiating (2.3) and using
(2.7), we obtain

ρ(E) = ρ

(
EN + δE

2

)
exp

{
aN (E − EN − δE/2) + O(δ2

E )
}

(2.8)

= ρ0

(
N−1∏
k=1

eakδE

)
exp

{
aN (E − EN ) + O(δ2

E )
}
,

(2.9)

where we have defined an overall multiplicative constant by

ρ0 = ρ

(
E0 + δE

2

)
ea0δE/2.
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We are now in the position to introduce the piecewise-linear
and continuous approximation of the density of states by

ρ̃(E) = ρ0

(
N−1∏
k=1

eakδE

)
eaN (E−EN ), (2.10)

with N chosen in such a way that EN ≤ E < EN + δE
for a given E . With this definition, we obtain the remarkable
identity

ρ(E) = ρ̃ (E) exp
{
O(δ2

E )
}

= ρ̃ (E)
[
1 + O(δ2

E )
]
,

(2.11)

which we will extensively use below. We will observe that
ρ(E) spans many orders of magnitude. The key observa-
tion is that our approximation implements exponential error
suppression, meaning that ρ(E) can be approximated with
nearly constant relative error despite that it may reach over
thousands of orders of magnitude:

1 − ρ̃(E)

ρ(E)
= O

(
δ2
E

)
. (2.12)

We will now present our method to calculate the coeffi-
cients ak . To this aim, we introduce the action restricted and
re-weighted expectation values [9] with a being an external
variable:

〈〈W [φ]〉〉k (a) = 1

Nk

∫
Dφ θ[Ek ,δE ](S[φ]) W [φ] e−aS[φ],

(2.13)

Nk =
∫

Dφ θ[Ek ,δE ] e−aS[φ] =
∫ Ek+δE

Ek

dE ρ(E) e−aE ,

(2.14)

where we have used (2.1) to express Nk as an ordinary inte-
gral. We also introduced the modified Heaviside function,

θ[Ek ,δE ](S) =
{

1 for Ek ≤ S ≤ Ek + δE
0 otherwise .

If the observable only depends on the action, i.e., W [φ] =
O(S[φ]), (2.13) simplifies to

〈〈O〉〉k (a) = 1

Nk

∫ Ek+δE

Ek

dE ρ(E) O(E) e−aE , (2.15)

Let us now consider the specific action observable

�E = S − Ek − δE

2
, (2.16)

and the solution a∗ of the non-linear equation

〈〈�E〉〉k (a = a∗) = 0. (2.17)

Inserting ρ(E) from (2.8) into (2.15) and defining �a =
ak − a, we obtain

〈〈�E〉〉k (a)

= ρ(Ek + δE/2)
∫ Ek+δE
Ek

dE (E − Ek − δE/2) e�a (E−Ek ) eO(δ2
E )

ρ(Ek + δE/2)
∫ Ek+δE
Ek

dE e�a (E−Ek ) eO(δ2
E )

=
∫ Ek+δE
Ek

dE (E − Ek − δE/2) e�a (E−Ek )

∫ Ek+δE
Ek

dE e�a (E−Ek )
(2.18)

Let us consider for the moment the function

F(�a) :=
∫ Ek+δE
Ek

dE (E − Ek − δE/2) e�a (E−Ek)

∫ Ek+δE
Ek

dE e�a (E−Ek )
.

It is easy to check that F is monotonic and vanishing for
�a = 0:

F ′(�a) > 0, F(�a = 0) = 0.

Since (2.18) approximates 〈〈�E〉〉k (a) up toO(δ2
E ), we con-

clude that

a∗ = ak + O
(
δ2
E

)
= d ln ρ

dE

∣∣∣
E=Ek+ δE

2

+ O
(
δ2
E

)
.

(2.19)

The latter equation is at the heart of the LLR algorithm: it
details how we can obtain the log-rho derivative by calculat-
ing the Monte-Carlo average 〈〈�E〉〉k (a) (using (2.13)) and
solving a non-linear equation, i.e. (2.17) with the identifica-
tion a∗ ≡ ak (justified by the order of our approximation).
In the following, we will discuss the practical implementa-
tion by addressing two questions: (i) How do we solve the
non-linear equation? (ii) How do we deal with the statisti-
cal uncertainty since the Monte-Carlo method only provides
stochastic estimates for the expectation value 〈〈�E〉〉k (a)?
Let us start with the standard Newton–Raphson method to
answer question (i). Starting from an initial guess a(0)

k for
the solution, this method produces a sequence

a(0)
k → a(1)

k → a(2)
k → · · · → a(n)

k → a(n+1)
k · · · ,

which converges to the true solution ak . Starting from a(n)
k

for the solution, we would like to derive an equation that gen-
erates a value a(n+1)

k that is even closer to the true solution:

〈〈�E〉〉k
(
a(n+1)
k

)
= 〈〈�E〉〉k

(
a(n)
k

)

+ d

da
〈〈�E〉〉k

(
a(n)
k

) (
a(n+1)
k − a(n)

k

)
= 0. (2.20)

Using the definition of 〈〈�E〉〉k
(
a(n+1)

)
in (2.18) with ref-

erence to (2.16) and (2.15), we find

d

da
〈〈�E〉〉k (a) = −

[〈〈
�E2

〉〉
k
(a) − 〈〈�E〉〉2

k (a)
]

=: − σ 2(�E; a). (2.21)
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We thus find for the improved solution:

a(n+1)
k = a(n)

k + 〈〈�E〉〉k (a(n)
k )

σ 2(�E; a(n)
k )

. (2.22)

We can convert the Newton–Raphson recursion into a sim-
pler fixed point iteration if we assume that the choice a(n)

k is
sufficiently close to the true value ak such that

δE

(
a(n)
k − ak

)
	 1.

Without affecting the precision with which the solution ak
of (2.18) can be obtained, we replace σ 2 with its first order
Taylor expansion around a = ak

σ 2(�E; a) = 1

12
δ2
E

[
1 + O

(
δE�a

)2] [
1 + O(δE )

]
.

(2.23)

Hence, the Newton–Raphson iteration is given by

a(n+1)
k = a(n)

k + 12

δ2
E

〈〈�E〉〉k (a(n)
k ) (2.24)

We point out that one fixed point of the above iteration, i.e.,
a(n+1)
k = a(n)

k = ak , is attained for

〈〈�E〉〉k (ak) = 0,

which, indeed, is the correct solution. We have already shown
that the above equation has only one solution. Hence, if the
iteration converges at all, it necessarily converges to the true
solution. Note that convergence can always be achieved by
suitable choice of under-relaxation. We here point out that
the solution to question (ii) above will involve a particular
type of under-relaxation.
Let us address question (ii) now. We have already pointed
out that we have only a stochastic estimate for the expecta-
tion value 〈〈�E〉〉k (a) and the convergence of the Newton–
Raphson method is necessarily hampered by the inevitable
statistical error of the estimator. This problem, however, has
been already solved by Robbins and Monroe [15].

For completeness, we shall now give a brief presentation
of the algorithm. The starting point is the function M(x),
and a constant α, such that the equation M(x) = α has a
unique root at x = θ . M(x) is only available by stochastic
estimation using the random variable N (x):

E[N (x)] = M(x),

with E[N (x)] being the ensemble average of N (x). The iter-
ative root finding problem is of the type

xn+1 = xn + cn (α − N (xn)) (2.25)

where cn is a sequence of positive numbers sizes satisfying
the requirements

∞∑
n=0

cn = ∞ and
∞∑
n=0

c2
n < ∞ (2.26)

It is possible to prove that under certain assumptions [15]
on the function M(x) the limn→∞ xn converges in L2 and
hence in probability to the true value θ . A major advance
in understanding the asymptotic properties of this algorithm
was the main result of [15]. If we restrict ourselves to the
case

cn = c

n + 1
(2.27)

one can prove that
√
n(xn −θ) is asymptotically normal with

variance

σ 2
x = c2σ 2

ξ

2 c M ′(x) − 1
(2.28)

where σ 2
ξ is the variance of the noise. Hence, the optimal

value of the constant c, which minimises the variance is given
by

c = 1

M ′(θ)
. (2.29)

Adapting the Robbins–Monro approach to our root find-
ing iteration in (2.24), we finally obtain an under-relaxed
Newton–Raphson iteration

a(n+1)
k = a(n)

k + 12

δ2
E (n + 1)

〈〈�E〉〉k (a(n)
k ), (2.30)

which is optimal with respect to the statistical noise during
iteration.

2.3 Observables and convergence with δE

We have already pointed out that expectation values of
observables depending on the action only can be obtained
by a simple integral over the density of states (see (2.2)).
Here we develop a prescription for determining the values
of expectations of more general observables by folding with
the numerical density of states and analyse the dependence
of the estimate on δE .

Let us denote a generic observable by B(φ). Its expecta-
tion value is defined by

〈B[φ]〉 = 1

Z(β)

∫
Dφ B[φ] eβS[φ] (2.31)
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In order to relate to the LLR approach, we break up the latter
integration into energy intervals:

〈B[φ]〉 = 1

Z(β)

∑
i

∫
Dφ θ[Ei ,δE ] B[φ] eβS[φ]. (2.32)

Note that 〈B[φ]〉 does not depend on δE .
We can express 〈B[φ]〉 in terms of a sum over double-

bracket expectation values by choosing

W := B[φ] exp{(β + ai )S[φ]}
in (2.13). Without any approximation, we find

〈B[φ]〉 = 1

Z(β)

∑
i

Ni eai Ei

×〈〈B[φ] exp{βS[φ] + ai (S[φ] − Ei )}〉〉 (Ei ), (2.33)

Z(β) =
∑
i

Ni eai Ei

×〈〈 exp{βS[φ] + ai (S[φ] − Ei )}〉〉 (Ei ). (2.34)

where Ni = Ni (ai ) is defined in (2.14). The above result
can be further simplified by using (2.10) and (2.11):

Ni eai Ei =
∫ Ei+δE

Ei

dE ρ(E) exp{−ai (E − Ei )}

= eO(δ2
E )

∫ Ei+δE

Ei

dE ρ̃(E) exp{−ai (E − Ei )}

= eO(δ2
E ) ρ̃(Ei )

∫ Ei+δE

Ei

dE = δE ρ̃ (Ei ) eO(δ2
E )

= δE ρ̃ (Ei )
[
1 + O(δ2

E )
]
. (2.35)

We now define the approximation to 〈B[φ]〉 by

〈B[φ]〉app = 1

Z(β)

∑
i

δE ρ̃ (Ei )

×〈〈B[φ] exp{βS[φ] + ai (S[φ] − Ei )}〉〉
(2.36)

Z(β) :=
∑
i

δE ρ̃ (Ei )

×〈〈 exp{βS[φ] + ai (S[φ] − Ei )}〉〉 . (2.37)

Since the double-bracket expectation values do not produce
a singularity if δE → 0, i.e.,

lim
δE→0

〈〈B[φ] exp{βS[φ] + ai (S[φ] − Ei )}〉〉 = finite,

using (2.35), from (2.33) and (2.34) we find that

〈B[φ]〉 = 〈B[φ]〉app +
∑
i

O(δ3
E )

= 〈B[φ]〉app + O(δ2
E ). (2.38)

The latter formula together with (2.36) provides access to all
types of observables using the LLR method with little more
computational resources: Once the Robbins–Monro iteration
(2.30) has settled for an estimate of the coefficient ak , the
Monte-Carlo simulation simply continues to derive estima-
tors for the double-bracket expectation values in (2.36) and
(2.37).

With the further assumption that the double-bracket
expectation values are (semi-)positive, an even better error
estimate is produced by our approach:

〈B[φ]〉 = 〈B[φ]〉app +
∑
i

O(δ3
E )

= 〈B[φ]〉app

[
1 + O(δ2

E )
]
.

This implies that the observable 〈B[φ]〉 can be calculated
with an relative error of order δ2

E . Indeed, we find from (2.33,
2.34, 2.35) that

〈B[φ]〉 = 1

Z(β)

∑
i

δE ρ̃ (Ei ) 〈B[φ] exp{βS[φ]

+ ai (S[φ] − Ei )}〉 exp
{
O(δ2

E )
}
, (2.39)

Z(β) :=
∑
i

δE ρ̃ (Ei ) 〈〈 exp{βS[φ]+ai (S[φ]−Ei )}〉〉 .

(2.40)

Thereby, we have used
∣∣∣∣∣
∑
i

ai exp
{
ciδ

2
E

}∣∣∣∣∣ ≤
∑
i

|ai |
∣∣∣exp{ciδ2

E }
∣∣∣

≤
∑
i

|ai | exp{cmaxδ
2
E }

= exp{cmaxδ
2
E }

∑
i

ai

= exp
{
O(δ2

E )
}

×
∑
i

ai .

The assumption of (semi-)positive double-expectation val-
ues is true for many action observables, and possibly also
for Wilson loops, whose re-weighted and action restricted
double-expectation values might turn out to be positive (as is
the case for their standard expectation values). In this case,
our method would provide an efficient determination of those
quantities. This is important in particular for large Wilson
loop expectation values, since they are notoriously difficult
to measure with importance sampling methods (see e.g. [16]).
We also note that, in order to have an accurate determination
of a generic observable, any Monte-Carlo estimate of the
double-expectation values must be obtained to good preci-
sion dictated by the size of δE . A detailed numerical investi-
gation of these and related issues is left to future work.
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For the specific case that the observable B[φ]only depends
on the action S[φ], we circumvent this problem and evaluate
the double-expectation values directly. To this aim, we intro-
duce for the general case 〈〈W [φ]〉〉k the generalised density
wk(E) by

ρ(E) wk(E) =
∫

Dφ θ[Ek ,δE ](S[φ]) W [φ] δ
(
E − S[φ]

)
.

(2.41)

We then point out that if W [φ] is depending on the action
only, i.e., W [φ] = f (S[φ]), we obtain

wk(E) = f (E) θ[Ek ,δE ](E).

With the definition of the double-expectation value (2.13),
we find

〈〈W [φ]〉〉k (ak) =
∫ Ek+δE
Ek

dE ρ(E) e−ak E wk(E)∫ Ek+δE
Ek

dE ρ(E) e−ak E
.

(2.42)

Rather than calculating 〈〈W [φ]〉〉k by Monte-Carlo methods,
we can analytically evaluate this quantity (up to order O(δ2

E )

). Using the observation that for any smooth (C2) function g
∫ Ek+δE

Ek

dE g(E) = δE g

(
Ek + δE

2

)
+ O

(
δ3
E

)
,

and, using this equation for both numerator and denominator
of (2.42), we conclude that

〈〈W [φ]〉〉k (ak) = wk

(
Ek + δE

2

)
+ O

(
δ2
E

)
. (2.43)

Let us now specialise to the case that is relevant for (2.39)
with B depending on the action only:

W [φ] = b
(
S[φ]

)
exp{βS[φ] + ai (S[φ] − Ei )},

wi (E) = b(E) exp{βE + ai (E − Ei )}. (2.44)

This leaves us with

〈〈W [φ]〉〉i (ai ) = b
(
Ei+ δE

2

)
eβ(Ei+ δE

2 ) eai
δE
2 + O

(
δ2
E

)
.

(2.45)

Inserting (2.43) together with (2.44) into (2.36), we find

〈B[φ]〉 = 1

Z(β)

∑
i

δE ρ̃

(
Ei + δE

2

)

×bi
(
Ei + δE

2

)
eβ(Ei+ δE

2 ) + O
(
δ2
E

)
, (2.46)

Z(β) =
∑
i

δE ρ̃

(
Ei + δE

2

)
eβ(Ei+ δE

2 ). (2.47)

Below, we will numerically test the quality of expectation
values obtained by the LLR approach using action observ-
ables only, i.e., B[φ] = O(S[φ]). We will find that we indeed
achieve the predicted precision in δ2

E for this type of observ-
ables (see below Fig. 6).

2.4 The numerical algorithm

So far, we have shown that a piecewise continuous approxi-
mation of the density of states that is linear in intervals of suf-
ficiently small amplitude δE allows us to obtain a controlled
estimate of averages of observables and that the angular coef-
ficients ai of the linear approximations can be computed in
each interval i using the Robbins–Monro recursion (2.30).
Imposing the continuity of log ρ(E), one can then determine
the latter quantity up to an additive constant, which does
not play any role in cases in which observables are standard
ensemble averages.

The Robbins–Monro recursion can easily be implemented
in a numerical algorithm. Ideally, the recurrence would be
stopped when a tolerance ε for ai is reached, i.e. when

∣∣∣a(n+1)
i − a(n)

i

∣∣∣ =
12

∣∣∣�Ei (a
(n)
i )

∣∣∣
(n + 1) δ2

E

≤ ε , (2.48)

with (for instance) ε set to the precision of the computation.
When this condition is fulfilled, we can set ai = a(n+1)

i .
However, one has to keep into account the fact that the com-
putation of �Ei requires an averaging over Monte-Carlo
configurations. This brings into play considerations about
thermalisation (which has to be taken into account each time
we send a(n)

i → a(n+1)
i ), the number of measurements used

for determining �Ei at fixed a(n)
i and—last but not least—

fluctuations of the a(n)
i themselves.

Following those considerations, an algorithm based on
the Robbins–Monro recursion relation should depend on the
following input (tuneable) parameters:

• NTH, the number of Monte-Carlo updates in the restricted
energy interval before starting to measure expectation
values;

• NSW, the number of iterations used for computing expec-
tation values;

• NRM, the number of Robbins–Monro iterations for deter-
mining ai ;

• NB , number of final values from the Robbins–Monro
iteration subjected to a subsequent bootstrap analysis.

The version of the LLR method proposed and implemented
in this paper is reported in an algorithmic fashion in the box
Algorithm 1. This implementation differs from that provided
in [9,10] by the replacement of the originally proposed root

123



306 Page 8 of 18 Eur. Phys. J. C (2016) 76 :306

finding procedure based on a deterministic Newton–Raphson
like recursion with the Robbins–Monro recursion, which is
better suited to the problem of finding zeroes of stochastic
equations.

Algorithm 1: The LLR method as implemented in this
work.
Input: NSW, NTH, NRM, NA
Output: ai ∀i

1 for 0 ≤ i < (Emax − Emin) /δE do
2 Initialise Ei = Emin + iδE , a0

i = āi ;
3 for 0 ≤ n < NRM do
4 for k ≤ NTH + NSW do
5 Evolve the whole system with an importance

sampling algorithm for one sweep according to the
probability distribution

P(E) ∝ e−ani E

accepting only configuration such that
Ei ≤ E ≤ Ei + δE

6 if k ≥ NTH then
7 Compute E (k), the value of the energy in the

current configuration k;

8 Compute

〈〈�E〉〉i (a(n)
i ) = 1

NSW

⎛
⎝ ∑

j>NTH

E ( j)

⎞
⎠− Ei − δE

2

Compute

a(n+1)
i = a(n)

i + 12 〈〈�E〉〉i (a(n)
i )

(n + 1) δ2
E

9 Repeat NB times to produce NB candidates ai for a
subsequent bootstrap analysis

Since the ai are determined stochastically, a different reit-
eration of the algorithm with different starting conditions and
different random seeds would produce a different value for
the same ai . The stochastic nature of the process implies that
the distribution of the ai found in different runs is Gaussian.
The generated ensemble of the ai can then be used to deter-
mine the error of the estimate of observables using analysis
techniques such as jackknife and bootstrap.

The parameters Emin and Emax depend on the system and
on the phenomenon under investigation. In particular, stan-
dard thermodynamic considerations on the infinite volume
limit imply that if one is interested in a specific range of tem-
peratures and the studied observables can be written as sta-
tistical averages with Gaussian fluctuations, it is possible to
restrict the range of energies between the energy that is typi-
cal of the smallest considered temperature and the energy that
is typical of the highest considered temperature. Determining
a reasonable value for the amplitude of the energy interval δE
and the other tuneable parameters NSW, NTH, NRM and NA

requires a modest amount of experimenting with trial values.
In our applications we found that the results were very stable
for wide ranges of values of those parameters. Likewise, āi ,
the initial value for the Robbins–Monro recursion in interval
i , does not play a crucial role; when required and possible,
an initial value close to the expected result can be inferred
inverting 〈E(β)〉, which can be obtained with a quick study
using conventional techniques.

The average 〈〈. . .〉〉 imposes an update that restricts con-
figurations to those with energies in a specific range. In most
of our studies, we have imposed the constraint analytically at
the level of the generation of the newly proposed variables,
which results in a performance that is comparable with that
of the unconstrained system. Using a simple-minded more
direct approach, in which one imposes the constraint after
the generation of the proposed new variable, we found that
in most cases the efficiency of Monte-Carlo algorithms did
not drop drastically as a consequence of the restriction, and
even for systems like SU(3) (see Ref. [9]) we were able to
keep an efficiency of at least 30 % and in most cases no less
than 50 % with respect to the unconstrained system.

2.5 Ergodicity

Our implementation of the energy restricted average
〈〈· · ·〉〉 assumes that the update algorithm is able to generate
all configurations with energy in the relevant interval start-
ing from configurations that have energy in the same inter-
val. This assumption might be too strong when the update is
local2 in the energy (i.e. each elementary update step changes
the energy by a quantity of order one for a system with total
energy of order V ) and there are topological excitations that
can create regions with the same energy that are separated by
high energy barriers. In these cases, which are rather com-
mon in gauge theories and statistical mechanics3, generally
in order to go from one acceptable region to the other one
has to travel through a region of energies that is forbidden by
an energy-restricted update method such as the LLR. Hence,
by construction, in such a scenario our algorithm will get
trapped in one of the allowed regions. Therefore, the update
will not be ergodic.

In order to solve this problem, one can use an adaptation
of the replica exchange method [17], as first proposed in [18].
The idea is that instead of dividing the whole energy interval
in contiguous sub-intervals overlapping only in one point (in
the following simply referred to as contiguous intervals), one
can divide it in sub-intervals overlapping in a finite energy

2 This is for instance the case for the popular heat-bath and Metropolis
update schemes.
3 For instance, in a d-dimensional Ising system of size Ld , to go from
one ground state to the other one needs to create a kink, which has
energy growing as Ld−1.
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Fig. 1 Left For contiguous energy intervals if a transition between
configurations with energy in the same interval requires going through
configurations with energy that are outside that interval, the simulation
might get trapped in one of the allowed regions. Right For overlap-

ping energy intervals with replica exchange, the simulation can travel
from one allowed region to the other through excursions to the upper
interval

region (this case will be referred to as overlapping intervals).
With the latter prescription, after a fixed number of iterations
of the Robbins–Monro procedure, we can check whether in
any pairs of overlapping intervals (I1, I2) the energy of both
corresponding configurations is in the common region. For
pairs fulfilling this condition, we can propose an exchange
of the configurations with a Metropolis probability

Pswap = min

(
1, e

(
a(n)
I1

−a(n)
I2

)(
EC1−EC2

))
, (2.49)

where a(n)
I1

and a(n)
I2

are the values of the parameter a at
the current n-th iterations of the Robbins–Monro procedure,
respectively, in intervals I1 and I2 and EC1 (EC2 ) is the value
of the energy of the current configuration C1 (C2) of the
replica in the interval I1 (I2). If the proposed exchange is
accepted, C1 → C2 and C2 → C1. With repeated exchanges
of configurations from neighbour intervals, the system can
now travel through all configuration space. A schematic illus-
tration of how this mechanism works is provided in Fig. 1.

As already noticed in [18], the replica exchange step is
amenable to parallelisation and hence can be conveniently
deployed in calculations on massively parallel computers.
Note that the replica exchange step adds another tuneable
parameter to the algorithm, which is the number NSWAP of
configurations swaps during the Monte-Carlo simulation at
a given Monte-Carlo step. A modification of the LLR algo-
rithm that incorporates this step can easily be implemented.

2.6 Reweighting with the numerical density of states

In order to screen our approach outlined in Sects. 2.2 and
2.3 for ergodicity violations and to propose an efficient pro-
cedure to calculate any observable once an estimate for the
density of states has been obtained, as an alternative to the
replica exchange method discussed in the previous section,

we here introduce an importance sampling algorithm with
re-weighting with respect to the estimate ρ̃. This algorithm
features short correlation times even near critical points. Con-
sider for instance a system described by the canonical ensem-
ble. We define a modified Boltzmann weight WB(E) as fol-
lows:

WB(E) =
⎧⎨
⎩
eβ1E+c1 for E < Emin ;
1/ρ̃(E) for Emin ≤ E ≤ Emax ;
eβ2E+c2 for E > Emax .

(2.50)

Here Emin and Emax are two values of the energy that are far
from the typical energy of interest E :

Emin 	 E 	 Emax . (2.51)

If conventional Monte-Carlo simulations can be used for
numerical studies of the given system, we can choose β1

and β2 from the conditions

〈E(βi )〉 = Ei , i = 1, 2 . (2.52)

If importance sampling methods are inefficient or unreliable,
β1 and β2 can be chosen to be the micro-canonical βμ corre-
sponding respectively to the density of states centred in Emin

and Emax. These βμ are outputs of our numerical determi-
nation ρ̃(E). The two constants c1 and c2 are determined by
requiring continuity of WB(E) at Emin and at Emax:

lim
E→E−

min

WB(E) = lim
E→E+

min

WB(E) and lim
E→E−

max

WB(E)

= lim
E→E+

max

WB(E) . (2.53)

Let ρ(E) be the correct density of state of the system. If
ρ̃(E) = ρ(E), then for Emin ≤ E ≤ Emax

ρ(E)WB(E) = 1 , (2.54)
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and a Monte-Carlo update with weights WB(E) drives the
system in configuration space following a random walk in
the energy. In practice, since ρ̃(E) is determined numerically,
upon normalisation

ρ(E)WB(E) � 1 , (2.55)

and the random walk is only approximate. However, if ρ̃(E)

is a good approximation of ρ(E), possible free energy bar-
riers and metastabilities of the canonical system can be suc-
cessfully overcome with the weights (2.50). Values of observ-
ables for the canonical ensemble at temperature T = 1/β can
be obtained using re-weighting:

〈O(β)〉 = 〈OeβE (WB(E))−1〉W
〈eβE (WB(E))−1〉W , (2.56)

where 〈 〉 denotes average over the canonical ensemble and
〈 〉W average over the modified ensemble defined in (2.50).
The weights WB(E) guarantee ergodic sampling with small
auto-correlation time for the configurations with energies E
such that Emin ≤ E ≤ Emax, while suppressing to energy
E 	 Emin and E � Emax. Hence, as long as for a given β

of the canonical system E = 〈E〉 and the energy fluctuation
�E = √〈E2〉 − 〈E〉2 are such that

Emin 	 E − �E and E + �E 	 Emax , (2.57)

the re-weighting (2.56) does not present any overlap prob-
lem. The role of Emin and Emax is to restrict the approximate
random walk only to energies that are physically interesting,
in order to save computer time. Hence, the choice of Emin,
Emax and of the corresponding β1, β2 do not need to be fine-
tuned, the only requirement being that Eq. (2.57) hold. These
conditions can be verified a posteriori. Obviously, choosing
the smallest interval Emax−Emin where the conditions (2.57)
hold optimises the computational time required by the algo-
rithm. The weights (2.56) can easily be imposed using a
metropolis or a biased metropolis [19]. Again, due to the
absence of free energy barriers, no ergodicity problems are
expected to arise. This can be checked by verifying that in
the simulation there are various tunnellings (i.e. round trips)
between Emin and Emax and that the frequency histogram of
the energy is approximately flat between Emin and Emax. Rea-
sonable requirements are to have O(100−1000) tunnellings
and an histogram that is flat within 15–20 %. These crite-
ria can be used to confirm that the numerically determined
ρ̃(E) is a good approximation of ρ(E). The flatness of the
histogram is not influenced by the β of interest in the original
multi-canonical simulation. This is particularly important for
first order phase transitions, where traditional Monte-Carlo
algorithms have a tunnelling time that is exponentially sup-
pressed with the volume of the system. Since the modified

ensemble relies on a random walk in energy, the tunnelling
time between two fixed energy densities is expected to grow
only as the square root of the volume.
This procedure of using a modified ensemble followed by
re-weighting is inspired by the multi-canonical method [20],
the only substantial difference being the recursion relation for
determining the weights. Indeed for U(1) lattice gauge the-
ory a multi-canonical update for which the weights are deter-
mined starting from a Wang–Landau recursion is discussed
in [7]. We also note that the procedure used here to restrict
ergodically the energy interval between Emin and Emax can
easily be implemented also in the replica exchange method
analysed in the previous subsection.

3 Application to compact U(1) lattice gauge theory

3.1 The model

Compact U(1) lattice gauge theory is the simplest gauge the-
ory based on a Lie group. Its action is given by

S = β
∑
x,μ<ν

cos(θμν(x)) , (3.1)

where β = 1/g2, with g2 the gauge coupling, x is a point of
a d-dimensional lattice of size Ld and μ and ν indicate two
lattice directions, with index from 1 to d (for simplicity, in
this work we shall consider only the case d = 4), θμν plays
the role of the electromagnetic field tensor: if we associate
the compact angular variable θμ(x) ∈ [−π;π [ with the link
stemming from i in direction μ̂,

θμν(x) = θμ(x) + θν(x + μ̂) − θμ(x + ν̂) − θν(x) . (3.2)

The path integral of the theory is given by

Z =
∫

Dθμ eS, Dθμ =
∏
x,μ

dθμ(x)

2π
, (3.3)

the latter identity defining the Haar measure of the U(1)
group.
The connection with the general framework of lattice gauge
theories is better elucidated if we introduce the link variable

Uμ(x) = eiθμ(x) . (3.4)

With this definition, S can be rewritten as

S = β
∑
x,μ<ν

Re Pμν(x) , (3.5)

with

Pμν(x) = Uμ(x)Uν(x + μ̂)U∗
μ(x + ν̂)U∗

ν (x)
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the plaquette variable, andU∗
μ(x) is the complex conjugate of

Uμ(x). Working with the variables Uμ(x) allows us to show
immediately that S is invariant under U(1) gauge transfor-
mations, which act as

Uμ(x) �→ �∗(x) Uμ(x) �(x + μ̂) , �(x) = eiλ(x) ,

(3.6)

with λ(x) ∈ [−π; π [ a function defined on lattice points.
The connection with U(1) gauge theory in the continuum

can be shown by introducing the lattice spacing a and the
non-compact gauge field a Aμ(x) = θμ(x)/g, so that

Uμ(x) = eiga Aμ(x) . (3.7)

Taking a small and expanding the cosine leads us to

S = −1

4
a4
∑
x,μ,ν

(
�μAν(x) − �ν Aμ(x)

)2

+O(a6) + constant, (3.8)

with �μ the forward difference operator. In the limit a → 0,
we finally find

S � −1

4

∫
d4xFμν(x)

2, (3.9)

with Fμν being the usual field strength tensor. This shows that
in the classical a → 0 limit S becomes the Euclidean action
of a free gas of photons, with interactions being related to the
neglected lattice corrections. It is worth to remark that this
classical continuum limit is not the continuum limit of the
full theory. In fact, this classical continuum limit is spoiled by
quantum fluctuations. These prevent the system from devel-
oping a second order transition point in the a → 0 limit,
which is a necessary condition to be able to remove the ultra-
violet cutoff introduced with the lattice discretisation. The
lack of a continuum limit is related to the fact that the theory is
strongly coupled in the ultraviolet. Despite the non-existence
of a continuum limit for compact U(1) lattice gauge theory,
this lattice model is still interesting, since it provides a simple
realisation of a weakly first order phase transition. This bulk
phase transition separates a confining phase at low β (whose
existence was pointed out by Wilson [21] in his seminal work
on lattice gauge theory) from a deconfined phase at high β,
with the transition itself occurring at a critical value of the
coupling βc � 1. Rather unexpectedly at first side, impor-
tance sampling Monte-Carlo studies of this phase transitions
turned out to be demanding and not immediate to interpret,
with the order of the transition having been debated for a
long time (see e.g. [22–31]). The issue was cleared only rel-
atively recently, with investigations that made a crucial use of
supercomputers [32,33]. What makes the transition difficult

to observe numerically is the role played in the deconfine-
ment phase transition by magnetic monopoles [34], which
condense in the confined phase [34,35].

The existence of topological sectors and the presence of
a transition with exponentially suppressed tunnelling times
can provide robust tests for the efficiency and the ergodicity
of our algorithm. This motivates our choice of compact U(1)
for the numerical investigation presented in this paper.

3.2 Simulation details

The study of the critical properties of U(1) lattice gauge the-
ory is presented in this section. In order to test our algorithm,
we investigated the behaviour of specific heat as a function of
the volume. This quantity has been carefully investigated in
previous studies, and as such provides a stringent test of our
procedure. In order to compare data across different sizes,
our results will be often provided normalised to the number
of plaquette 6L4 = 6V .

We studied lattices of size ranging from 84 to 204 and for
each lattice size we computed the density of states ρ(E) in
the interval Emin ≤ E ≤ Emax (see Table 1). The rationale
behind the choice of the energy region is that it must be cen-
tred around the critical energy and it has to be large enough
to study all the critical properties of the theory, i.e. every
observable evaluated has to have support in this region and
have virtually no correction coming from the choice of the
energy boundaries.

We divided the energy interval in steps of δE and for each
of the sub-interval we have repeated the entire generation
of the log-linear density of states function and evaluation of
the observables NB = 20 times to create the bootstrap sam-
ples for the estimate of the errors. The values of the other
tuneable parameters of the algorithm used in our study are
reported in Table 1. An example determination of one of
the ai is reported in Fig. 2. The plot shows the rapid conver-
gence to the asymptotic value and the negligible amplitude of
residual fluctuations. Concerning the cost of the simulations,
we found that accurate determinations of observables can be
obtained with modest computational resources compared to
those needed in investigations of the system with importance
sampling methods. For instance, the most costly simulation
presented here, the investigation of the 204 lattice, was per-
formed on 512 cores of Intel Westmere processors in about
five days. This needs to be contrasted with the fact that in the
early 2000s only lattices up to 184 could be reliably inves-
tigated with importance sampling methods, with the largest
sizes requiring supercomputers [32,33].

One of our first analyses was a screening for potential
ergodicity violations with the LLR approach. As detailed in
Sect. 2.5, these can emerge for LLR simulations using con-
tiguous intervals as is the case for the U(1) study reported
in this paper. To this aim, we calculated the action expecta-
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Table 1 Values of the tuneable
parameters of the LLR
algorithm used in our numerical
investigation, in the last column
we report the total number of
global MC steps needed to
perform the entire investigation

L Emin/(6V ) Emax/(6V ) NSW NRM (Emax − Emin)/δE MC Steps

8 0.5722222 0.67 250 600 512 7.7 107

10, 12, 14, 0.59 0.687777 200 400 512 4.1 107

16, 18, 20

tion value 〈E〉 for a 124 lattice for several values using the
LLR method and using the re-weighting with respect to the
estimate ρ̃. Since the latter approach is conceptually free of
ergodicity issues, any violations by the LLR method would
be flagged by discrepancy. Our findings are summarised in
Fig. 3 and the corresponding table. We find good agreement
for the results from both methods. This suggests that topo-
logical objects do not generate energy barriers that trap our
algorithm in a restricted section of configuration space. Said

0 100 200 300 400
 Robbins-Monro iteration

-1.003

-1.0025

-1.002

-1.0015

-1.001

-1.0005

-1

 a

Fig. 2 Estimated ai as a function of the Robbins–Monro iteration, on
a 204 lattice and for action E/(6V ) = 0.59009548 at the centre of the
interval with δE/V = 1.91 × 10−4

in other words, for this system the LLR method using con-
tiguous intervals seems to be ergodic.

3.3 Volume dependence of log ρ̃ and computational
cost of the algorithm

As a first investigation we have performed a study of the
scaling properties of the ai as a function of the volume. In
Fig. 4 we show the behaviour of theai with the lattice volume.
The estimates are done for a fixed δE/V , where the chosen
value for the ratio fulfils the request that within the errors all
our observables are not varying for δE → 0 (we report on the
study of δE → 0 in Sect. 3.5). As is clearly visible from the
plot, the data are scaling towards an infinite volume estimate
of the ai for fixed energy density.

As mentioned before, the issue facing importance sam-
pling studies at first order phase transitions are connected
with tunnelling times that grow exponentially with the vol-
ume. With the LLR method, the algorithmic cost is expected
to grow with the size of the system as V 2, where one factor
of V comes from the increase of the size and the other factor
of V comes from the fact that one needs to keep the width
of the energy interval per unit of volume δE/V fixed, as in
the large-volume limit only intensive quantities are expected
to determine the physics. One might wonder whether this
apparently simplistic argument fails at the first order phase
transition point. This might happen if the dynamics is such
that a slowing down takes place at criticality. In the case of
compact U(1), for the range of lattice sizes studied here, we
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〈E〉/(6V )
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Fig. 3 Comparison between the plaquette computed with the LLR algorithm (see Sect. 2.2) and via re-weighting with respect to the estimate ρ̃

(see Sect. 2.6) for a L = 12 lattice.
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Fig. 4 Estimate of ai as a function of the energy density for various volumes. The right panel is a zoom of the interesting region

Table 2 βc(L) evaluated with the LLR algorithm and reference data
from [32]

L βc(L) present method βc(L) reference values

8 1.00744(2) 1.00741(1)

10 1.00939(2) 1.00938(2)

12 1.010245(1) 1.01023(1)

14 1.010635(5) 1.01063(1)

16 1.010833(4) 1.01084(1)

18 1.010948(2) 1.010943(8)

20 1.011006(2)

have found that the computational cost of the algorithm is
compatible with a quadratic increase with the volume.

3.4 Numerical investigation of the phase transition

Using the density of states it is straightforward to evaluate,
by direct integration (see Sect. 2.3), the expectation values
of any power of the energy and evaluate thermodynamical
quantities like the specific heat

CV (β) = 〈E2(β)〉 − 〈E(β)〉2. (3.10)

As usual we define the pseudo-critical coupling βc(L) such
as the coupling at which the peak of the specific heat occurs
for a fixed volume. The peak of the specific heat has been
located using our numerical procedure and the error bars
are computed using the bootstrap method. Our results are
summarised in Table 2 with a comparison with the values in
[32]. Once again, the agreement testifies to the good ergodic
properties of the algorithm.

Using our data it is possible to make a precise estimate
of the infinite volume critical beta by means of a finite size
scaling analysis. The finite size scaling of the pseudo-critical
coupling is given by

Table 3 Estimates of βc for various choices of the fit parameters. In
bold the best fits

Lmin kmax βc χ2
red

14 1 1.011125(3) 0.91

12 1 1.011121(3) 2.42

12 2 1.011129(4) 0.67

10 1 1.011116(5) 7.44

10 2 1.011127(3) 0.60

8 1 1.011093(5) 90.26

8 2 1.011126(2) 0.62

βc(L) = βc +
kmax∑
k=1

BkL
−4k, (3.11)

where βc is the critical coupling. We fit our data with the
function in Eq. (3.11); the results are reported in Table 3.

Another quantity easily accessible is the latent heat. This
quantity can be related to the height of the peak of the specific
heat at the critical temperature through:

CL(βc(L))

6L4 = G2

4
+

kmax∑
k=1

CkL
−4k, (3.12)

where G is the latent heat. Our results for this observable
are reported in Table 4. We fit the result with Eq. (3.12); see
Table 5.

The latent heat can be obtained also from the knowledge
of the location of the peaks of the probability density at βc (of
infinite volume), indeed in this case the latent heat is equal
to energy gap between the peaks. This direct measure can be
used as crosscheck of the previous analysis. In the language
of the density of states the probability density is simply given
by

Pβ(E) = 1

Z
ρ(E)eβE . (3.13)
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Table 4 CV (βc(L)) evaluated with the LLR algorithm and reference
data from [32]. Results for a 204 lattice have never been reported before
in the literature

L CV /(6V ) peak
present work

CV /(6V ) peak
from [32]

8 0.000551(2) 0.000554(1)

10 0.000384(2) 0.000385(1)

12 0.0002971(11) 0.000298(1)

14 0.0002537(8) 0.000254(1)

16 0.0002272(7) 0.000226(2)

18 0.0002097(5) 0.000211(2)

20 0.0002007(4)

Table 5 Estimates of G for various choices of the fit parameters. In
bold the best fits

Lmin kmax G χ2
red

14 1 0.02712(9) 4.6

12 1 0.0273(2) 31

12 2 0.02688(7) 1.4

10 1 0.0276(2) 74

10 2 0.02710(12) 9.7

10 3 0.02681(9) 1.4

8 1 0.0281(4) 335

8 2 0.02731(15) 26

8 3 0.02703(11) 6.7

0.61 0.62 0.63 0.64 0.65 0.66 0.67

E/(6V)

0

20

40

60

80

100

120

P
β(

E
)

Fig. 5 Probability density for L = 20 at βc. The probability is plotted
at βc of infinite volume hence the peaks are not of equal height

We have performed the study of the location in energy of
the two peaks of Pβc (E) (an example is displayed in Fig. 5)
and we have reported them in Table 6. Also in this case we
have performed a finite size scaling analysis to extract the
infinite volume behaviour:

Ei (L)/(6V ) = εi + ai e
−bi L . (3.14)

Table 6 Location of the peak of the probability density in the two
meta-stable phases

L E1/(6V ) E2/(6V )

12 0.6263(5) 0.65580(14)

14 0.6264(2) 0.65532(5)

16 0.6272(2) 0.65512(4)

18 0.6274(4) 0.65495(6)

20 0.6275(2) 0.65491(7)

Table 7 Values of δE used to perform the study of the discretisation
effects. The other simulation parameters are kept identical to the one
reported in Table 1

L (Emax − Emin)/δE

10 8, 16, 32, 64, 128, 512

12 8, 16, 20, 32, 64, 128, 512

14 16, 32, 64, 512

16 16, 32, 64, 128, 512

A fit of the values in Table 6 yields χ2
red,1 = 0.67, ε1 =

0.6279(9) and χ2
red,2 = 0.2, ε2 = 0.65485(4). The latent

heat can be evaluated as G = ε2 − ε1 = 0.0270(9), which is
in perfect agreement with the estimates obtained by studying
the scaling of the specific heat.

3.5 Discretisation effects

In this section we want to address the dependence of our
observables from the size of energy interval δE . In order to
quantify this effect we study the dependence of the peak
of the specific heat Cv,peak with δE for various lattice sizes,
namely 8, 10, 12, 14, 16. In Table 7 we report the lattice sizes
and the corresponding δE used to perform such investigation.
For each pair of δE and volume reported we have repeated
all our simulations and analysis with the same simulation
parameters reported in Table 1.

The choice of the specific heat as an observable for such
investigation can easily be justified: we found that specific
heat is much more sensible to the discretisation effects with
respect to other simpler observables such as the plaquette
expectation value. In Fig. 6 we report an example of such
study relative to L = 8.

We can confirm that all our data are scaling with quadratic
law in δE consistent with our findings in Sect. 2.3. Indeed by
fitting our data with a form

CV (βc(L), δE ) = CV (βc(L)) + 6Vbdisδ
2
E , (3.15)

we found χ2
red ∼ 1 for all lattice sizes we investigated. We

report in Table 8 the values of bdis . Note that the numerical
values used in our finite size scaling analysis of the peak of
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Fig. 6 The peak of the CV (βC (L)) as a function δE

Table 8 The coefficient bdis for
different lattice sizes L bdis

8 −3.1(2) 10−10

10 −5.9(4) 10−11

12 −1.8(1) 10−11

14 −4(1) 10−12

16 −9(3) 10−13

CV presented in the previous section are compatible with the
results extrapolated to δE = 0 obtained here.

4 Discussion, conclusions and future plans

The density of states ρ(E) is a measure of the number of con-
figurations on the hyper-surface of a given action E . Know-
ing the density of states relays the calculation of the partition
function to performing an ordinary integral. Wang–Landau
type algorithms perform Markov chain Monte-Carlo updates
with respect to ρ while improving the estimate for ρ during
simulations. The LLR approach, first introduced in [9], uses
a non-linear stochastic equation (see (2.17)) for this task and
is particularly suited for systems with continuous degrees of
freedom. To date, the LLR method has been applied to gauge
theories in several publications, e.g. [10–12,14], and it has
turned out in practice to be a reliable and robust method. In the
present paper, we have thoroughly investigated the founda-
tions of the method and have presented high-precision results
for the U(1) gauge theory to illustrate the excellent perfor-
mance of the approach.

Two key features of the LLR approach are:

(i) It solves an overlap problem in the sense that the method
can specifically target the action range that is of particular

importance for an observable. This range might easily
be outside the regime for which standard MC methods
would be able to produce statistics.

(ii) It features exponential error suppression: although the
density of states ρ spans many orders of magnitude, ρ̃, the
density of states defined from the linear approximation of
its log, has a nearly constant relative error (see Sect. 2.2)
and the numerical determination of ρ̃ preserves this level
of accuracy.

We point out that feature (i) is not exclusive of the LLR
method, but is quite generic for multi-canonical tech-
niques [20], Wang–Landau type updates [4] or hybrids
thereof [7].

Key ingredient for the LLR approach is the double-bracket
expectation value [9] (see (2.13)). It appears as a standard
Monte-Carlo expectation value over a finite action interval
of size δE and with the density of states as a re-weighting
factor. The derivative of the density of states a(E) emerges
from an iteration involving these Monte-Carlo expectation
values. This implies that their statistical errors interfere with
the convergence of the iteration. This might introduce a bias
preventing the iteration to converge to the true derivative
a(E). We resolved this issue by using the Robbins–Monro
formalism [15]: we showed that a particular type of under-
relaxation produces a normal distribution of the determined
values a(E) with the mean of this distribution coinciding
with the correct answer (see Sect. 2.2).

In this paper, we also addressed two concerns, which were
raised in the wake of the publication of Ref. [9]:

(1) The LLR simulations restrict the Monte-Carlo updates
to a finite action interval and might therefore be prone to
ergodicity violations.

(2) The LLR approach seems to be limited to the calculation
of action dependent observables only.

To address the first issue, we have proposed in Sects. 2.5
and 2.6 two procedures that are conceptually free of ergod-
icity violations. The first method is based upon the replica
exchange method [17,18]: using overlapping action ranges
during the calculation of the double-bracket expectation val-
ues offers the possibility to exchange the configurations of
neighbouring action intervals with appropriate probability
(see Sect. 2.5 for details). The second method is a standard
Monte-Carlo simulation but with the inverse of the estimated
density of states, i.e., ρ̃−1(E), as re-weighting factor. The
latter approach falls into the class of ergodic Monte-Carlo
update techniques and is not limited by a potential overlap
problem: if the estimate ρ̃ is close to the true density ρ, the
Monte-Carlo simulation is essentially a random walk in con-
figuration space sweeping the action range of interest.
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To address issue (2), we first point out that the latter re-
weighting approach produces a sequence of configurations
that can be used to calculateanyobservable by averaging with
the correct weight. Second, we have developed in Sect. 2.2
the formalism to calculate any observable by a suitable sum
over a combination of the density of states and double-bracket
expectation values involving the observable of interest. We
were able to show that the order of convergence (with the size
δE of the action interval) for these observables is the same as
for ρ itself (i.e., O(δ2

E )).
In view of the features of the density of states approach,

our future plans naturally involve investigations that either
are enhanced by the direct access to the partition function
(such as the calculation of thermodynamical quantities) or
that are otherwise hampered by an overlap problem. These,
most notably, include complex action systems such as cold
and dense quantum matter. The LLR method is very well
equipped for this task since it is based upon Monte-Carlo
updates with respect to the positive (and real) estimate of the
density of states and features an exponential error suppres-
sion that might beat the resulting overlap problem. Indeed,
a strong sign problem was solved by LLR techniques using
the original degrees of freedom of the Z3 spin model [10,11].
We are currently extending these investigations to other finite
density gauge theories. QCD at finite densities for heavy
quarks (HDQCD) is work in progress. We have plans to
extend the studies to finite density QCD with moderate quark
masses.
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Appendix A: Reference scale and volume scaling

Here, we will present further details on the scaling of the
density of states ρ(E) with the volume V of our system. To
this aim, we will work in the regime of a finite correlation
length ξ such that the volume V � ξ4. In the case of particle
physics, ξ is a multiple of the inverse mass of the lightest
excitation of the theory. In this subsection, we do not address
the case of a correlation length comparable or larger than

the size of the system, as it might occur near a second order
phase transition.

Under these assumptions, the total action appears as a sum
over uncorrelated contributions:

E =
v∑

i=1

ei , v = V/ξ4, (A.1)

where the dimensionless variable v is the volume in units
of the (physical) correlation length. To ease the notation, we
will assume that the densities ρ and ρ̃ are normalised to one.
Taking advantage of the above observation, we can intro-
duce the probability distribution ρ̃(ei ) for the uncorrelated
domains:

ρ(E) =
∫ v∏

i=1

dei δ

(
E −

v∑
k=1

ek

)
ρ̃(e1) . . . ρ̃(ev). (A.2)

Representing the δ-function as a Fourier integral, we find

ρ(E) =
∫

dα

2π

∫ v∏
i=1

dei e
−i αE ei αe1 . . . ei αev ρ̃(e1) . . . ρ̃(ev)

=
∫

dα

2π
e−i αE

〈
ei αe

〉v
. (A.3)

The latter equation is the starting point for a study of moments
and cumulants of the action expectation values and their scal-
ing with the volume.

Cumulants of the action E are defined by

(En)c = (−i)n
dn

dβn
ln
∫

dE eiβE ρ(E)

∣∣∣
β=0

. (A.4)

Inserting (A.3) into (A.4), performing the E and the α inte-
gration leaves us with

(En)c = (−i)n
dn

dβn
ln
〈
exp{iβe}

〉v∣∣∣
β=0

= v (en)c,

(A.5)

where the volume independent cumulants are defined by

(en)c = (−i)n
dn

dβn
ln
〈
exp{iβe}

〉∣∣∣
β=0

. (A.6)

We here make the important observation that all cumulants
are proportional to the “volume” v rather than powers of it.
Re-summing (A.6), i.e. using the identity

∑
n

inαn

n! (en)c = ln
〈
exp{iα e}

〉
,

we find for ρ(E) in (A.3)

ρ(E) =
∫

dα

2π
e−iαE exp

{
v
∑
n

(i α)n

n! (en)c
}
. (A.7)
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We perform the α-integral by using the expansion

ρ(E) = exp

{
v

∞∑
n=3

(en)c
n!

(
− d

dE

)n
}

ρ0(E), (A.8)

ρ0(E) =
∫

dα

2π
e−iαE exp

{
i v(e)c α − v

(e2)c

2
α2
}

= 1√
2πv (e2)c

exp

{
− v

2 (e2)c
[E/v − (e)c]2

}
.

(A.9)

In next-to-leading order, we obtain (up to an additive con-
stant):

1

v
ln ρ(E) ≈ −[(e)c − E/v]2

2 (e2)c

− (e3)c

6 (e2)3
c
[(e)c − E/v]3 + O(1/v). (A.10)

Hence, we find for the inverse temperature ak

ak = d ln ρ

dE

∣∣∣
E=Ek

≈ (e)c − Ek/v

(e2)c
+ (e3)c

2(e2)3
c

[
(e)c − Ek/v

]2
. (A.11)

We therefore confirm that ak is an intrinsic quantity, i.e.,
volume independent. The curvature of ln ρ at E = EK is
given by

d2 ln ρ

dE2

∣∣∣
E=Ek

≈ − 1

v

[
1

(e2)c
+ (e3)c

(e2)3
c

[
(e)c − Ek/v

]]
.

(A.12)

We therefore confirm the key thermodynamic assumptions
in (2.5) by explicit calculation:

d ln ρ(E)

dE

∣∣∣
E=Ek

= ak = O(1),

d2 ln ρ(E)

dE2

∣∣∣
E=Ek

= O(1/v). (A.13)
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