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Contrasting movement strategies 
among juvenile albatrosses and 
petrels
Sophie de Grissac1,2, Luca Börger3, Audrey Guitteaud1 & Henri Weimerskirch1,2

Animal movement is a fundamental eco-evolutionary process yet the behaviour of juvenile animals 
is largely unknown for many species, especially for soaring seabirds which can range widely over 
the oceans at low cost. We present an unprecedented dataset of 98 juvenile albatrosses and petrels 
(nine species), tracked for the first three months after independence. There was a startling diversity 
within and among species in the type and scale of post-natal movement strategies, ranging from 
area-restricted to nomadic patterns. Spatial scales were clustered in three groups that ranged from 
<3000 km to >6000 km from the natal nest. In seven of the nine species, the orientation of flight 
paths and other movement statistics showed strong similarities between juveniles and adults, 
providing evidence for innate orientation abilities. Our results have implications for understanding the 
development of foraging behaviour in naïve individuals and the evolution of life history traits such as 
survival, lifespan and breeding strategy.

Juvenile and immature individuals play a key role in the dynamics of animal populations1, particularly in 
long-lived species for which they can represent up to 50% of the total population2. It is therefore essential to 
account for the specific traits and strategy of juveniles when modelling the fate of populations3. However, for most 
species, the behaviour and fate of juveniles remain almost unknown. In animals with parental care, the critical 
stage for juveniles is when they start to move and forage independently. At this stage, juveniles generally suffer 
high mortality, which is likely a result of low foraging efficiency or non-optimal morphology compared to that 
of adults4,5. How such naïve individuals navigate in their environment, especially for large scale dispersive move-
ments such as migration or exploration, has been identified as a priority for research6.

The concept of dispersal, or natal dispersal, is often used to describe the movement of a juvenile leaving its 
natal grounds to breed elsewhere7. This therefore excludes the post-fledging movements of highly philopatric spe-
cies, which return to breed at their natal colonies. However, as pointed out in recent studies8, dispersal includes 
the “movement of new fledglings in all directions with no inherent directional preferences”. These movements 
may, in time, lead to ‘true’ dispersal, in the most commonly used sense7, or to the birds’ return to their colony of 
origin.

Substantial individual variability has been documented in the dispersal behaviour of terrestrial animals7,9. 
Individuals move in heterogeneous environments, making their displacement landscape-dependant. Indeed, 
non-flying terrestrial animals are severely constrained by movement costs related to energy landscapes10,11. While 
birds are far less constrained, terrestrial birds still generally follow topographic features and landmasses during 
their migration or dispersal, and use specific sites for stop-overs8.The case of seabirds is very different, as adults 
have capacities for large scale movements over open, comparatively featureless oceans12,13. This is particularly 
true for procellariiform species (albatrosses and petrels), which can undertake extremely long migratory move-
ments14,15. When juvenile petrels and albatrosses leave their nests for the first time, they have ‘the world as their 
oyster’, in that they can potentially fly at low metabolic costs, using winds to move in a vast, apparently homog-
enous, environment. These naive birds face no topographic constraints on where and when to move. Whilst the 
oceanic realm is certainly not a featureless environment for seabirds that are known to be sensitive to oceano-
graphic features such as bathymetry, currents, wind zonation, eddies, or odours such as dimethyl sulphide16, the 
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spatial scales are larger than in terrestrial habitats by many orders of magnitude17. This adds further interest to the 
question of how these animals forage in the marine environment.

In most seabird species, juveniles leave their natal grounds independently from their parents, and thus have 
to explore the environment and learn to forage entirely on their own. Existing studies on land birds have shown 
that juveniles may follow an innate navigation programme to some extent, while acquiring cues to improve their 
foraging proficiency14. The innate parts of juvenile movements can be similar to the movements of adults for some 
species18, while for others they may differ19,20 with respect to the timing21,22, track characteristics (e.g. sinuosity23) 
or route choice (e.g. less productive areas4,22,24). These differences in terrestrial birds have generally been explained 
by the lack of experience in juveniles25 leading to navigation errors. Though a lower competitiveness on foraging 
grounds in relation to adults26 may also have selected for endogenous post-fledging dispersal programmes that 
favour intra-specific spatial segregation. However, very limited data exist to allow a general understanding of the 
dispersal movements of juvenile seabirds within and across species. Without a strict endogenous programme and 
highly constraining landscape features, we may expect juvenile seabirds’ movements to vary considerably within 
and between species.

Here we present the first cross-species study of post-fledging movements in juvenile seabirds, comparing the 
large-scale movement strategies of juveniles from nine closely related procellariiform species during their first 
months at sea. The nine species, i.e. two species of great albatrosses, two species of mollymawk albatrosses, two 
species of sooty albatrosses, two species of giant petrels and one species of petrel (Table 1), constitute an ideal 
study system as they breed in the central Indian Ocean (Supplementary Fig. 1) and face similar environmental 
conditions when they leave their natal breeding sites. Adults of the nine species exhibit contrasting movement 
patterns during the inter-breeding period, i.e. when they are not central place foragers. They either show a typical 
migratory behaviour, i.e. moving regularly from breeding grounds to winter quarters and back27, ranging widely in 
the Southern Ocean with no specific destination, or remain near the breeding grounds throughout the year20,28–30.  
These species also show contrasting life history strategies, with great albatrosses and sooty albatrosses being 
longer lived than the other species, and juvenile survival being very different between species31–33. By comparing 
movement types and characteristics, we can test whether juveniles of each species follow a programmed route, 
whether their routes or destinations follow those of the adults or whether they differ in timing, directionality, sin-
uosity or targeted habitat type8,23,34. For example, rapid movement away from the natal colony or use of different 
areas than those used by adults may reduce intraspecific competition since it is generally assumed that competi-
tion between immatures and older birds leads to spatial segregation between age-classes4,19,26. Such competition 
may have consequences on individual fitness and population dynamics4,35.

The specific questions we want to address in this study are (1) Do closely related seabird species differ in their 
movements during the first months of independence at sea? (2) Do naïve juvenile birds have similar movement 
patterns to those of their parents? (3) Do the movement trajectories provide evidence of an innate navigation 
programme, implying unique fixed departure directions or direct orientation towards specific foraging areas 
instead of random movements? We discuss the implication that differences in movement behaviour may have on 
the evolution of life history components such as juvenile survival.

Taxa Species Scientific name
Species 

code
Mass 
(kg) Colony

Juveniles Adults

N
Tracking 

time N
Tracking 

time

Great albatrosses
Amsterdam albatross Diomedea amsterdamensis AMAL 8.0 A 11 123 ±  91 

(21–280) 8 329 ±  48 
(252–369)

Wandering albatross Diomedea exulans WAAL 10.9 C, K 23 159 ±  89 
26–379) 10 222.3 ±  13 

(330–366)

Mollymawks
Yellow-nosed albatrosss Thalassarche carteri YNAL 2.6 A 4 48 ±  40 

(3.0–94) 10 320 ±  31.6 
(198–297)

Black-browed albatross Thalassarche melanophris BBAL 3 K 12 69 ±  30 
(15–96) 10 373 ±  26 

(165–249)

Sooty albatrosses
Sooty albatross Phoebetria fusca SOAL 2.8 A, C 13 107 ±  79 

(2–254) 10 310 ±  52 
(174–375)

Light mantled sooty 
albatross Phoebetria palpebrata LMSA 3.3 C, K 7 90 ±  60 

(8–186) 10 136 ±  28 
(273–366)

Giant petrels
Northern giant petrel Macronectes halli NOGP 5 C, K 10 118 ±  61 

(44–227) 10 346 ±  15 
(351–387)

Southern giant petrel Macronectes giganteus SOGP 5 C 5 96 ±  65 
(43–190) 10 322 ±  8 

(120–144)

Petrel White-chinned petrel Procellaria aequinoctialis WCPE 1.2 C, K 13 48 ±  42 
(15–109) 10 271 ±  14 

(303–336)

Total 98 96 ± 37 88 292 ± 73

Table 1.  Dataset information. Abbreviation used, mass, colony of origin and number of birds equipped with 
tracking duration (mean ±  standard deviation (minimum–maximum)) by species, for juveniles and adults. 
Masses are only indicative for species and obtained from literature73. A, C and K are respectively Amsterdam, 
Crozet and Kerguelen Islands.
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Results

Comparison between juveniles. General movement patterns. The Net Squared Displacement (NSD) 
method36 was used to model and identify typical large-scale movement types (Supplementary Methods 2-Fig. 1). 
We observed that juveniles showed striking interspecific differences in displacement behaviour in the first three 
months after leaving the natal colony. Movement types ranged from sedentary to nomadic patterns (Table 2, 
Fig. 1), and included migratory-like movements and a specific pattern that we named “large-scale looping type” 
(Fig. 1c). The majority of northern (67%) and southern (100%) giant petrels showed a typical nomadic-type 
movement with large dispersal distances (range at three months > 6000 km, Table 2), and an eastward trajec-
tory, with all individuals circumnavigating Antarctica within the first three months after leaving the natal colony 
(Table 2, Fig. 1a). Some individuals stopped for variable durations in specific areas before resuming their east-
ward movements and four individuals, for which the tracking time exceeded six months, completed a circum-
polar movement and started a second one. In contrast, most juvenile mollymawks (100% of the yellow-nosed 
albatrosses and 86% of the black-browed albatrosses) and white-chinned petrels (100%) showed migratory-type 
movements fitted by the “half-migration” model. Specifically, the migratory–like movements of these spe-
cies included a transit phase of 10–30 days with rapid directional movement, followed by a settling phase in a 
restricted area. Since these movements lacked the return trip, typical of true complete migration, during the 3–6 
month study period, we named the corresponding model ‘half-migration model’ (e.g.: Fig. 1b). These movements 
were carried out over medium spatial scales (the range at three months was shorter than 6000 km but longer than 
3000 km, Table 2, Fig. 1b). Juvenile sooty albatrosses and Amsterdam albatrosses showed more individual varia-
bility that included all displacement types on a small to medium spatial scale (range at three months < 3000 km). 
Overall, the displacement types of these three latter species were not characterized by any clear prevalent dis-
placement strategy, with most individuals remaining within a limited range from the colony through looping 
movements. We therefore grouped these individuals into a category named “large-scale looping type” (Fig. 1c).
Wandering albatrosses showed an even higher intraspecific variability with some individuals moving over a small 
scale in the Indian Ocean and showing a looping behaviour (Fig. 1d: white dots), whereas others (60%, Table 2) 
moved further toward the Australian coast and/or into the Pacific Ocean (Fig. 1d: black and grey dots), adopting 
either half-migratory type movements or large-scale nomadic type movements. These differences in displacement 
lead juveniles of the nine species to relocate to three broad geographic areas, with small-scale dispersers (most 
sooty and great albatrosses) remaining in the central Indian Ocean, medium scale dispersers (mollymawk alba-
trosses, petrels and some wandering albatrosses) making some excursions out of the Indian Ocean, and large scale 
dispersers (giant petrels and some wandering albatrosses) leaving the Indian Ocean, with some birds undertaking 
entire circumpolar navigations.

Orientation at departure and further bearings. Departure flight directions taken by juveniles from their natal 
colony (Fig. 2: black points) had two distinct patterns. 1: An oriented trajectory with very little inter-individual 
variability in flight directions (within species, departure headings range was ≤ π /4, indicating little variation in 
direction, Rayleigh test of uniformity: all P <  0.01,). This was the case for nomadic (giant petrels) and migratory 
type species (mollymawks and white-chinned petrel). These two groups of species also showed a high consistency 
in orientation with time, since the directionality of their position with respect to the colony at month 2 and 3 
(Fig. 2: grey and white points) was similar to the direction taken at departure (bearings range < π /4) with a small 
shift toward east for white-chinned petrels. 2: A high variability in departure heading toward east, west and north 
for the three species exhibiting large-scale looping movements, i.e. the two sooty albatrosses (heading toward 
north, π  >  range <  π /2, Rayleigh test: P >  0.1) and Amsterdam albatrosses (range > π , Rayleigh test: P =  0.73). 
This group with non-oriented flights at departure showed no further consistency in orientation since positions 
were similarly scattered after two and three months. Finally, most wandering albatrosses had a restricted depar-
ture direction (direction range =  1.8 rad, just over π /2) toward NE, but the directionality of positions were not 
consistent beyond departure.

Taxa Species

NSD models

Range at 3 
months

Movement 
ScaleHome-range Nomad

Half 
migration Migration

Giant petrels
NOGP 0 66% 33% 0 17350 ±  2565 large

SOGP 0 100% 0 0 23859 ±  2299 large

Mollymawks
YNAL 0 0 100% 0 4869 medium

BBAL 0 14% 86% 0 5971 ±  1648 medium

Petrels WCPE 0 0 100% 0 4117 ±  510 medium

Sooty albatrosses
LMSA 0 0 50% 50% 2221 ±  1421 small

SOAL 57% 43% 0 0 1730 ±  702 small

Great albatrosses
AMAL 0 43% 57% 0 2943 ±  1525 small

WAAL 0 33% 66% 0 4233 ±  2285 medium

Table 2.  Prevalence of different movement modes for juveniles of nine procellariiform species identified 
using the Net Squared Displacement (NSD) modelling method and movement scale at 3 months.
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Sinuosity and daily distance travelled (DDT). First, the paths of nomadic-type species (giant petrels) were typified 
by a lower sinuosity (S <  0.5) than other species (linear mixed model & post-hoc Tukey test: P <  0.05 when com-
pared to all species except wandering albatross and yellow-nosed albatross, Fig. 3a & Supplementary Results 1).  
They also had the highest DDT (354 ±  58.9 km (SD)) of all species when averaged over the 3 months (linear 
mixed model & post-hoc Tukey test: P <  0.05 when compared to all species except light-mantled sooty albatross 
(P =  0.054 when compared to northern giant petrel), Fig. 3b and Supplementary Results 2). The DDT varied 
between individuals but showed no clear trend over time (linear mixed model & post-hoc Tukey test p-values in 
Supplementary Table 2). Second, migratory-type species performed trajectories that directly (low sinuosity < 0.5)  
and rapidly (high DDT > 240 km) took them from their natal colony to a restricted foraging area during the 

Figure 1. Typical juvenile trajectory patterns (left) and corresponding NSD curves (right, red lines are best 
NSD model fits) illustrated by (a) Northern giant petrel (nomadic type), (b) Black-browed albatross (half-
migration type), (c) Sooty albatross (large-scale looping type best fitted here by a home-range NSD model). 
Panel (d) shows 3 different trajectory types of juvenile wandering albatross and NSD fits corresponding (red 
line) with nomadic type movement (black dots, full red line), half-migratory type movement (grey dots, 
dashed red line) and large-scale looping movement (white dots, dash-dot red line). White star and diamond are 
respectively Crozet and Kerguelen colonies. Maps have been generated with R64 and the “ggplot2” library72 and 
free-access coastline data (from naturalearthdata.com).
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first month (i.e. during the transit phase). Once the destination was reached (during the 1st (mollymawks) or 2nd 
month (white-chinned petrel)) there was an increase in sinuosity (linear mixed model & post-hoc Tukey test: 
P <  0.05 except for yellow-nosed albatross, Supplementary Table 2) and a decrease in DDT (linear mixed model 
& post-hoc Tukey test: all P <  0.05, Supplementary Table 2). This phase corresponds to the settlement time, when 
the NSD curve reaches the asymptote. The reason why white-chinned petrels settled later than mollymawks (i.e. 
with transits lasting 30 to 40 days compared to 14 to 26 days in mollymawks) is that all individuals started head-
ing north (Kerguelen colony) or north-east (Crozet colony) until they reached latitudes of 30°S (around the 9th 
day), which corresponds to the latitude of Trade winds, i.e. easterly winds. Following this, individuals adopted a 
westerly heading to reach their final destination off the coasts of South Africa. Finally, the group with large-scale 
looping movements (sooty and Amsterdam albatrosses) had high orientation variability, medium sinuosity (close 
to 0.5 or higher) and medium DDT (241 ±  72 km (SD)) right from the first month, with no significant trend over 
the whole period (Fig. 3a, Supplementary Tables 2).

Distance to colony and habitats. During the first 15 days all species moved rapidly and directly away from the 
natal colony (mean range at 15 days =  1323 ±  786 km (SD)). After one month, nomadic giant petrels had reached 
a significantly longer range than the other species (linear mixed model and & post-hoc Tukey test: P <  0.05, 
Supplementary Table 3) and tended to stay in oceanic waters (Bathymetry < − 3000 m, Table 3 & Supplementary 
Fig. 2). They encountered significantly cooler surface temperatures than other species (linear mixed model and & 
post-hoc Tukey test: P <  0.05, Supplementary Fig. 2) mainly because of their passage into the Pacific Ocean. Some 
northern giant petrels however, stopped for variable duration in neritic waters, for example in the productive 
Chilean Patagonian shelf (where chlorophyll a values > 3 mg.m3). Migratory-type species rapidly increased their 
distance to the colony until they reached slope edges off Australia (mollymawks, mean bathymetry > − 2000 m 
for both species, waters significantly shallower than that of other species (linear mixed model and & post-hoc 
Tukey test: P <  0.05, Table 3 & Supplementary Fig. 2) or oceanic waters along eastern South-African coasts in the 

Figure 2. Orientations. Departure directions (black dots) and rhumb bearing of the position at 2 months (grey 
dots) and 3 months (white) with respect to the departure point, i.e. the birth colony.

Figure 3. Sinuosity and daily distance travelled. (a) Average sinuosity of the trajectory during the first 15 
days at sea of month 1 (black dots), month 2 (grey dots) and month 3 (white dots). (b) Average daily distance 
travelled (DDT) ±  one standard error (bars) during the 15 first days of months 1 (black), 2 (grey) and 3 (white).
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Agulhas current area (white-chinned petrels, mean bathymetry =  − 3493 ±  391 m (SD), Table 3, Supplementary 
Fig. 2). White-chinned petrels foraged at lower latitudes than other species (Fig. 4) and encountered warmer 
surface temperatures than other species (Supplementary Fig. 2, significant difference only compared to giant 
petrels, wandering, black-browed and light-mantled sooty albatross; linear mixed model and post-hoc Tukey 
test: P <  0.05). The three looping species that remained within a 3000 km radius of their natal colony foraged 
almost exclusively in deep oceanic areas (respectively 100, 90% and 89% of individuals of the two sooty spe-
cies and Amsterdam albatrosses, Table 3; mean bathymetry =  − 3793 ±  178 m (SD), see Supplementary Fig. 2). 
Amsterdam albatrosses encountered warmer waters at lower latitudes than others (Fig. 4, Supplementary Fig. 2). 
Finally, wandering albatrosses showed a strong individual variability with respect to the distance from the colony 
(from small to large dispersal range) and the habitat frequented, comprising both neritic (continental slopes or 
oceanic features like ridges) and oceanic areas (Table 3, Supplementary Fig. 2).

With respect to chlorophyll a, although there was a tendency for some species, such as northern giant 
petrels, black-browed, yellow-nosed and wandering albatrosses, to favour waters with higher chlorophyll a 
(Supplementary Fig. 2), the differences were only significant between northern giant petrels and three species: 
sooty albatrosses, Amsterdam albatrosses and white-chinned petrel (linear mixed model and & post-hoc Tukey 
test: P <  0.05)

Comparison with non-breeding adults. When the breeding season ended, adult birds left the colony for 
an extended period, during the winter time for most species, returning to the colony 5–12 months later for a new 
breeding season. By fitting the migratory model to their trajectories, the NSD method identified three distinct 
at-sea dispersal scales for the adults of the nine species (Table 3). First, adult giant petrels stayed all year round 
close to their colony with low variation around an asymptotic range (Table 3). All the other species moved on 
average > 3000 km from the colony (Table 3). Adult mollymawks moved to a distance of 5000–6000 km (medium 
scale) with little variation around the asymptotic range (Table 3). In other words, they moved rapidly to a specific 
zone, the wintering area, where they remained, with only small scale movements. This wintering area was the 
same for all individuals of the species and was located over neritic waters; nearby and over the Australian conti-
nental shelf. The two species of Sooty albatrosses and Amsterdam albatrosses had medium to long inter-breeding 

Taxa Species

Juveniles Adults

Movement 
scale Habitat (%individuals)

Dispersion 
distance

Variation at 
asymptote Habitat

Giant petrels
NOGP large O (70%) 836 ±  143 357 ±  65 N/O

SOGP large O (80%) 1291 ±  186 364 ±  110 N/O

Mollymawks
YNAL medium N (100%) 5004 ±  476 488 ±  265 N

BBAL medium N (81%) 3985 ±  328 291 ±  88 N

Petrels WCPE medium N/O (57%/43%) 5415 ±  328 605 ±  174 N

Sooty albatrosses
LMSA small O (100%) 3862 ±  438 1084 ±  241 O

SOAL small O (90%) 4817 ±  1124 759 ±  430 O

Great albatrosses
AMAL small O (89%) 3078 ±  966 712 ±  147 O

WAAL medium O/N (77%/23%) 5456 ±  457 1018 ±  847 N/O

Table 3.  Dispersion distances and habitats visited by juveniles and adults. All adults’ trajectories fitted 
by the migratory type NSD model, the dispersion distance is the distance to colony of the migratory model 
asymptote and the variation around the asymptote is calculated with the residuals of the model. Habitats are 
oceanic (O) and neritic (N).

Figure 4. Latitudes. Mean latitude ±  one standard error (bars) attained during the third month at sea by 
juveniles (white circles) and by adults during inter-breeding season (black circles). Significant differences 
between juveniles and adults are **P <  0.05 and ***P <  0.01 (Wilcoxon test).
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dispersal distances with higher range variations (larger wintering area scale) and a high variability within spe-
cies (Table 3). These three species foraged mainly in oceanic habitats. White-chinned petrels were intermediate 
between the two latter groups and wandering albatrosses showed strong inter-individual variability with individ-
uals belonging to the three groups and foraging both in neritic and oceanic waters (Table 3).

Finally, adults foraged at significantly higher latitudes than juveniles for six of the nine species (Wilcoxon 
test: P <  0.05 for northern giant petrel, black-browed, Amsterdam, wandering and both sooty albatrosses, Fig. 4). 
Adult and juvenile white-chinned petrels foraged at similar latitudes but different longitudes with adults foraging 
west of South-Africa (mean longitude =  14.72 ±  2.17°E (SD)) and juveniles foraging mostly east of South-Africa 
(mean longitude =  40.83 ±  1.11°E (SD)). There was no significant difference in latitude for southern giant petrels, 
but, as for white-chinned petrels, there was a longitudinal segregation between juveniles and adults caused by 
their different strategies (nomadic vs resident movement type).

Discussion
Our study is the first to provide a comprehensive examination of juvenile movement strategies among seabirds. 
It shows clearly that (1) although species are closely related, the juveniles of the nine species differ extensively in 
their movement patterns when they leave their colony of origin, and (2) that for each species the movement types 
of juveniles in the first three months following independence are generally similar to those of wintering adults, 
except for the two species of giant petrel. In addition, movement patterns appear to be similar within most spe-
cies, but show high variability for some species with individuals showing mixed strategies.

Interspecific variability in movement strategies and comparison with adults. Overall, the 
juveniles of the nine species showed very large-scale post-fledging movements from basin-wide movements to 
circumpolar trips. A common behaviour found in all species is the preliminary rapid movement that takes all 
individuals away from the vicinity of their colony of origin. This behaviour may allow a reduction of competition 
with breeding adults present around the colony at this time, especially in the large albatrosses where breeding 
adults are present throughout the year. After this first transit phase, individuals used three very different main 
types of large-scale movement patterns.

Juveniles of the two species of mollymawks and white-chinned petrels all exhibited the same migratory strat-
egy as the adults. Their trajectory parameters during the settlement phase are typical of foraging in a restricted 
area – suggesting an Area Restricted Search37. In mollymawks, destinations of juveniles partly overlapped with 
wintering zones of adults over the continental shelf or shelf-break. These species appear as ‘typical’ migratory spe-
cies as the route to the wintering grounds corresponds to a narrow corridor used by all age groups, similar to that 
seen in certain land birds8,18,38. Analyses at finer scales may help to determine how juveniles and adults interact in 
specific overlapping winter feeding areas, e.g. in black-browed and yellow-nosed albatrosses, and how this affects 
juvenile survival and/or foraging skill acquisition.

Conversely, juvenile white-chinned petrels head north to exploit favourable Trade winds at low latitudes that 
allowed them to reach eastern Africa at low cost. In contrast, adults directly moved to the west to their over-winter 
site. This leads to segregation between adults and juveniles, at least during the first part of winter. Adults use 
mainly neritic productive waters of the Benguela current off western South-Africa, whereas juveniles use more 
oceanic features like oceanic ridges in sub-tropical relatively warm waters (Fig. 4 and Supplementary Fig. 2).

Circumpolar nomadism, i.e. flying with dominant winds toward East, allowed juvenile giant petrels to rapidly 
reach areas very distant from their colony and from resident wintering adults, resulting in an extreme case of 
segregation whereby juveniles do not overlap at all with adults20. Spatial segregation between age classes during all 
or part of the breeding cycle occurs in many species (e.g.22,23,39–41). It has been described for other procellariiform 
species like black-footed albatross24 or Manx shearwater42 and is generally explained by competitive exclusion of 
juveniles by experienced adults4 in the closest favourable foraging areas around the colonies. Whereas in many 
taxa segregation arises from size differences between young and adult39,41, it has been suggested that in mono-
morphic species with deferred sexual maturity, like seabirds, experience rather than size may drive segregation42. 
Competition between age classes may have important consequences for the dynamics of the population26 since 
it may affect the reproductive success and survival of individuals8,43. Naïve young individuals excluded actively 
from the best foraging places by adults can be forced to use suboptimal feeding areas4,42. Giant petrels are known 
for being particularly aggressive competitors44, mainly scavenging when around the colony. Thus we can assume 
that juveniles may not be competitive enough to access on land the seal and penguin carcasses or even fisheries 
waste used by adults. Juveniles may feed more on pelagic resources until they are able to compete with experi-
enced birds. This creates ontogenic niche divergence and will probably result in a progressive shift in diet during 
the immaturity period. A similar pattern of spatial segregation was found between adult and juvenile giant petrels 
in the Southern Atlantic45, where juveniles moved out of the adults’ range after 30 days, to forage in productive 
upwelling areas that sustained many seabird species. In contrast to giant petrels from Crozet and Kerguelen, 
Southern Atlantic juvenile giant petrels, while spatially segregated, feed in a similar oceanic system as adults (shelf 
and shelf break)45.

The third strategy that involved large-scale looping movements at the scale of the Southern Indian Ocean was 
used by juvenile sooty albatrosses, Amsterdam albatrosses and some wandering albatrosses. Overlap between 
adult and juvenile of these species is probably reduced by the extensive size of the sector used in the large looping 
movements, and by differences in latitudes.

Although strategies differ extensively among albatrosses and petrels, they are consistent within genus. Each 
genus presents particular anatomic characteristics; different wing loading and wing shape that affect flight speed, 
manoeuvrability and energetic requirements at take-off or landing46. These differences are likely to affect disper-
sive abilities as well as foraging ecology47, an interesting aspect to investigate in further detail in future research. 
Albatrosses and petrels are known to make extensive use of wind to reduce energetic costs while flying46,48. In our 
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study, fifty five percent of the individuals/species flew mainly with dominant winds, the Westerlies, at the begin-
ning of their trip, and later on for giant petrels. Wind is probably a major factor affecting seabird dispersal and in 
some species it has been shown that young birds are also affected by other environmental conditions18,25 such as 
resource distribution49, e.g. signalled by dimethyl sulphide gradients (phytoplankton related odour)16.

Individual variability. There were striking differences in individual variability within species, ranging from 
strongly consistent juvenile displacement types to species with a high degree of intra-specific variability. Most 
species belonged to the former category, whereas wandering albatrosses belonged to the latter, showing a mix 
of the three movement strategies with a very high individual variability in all parameters. Considering that all 
individuals encountered the same conditions at departure with essentially no movement constraints in an entirely 
unexplored environment, the low individual variability within long-range species that visit neritic waters (molly-
mawks, petrels) is particularly striking. Conversely, more oceanic species with shorter dispersal ranges tended to 
show more individual variability. This is particularly true for wandering albatross where individual variability is 
the highest. Those individual differences may be in part sex-specific7,50. However adults were similarly variable in 
migratory behaviour7,51, suggesting that variability in movement strategy is driven not only by external conditions 
but also by the traits and internal state of individuals (morphology, physiology, behaviour). In a relatively homo-
geneous landscape with few external movement constraints, internal factors may have a more pronounced effect 
on the large-scale movement patterns of juveniles and lead to higher individual variability than in coastal waters 
where a higher probability of interactions (due to topography, high bird density, fisheries) may affect movement 
costs and foraging decisions. Accordingly, despite high within-population variability, individual Atlantic puffins 
(Fratercula arctica) show high consistency among years in their own migratory routes52. The authors suggested 
that juvenile puffins may make long exploratory trips to different areas acquiring the experience needed to navi-
gate their environment and find appropriate foraging zones. Since juvenile wandering albatrosses travelled across 
the whole Indian Ocean or further during their first year at sea, using mixed movement strategies, one might 
wonder if this could correspond to an exploratory behaviour. Individuals might acquire knowledge and progres-
sively reduce the range of areas they visit and associated movement patterns until they adopt a foraging strategy 
that is consistent from year to year, as the adults do during sabbatical years throughout their life51.

Innate navigation programme. While anatomy, physiology, competition and environmental conditions 
may strongly affect seabird post-fledging movement strategies53, our findings suggest that juveniles may also 
partly use an innate navigation programme when leaving their natal colony54. Unlike species for which juvenile 
migratory capacities are enhanced by the presence of adults38, juvenile procellariiformes are left by their parents 
before they fledge. However, we found that juvenile strategies were consistent from the start within species, and 
were similar to those of adults outside of the breeding season in most species. This suggests that juveniles first 
follow internal cues, especially for the timing and direction of departure, but also for their destination in the case 
of mollymawks and white-chinned petrels. The latter are striking examples since, in order to reach the targeted 
foraging ground west of their colony, all individuals first flew northwards to find favourable winds instead of 
following the Westerly flow or flying against it to reach directly the destination. This likely genetically encoded 
behaviour might have been selected to use the less expensive route in terms of energetics and cause the dispersion 
of juveniles to more distant feeding grounds50,55. In contrast to this innate behaviour, it has been suggested that 
young Atlantic puffins may rely more on a true learning process42. Overall, juvenile seabirds probably depend 
on both innate and acquired skills in different proportion depending on the species. For example, young Cory’s 
shearwaters innately follow the same general strategy as older birds, but progressively improve their migratory 
route with age22. Orientating in the apparently featureless environment of the pelagic ocean seems challenging, 
and the navigation cues, innate or acquired by experience and memory, are far from being clear16,56–58. This innate 
programme that drives juveniles on very specific routes may be a disadvantage in a context of rapid global change 
when birds may need to adapt to a shift in resources distribution, with unconditional fixed strategies probably 
being inferior to condition-dependent strategies35. In migrating birds several populations have retained their 
original route that has become sub-optimal in the context of climate change59. Interestingly, all these cases refer 
to species where the juveniles migrate independently from the adults and rely on their genetic programme for the 
first migration, such as our study species. There seems to be no such case of apparently sub-optimal routes among 
species where the juveniles accompany the adults on migration59. Thus, populations with independent juveniles 
may be less flexible in terms of migration or movement strategy, for example when facing long-term changes that 
need strategy adjustments.

Link between dispersal strategies and life histories. The three main strategies used by juvenile alba-
trosses and petrels were found in three distinct groups: mollymawks and white chinned petrels, great and sooty 
albatrosses and giant petrels respectively. The first two groups have contrasting life history strategies independent 
of their size: mollymawks and white chinned petrels are shorter-lived species than the others, with annual breed-
ing and high mortalities during the juvenile-immature stages, whereas great albatrosses and sooty albatrosses are 
longer lived biennial species with high survival during juvenile and immature phase31–33,60. Thus, the migratory 
strategy where juveniles and adults share the same winter zones over shelf areas may result in higher costs in 
terms of survival than the large looping strategy over oceanic waters. Moreover, oceanic species are generally 
longer lived than neritic species61. Giant petrels are particular in their dispersal strategies, they are shorter lived 
for their size but demographic data about the survival of juveniles is lacking62. Although future research with 
higher numbers of loggers is necessary to estimate the survival of juveniles during these first months, our results 
suggest a more general link between movement strategies, juvenile survival and life history strategies.

The findings of this study may have major implications for understanding the evolutionary mechanisms 
underlying the foraging behaviours of naïve individuals, and the link with the characteristics of energy and 
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spatial landscapes. Similarly, our results emphasize the importance of linking movement strategies and popula-
tion dynamics1,35. Thanks to the rapid development of new tagging technology, it is now possible to track multiple 
life history stages to study marine predator ecology but also to better understand why juveniles suffer higher costs 
during the early stage of their life.

Methods
Field work and telemetry. Field studies were carried out on the Crozet (46.2°S, 52.4° E), Kerguelen (49.4°S, 
70.1°E) and Amsterdam (38.4°S, 77.3°E) islands, south western Indian Ocean (see map in Supplementary Fig. 1). 
All field procedures were approved by The Ethics Committee of IPEV and Comité de l′ Environnement Polaire 
and were carried out in accordance with the approved guidelines. We tracked nine species of albatrosses and 
petrels belonging to different taxa: two species of great albatrosses (Amsterdam albatross Diomedea amster-
damensis, wandering albatross D. exulans), two species of Mollymawks albatrosses (Indian yellow-nosed alba-
tross Thalassarche carteri and black-browed albatross T. melanophris), two species of sooty albatrosses (sooty 
albatross Phoebetria fusca and light-mantled sooty albatross P. palpebrata), two species of giant petrels (northern 
giant petrel Macronectes halli and southern giant petrel M. giganteus), and one species of petrel (white-chinned 
petrel Procellaria aequinoctialis) (Table 1). Instead of complete species names, species codes are used in tables and 
figures, as detailed in Table 1.

Juveniles. Between 2001 and 2014, 98 chicks (Table 1) were fitted with Argos satellite transmitters (Platform 
Terminal Transmitter, PTT 100, Microwave Telemetry, Columbia, USA) just before fledging. Units were fixed 
on the birds’ back feathers using adhesive tape and glue. The mass of devices (20–50 g) was always below the 
3% of the body mass limit recommended for flying birds (Phillips et al. 2003). Transmitters were powered with 
solar panels and worked with duty cycle mode, 10 hON-24 hOFF, 18 hON- 54OFF or 12 hON-60 hOFF. Some of 
the juveniles were sexed using a molecular sexing method, others are of unknown sex. After data filtering and 
homogenization (Supplementary Methods 1) we obtained a total of 83 tracks, with 53 lasting at least 3 months 
and with an average of 0.65 ±  0.12 (SD) locations per day.

Adults. Adults from the same nine species and same sites were tracked during the non-breeding season, when 
they are no longer central place foragers. Birds were fitted with light-recording geolocators (GLS) weighting less 
than 3 g and attached to a leg band, beginning in 2000. GLS give positions twice per day with a low accuracy 
(median error of 180 km)63. To compare the overall large-scale movement patterns of juveniles and adults we 
randomly chose 10 complete adult tracks per species starting at the end of a breeding season and ending at the 
beginning of the next one. To compensate for the low accuracy of locations given by the GLS system we smoothed 
the trajectories by averaging locations on a 3-days’ time scale. Due to the low accuracy and low frequency of 
sampling we used adult data only for the comparative analysis of overall displacements and a global assessment of 
habitats used but not for the detailed trajectory analysis.

Movement Analysis. We used two types of approach for analysing the movement data, both implemented 
using the R Software Environment64. 1: The squared displacement method was used to identify and compare 
movement types within and between age classes and species36. 2: Movement statistics commonly used for animal 
trajectory analysis were calculated to quantify detailed juvenile movement parameters and test the innate navi-
gation hypothesis65.

Comparative analysis of displacement. To identify and compare movement types within and between 
age classes and species, we used the squared displacement method36. The net squared displacement distance 
(NSD) is the squared beeline distance (calculated using Haversine formula) between the starting point (here, 
the natal colony of the birds) and each location of the trajectory. It is a fundamental statistic for movement stud-
ies66,67. We used the NSD method36 to identify and compare different broad movement types such as sedentary 
(“home range”), migratory and nomadic movement modes (Supplementary Methods 2-Fig. 1), and concurrently 
estimate general movement statistics such as distance covered (Supplementary Table 1). The approach is contin-
uous time based and allows for the efficient analysis of unequally and irregularly sampled movement trajectories. 
Following36 we fitted the movement mode models (Supplementary Methods 2-Equation 1) using nonlinear mixed 
effects models (nlme in ‘nlme’ R library) and evaluated the support from the data for the different movement 
modes using the concordance criterion68. Before applying the goodness-of-fit measure we also checked that the 
estimated parameters (e.g. timing or distance of dispersal) were consistent with the spatio-temporal scales of the 
trajectory and discarded models that were inconsistent (Supplementary Table 1).

Juveniles. We applied NSD models to juvenile movement data covering the first 3 months after departure from 
the natal colony (see details in Supplementary Methods 2.1). Figure 1 shows typical juvenile trajectories along 
with the corresponding NSD curve and model fit. We identified a new movement type that we named “large-scale 
looping” (Fig. 1c, details in Supplementary Methods 2.2). To complete the information given by the NSD method, 
we calculated the distance from the colony reached at 3 months for an index of dispersion distance and clas-
sified species as follows: (1) small scale movements – birds which remained in the Indian Ocean, at a range 
shorter than 3000 km from the colony; (2) medium scale movements - birds which dispersed to the Australian or 
South-African coasts, i.e. between 3000 and 6000 km; and (3) large scale movements - birds which left the Indian 
Ocean and ranged farther than 6000 km.

Adults. For adult birds we applied the NSD method on the whole inter-breeding period, i.e. 5 to 12 months 
depending on the species. All adult trajectories were best fitted by the migratory model as adults always returned 
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to the colony to breed. As for juveniles, we compared inter-breeding migration distances and displacements 
scale in the wintering areas along with the type of habitat used (neritic or oceanic) as detailed in Supplementary 
Methods 2.3.

Trajectory parameters analyses. To quantify detailed juvenile movement parameters and test the innate 
navigation hypothesis, we calculated movement statistics commonly used for animal trajectory analysis65, i.e. ori-
entation, daily distance travelled, sinuosity and range. For consistency, all parameters were averaged over 15 day 
time periods for the three first months of the trips for each individual. To aid visualization, however, we present 
only the first 15 days of each month in our figures, i.e. values for three periods of 15 days. Circular statistics for 
orientation analyses were computed with the R package “circular”69. For other parameters, we used linear mixed 
effect models (lme within ‘nlme’ R package70) with individual as random factor to take into account individual 
variability, followed by post-hoc Tukey tests (‘multcomp’ R package71) to test for temporal and interspecific dif-
ferences (see lme & Tukey test results in Supplementary Results 1 & 2 and Supplementary Table 2). Differences 
between time periods or between species were considered significant at the P <  0.05 level in Tukey pair-wise com-
parison tests. For all models we visually checked that model assumptions were met. For Yellow-nosed albatrosses 
and other species after a certain amount of time, small sample sizes lead to unsatisfactory residual distribution 
and thus the tests for these species are to be considered with care (see supplementary Method 3 for details). 
Parameters calculated for each track were: the bearing taken at departure, the directionality of the bird with 
respect to the colony after two and three months, the sinuosity of tracks, the daily distance travelled and the mean 
latitude attained. Details for parameter calculations and statistics can be found in Supplementary Methods 3.

Habitats used. To determine the conditions where juveniles settled in specific areas we examined the bathy-
metric characteristics of their last locations (neritic waters when depth > − 3000 m, i.e. from lower continental 
slope to continental shelf, or oceanic area when over deeper waters), and compared this with adults’ broad habitat 
types (Supplementary Methods 2.3). Although it was not possible here to obtain accurate information on adult 
habitat, we extracted bathymetry, daily sea surface temperature (SST) and monthly chlorophyll a (CHLa) values 
for all juveniles’ trajectories. Environmental data were downloaded from the NOAA coast watch website (http://
coastwatch.pfeg.noaa.gov/erddap/index.html). To allow comparison between species, bathymetry, SST and CHLa 
values have been summarised in Supplementary Fig. 2. As for trajectory parameters, differences between species 
have been tested with linear mixed models and Tukey post-hoc tests in order to take individual variability into 
account. We used all locations with environmental data available and took autocorrelation into account in the 
models. Conversely, the large inaccuracy of GLS locations did not permit to reach any conclusions about adult 
habitat characteristics.
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