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ABSTRACT 

Cross-system comparisons of drug delivery vectors are essential to ensure optimal design. An in-

vitro experimental protocol is presented that separates the role of the delivery vector from that of its 

cargo in determining the cell response, thus allowing quantitative comparison of different systems. 

The technique is validated through benchmarking of the dose-response of human fibroblast cells 

exposed to the cationic molecule, polyethylene imine (PEI); delivered as a free molecule and as a 

cargo on the surface of CdSe nanoparticles and Silica microparticles. The exposure metrics are 

converted to a delivered dose with the transport properties of the different scale systems 

characterized by a delivery time, . The benchmarking highlights an agglomeration of the free PEI 

molecules into micron sized clusters and identifies the metric determining cell death as the total 

number of PEI molecules presented to cells, determined by the delivery vector dose and the surface 

density of the cargo. 
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1. Background 

A drug molecule or imaging payload must reach its intended site of action to exert an efficient 

therapeutic or diagnostic action and to prevent adverse side effects.[1,2] The delivery of active 

agents to the target organ or disease loci generally requires negotiation of numerous bio-barriers 

mainly comprised of cells from different origins.[3–5] Consequently, there has been a rapid 

development in novel nano and micro-scale vectors to more efficiently deliver drugs, genetic 

material, and imaging contrast agents to their target locations.[6–8] While particulates can be 

administered locally or systemically through various routes (e.g. dermal, intravenous, oral, 

pulmonary), their initial performance evaluation includes in vitro studies in cell cultures.  

In this work, we use the “on contact” toxicity of PEI as a probe of the dynamics of arrival to the cell 

surface of the same material in carriers of different sizes. In general, this assessment is very 

important as the dynamic of arrival can further be translated to multiple biological outputs (toxicity 

being one of them). It is becoming increasingly evident that nano and micro materials cannot be 

treated in the same manner as chemical compounds with regards to their safety and efficacy 

assessment [9], as their unique physicochemical properties are responsible for unexpected 

interactions with experimental and biological systems [10,11]. Despite the wide use of in vitro 

systems for biological assessment of NPs, the direct measure of cellular dosimetry has largely been 

overlooked in favour of using overall metrics of exposure, principally particle concentration on a 

mass [12], number, or surface area basis. This is due to the difficulties in measuring particle arrival 

at the cell interface. In this context, below we discuss various tests for evaluation of biological 

(toxicity/efficacy) responses as well the effects of particles of different sizes on the above.  

In general, there is an urgent need in toxicity tests or dose response assays to de-couple the physical 

effects acting upon a particle from their biological effects so that true biological response to 
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variables such as particle size or shape can be determined. This is particularly important in 

investigations which are directly comparing cellular responses across multiple materials or 

materials of different sizes [13–15]. However, physical effects in a system are commonly ignored 

and the cellular response observed is thought to be solely biology-driven, which may generally lead 

to misinterpretation of the obtained results. For instance, cytotoxicity assays investigating the role 

of cell cycle in cellular uptake and toxicity do not take into account the non-linear delivery rate of 

nano and micro-particles and consider responses to be uniquely driven by biological changes in the 

cell during proliferation [16]. In terms of the efficacy, the rate of arrival of an agent to the cell 

surface is extremely important when comparing therapeutic entities such as low molecular weight 

drugs, proteins and oligonucleotides adsorbed/conjugated to the surface of the carriers [17,18]. In 

this instance, decoupling the kinetic processes of carrier arrival to the cell surface and the ultimate 

response will allow for better understanding of the mechanism of action of various carriers, their 

transport in the tissues of interest [19] and ways to improve the therapeutic efficacy. Consequently, 

many studies have reported an increase in the therapeutic efficacy of a drug when coupled with a 

nano or micro material [20,21] or when particles alone have been introduced to cells to cause 

antitumor [22] or antibacterial activity [23]. Our model can be used to validate the numerous studies 

performed relating size dependent cellular uptake and biological effect of nano and micro-material 

in vitro. For instance, in a study [24] which reported a carrier size-dependent increase in cellular 

concentration of paclitaxel loaded PLGA particles, decoupling the effect of particle arrival from the 

reported biological effects could shed more lights on the mechanisms underlying the efficacy of the 

investigated carriers on the cellular level.  

The development of a wide range of drug delivery systems, spanning nano, micro and mesoscopic 

scales, has resulted in a powerful array of therapeutics. Considerable efforts have been invested in 

the characterisation of these advanced delivery vectors, however the difference in size between 

systems has numerous effects, limiting the ability to compare their performance. [25–30] Whilst the 
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pharmacology of many specific drug delivery vectors is well reported, there is little or no literature 

on comparative studies, which encompass various scales. Existing reports primarily focus on 

size[31,32] or shape[33,34] changes within a single drug delivery system. The pronounced surface 

to volume ratio scaling as size is reduced to the nanoscale affects the physical nature of the particles 

and their biological effects.[35] As an example, a larger size of the carrier can be linked to a better 

encapsulation capacity, higher weight of particle, faster sedimentation rate and larger total surface 

area of individual particles but collectively lower surface area per unit weight. On the other hand, 

smaller particles are more likely to aggregate and bind more efficiently to surfaces/receptors, when 

functionalized.[36–38]  

The above differences in the physical characteristics of the carriers pose difficulties in comparing 

the functional biologically/pharmacologically relevant behaviours across the systems, considering 

similar mass/volume concentration ranges.[39,40] In standard liquid-based cell culture systems, the 

number of particles associated with cells at any time is a function of the rate of delivery of drug 

vectors to the cells, the mode of vectors‟ interaction with the cell surface, and the rates of cellular 

uptake and loss by degradation or exocytosis. Therefore, the definition of dose for drug vectors in 

an in vitro system is more dynamic, more complicated, and less comparable across particulates than 

it is for soluble chemicals. Particulates diffuse, agglomerate and settle in cell culture media as a 

function of their individual properties, such as particle size, shape, surface charge and density; and 

environmental factors, such as media volume and viscosity. These factors also determine the rate of 

transport of drug vectors to cells in culture, thus providing a background for biased evaluation of 

biological responses. For example, Lison et. al. demonstrated differences in nominal and effective 

dose arising from silica particle concentration, media volume and height [39] and Limbach et. al. 

have presented experimental evidence that transport to cells of 25-50 nm and 250-500 nm cerium 

oxide particles is different, depending in the former case on diffusion and the latter case on 

gravitational settling.[32] This differential transport was shown to affect cellular uptake rates and 
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toxicity. In an insightful study Wittmaack showed that a unified description of particle-cell 

interaction can be obtained despite varying experimental factors, provided that the key determinant 

of cell response in known. This showed that for nanoparticles a universal response curve can be 

obtained when presented as a function of areal mass density of particles transported to cells.[41]    

 

In this study, we aim to provide a general framework for the benchmarking of drug vectors of 

differing materials across size scales, presenting a unified theory for dose-response for an arbitrary 

drug delivery vehicle. Our approach is based and validated on experimental data obtained using a 

model system of cationic polyethylene imine (PEI) based macromolecules (mol-PEI), and surface 

coated nano- and microparticles (NP-PEI and P-PEI) delivered to Human foreskin fibroblast cells 

(HFF-1). These delivery vehicles are chosen to span molecular to micro scales and in doing so they 

account for different modes of delivery to the cell with diffusion dominating molecular transport, 

diffusion and sedimentation dictating the nanoparticle motion and sedimentation alone being the 

dominant transport mechanism for the microparticles. As we have previously reported, since PEI 

has almost immediate biological effects directly related to its contact with the cell membrane, this 

molecule provides an ideal model for comparing behaviors of various drug vectors.[42,43] We 

stress that this is not a biology focused study from which we try to understand the cellular response; 

rather, it is a presentation and validation of a technique for comparing the performance of different 

scales of drug delivery systems. We show that the delivery kinetics of PEI to the cells is highly 

correlated with the dynamics of cell death and use the benchmarking analysis to obtain a hypothesis 

that the magnitude of the biological response to PEI is determined by the total number of PEI 

molecules delivered to the cells by surface attachment to the various delivery vectors. 

 

2. Methods 

Cell culture: Human foreskin fibroblast cells (HFF-1, ATCC® SCRC-1041™) were obtained from 

American type culture collection (ATCC, Manassas, Virginia, USA). The cells were cultured in 75 
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cm
2
 flasks in a humidified incubator at 37°C with 5% CO2 in Dulbecco's modified Eagle's medium 

(DMEM, ATCC) supplemented with 15% fetal bovine serum (FBS, Invitrogen, USA), 4 mM L-

glutamine, 1 mM sodium pyruvate and 1% penicillin (50 IU mL
-1

) /streptomycin (50 g mL
-1

).  

Delivery vectors: The tested systems included polyethylenimine (PEI, Mw 25,000, density 1.030 g 

mL
-1

, Sigma Aldrich, USA), PEI modified nanoparticles (NP-PEI) and PEI modified microparticles 

(µP-PEI). NP-PEI: PEI modified quantum dots (QD), were synthetized as previously described 

[42,44].  To obtain µP-PEI, spherical silica beads, (0.9 μm diameter and zeta potential -28.1mV) 

were obtained from Polysciences Inc. (USA). The beads were sonicated and washed 3-4 times in DI 

water (followed by centrifugation at 20,000g for 10 min). Further, the supernatant was removed and 

the microparticles were oxidized with 10% HNO3 in DI water for 30 min. Following centrifugation 

and three washes with isopropyl alcohol (IPA), PEI functionalization was performed using 1mL 

(1.030g) PEI dissolved in 5mL IPA and 250L DI water. Particles were treated with PEI/IPA/water 

solution at 35°C with 1300 rpm mixing for 2 h. The particles were washed five times with fresh IPA 

to remove any residual PEI molecules and re-suspended in the cell media immediately prior to 

dosing the cells.  

Particle characterisation: Both NP-PEI and µP-PEI systems were characterized for zeta potential 

and hydrodynamic diameter using a Zetasizer Nano ZS (Malvern Corp, Worcestershire, UK). For 

the analysis, NP-PEI and µP-PEI were suspended in phosphate buffer (PB, pH 7.4) at a 

concentration of 21 nM the results were recorded in triplicate. PEI-QD diameter was also assessed 

from scanning electron micrographs.  

Time-resolved microscopy, measurement of cell death: Cytotoxicity was quantified using DRAQ7 

staining, kindly provided by Biostatus Ltd (UK). Cells were seeded at a concentration of 70,000 

cells per well in Greiner Bio One Cellstar® tissue culture 6-well plate for 24 h.  The NP-PEI and 

P-PEI along with 3µM concentration of DRAQ7 was placed in 2mL of complete medium before 

being vortexed for 5 sec to ensure thorough mixing. The cells were washed twice in serum-free 
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medium and incubated with 2 mL of complete medium containing the dose and DRAQ7. High 

throughput, time-lapse based experiments were performed within 5-10 min of dosing using the In-

Cell Analyzer 2000 microscope (GE Healthcare, USA). Images were obtained once every hour for 

24 h of over 4,000 cells at each time point. Cells were imaged at 20x magnification in two channels: 

the DRAQ7 channel and the bright-field channel. If NP-PEI were involved in the assay, they were 

imaged with excitation and emission wavelengths of 350 and 568 nm respectively. At the end of the 

time-lapse experiment the cells were dosed with a very high dose (10 M) of NP-PEI in 2 mL 

media with 0.5 h exposure, which killed 100% of cells in each well. An additional set of images 

was then collected, from which a measure of the total number of cells in each well was obtained.  

Measurement of delivery vector accumulation: The time course of each delivery vector reaching the 

bottom of a cell culture well was measured using time-lapse microscopy. The wells of a flat base 6 

well-Olympus plate (no cells) were dosed with various concentrations of free mol-PEI, NP-PEI and 

P-PEI in triplicate. All were suspended in 2mL of DMEM plus 15% FBS. The wells had a 

diameter of 34.8 mm, which meant that when filled with 2 mL of media the height of the media is 

2.1mm. The ImageXpress High-Content Analyzer  (Molecular Devices, USA) obtained brightfield 

images using transmitted white light and also fluorescent images of the NP-PEI using their 

fluorescent channel (Ex/Em 350/568 nm) on the bottom surface of the well where cells would 

normally reside. The images were taken once every hour. The media was maintained at a constant 

temperature of 37°C. ImageJ 1.45 software (National Institutes of Health) was used to manually 

measure the mean pixel intensity, as pixel intensity can be assumed to be proportional to particle 

dose at a given time point. The inverse mean pixel intensity of 81 brightfield images of free PEI and 

P-PEI was used to quantify the amount of free PEI and P-PEI, as these are non-fluorescent and 

produced a dark area within the image. 
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3. Results 

3.1. Characterisation of delivery vectors 

Details relating to characterisation of delivery vector size and surface charge are presented in 

Figure 1 and summarised in Table 1. Coating of the vectors with the 25 kDa PEI produces a 

cationic surface layer of ~ 15-25 nm thickness with high positive charge ( value > +15 mV). The 

surface charge carried by the PEI is highly disruptive to cells, damaging the lipid membrane and 

causing rapid death.[43] This direct action of the PEI cargo results in a rapid cellular response and 

so the temporal dependence of the exposure-response characteristics is determined primarily by the 

physical processes of vector delivery rather than downstream biological mechanisms.[42] Thus this 

delivery vector/cargo system is well suited for the development of a generic protocol, focused on 

the relation of vector size to the delivered cargo dose. 

3.2. Exposure-response profiles 

We begin our presentation of the cell response profiles with the pharmacological standard of an 

end-point, exposure-response curve. Data is presented in Figure 2 on the % cell death after 24 

hours of exposure to the three drug vectors, across a range of concentrations. For each delivery 

system the assay delivers a full description of the concentration dependent cell response. However a 

common understanding of all three systems through the fundamental mechanisms that determine 

their cell interactions cannot be obtained directly. It is clear that there is a widely differing potency, 

dependent upon the vector size. Whilst this could be anticipated, it is difficult to gain any 

quantitative insight as the „delivered dose‟ is determined by counteracting effects - a reduced 

concentration of larger delivery vectors is linked to increased numbers of PEI cargo molecules per 

vector. Crucially, the measurements cannot report on any of the processes that drive the 

pharmacodynamics, for this is a single time-point assay. 
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To overcome these limitations we adopt an alternative approach, based on time-lapse imaging of the 

cells [42] to obtain time-mortality data.[45] This allows observation of the dynamics of cell 

response as the delivery vector concentration is increased. Results for all 3 vectors, at varying 

concentration, taken over a 24 hour exposure period are shown in Figure 3. When the cell response 

is viewed as a temporal process, the influence of the vector delivery becomes immediately apparent. 

The rapid delivery of the relatively heavy microparticles (P-PEI) through sedimentation produces 

a quick response with cell death rapidly increasing and then plateauing within a few hours, 

regardless of the exposure concentration. In contrast the lighter nanoparticle and molecule systems 

show slower and more complex dynamics, the form of which is dependent upon the delivery-vector 

concentration. This is as expected since the delivery in these cases is driven by both sedimentation 

and diffusion with the relative weighting of these processes dependent upon particle size and 

density.[46] The response profile for the P-PEI has a constant form with the % cell death scaling 

linearly with exposure concentration. This is indicative of a dose-response that is purely delivery 

dependent with the time to cell death determined by the sedimentation velocity and culture medium 

height and the maximum % of cells dying controlled by the available particle dose. In all cases there 

is a saturation in the cell mortality below 100% for lower exposure concentrations and we attribute 

this to depletion of the delivery vectors from the supply reservoir.[42,46]  

Close inspection of the time-mortality curves for NP-PEI and mol-PEI would seem to indicate 

anomalous results as the time response of the cells is similar whereas the diffusion/sedimentation 

dynamics of the nanoparticles and molecules should be orders of magnitude different. The response 

profile is determined by (1) the time dependent arrival of the PEI dose and (2) the susceptibility 

distribution of the cell population, i.e. the accumulated dose at a particular time point and the 

heterogeneity in the cells‟ response to this dose. Thus, to further investigate the results shown in 

Figure 3 we need to isolate these two factors. 
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3.3. Delivery vector accumulation dynamics 

To decouple the delivery of the PEI vectors from the cell response we assessed their arrival kinetics 

onto a culture well surface without the presence of cells. Measurement of the relative changes in 

delivery vector concentration follows from analysis of microscopy images of the well surface. The 

NP-PEI quantity is assessed by measurement of total nanoparticle fluorescence whereas the P-PEI 

and mol-PEI vectors are quantified from analysis of bright-field images. Example images, taken for 

each delivery vector after 24 hours of accumulation, are shown in Figure 4. The fact that the mol-

PEI can be directly imaged using optical microscopy indicates that there is substantial 

agglomeration occurring within the culture medium and that the delivery vector in this case is not 

molecular in scale at the point of interaction with cells.  

Using the diameter of the PEI agglomerates, measured from the microscopy images, we can 

estimate the mean number of molecules per agglomerate. The average diameter is 930 nm (N = 50) 

and they have a surface density of 5.2x10
7
 cm

-2
, thus the total number of agglomerates across the 

9.5 cm
2
 area of the culture well is 49.4x10

7
. Assuming that all of the PEI molecules are in an 

agglomerated form then we estimate a mean number per aggregate of 1.2x10
16

/49.4x10
7
 = 2.4x10

7
 

molecules (total molecule number calculated for 10 M concentration and 2 ml volume). This total 

number of molecules, Nmol is related to the overall agglomerate size, dagg: 

3

agg

mol

mol

d
N

d

 
  
 

 (1) 

where dmol is the mean spacing of molecules in the cluster. In this case, dmol = 3.2 nm, which 

corresponds closely to typical diameters for molecules of this weight (25 kDa),[47] indicating that 

the PEI has formed tightly packed agglomerates. The dramatically increased „effective size‟ of the 

PEI molecules caused by agglomeration explains the similarity in cellular response dynamics for 

mol-PEI and NP-PEI seen in Figure 3. The delivery rate of the approximately micron sized PEI 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

13 
 

agglomerates is similar to the heavier but smaller quantum dots. An approximate estimate of the 

sedimentation velocity for the two delivery systems confirms that it is of the same order of 

magnitude for both (dNP = 15 nm, dPEI = 930 nm, NP = 5.8 g cm
-3

, PEI = 1.03 g cm
-3

).   

The full time course data is shown in Figure 5. In the case of the P-PEI, where the delivery in 

vitro is sedimentation dominated, the particle velocity is independent of particle concentration and 

all delivery vectors arrive at the surface within 5 hours. The lighter NP-PEI and mol-PEI systems 

display an extended characteristic in which the rate of signal increase drops off over time as the 

vector supply in the solution is reduced. To obtain a reliable metric of the vector accumulation 

dynamics we fit the data with the equation.[42] 

  0 1 ts t s e      (2) 

Where S is the measured signal and S0 the maximum signal due to all delivery vectors being present 

at the surface.  is a characteristic „accumulation time‟ that defines the time frame for particle 

arrival. It describes the dynamics of the system as described by the relative changes in S, as in all 

lifetime-based measures  is independent of the absolute scaling of S. Thus  can be obtained 

through secondary measures that are proportional to vector concentration (e.g. fluorescence or 

brightfield pixel intensity). The accumulation time effectively parameterises the delivery dynamics 

by quantifying the particle motion resulting from diffusion and sedimentation with a single metric. 

The equation is derived from a consideration of a closed system with a fixed supply reservoir from 

which particles are delivered to a surface.[42] The measured data plus modelled fits are shown in 

Figure 5. Whilst the fits lines do not accurately match the data for all vector concentrations, 

nonetheless Equation 2 does provides a realistic description of the curve profiles for all three 

delivery vector types and scales appropriately across the full range of concentrations.  
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The formulation and validation of a calibrated vector delivery equation provides a powerful tool 

with which we can move from exposure metrics to quantification of delivered dose. The measured 

signal, S in Equation 2 can be replaced by the vector number, N to which it is linearly correlated: 

  1 tN t CV e      (3) 

Where C is the exposure concentration of the vector and V the volume of the exposure medium (CV 

= No). Equation 3 can be used to transform time-mortality data into delivered dose-mortality 

curves using known values of C and V together with  values determined from the data fits in Figure 

5. The results of this transformation for the three delivery vector systems (data in Figure 3) are 

shown in Figure 6. The cell response is now related to the vector dose accumulated at the cell 

surface, thus different exposure concentrations (colour-labelled in Figure 6) produce a series of 

curves that lie on the same profile and extend to a maximum length determined by the concentration 

(maximum possible dose). This is as expected and a demonstration of Haber‟s law– the 

accumulated dose is a product of the concentration of the agent and the duration of exposure.[48] 

Whilst the form of the delivered dose-mortality curves is similar to the standard exposure-response 

data taken at t = 24 hours (Figure 2) they differ in one very important aspect: the delivered dose-

mortality curves are time independent. In using Equation 3 to remove the kinetics of vector delivery 

to the cell surface in vitro we have obtained response profiles that describe the innate biological 

susceptibility to the exposure agent. If the correct relationship between delivery vector size and PEI 

potency can now be obtained then transformation of this delivered dose into a determinant of 

biological effect (toxicity or mortality) will produce a unified, global response curve that describes 

the % cell death independent of the form of carrier by which the toxin is delivered. 

3.4. Investigating the controlling factor for cellular response 
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The dose-mortality curves shown in Figure 6 are different for the three delivery vehicle systems. 

However, in each case it is the same toxic agent, cationic PEI that is causing cell death, thus the 

differences must stem from the packing of the agent on each delivery vehicle. The data, therefore, 

describe a secondary factor related to the presentation of the PEI molecules to the cells rather than 

the primary cell-toxin interaction. However, the delivered dose-mortality curves do provide a means 

by which various hypotheses on the form of this primary interaction can be investigated. If we can 

correctly identify the mechanism of toxicity and find the mathematical relationship that links it to 

the delivered drug vehicle dose then we can transform the individual response curves for different 

delivery systems into a single, global curve of drug response, independent of the means by which 

the drug reaches the cell. 

The first step in this investigation addresses the fact that the PEI agglomerates when in molecular 

form. The concentration of the delivered mol-PEI used in Figure 6 must, therefore, be corrected to 

report the effective agglomerated vector concentration rather than that predicted under the 

assumption of a monodisperse molecular solution. This is simply done by dividing the delivered 

dose value by our estimate of the mean number of PEI molecules per agglomerate (N = 2.4x10
7
). 

The results of this transformation are shown in Figure 7A. The role of the delivery vector size now 

becomes very apparent as the mol-PEI and P-mol systems, which have near equal diameters, show 

nearly identical dose-mortality profiles. Even with agglomeration the concentration of mol-PEI 

remains higher than that of the P-mol (maximum concentration of 16,000 fM cf. 300 fM) and so 

the data extends over the full % range for cell death in this case. 

The data in Figure 7A shows that an equivalent cell response is produced by PEI molecules when 

they are attached to the surface of a micron scale particle and when they aggregate into a molecular 

cluster of the same dimensions. This observation leads to the hypothesis that it is the availability of 

PEI at the surface of the delivery vector that determines the level of toxicity. To test this hypothesis 
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we calculated the mean number of surface PEI molecules per vector using the measured vector 

diameters (microparticle = 950 nm, molecular agglomerate = 930 nm, nanoparticle = 15 nm) and an 

assumed PEI spacing of 3.2 nm. The calculated values were then converted into a molar 

concentration by multiplying by the effective vector dose concentration (independent variable in 

Figure 7A). The result of this dose metric transform is shown in Figure 7B. A unified result is 

indeed obtained with all delivery vector types and exposure concentrations producing a dose-

mortality curve that sits on the same global profile. This confirms the hypothesis that it is the total 

number of PEI molecules presented to the cell on a delivery vector surface, which determines the 

level of cellular toxicity. The curve in Figure 7B is graphical evidence of the potential of this 

benchmarking approach for comparison of drug delivery vehicles, regardless of their material 

composition or size, and the extraction of the true therapeutic/toxic interaction of the drug/toxin 

with cells. 

 

 

4. Discussion 

Optimal drug delivery necessitates selective use of particular delivery vehicles, chosen from a wide 

range of candidate designs and materials dependent upon the nature of the drug and its specified 

target, and so techniques for benchmarking pharmacological performance across systems are 

essential. This poses a significant challenge in separating the multiple processes and mechanisms 

that determine a dose-response profile and which are dependent upon the delivery vector 

characteristics and the toxicity of its cargo. The time resolved analysis that we present provides a 

measurement based technique for separating these processes.  
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By implementing a simple, phenomenological, vector reservoir model we are able to accurately 

describe the arrival of delivery vectors at the cell surface, allowing us to transform a time-

dependence into a dose accumulation. This crucial step separates the processes of drug delivery and 

drug activity in vitro and avoids the complicated dynamics of particle motion in solution[40] by 

directly determining the resultant dose without need to consider the delivery process. Using this 

transformation of data from an exposure-response form to a delivered dose-response profile, 

comparisons can be made of the effectiveness of different drug delivery vectors, according to their 

presentation of the drug to cells rather than their efficiency of delivery. This allows an 

understanding of the influence of drug packaging by a carrier vector upon the response of a 

biological system. Indeed, when fully implemented the benchmarking procedure can provide a 

single, global drug response metric that identifies the determinant of drug potency and quantifies its 

influence according to the chosen carrier vector. 

The implementation of delivery vector benchmarking presented here has allowed us to compare the 

free delivery of a cationic molecule to carrier-based delivery using nano and microscale particles. 

The technique enables us to infer the presence of agglomeration of the free molecules from the 

time-resolved cellular response data and to identify the total number of molecules attached to the 

delivery vector surface as the primary factor determining cell death. The protocol can be 

implemented across a wide range of delivery vectors, regardless of morphology, scale and 

composition and is reliant only on the ability to perform time-resolved cellular response studies. 

Wider adoption of this approach would allow multiscale, cross-material comparisons of drug 

delivery vectors and optimisation of therapeutic effect based on analysis of the primary mechanism 

of drug action rather than secondary factors such as packing density on the delivery vehicle or the 

efficiency and speed of delivery.   
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Figure Captions: 

 

Table 1: Size and zeta potential parameters of the delivery vectors and PEI cargo. 

 

Figure 1: (A) Electron micrograph of NP-PEI; (B) NP-PEI size histogram based on electron 

micrograph; (C & D) Electron micrograph of bare µP and P-PEI respectively.   

 

Figure 2: Exposure-response curves after 24 hours of exposure for micro, nano and molecular 

delivery vectors. 

 

Figure 3: Time-mortality curves for (A) P-PEI; (B) NP-PEI and (C) mol-PEI treated HFF-1 cells. 

Arrows indicate direction of increasing exposure concentration; P-PEI: control (red), uncoated – 

31 fM (magenta), coated – 8 fM (blue), 15 fM (green), 31 fM (yellow), 76 fM (black), 153 fM 

(red), 306 fM (blue); NP-PEI: control (green), 1 nM (red), 2 nM (black), 3 nM (magenta), 4.5 nM 

(red), 5 nM (blue), 6 nM (black), 18 nM (blue), 45 nM (magenta); mol-PEI: control (red), 0.4 M 

(green),4 M (black),10 M (blue), 20 M (magenta), 40 M (green), 200 M (blue), 400 M 

(red). The error bars show the standard error in the mean (n=3). 

 

Figure 4: Bright field (mol-PEI and P-PEI) and fluorescence (NP-PEI) images of delivery vector 

accumulation on the culture well surface. Each image is of a 387x387 m area. 
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Figure 5: Time resolved arrival of delivery vectors onto the culture well surface for (A) P-PEI, (B) 

NP-PEI and (C) mol-PEI. The solid lines show a modelled fit using the indicated characteristic 

delivery time,  (see Equation 2). 

 

Figure 6: Dose-mortality curves calculated by transformation of data in Figure 3, using equation 2. 

Exposure concentrations used are; P-PEI: 15,31,76,153  fM; NP-PEI: 3,4.5,6,18 nM; mol-PEI: 

10,20,40,200 M. 

 

Figure 7: Biological response (% of cell death) as a function of: (A) effective vector dose 

concentration and (B) the solution concentration of the PEI molecules that are present at the surface 

of the delivery vectors. Legend: P-PEI (blue symbols), NP-PEI (red symbols) and mol-PEI (green 

symbols), original data shown in Figure 6. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Graphical Abstract 

Many of the key advances in Nanomedicine relate to the concept of delivery of a drug via a secondary 

carrier – a delivery vector. Here we present an experimental approach that allows quantitative comparison 

of delivery vectors across scales. This allows detailed analysis and discrimination of the relative roles of the 

carrier and the drug in determining cell response.    
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Table 1: Size and zeta potential parameters of the delivery vectors and PEI cargo. 

Delivery vector Size (nm) 

Bare particle (PEI coated form) 

Zeta-potential (mV) 

µP-PEI, microparticle 950 (1100) + 15.2 +/- 5.2 

NP-PEI, nanoparticle 15
a
 (34) + 18.6 +/- 5.7 

PEI, molecule 25 kDa weight  

a
 value reported in [44] 


