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Abstract
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I. INTRODUCTION

Computing perturbative scattering amplitudes is a key challenge in quantum field theory
both for comparing theories with experiment and for understanding the symmetries and
consistency of theories. Explicit analytic expressions for scattering amplitudes have proved
particularly useful in understanding the behaviour and symmetries of the underlying theory.
Calculating amplitudes from their singular structures is an extremely powerful tool which
has a long history [1] and has seen tremendous development based on techniques including
unitarity [2, 3] and on-shell recursion [4].

Recently the leading in color component of the two-loop all-plus five-point amplitude has
been computed in QCD [5, 6] using d-dimensional unitarity techniques. Subsequently this
amplitude was presented in a very elegant and compact form [7]. In this form the amplitude
consists of a piece driven by the infra-red (IR) and ultra-violet (UV) singular structure of
the amplitude and a “remainder” piece.

In ref. [8] it was demonstrated how this form can be generated using a combination of
four-dimensional unitarity and (augmented) recursion which provides an understanding of the
simplicity of the amplitude. In this article we propose an expression for the polylogarithms in
the leading-in-color part of the n-point all-plus amplitude. This proposal is based on collinear
limits and unitarity.

Using the conventions of ref. [7] the leading in color component of the amplitude can be
expressed,

An(1
+, 2+, · · · , n+)|leading color =gn−2

∑

L≥1

(

g2NcΓ
)L

×
∑

σ∈Sn/Zn

tr(T a
σ(1)T a

σ(2) · · ·T a
σ(n))A(L)

n (σ(1)+, σ(2)+, · · · , σ(n)+) (1.1)

and the result we present is for the color-stripped two-loop amplitude A
(2)
n (1+, 2+, · · · , n+).1

The IR and UV behaviour of this amplitude is very-well specified [9] and it can be split

into singular terms plus a finite remainder function, F
(2)
n , which is to be determined:

A(2)
n =A(1)

n I(1)n + F (2)
n +O(ǫ) , (1.2)

where

I(1)n =

[

−
n
∑

i=1

1

ǫ2

(

µ2

−si,i+1

)ǫ

+
nπ2

12

]

. (1.3)

Since this one-loop amplitude is finite there are no ǫ−1 terms [9]. In this equation A
(1)
n

is the all-ǫ form of the one-loop amplitude [10, 11]. Although the one-loop amplitude is
rational to O(ǫ0), the all-ǫ expression contains polylogarithms which, when combined with

the ǫ−2 factor generate finite polylogarithms in the two-loop amplitude. F
(2)
n contains further

polylogarithmic terms, P
(2)
n and rational terms R

(2)
n :

F (2)
n = P (2)

n +R(2)
n . (1.4)

1 The factor cΓ is defined as Γ(1 + ǫ)Γ2(1 − ǫ)/Γ(1 − 2ǫ)/(4π)2−ǫ. Sn/Zn are the cyclically-distinguishable

permutations of the n-legs and T ai are the color-matrices of SU(N).
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The ansatz for P
(2)
n is in terms of the functions

F 2m[S, T,K2
2 , K

2
4 ] =Li2[1−

K2
2

S
] + Li2[1−

K2
2

T
] + Li2[1−

K2
4

S
]

+Li2[1−
K2

4

T
]− Li2[1−

K2
2K

2
4

ST
] + Log2(S/T )/2 . (1.5)

As the notation suggests, these are related to the one-loop box integral functions with two
massive (and two massless) legs. The function corresponds to a box integral function where
the momenta K2 and K4 are non-null and S = (k1 + K2)

2 and T = (K2 + k3)
2. This

combination of dilogarithms can be regarded as either a) the D = 4 integrals truncated to
remove the IR divergent terms or b) the D = 8 integrals [12, 13]. The function is smooth in
the limit K2

2 −→ 0,

F 2m[S, T, 0, K2
4 ] = Li2[1−

K2
4

S
] + Li2[1−

K2
4

T
] + Log2(S/T )/2 +

π2

6
(1.6)

which is the one-mass function, F 1m[S, T,K2
4 ].

P
(2)
n is obtained by summing over all possible F 2m including the degenerate cases when K2

corresponds to a single leg and F 2m reduces to F 1m. Leg K4 must have at least two external

legs. Defining the kinematic invariants t
[r]
i

t
[r]
i = (ki + ki+1 + · · ·+ ki+r−1)

2 (1.7)

then
F 2m
n:r,i = F 2m[t

[r+1]
i−1 , t

[r+1]
i , t

[r]
i , t

[n−r−2
i+r+1 ] (1.8)

which is shown diagramatically in fig. 1. The case r = 1 is the one-mass case F 1m
n:i ≡ F 2m

n:1,i.

ki−1

ki+r

K2

ki

ki+r−1 ki+r+1

ki−2

K4

FIG. 1: Diagrammatic representation of the functions F 2m
n:r,i. The functions are symmetric between

K2 and K4 but their coefficients are not. The summation is over all such functions including the

case when K2 is a single leg (r = 1) but leg K4 must contain at least two legs (indicated by a solid

disc).
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The ansatz for P
(2)
n is

P (2)
n =

i

6 〈1 2〉 〈2 3〉 〈3 4〉 · · · 〈n 1〉

n
∑

i=1

n−4
∑

r=1

cr,iF
2m
n:r,i (1.9)

where the coefficient is

cr,i =

(

∑

a<b<c<d∈K4

tr−[abcd]−
∑

a<b<c∈K4

tr−[abcK4] +
∑

a<b∈K4

〈i− 1|K4baK4|i+ r〉

〈i− 1 i+ r〉

)

(1.10)

where

tr−[abcd] ≡ 〈a b〉 [b c] 〈c d〉 [d a] , (1.11)

K4 is the set {i+ r + 1, · · · , i− 2} with a cyclic definition of indices and inequality refers to
ordering within the set.

Note that P
(2)
n has transcendentality two (w.r.t polylogarithms) as do one-loop amplitudes

although the full amplitude, A
(2)
n , has higher transcendentality. For n = 4, P

(2)
4 = 0 and the

remainder function is purely rational [14].

II. COLLINEAR LIMITS

We consider the collinear limit of the amplitude as an important consistency test and to
illustrate some key features. The collinear limit occurs when adjacent momenta ka and ka+1

become collinear,
ka −→ z ×K, ka+1 −→ (1− z)×K = z̄K . (2.1)

In this limit, amplitudes factorise as

A(L)
n (· · · , kh

a , k
h′

a+1, · · · ) −→
∑

Ls,h′′

S
hh′,(Ls)
−h′′ × A

(L−Ls)
n−1 (· · · , Kh′′

, · · · ) , (2.2)

where S
hh′,(Ls)
−h′′ are the various splitting functions. For the all-plus amplitude the tree ampli-

tude vanishes for both choices of h′′ and

A(2)
n (· · · k+

a , k
+
a+1 · · · ) −→ S++,tree

− × A
(2)
n−1(· · · , K

+, · · · ) +
∑

h=±

S
++,(1)
−h × A

(1)
n−1(· · · , K

h, · · · ) .

(2.3)
The term with h = − is purely rational and is irrelevent for the polylogarithmic term.

The first important proposal is that we use an all-ǫ form of the one-loop amplitude to
ensure that to all orders in ǫ,

A(1)
n −→ S++,tree

− × A
(1)
n−1 . (2.4)

With this, we only need the order ǫ0 form of the one-loop amplitude to check the collinear
limit.

In the collinear limit,

I(1)n −→ I
(1)
n−1 + r++

− +∆ , (2.5)
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where [2]

r++
− = −

1

ǫ2

(

µ2

zz̄(−sa,a+1)

)ǫ

+ 2 ln z ln z̄ +
1

3
zz̄ −

π2

6
(2.6)

and

∆ = log(
−sa,a+1

µ2
) log(zz̄)−log(

−sa−1,a

µ2
) log(z)−log(

−sa+1,a+2

µ2
) log(z̄)−log(z) log(z̄)−

1

3
zz̄+

π2

4
.

(2.7)
The combination S++,tree

− r++
− is the one-loop splitting function. Consequently,

A(1)
n × I(1)n −→ S++,tree

− A
(1)
n−1

(

I
(1)
n−1 + r++

− +∆
)

= S++,tree
−

(

A
(1)
n−1I

(1)
n−1

)

+
(

S++,tree
− r++

−

)

A
(1)
n−1 + S++,tree

− A
(1)
n−1∆ .

= S++,tree
−

(

A
(1)
n−1I

(1)
n−1

)

+ S
++,(1)
− A

(1)
n−1 + S++,tree

− A
(1)
n−1∆ . (2.8)

In the last term, S++,tree
− A

(1)
n−1∆, we need only keep the one-loop amplitude to order ǫ0.

Consequently we require

P (2)
n −→ S++,tree

− P
(2)
n−1 − S++,tree

− A
(1)
n−1∆

′ (2.9)

where ∆′ is the non-rational part of ∆ of eq. (2.7).
The overall pre-factor of

i

6 〈1 2〉 〈2 3〉 〈3 4〉 · · · 〈n 1〉
−→

1

zz̄ 〈a a+ 1〉
×

i

6 〈1 2〉 · · · 〈a− 1K〉 〈K a+ 2〉 · · · 〈n 1〉

= S++,tree
− ×

i

6 〈1 2〉 · · · 〈a− 1K〉 〈K a+ 2〉 · · · 〈n 1〉
(2.10)

which is the tree splitting function times the descendant n−1-point pre-factor. Consequently
we require

n
∑

i=1

n−4
∑

r=1

cr,iF
2m
n:r,i −→

n−1
∑

i=1

n−5
∑

r=1

cr,iF
2m
n−1:r,i − Ā

(1)
n−1∆

′ (2.11)

where Ā
(1)
n−1 is the one-loop amplitude divided by the prefactor.

Each term in P
(2)
n−1 where leg K is within either K2 or K4 arises directly from a single term

in P
(2)
n with legs a and a+1 both in K2 or K4 respectively. In these cases the functions have

a smooth limit:

F 2m
n:r,i −→ F 2m

n−1:r−1,i a, a+ 1 ∈ K2

F 2m
n:r,i −→ F 2m

n−1:r,i a, a+ 1 ∈ K4 (2.12)

while the corresponding coefficients behave as

cr,i −→ cr−1,i a, a+ 1 ∈ K2

cr,i −→ cr,i a, a+ 1 ∈ K4, r 6= n− 4 (2.13)
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When a and a+ 1 are the only two legs within K4 (i.e. r = n− 4),

cn−4,a+3 =
〈a− 1|K4(a+ 1)aK4|a+ 2〉

〈a− 1 a+ 2〉
=

〈a− 1 a〉 [a a+ 1]2 〈a a+ 1〉 〈a+ 1 a+ 2〉

〈a− 1 a+ 2〉
(2.14)

which vanishes in the collinear limit and there is no contribution from this function . This
configuration is illustrated in the first part of fig. 4.

When one of the massless legs is a or a+ 1 we use the identity

F 2m
n:r+1,a+1 + F 2m

n:r,a+2 −→ F 2m
n−1:r,a+2 (2.15)

which is shown diagrammatically on fig. 2. This identity follows from Abel’s identity. There
is also the corresponding identity when one of the F 2m has K2 null,

F 2m
n:2:a+1 + F 1m

n:a+2 −→ F 1m
n−1:1;a+2 . (2.16)

+ −→

ka

ka+1

ka+1

ka+2 ka+2ka

kK

FIG. 2: Pictorial representation of the identity amongst the F -functions.

The functional identities in eq. (2.15) and eq. (2.16) are very similar to those that appear
in the collinear limit of the one-loop “Maximally-Helicity-Violating” (MHV) amplitude in
N = 4 although in that case the identities are for the untruncated box integrals. The
coefficients of the functions shown in fig. 2, both descend to the appropriate coefficient in the
collinear limit

cr+1,a+1 , cr,a+2 −→ cr,a+2 (2.17)

and consequently

cr+1,a+1F
2m
n:r+1,a+1 + cr,a+2F

2m
n:r,a+2 −→ cr,a+2F

2m
n−1:r,a+2 . (2.18)

This identifies where all the F 2m terms of the n−1 point amplitude arise from in the collinear
limit.

There are a few limiting cases in the n-point we must consider. The functions shown
in fig. 4 have vanishing coefficients and do not contribute. The two functions represented in
fig. 3 satisfy

F 1m
n:a + F 1m

n:a+1 −→ −∆′ (2.19)

and have coefficients satisfying

ic1,a
6 〈1 2〉 · · · 〈n 1〉

,
ic1,a+1

6 〈1 2〉 · · · 〈n 1〉
−→ S++,tree

− A
(1)
n−1 (2.20)
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so that
i

6 〈1 2〉 · · · 〈n 1〉

(

c1,aF
1m
n:a + c1,a+1F

1m
n:a+1

)

−→ −S++,tree
− A

(1)
n−1∆

′ (2.21)

as required by eq. (2.9).

+

ka+1

ka ka+1

ka

−→ −∆
′

FIG. 3: The collinear limit of these two F -functions.

ka

ka+1

ka+1

ka

ka

ka+1

FIG. 4: Functions whose coefficients vanish in the collinear limit

Consequently, the ansatz has the correct collinear limit up to rational terms.

III. UNITARITY CHECKS

This section is rather a reverse of how the ansatz was formed. We can use unitarity, subject
to certain assumptions, to generate the functions in the remainder function. This is possible
using four-dimensional unitarity where the cuts are evaluated in four dimensions rather that
4 − 2ǫ dimensions. This process in principle will miss certain functions, specifically purely
rational terms and terms that are sub-leading in ǫ. As discussed above, we assume that the
sub-leading in ǫ terms can be deduced from IR consistency allowing us to generate an ansatz

for the polylogarithmic part of F
(2)
n .

Using four dimensional unitarity, the one-loop all-plus amplitude has no cuts and may be
regarded as a vertex. With this philosophy, the coefficient of the one-loop functions can be
determined by one’s favourite technique. We use quadruple cuts [12] to determine the box
coefficients and canonical forms [15] for the triangle and bubble functions.
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A

B

− +

− +

+

+

−

+

−

i− 1+

i+

i+ r+

+

+

FIG. 5: The non-vanishing quadruple cut. A is a MHV tree amplitude whereas B is a one-loop

all-plus amplitude.

When all external legs are of positive helicity the non-vanishing quadruple cut shown in
fig. 5 is

M3((i− 1)+,−l+2 , l
−
1 )×M tree

r+2(i
+, · · · , (i+ r − 1)+,−l−3 , l

−
2 )×

M3((i+ r)+,−l−4 , l
+
3 )×M

(1)
n−r((i+ r + 1)+, · · · , (i− 1)+,−l+1 , l

+
4 ) (3.1)

where the tree amplitude may be a three-point amplitude (r = 1) but the one-loop amplitude
must have at least two external legs. Using the n-point all-plus one-loop amplitude [10],

A(1)(1+, 2+, · · · , n+) = −
i

3

∑

1≤k1<k2<k3<k4≤n

〈k1 k2〉 [k2 k3] 〈k3 k4〉 [k4 k1]

〈1 2〉 〈2 3〉 · · · 〈n 1〉
+O(ǫ) , (3.2)

we obtain

[i− 1|K4|i+ r〉[i+ r|K4|i− 1〉

〈1 2〉 〈2 3〉 〈3 4〉 · · · 〈n 1〉

×

(

∑

a<b<c<d∈K4

tr−[abcd]−
∑

a<b<c∈K4

tr−[abcK4] +
∑

a<b∈K4

〈i− 1|K4baK4|i+ r〉

〈i− 1 i+ r〉

)

.

(3.3)

This is the coefficient of the one-loop box function I2m4 . This integral function satisfies

2(ST−K2
2K

2
4)I

2m
4 =

(

−
(−S/µ2)−ǫ

ǫ2
−

(−T/µ2)−ǫ

ǫ2
+

(−K2
2/µ

2)−ǫ

ǫ2
+

(−K2
4/µ

2)−ǫ

ǫ2

)

+F 2m[S, T,K2
2 , K

2
4 ]

(3.4)
where [i − 1|K4|i + r〉[i+ r|K4|i− 1〉 = ST − K2

2K
2
4 . This contains IR-infinite terms,

(−s/µ2)−ǫ/ǫ2, together with F 2m.
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d+

K3K1

+−

−

+
+

−

BA

a+ f+

B

e+

f+

+

+

+

+

−

−

K3
+

−

−

+

FIG. 6: The non-vanishing triple cuts. The one-mass triangle has two non-vanishing configuration.

A and B are as in fig. 5.

There are also triangle integral functions whose coefficient may be determined from triple
cuts [13, 16–18]. The non-vanishing triple cuts as shown in fig. 6. These can be evaluated
using canonical forms [15]. The coefficient of the two mass triangle shown in fig. 6 is

〈f a〉 [d|K3|d〉

〈1 2〉 〈2 3〉 · · · 〈n 1〉 〈a d〉 〈f d〉

∑

i<j∈K3

〈d|K3ijK3|d〉 (3.5)

and that of the one-mass triangle is

sef 〈d e〉 〈e f〉
∑

i<j∈K3
[e i] 〈i j〉 [j e]

〈1 2〉 〈2 3〉 · · · 〈n 1〉 〈d f〉
+

sef 〈e f〉 〈a f〉
∑

i<j∈K3
[f i] 〈i j〉 [j f ]

〈1 2〉 〈2 3〉 · · · 〈n 1〉 〈e a〉
. (3.6)

The integral functions are

I2m3
(

K2
1 , K

2
3

)

=
1

ǫ2
(−K2

1/µ
2)−ǫ − (−K2

3/µ
2)−ǫ

(−K2
1)− (−K2

3)
(3.7)

and

I1m3 (K2
3) =

1

ǫ2
(−K2

3/µ
2)−1−ǫ . (3.8)

Each IR divergent term, such as (−S/µ2)−ǫ/ǫ2, occurs in both triangle and the box functions.
When we sum over the box and triangle contributions we obtain an overall coefficient of

A
(1),ǫ0

n (1+, 2+, · · · , n+),

(

∑

CiI
2m
4,i +

∑

CiI
2m
3,i +

∑

CiI
1m
3,i

)

∣

∣

∣

∣

IR

= A(1),ǫ0

n (1+, 2+, · · · , n+)×
n
∑

i=1

1

ǫ2

(

µ2

−si,i+1

)ǫ

,

(3.9)

where A
(1),ǫ0

5 (1+, 2+, · · · , n+) is the order ǫ0 truncation of the one-loop amplitude2. A key

2 This has been checked on random kinematic points for n ≤ 25.
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step is to promote the coefficient of these terms to be the all-ǫ form of the one-loop amplitude
which then gives the correct singular structure of the amplitude.

Note that in principle the amplitude could contain bubble functions. These can be ob-
tained from two-particle cuts. However, the two-particle cuts are O(ℓ−1), indicating that the
bubble functions have vanishing coefficients and are thus absent. This is consistent with the
known IR and UV singular structure of these particular amplitudes.

IV. RATIONAL TERMS

The rational terms in the amplitude are of course very important. After identifying the
non-rational part the rational part may be obtained by recursion. This was illustrated for
the five point case in [8]. Recursion is however fairly complicated because the rational terms
contain double poles which means we require subleading information about the amplitude.

While this has proved possible for some amplitudes [19–22], we have not yet been able to
obtain the rational part of the n-point amplitude in closed form.

V. CONCLUSIONS

We have proposed an explicit compact expression for the polylogarithms of the all-plus
two-loop n-point amplitude which has:

a) the correct IR and UV structure
b) the correct collinear limits
c) the correct four dimensional cuts

A key element is that the most complex polylogarithms are contained in the leading singular
terms. The expression for the remaining polylogarithms is constructed from simple building
blocks which are combinations of dilogarithms corresponding to simple one-loop box integrals.
Whether there is an underlying symmetry reason for the simplicity (such as the link between
the one-loop all-plus amplitude and the amplitudes of self-dual Yang-Mills [23, 24]) remains
to be seen. We hope that the simplicity of the result will inspire attempts to produce compact
analytical expressions for further multi-loop gauge theory amplitudes.
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