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Highlights 

 Critical Wi extended to Wicrit=5000+ via convoluted approach. 

 Three phases in upstream-downstream vortex-dynamics; high-Wi Moffatt vortices. 
 f-functional, Wicrit & positive definiteness correlation. 
 Plateauing epd predictions at high-Wi. 

 Periodic boundary-condition implementation for consistent Wi=5000+ solutions. 
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Abstract 

This study is concerned with finite element/volume modelling of contraction-expansion axisymmetric 

pipe flows for thixotropic and non-thixotropic viscoelastic models. To obtain solutions at high 

Weissenberg numbers (Wi) under a general differential form  2 1p pWi f


  D  , both 

thixotropic Bautista-Manero micellar and non-thixotropic EPTT f-functionals have been investigated. 

Here, three key modifications have been implemented: first, that of convoluting EPTT and micellar 

Bautista-Manero f-functionals, either in a multiplicative (Conv*) or additive (Conv
+
) form; second, by 

adopting f-functionals in absolute form (ABS-f-correction); and third, by imposing pure uniaxial-

extension velocity-gradient components at the pure-stretch flow-centreline (VGR-correction). With 

this combination of strategies, highly non-linear solutions have been obtained to impressively high Wi 

[=O(5000+)]. 

This capability permits analysis of industrial applications, typically displaying non-linear features 

such as thixotropy, yield stress and shear banding. The scope of applications covers enhanced oil- 

recovery, industrial processing of plastics and foods, as well as in biological and microfluidic flows. 

The impact of rheological properties across convoluted models (moderate-hardening, shear-thinning) 

has been observed through steady-state solutions and their excess pressure-drop (epd) production, 

stress, f-functional field structure, and vortex dynamics. Three phases of vortex-behaviour have been 

observed with rise in elasticity, along with upstream-downstream Moffatt vortices and plateauing epd-

behaviour at high-Wi levels. Moreover, enhancement of positive-definiteness in stress has improved 

high-Wi solution attenuation.  

Keywords: high-elasticity solutions, wormlike micelles, convoluted EPTT-Bautista-Manero models, numerical 

simulation, hybrid finite element/volume method, enhanced oil-recovery 

1. Introduction 

The theme of this study is particularly concerned with exploring predictive solutions for 

thixotropic worm-like micellar systems under medium to high elasticity conditions. To 

achieve this goal, convoluted hybrid constitutive models have been developed and 

embellished upon, utilising base Bautista-Manero (MBM) models to accommodate the 

                                                           
1
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dynamic micellar response, and grafting these upon exponential Phan-Thien-Tanner (EPTT) 

models for rubber-network response. The class of time-dependent MBM models follow those 

developed in [1-5]. In contrast, the time-independent network-based EPTT models were first 

proposed in [6], though more widely used today for many polymeric systems due to their 

inherently robust numerical characteristics. The work concentrates on the axisymmetric 

contraction-expansion flow problem, of geometric ratio 4:1:4 with rounded contraction-cap 

and recess-corners.  

The issue of extraction of highly-elastic numerical prediction is tackled in a number of 

different directions. First, convolution of MBM and EPTT models is proposed, through their 

network-structure (f-) functionals, of multiplicative and additive forms. Second, and based on 

physical grounds, by appealing to only absolute values in structure-function dependency 

(ABS-f-correction), which controls non-linear response (see [5]). Third, through the problem 

approximation and its discretisation, via the imposition of consistent velocity gradient 

representation along the pure-stretch centreline of the flow (VGR-correction). The many 

relevant factors influencing the determination of particularly high elastic solutions (and their 

limitation in strain-hardening context) are discussed in depth in [5]. These aspects touch on: 

the numerical technique and discretisation for independent variables (stress, velocity, 

pressure, velocity-gradient); possible loss of IVP (Initial Value Problem) evolution and lack 

of positive definiteness retention (leading to stress-subsystem eigenvalue (si) analysis, si-N1 

centreline relationship); the complex flow problem itself (sharp stress boundary layers, flow 

singularities); and the particular constitutive equation of choice [5].  

Worm-like micelle solution systems are a versatile family of fluids, composed of mixtures 

of surfactants and salts. Typical surfactants are cetyltrimethylamonium bromide (CTAB) or 

cetylpyridinium chloride (CPyCl); common salts are sodium salicylate (NaSal) in water 

([4,7]). These components interact physically, depending on concentration, temperature and 

pressure conditions, to form elongated micelles. Such elongated constructs entangle and 

provoke mechanical interactions, stimulating breakdown and formation of internal structure 

[4]. This has consequences on the material properties of viscosity and elasticity. This 

complex constitution spurns highly complex rheological phenomena [7], and manifests 

features associated with thixotropy [1], pseudo plasticity [1-5], shear banding [9-13] and 

yield stress [14-15]. These systems have been coined ‘smart materials’, as their rheology 

dynamically adjusts to conform to prevailing environmental conditions. Such features render 

these systems as ideal candidates for varied processing and present-day applications. 

Examples of such application include use as drilling fluids in enhanced oil-reservoir recovery 

(EOR), additives in house-hold-products, paints, cosmetics, health-care products, and as drag 

reducing agents [4,7].  

On wormlike micellar modelling, many approaches have been pursued to describe micellar 

flow behaviour. The original Bautista-Manero-Puig (BMP) model [1-2] consisted of the 

upper-convected Maxwell constitutive equation to describe the stress evolution, coupled to a 

kinetic equation to account for structural flow-induced changes and, was based on the rate of 

energy dissipation. Subsequently, Boek et al. [3] corrected the BMP model for its unbounded 
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extensional viscosity in simple uniaxial extension – thus producing the base-form MBM 

model employed in the present analysis. This model has been implemented in complex flows 

such as in 4:1 contraction flow [16] and 4:1:4 contraction-expansion flow [4]. Therein, 

inconsistency has been exposed in excess pressure drop (epd) predictions at the Stokesian 

limit. Subsequently, this anomaly has been overcome [4] by including viscoelasticity within 

the structure construction-destruction mechanism. Two such model-variants have appeared, 

with energy dissipation given: (i) by the polymer contribution exclusively (NM_p model, as 

adopted in the present article), and (ii) by the combination of the polymer and solvent 

contributions (NM_T model). These considerations have introduced new physics into the 

material response, by explicitly coupling thixotropic and elastic properties. Moreover, new 

key rheological characteristics have also been introduced, such as declining first normal 

stress difference in simple shear flow [4].  

For completeness from the micellar literature, one may cite other alternative modelling 

approaches, though these have largely focused on simple flows and the shear-banding 

phenomena. The VCM (Vasquez-Cook-McKinley) model, based on a discrete version of the 

‘living polymer theory’ of Cates, has been tested in simple flows, where rheological 

homogeneity prevails [17], and under conditions of shear-banding. VCM predictions captured 

the linear response of experimental shear data for CPyCl/NaSal concentrated solutions under 

small amplitude oscillatory shear and small amplitude step-strain experiments [18]. 

Moreover, Zhou et al. [19] found reasonable agreement with experimental data of Taylor-

Couette and microchannel geometries and VCM predictions. Another approach consists of 

using the Johnson–Segalman model, modified with a diffusion term in the polymeric extra-

stress equation (the so-called d-JS model) [20]. This model was found to predict shear-bands 

in cylindrical Couette flow. The Giesekus model has also been used in the representation of 

wormlike micelles under simple shear scenarios, whilst using the non-linear anisotropy 

coupling parameter to introduce shear- banding conditions [21]. Here under large amplitude 

oscillatory shear, a straightforward method was proposed to estimate the Giesekus non-linear 

parameter. Consequent Giesekus predictions were then found to lie in quantitative agreement 

with data for low-concentration CTAB wormlike-micellar solutions. 

Paper overview - in this article, convoluted equations of state are proposed based on the 

non-thixotropic network-based PTT and thixotropic micellar MBM parent models. Here, two 

convolution options have been devised, with additive (Conv
+

) and multiplicative (Conv*) f-

functionals. Their rheometric response, via shear and extensional data, has been correlated to 

that within axisymmetric 4:1:4 contraction-expansion complex flow solutions. In this respect, 

streamline patterns, N1-fields, f-functional and pressure-drops have been analysed. Moreover, 

High-Wi solutions [Wi=O(5000+)] are reported, achieved via ABS-f-correction and VGR-

correction. Vortex activity has revealed a number of independent phases of interest. In this, 

upstream vortex enhancement has been identified at low elasticity levels, followed by 

complete suppression, somewhat reflecting strain-hardening/softening response. At high 

elasticity levels, a second stage of upstream-downstream vortex enhancement has been 

observed, along with secondary Moffatt vortices, of form suppressive-upstream and 
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enhancing-downstream. The ABS-VGR correction (implying the simultaneous use of both 

ABS-f and VGR-corrections) delays any loss of positive definiteness, observed through 

reduced negativity of the second eigenvalue of the stress-subsystem, corresponding to the 

conformation tensor at the centreline. This has been correlated with f-functional values across 

the flow-field (now, f≥1), which grow as elasticity rises, thus ensuring positive viscosity 

estimation. Excess pressure-drop (epd) data asymptote to a plateau at high-Wi [Wi=O(10
3
)]. 

At very high-Wi (Wi>10
3
), epd-data degenerate due to inconsistencies in inner-field to flow-

outlet conditions. These inconsistencies are dealt with by imposing periodic boundary 

conditions at the inlet and outlet regions.  

 

2. Governing equations, constitutive modelling & theoretical framework 

2.1 Governing equations and constitutive models The present flow context of interest is 

that of steady flow, under incompressible and isothermal conditions. In a non-dimensional 

framework, whilst assuming implied *notation on dimensionless variables (see on), the 

governing equations for  mass conservation and momentum transport equations for 

viscoelastic flow become:  

0 u ,          (1) 

Re - Re p
t


  



u
T u u .       (2) 

Here, t represents time, an independent variable; the spatial gradient and divergence 

operators apply over the problem domain; field variables u, p and T represent fluid velocity, 

hydrodynamic pressure and stress contributions, respectively. Moreover, the total stress (T) is 

split into two parts: identifying, a solvent component s (viscous-inelastic 2s  D ) and a 

polymeric component p . Then, D ( u u
T
)/2 is the rate of deformation tensor, where 

the superscript ‘
T
’ denotes tensor transpose. Adopting appropriate scales below, 

corresponding dimensionless variables are defined as: 

*

L


x
x ,   *

U


u
u ,   t* =

U

L
t ,   * L

U
D D ,   

 0

p*

p

p s

U

L
 






 ,   

 0

*

p s

p
p

U

L
 





.        

A reference viscosity may be taken as the zero shear-rate viscosity ( 0p s  ). Here, 0p  is 

the zero-rate polymeric-viscosity and s  is the solvent-viscosity. Then, from this the solvent-

fraction can be defined as  0s p s/     . The non-dimensional group number of 

Reynolds may be defined as  0p sRe UL /    , where the material density is  . In the 

above, characteristic scales are U  on fluid velocity (mean velocity, based on volume flow 

rate) and L  on spatial dimension (based on minimum contraction-gap dimension). This 

provides a rate-scale of U / L , and the conventional common scaling on stress and pressure.  
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A second non-dimensional group number of Weissenberg (
1

Wi U / L ), governs 

elasticity, representing the product of a characteristic material relaxation time (
0

1

0

p

G


  ), and 

a characteristic rate (U / L ). Then, a general differential statement for the stress equation of 

state, provides the constitutive model as: 

 2 1p pWi f


  D  .        (3) 

Here, the notation implies use of the upper-convected derivative of extra-stress, 

p T

p p p p
t

 
     


u u u


     . The networked nature of the fluid is then imbued 

through the f-functional.  

With reference to the modelling of wormlike micellar systems, recently a new version of 

the MBM-model has been devised [4], with the novel inclusion of viscoelasticity within its 

thixotropic make-up – that is, responsive within the destruction mechanics of the fluid 

network structure. Commencing from the Bautista-Manero-Puig (BMP) model [1,2], and its 

Modified Bautista-Manero (MBM) model counterpart [3], a non-linear dimensional 

differential structure equation for the fluidity ( 1

p p  ) has emerged. It is from such fluidity 

that the polymeric viscosity function p may be extracted. Then, it is the distribution of the 

evolving space-time fluidity that generates the construction-destruction dynamics of the fluid 

network-structure. Typically, this may begin from a fully structured-state to be converted to 

one of a completely unstructured-state, using the energy dissipated by the material under 

flow.  

The present paper appeals to a specific version of this class of models, that of NM_p, 

which combines the viscoelasticity into the thixotropic dependency. This model variant 

drives structure destruction in the flow using the energy dissipated by the polymeric stress 

alone (see [4] for other options). Herein, dependency on fluidity ( 1

p p  ) arises through the 

dimensionless functional f, whose evolution is dictated by the generalised differential 

equation for structure:  

 
0

1
1 G pu f f Wi :

t




 
     

 
D .      (4) 

The dimensionless functional f is defined as  0p pf   , using 0p  as a viscous scaling 

factor on the fluidity. The dimensionless model parameters, which appear in the 

corresponding mechanistic terms, account for network-construction (
s
U / L  ) and 

network-destruction [    
0 0 0G p s

k / G   


  ]. 
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At steady-state form, eq.(4) collapses into its equivalent algebraic form, 

0

1
pNM _ G pf Wi :   D .        (5) 

Note, in this form it is clear that the dissipation function is the driving influence in 

departure from Oldroyd behaviour (f=1); and that this is modulated by the product of the 

construction and destruction thixotropic-parameters with the Weissenberg number. Thus far, 

the dissipation function has adopted its natural sign – identified as the so called ‘natural-

signed’ NM_p model. 

The present study also calls upon the well-known exponential Phan-Thien/Tanner (EPTT) 

model, which finds its origin in rubber network-theory [6]:  

1

PTT

EPTT p
f exp Witr





 
  

 
 .        (6) 

The constant, non-dimensional PTT parameter PTT≥0 largely dictates severity in strain-

hardening, with smaller values limiting to zero, offering the greater extremes in extensional 

viscosity response (larger Trouton ratios). In the limit of vanishing trp or PTT, fEPTT tends to 

unity and classical Oldroyd-B behaviour is recovered. With such PTT models, trp is the 

function responsible for departure from Oldroyd-B form and represents the stored elastic 

energy of the material, see [22]. 

The EPTT model was selected given its bulk rheological shear-thinning and strain-softening 

properties, in common with micellar models (steady-state). The PTT model itself, was conceived to 

represent such bulk flow behaviour in rubber-network systems, based on a time-independent material-

system construction [6]. Hence, in their combination with wormlike micellar networks, appropriate 

representation can be captured with time-dependent considerations built into the structural makeup. 

Under flow, these complex materials behave similarly to polymer solutions and melts; hence their 

naming ‘living polymers’ [23]. 

Convoluted models In this work, and specifically with the aim of extracting high-Wi 

solutions in complex flow with rich rheological response, NM_p and EPTT steady-state f-

functionals are combined to produce two new hybrid forms: a) by product (Conv*), and b) by 

summation (Conv
+

), viz: 

pConv* EPTT NM _f f * f  ,        (7) 

 1

2 pEPTT NM _Conv
f f f    .        (8) 

These combinations are conceived from the realisation that stronger f-Wi-functionalities 

render larger critical Wi numbers
2
 (Wicrit) in complex flow

 
[5]. This has been confirmed 

                                                           
2 Wicrit is the largest Wi number for which stable numerical solutions are obtained. 
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earlier in [4], with Conv* for the same flow problem, where solutions for Wicrit=O(10
2
) were 

attained without hints of numerical intractability. Models provided in [4], initiated our 

preliminary attempts (only multiplicative) in creating convoluted model-forms, but without 

the inclusion of the ABS-f and VGR corrections. Nevertheless, in [4] solutions were only 

report up to Wicrit=300+, whilst here the much wider range of high-Wi (5000+) is covered. 

Moreover, the strategy of convolution employed is quite general in application, and can be 

extended equally over many other candidate classes of constitutive model. For example, one may 

contrast NM_p form [with a linear f-Wi relationship and Wicrit=4.9, see eq.(5)], against that 

for EPTT [with an exponential f-Wi relationship and Wicrit=210, see eq.(6)] [4]. The aim of 

the present paper is to capture such properties, calling upon hybrid models that inherit the 

functional strength of the EPTT model, alongside the thixotropic constructs of these 

wormlike-micellar models. This is strengthened by appealing to ABS-f and VGR-corrections 

described below, to extract solutions at ultra-high-Wi (demonstrated through micellar, LPTT 

and EPTT parent models [5]).   

ABS-f-correction Following [5], here a second approach adopted to increase Wicrit-levels, 

is to embrace ABS-correction. This is based on providing positive f-functional values during 

flow evolution (time) and throughout the spatial domain in any single or mixed flow 

deformation. This is achieved by applying the absolute-value operation to those variable-

components which trigger departure from Oldroyd-B response. Such correction was first 

proposed for micellar Bautista-Manero models [5]. Here across the domain during flow, the f-

functional is a dimensionless fluidity that should remain positive above unity, to avoid 

negative viscosity arising. Hence in steady-state form, the ABS-f-correction to NM_p of 

eqs.(4)-(5) yields (NM_p_ABS):
 
 

0

1
p

ABS

NM _ G pf Wi :   D .        (9) 

In eq.(9), the absolute-value sign is applied to every constituent component of the scalar 

dissipation-function (likewise for ptr  in EPTT). This concept may be generalised by 

implication to Conv* and Conv
+

 f-functionals. In addition, the motivation for and 

consequences of the f-ABS functional-correction are enumerated as follows:  

a) In terms of thermodynamic arguments - it is intended to preserve positive dissipation 

acting on the material-structure f-functional and to drive non-linear response [5]. For these 

micellar fluids, the f-functional is explicitly related to the material viscosity. Hence, as 

demonstrated in [5], by avoiding negative dissipation-function values in the structure 

equation, one avoids the occurrence of non-physical negative viscosities.  

b) Moreover computationally, this f-functional correction aids in eliminating stress 

overshoot-undershoot, that frequently occur around regions of abrupt solution adjustment, 

such as near the contraction-tip and geometry-walls [4]. These sudden and localised solutions 
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fluctuations have been correlated to ultimate intractability of steady-state solutions (and 

hence, attainment of high Wicrit) [5]. 

c) Finally, under ideal viscometric flow where only variable magnitudes apply, such f-

functional correction is rendered redundant [5]. 

 

Material functions In Fig.1 and Fig.2, material function response for the parent NM_p 

and EPTT models considered are reported [4]. The solvent-fraction level and EPTT model 

PTTparameter considered in this work are {PTT={1/9, 0.25}, as a standard benchmark. 

Against this, the resulting micellar extensional viscosity is matched. The micellar NM_p 

construction and destruction parameters, matching EPTT extensional viscosity peak, are 

=4.0 and G0=0.1125, respectively [4]. Accordingly, and specifically for the convoluted 

Conv* model, the destruction parameter requires adjustment for matching to G0=0.001. 

Note, for Conv
+

, G0=0.001 is retained for comparison across convoluted models.  

Ideal flow data may be classified by solving the f-functional equation under specific 

homogeneous deformation conditions. Under the generalised differential constitutive model 

of eq.(3), the dimensional shear viscosity is 
0p

Shear s
f


    and the first normal stress 

difference in shear-flow is 

2

1 0

1 2

2 p

ShearN
f

 
 . As a consequence in simple shear-flow, the 

dimensional algebraic Conv* and Conv
+

 f-equations become, respectively: 

2 2 2*
* 1

0

0 1

*

ln 2 0

1

Conv
Conv PTT

p

s

Conv

f
f

k
G

f

  
 

 


 
 
   
 
 

 

,     (10) 

02 2 2

0 1 1ln 2 1 2 0
p

s PTTConv Conv

Conv

k
f f G

f

 
    


 



  
     
    

.     (11) 

As a counterpart and within simple uniaxial extension, the extensional viscosity is derived 

as 
  

0

1 1

3
3

2

p

Ext s

f

f f


 

   
 

 
, and the Conv* and Conv

+
 f-equations become, 

respectively: 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 11 

  

   2 2*
* 1 * 1 1

2

0 1 0 *

* 1 * 1

ln 2 6 0

3

1
2

Conv
Conv Conv PTT

s p Conv

Conv Conv

f
f f

k
G f

f f

      

  


   


 
 
 
 

    
 
 
   

, (12) 

  
  

2

0 1 0

2 2

1 1 1

1 1
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           (13) 

In the above, the parent EPTT algebraic equation may be recovered, via either adopting 

s=0 in the micellar construction term, or k∞=(k/∞)=0 as the destruction parameter. 

In Fig.1, f-functional response is provided against deformation rate, for Conv* and Conv
+

 

model representations. This response is contrasted against parent NM_p and EPTT data 

under simple shear flow (Fig.1a) and simple uniaxial extensional flow (Fig.1b). 

One observes that f-functional slopes under uniaxial extension (Fig.1b; in expanded-scale) 

are steeper than those under simple shear flow (Fig.1a). Both forms display analogous rising 

trends with deformation-rate rise. 

In simple shear flow (Fig.1a) and the range 10
-1

≤ 1  ≤1, the initial slope of f-Conv
+

 proves 

to be the shallowest, followed by NM_p, and finally overlapping response of EPTT and 

Conv*. Note, f-NM_p response continually increases in slope and intersects EPTT and 

Conv* curves at 1  ~2.5 (Fig.1a). In contrast beyond 1  ≥1.5, EPTT, Conv
+

 and Conv* data 

ultimately run parallel to one another. Consistently, and at any fixed deformation-rate, Conv
+

 

data display smaller f-values with respect to those of Conv*, NM_p and EPTT. These 

observations are analogous to simple uniaxial extension (Fig.1b), but apply at earlier strain-

rates. 

In Fig.2 shear and extensional data is provided, in the form of Ext, Shear, N1Shear and rz. In 

Fig.2a, Ext-data provides the most significant departure across models, whilst differences in 

Shear response are less evident. Note, the drop at onset of shear-thinning for Conv
+

 Shear 

starts at slightly larger shear-rates. 

The Conv
+

 Ext-peak is the largest and most prominent (at ~7 units), whilst EPTT, NM_p 

and Conv* extrema attain about 6 units. These discrepancies in Ext-extrema correlate with 

the levels of f-functional response. Note in particular, Conv
+ 

response with the largest Ext-

peak, provides the smallest f-functional response across the strain-rate range, and lies closest 
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to the f = 12   reference-line in Fig.1b. Recall, this reference-line illustrates the f-pole, at 

which unbounded extensional viscosity results. 

In the range 1≤ 1  ≤10, Conv
+

 Ext displays the largest overshoot and steepest decline in 

strain-softening (common to all models), intersecting with EPTT at 1  ~4 units, whilst 

Conv
+

 Ext and Conv* Ext practically unite thereafter. For 4≤ 1  ≤10
3
, EPTT response 

dominates.  

The first-normal stress-difference in shear (N1Shear) is provided In Fig.2b. Here and at high 

shear-rates, both convoluted models inherit the limiting NM_p plateau behaviour, but at 

relatively larger N1Shear-levels than for raw NM_p. In contrast, EPTT-N1Shear monotonically 

rises with shear-rate. Throughout the range 1≤ 1  ≤50+, Conv
+

 dominates in N1Shear response 

(see above in Ext); so that at 1  ~50+, EPTT and Conv
+

 data-curves intersect, and EPTT 

domination succeeds. 

By way of contrast, shear stress data (rz) are recorded in Fig.2c, using a zoomed-view for 

enhanced feature exposure. Throughout the range 1≤ 1  ≤100, rz-Conv
+

 dominate; NM_p 

provides the minimum response for 1  ≥3 (intersecting with EPTT-Conv* below this level); 

EPTT and Conv* response overlap and are trapped between these two extremes. Note at very 

high shear-rates, the trend is to asymptote to a common rz-behaviour. 

2.2 Centreline VGR-correction, boundary conditions, critical Weissenberg number 

(Wicrit) and fe-fv scheme 

The concept behind VGR-correction on the centreline [5] is to eliminate noise 

proliferation, which may provoke numerically polluted solutions and thereby premature 

solution breakdown. In contraction-expansion flow on the symmetry centreline, uniaxial 

(inhomogeneous) pure-extension applies; on the contraction-wall (inhomogeneous) pure-

shear flow prevails. Conventionally, along the contraction-wall, the so-called stick-boundary 

(rest) condition is assumed. Entry and exit flow conditions are then periodic in dynamics 

(u ), stress ( p ) and velocity (u) – noting the shear-thinning profile form and using 

feedback and feedforward in inlet and outlet regions for u and p at high limits of Wi≥500+ 

(to preserve fully-developed flow). There is only necessity to set pressure at flow-exit, to 

impose a pressure level and remove pressure indeterminacy. 

The VGR-correction is imposed only on the centreline, where specific analytical 

restrictions on the deformation gradients emerge. This enforces: (i) shear-free flow, to ensure 

1D-extensional deformation (eq.(14a)); (ii) a pure uniaxial extension relationship between the 

normal deformation-gradients (eq.(14b)); and (iii) nodal-pointwise continuity imposed 

exactly, in discrete form (eq.(14c)).  
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Assuming 
^
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


3
, for extension-rate on the centreline in the axial direction, then the 

following identities may be established and imposed via VGR-correction:  

0z ru u

r z

 
 

 
, (14a) 

^1 1

2 2

r zu u

r z


 
   

 
, (14b) 

^1

2
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r z r


  
     

  
. (14c) 

 

Table 1 records the various levels of critical Weissenberg number attained in the 

simulations presented. Under the natural-signed configuration, Conv* * 224Conv

critWi   is larger 

than those for the primary model solutions, that is NM_p 
_

4.9pNM

critWi 


 and 210EPTT

critWi  . 

In contrast, Conv
+

 67Conv

critWi    is significantly smaller compared to that of EPTT 

( 210EPTT

critWi  ), but still larger than that of NM_p (
_

4.9pNM

critWi 


). This diminished Conv
+

 

Wicrit correlates with the larger Conv
+

-ext peak relative to the Conv* response in ideal flows 

(see Fig.2), and the smaller Conv
+

 f-functional response (Fig.1). 

Under ABS correction exclusively, Wicrit is now significantly elevated, with respect to 

those for the natural-signed solutions. Indeed for Conv*, the Wicrit rise recorded is from 224 

to 2500 (representing a single order-of-magnitude change), whilst Conv
+

 solutions reflect two 

orders-of-magnitude change, from 67 to 3000. 

Under combined and enhanced ABS_VGR correction, Wicrit is still further advance to be 

located beyond Wi=5000 for both Conv* and Conv
+

 solutions. 

In addition, a rigorous mesh-refinement study has been performed. This examination has 

been performed under the more stringent Conv
+
-model, enforcing ABS-f & VGR corrections 

simultaneously, under the parameters settings of {, PTT, , G0}={1/9, 0.25, 4, 0.001}. 

Mesh characteristics and their corresponding critical Weissenberg number Wicrit are listed in 

Table 2a. Interestingly, Wicrit for the four meshes considered is located beyond Wi=5000. This 

may be understood in complex flow through Wi-rise, as a consequence of the practical 

attainment of so-called second Newtonian viscosity plateaux, in the rate-decade 10
2
<Wi<10

3
. 

Correspondingly in viscometric flow and for these convoluted models at high deformation-

rates, plateaux are displayed in Shear, Ext and N1Shear response for 10
2
<Wi<10

3
 (see Fig.1 and 

Fig.2). In addition, Fig.3a displays N1-profiles at the pure-extensional flow-centreline, 

covering data across three mesh-refinement levels for the relatively high-elasticity levels of 

Wi={10, 100, 250, 500}. Hence, at each Wi-level in a sampling position about the 

constriction (z~0), the variance in N1 more refined-mesh solutions across meshes (see Table 

                                                           
3
 As a function of z-spatial variable, in uniaxial extension along the flow centreline 
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2b), shows a percentage deviation of the order of ~0.1%. Moreover with Wi-rise, these pure-

extension centreline N1-profiles follow patterns of rising peak-intensification in the range 

0.1≤Wi≤1 (not shown), and decline for Wi>1. Such solution data may be correlated with the 

strain-hardening/softening features provided in simple uniaxial extension (Fig.2a), and the 

gradual attainment of second Newtonian plateaux is exposed through vanishing centreline-N1 

profiles with Wi-rise. In Fig.3b, further evidence for solution mesh-convergence is provided, 

through centreline N1-solution data over four successively-refined meshes and elasticity levels of 

Wi={5, 10, 25}. This information draws upon solution data for an additional finer mesh (Refined_B; 

see Table 2b), with half the minimum mesh-spacing provided by the so-called Refined_A mesh. Here, 

over the more critical rising solution states, satisfactory solution mesh-convergence is gathered with 

mesh-refinement, as required. Beyond such Wi–levels as illustrated in Fig.3a, the prevailing rheology 

provides only declining and merging solution trends, hence less stringent to pursue under the stronger 

refinement imposition of Refined_B mesh. One notes in passing and concerning algorithm 

convergence-rate, that previously a spatial convergence-rate of second-order has been reported for this 

implementation [24,25,29]. 

 

Hybrid finite element/finite volume scheme The discrete approximation method is that of a 

hybrid finite element/volume scheme, as used elsewhere [26-29]. Such a scheme is a semi-

implicit, time-splitting, fractional three-staged formulation, which invokes finite element (fe) 

discretisation for velocity-pressure (Q2-Q1) approximation and cell-vertex finite volume (fv) 

discretisation for stress, hence, combining the individual advantages and benefits offered by 

each approach. 

Galerkin fe-discretisation is enforced on the embedded Navier-Stokes system components; 

the momentum equation at stage-1, the pressure-correction equation at stage-2 and the 

incompressibility satisfaction constraint at stage-3 (to ensure higher order precision). On 

solvers this leads to, a space-efficient element-by-element Jacobi iteration for stage-1 and -3; 

whilst for the pressure-correction stage-2, a direct Choleski solution method is utilised. In 

addition, a sub-cell cell-vertex fv-scheme is implemented for extra-stress, constructed on 

fluctuation-distribution for fluxes (upwinding) and median-dual-cell treatment for source 

terms. 

Quadratic velocity interpolation is imposed on the parent fe triangular-cell, alongside 

linear interpolation for pressure. In contrast, the sub-cell fv-triangular-tessellation is 

constructed within the parent fe-grid by connecting the mid-side nodes. In such a structured 

tessellation, stress variables are located at the vertices of fv-sub-cells (cell-vertex method, 

equivalent to linear interpolation). 

3. Vortex activity and streamline data: ABS_VGR inclusion, Conv* and Conv
+
 

The streamline patterns in Fig.4, highlight in particular, the upstream and downstream 

vortex activity gathered, with respect to Wi-elevation, whilst covering the low to high range 

0.5≤Wi≤1000+. This affords rheological comparison in response across the two model 

variants of Conv* and Conv
+
, under the combined ABS_VGR construct. Counterpart data is 
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also included in Table 3 and vortex intensity trend plots of Fig.5, where the limitations of 

ABS_VGR removal are indicated under Natural-model versions. This reveals the consequent 

premature Wicrit-levels reached, and the appearance of Moffatt vortices (see Table 3 - 

quantities in brackets). Here, at Wi=5 (Fig.4a), one notes larger and more active upstream 

vortex response with Conv
+
 over Conv*, a feature which may be correlated with the larger 

Conv
+
 ext-peak, apparent in Fig.2a. More generally, there is a first phase, of upstream vortex 

growth and downstream vortex suppression observed throughout the range 0.1≤Wi≤5 

(patterns in Fig.4a; intensity in Fig.5). Conv* min-data peaks at Wi=2 (-min=4.68); whilst 

Conv
+
 min-data peaks at Wi=5 (-min=8.20). 

Beyond this phase and for 5<Wi≤50 (Fig.4a), upstream vortex suppression is apparent 

(softening/thinning effect), leading to practical vortex disappearance (by Wi=50 with Conv*, 

by Wi=75 with Conv+; sustained to Wi=200); in contrast, downstream vortex growth is just 

beginning (due to hardening, nb. also counterpart N1 pattern below). In the range 0.1≤Wi≤50, 

both Conv
+
 and Conv* display downstream vortex suppression (Fig.4a and Fig.5). The only 

departure noted between downstream solution-data is over the restricted range 4≤Wi≤50, 

where Conv
+ 

is less suppressive with Wi-rise than found for Conv* (Fig.5). One notes 

however, under Conv*, that suppression is so strong in this range, that the downstream vortex 

disappears by Wi=50. 

These upstream vortex trends continue up to Wi=200, where for Conv
+

 the upstream 

vortex has now been completely suppressed (Fig.4b), whilst Conv* provides the first hints of 

appearance of a second contraction-frontface upstream vortex, located towards the 

contraction-cap. At this stage, both Conv
+

 and Conv* provide considerably elongated 

downstream vortices.  

At the further advanced stage of 50≤Wi≤1000+ and beyond, downstream vortex growth 

persists, this proving relatively rapid and matching with both Conv
+
 and Conv* (Fig.4a,b and 

Fig.5). Secondary Moffatt-vortices appear by Wi=500 (Conv
+
) and Wi=750 (Conv*), and 

strengthening subsequently (Fig.4b; Table 3 - quantities in brackets). For both Conv
+
 and 

Conv*, this is accompanied with a secondary spurt of upstream vortex enhancement, after 

Wi=200 (Fig.4b, Fig.5). In this upstream zone, the secondary Moffatt-vortex that appears by 

Wi=300, subsequently dies away by Wi=500, to be suppressed by Wi=750+. By Wi=1000+ 

and above, intense, enlarged and concave upstream and downstream streamline perimeters 

are observed (Fig.4b). Hence, secondary-upstream Moffatt-vortices are ultimately 

suppressive, whilst those downstream are expansive (and stronger for Conv
+

; Fig.4b; Table 3 

- quantities in brackets).  

4. N1 fields and vortex-like structures  

Analysing Wi–increase under ABS_VGR: From the N1-fields in Fig.6 and at Wi=5, Conv
+

 

displays a more intense vortex-like structure upstream of the contraction, corresponding to its 

relatively higher ext-peak (see Fig.2a), and tying in with the streamline patterns above. For 
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both convoluted solutions, a single red-positive zone is observed that crosses the contraction-

plane, from upstream of the contraction with origin on the centreline, to downstream of the 

contraction with expansion outwards to reach the downstream contraction-wall. This mixed 

shear-extension, red-zone is pinched by two disjoint blue-negative zones; one upstream of the 

contraction, with base in the front-face of the contraction and bordering the upstream vortex-

zone, and the other downstream of the contraction-plane with base on the centreline. This 

pattern is held to be representative of the prevailing contraction-expansion flow dynamics. 

Next, switching attention to the relatively high elasticity level of Wi=200 above that at 

Wi=5, the N1-fields have shifted dramatically. Firstly, the red-positive region appears more 

squeezed about the contraction region, and now both of its tails (upstream and downstream) 

are connected to the contraction wall. By contrast, the blue-negative-valued N1-regions have 

shrunk (due to shear-thinning); upstream of the contraction-cap and downstream over the 

centreline. Its downstream zone has become separated from the positive-red region and been 

further convected downstream, reflecting a relatively smaller size and intensity than at Wi=5. 

Here, Conv
+

 is consistently more intense still than with Conv*, as justified byext-peak of 

Fig.2a in the downstream-centreline extension-zone, and by N1Shear-peak of Fig.2b in the 

upstream-cap shear-zone. 

Upon reaching the still more advanced stage of Wi=400, such trends are continued through 

Wi-elevation, with the red-positive region now becoming even smaller; Conv* also shows 

disconnection from the upstream-wall. The downstream blue-negative region is further 

convected-downstream; it loses intensity and size, as does the contraction-cap zone (justified 

as above).  

The largest extreme of elasticity considered is that of Wi=1000+, N1 red-positive regions 

have shrunk dramatically, as have the blue-negative zones (due principally to shear-thinning, 

strain-softening effects). Downstream of the contraction-plane, the N1 red-positive zone 

almost vanishes under Conv*, and disconnects from the downstream-wall under Conv
+

. The 

strong blue-negative zone at the centreline has almost disappeared downstream, by 

convection and through loss of intensity (strain-softening). This also applies to the strong 

blue-negative zone at the contraction-cap, but decline here is due to shear-thinning. 

Natural vs ABS_VGR f-fields, Conv
+

, Wi=0.5: Under such comparison of Fig.7a, there are 

obvious shape changes to observe from rounded-red high f-values for Natural Conv
+

, to that 

for Conv
+

(ABS_VGR). The key feature to highlight is the removal of the downstream 

negative-blue zone on the centreline with the Natural model version, and replacement with 

the positive-red zones of the Conv
+

(ABS_VGR) variant, along with larger f-extrema (as in 

Table 5). 

This evidence is further supplemented by the Conv
+

-plots for rising Wi towards Wicrit, with 

Natural vs VGR_ABS centreline-profiles of f-values and {zz,rr}-values of Fig.8; and in 
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Fig.9, with second stress-subsystem eigenvalue (
2

eigs ), N1-values and configuration-tensor 

components {zz, rr}. Kramers’ rule identifies the relationship between stress and 

configuration tensor as: 
0

1

p

p




  I  . The choice here is for the Conv

+
-option, which is 

more dramatic in its data representation and with smaller Wicrit-levels than the Conv*-option. 

Fig.8 illustrates the fact that the ABS-version ensures f≥1 at all Wi-values, and hence retains 

positive viscosity levels (physically realistic), with corresponding N1-values smaller in size 

(see Table 4) and smoother in profile-shape than for the Natural-signed version. Fig.9 

conveys the trends with rising Wi in possible loss-of-solution evolution through loss of 

positive-definiteness in the corresponding individual configuration-tensor components. The 

superior VGR_ABS-option stability-wise performance over the Natural-option is apparent in 

the progressive states of second stress-subsystem eigenvalue ( 2

eigs ); just breaking the 

positivity requirement for the Wi-continuation-step of Wi=5 (note, not in true-time IVP-

evolution, hence not catastrophic), but picking up subsequently. ( 2

eigs )-trends are more 

exaggerated in negativity for the Natural-option. Moreover, at each Wi-value, the 

configuration-tensor components (of Fig.9c,d; centreline), relate directly to ( 2

eigs ), dependent 

upon the sign switch of N1 (as gathered from Fig.9b), with {zz}=( 2

eigs ) if N1>0, and 

{rr}=( 2

eigs ) if N1<0 (see [5]). 

Comparison across models, Conv
+

 and Conv*, Wi=10: The comparison in Fig.7b, displays a 

high-red f-zone under Conv* that connects to the contraction-wall, both upstream and 

downstream. This is also relatively larger in f-maxima than under Conv
+ 

(see Table 5 for f-

maxima comparison). In contrast, Conv
+

 solution displays a red f-zone distribution pattern 

that is strictly confined about the contraction-plane with smaller values. This finding lies 

consistently in agreement with the relatively larger Conv* f-values in simple-shear and simple 

uniaxial-extension (see Fig.1). Moreover in N1-maxima (N1max; see Table 4), Conv
+
 data rise 

in the range 0.1≤Wi≤0.5, and then decline for Wi>0.5; whilst Conv* N1max simply decline 

from Wi≥0.1. Here, Conv
+
 somewhat reflects its relatively more exaggerated extensional 

viscosity features (Fig.2a). Compared against Conv* in the range 0.1≤ 1  ≤1, Conv
+
 provides 

a more prominent strain-hardening response; then followed in 1  -rise by a steeper decline in 

strain-softening.  

5. Excess pressure drop (epd): a) Low-to-moderate Wi-levels, 0≤Wi≤50 

At low elasticity levels (Wi<1; Fig.10a), all epd data-curves for the five models follow the 

same declining trend, much attributed to the strong shear-thinning influence at this level of 

solvent-fraction of =1/9 and the level of N1 over the range of rates considered (interpreted 

from larger solvent-fraction data elsewhere, see [4]). 

As rates increase and for Wi>1, Conv
+

 data lies consistently above that for all other 

models, with most shallow slope of decline, prior to asymptoting to the high-rate plateau 
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(which itself is dictated by the -level). From these larger epd-Conv
+

 values, one can argue 

that this effect is due to ext-over-estimation in this moderate rate range, whilst 

correspondingly shear has less variation across models (see Fig.2). Moreover,N1 is 

strengthened not weakened for  Conv
+

-response; hence, would contribute a more suppressive 

effect on epd (see [30], for earlier justification argument). One also notes, the matching of 

epd-EPTT with epd-Conv* on account of matching rheology in {ext, shear, N1} within the 

moderate rate range. 

b) High Wi-levels, 50≤Wi≤750  

In this exposition at high-deformation rates up to Wi~750 (Fig.10b), there is clear evidence 

for the ultimate take up of the epd plateau at epd~0.15. This is borne out by the plateaux in 

material functions of Fig.2; bar in EPTT-N1, which displays a limiting solution level of 

Wicrit=220. At even more extreme and very high Wi-levels beyond 1000+ (Fig.11), one notes 

that fully-developed exit conditions become increasing more difficult to satisfy, with a 

requirement of ever longer exit zones. Shorter exit zones than necessary may impact upon the 

epd-measures, degrading them below the plateau level (Fig.11a, non-periodic bc). Imposition 

of periodic boundary conditions (bc) on {u, u , 
p

 }, with entry-exit zone feedback-

feedforward on u  and 
p

  as stated above, has been found to overcome this practical issue 

(Fig.11b; see inset for solutions up to Wi=5000+ with periodic bc). 

6. Conclusions 

Here, additive (Conv
+

) and multiplicative (Conv*) convoluted models have been 

proposed, based on the thixotropic micellar MBM model and the non-thixotropic network-

based EPTT model. Solutions at extremely high-Wi (Wi=5000+) and solvent-fraction =1/9 

have been attained - through the combination of ABS-f and VGR-corrections. In addition, 

consistency with mesh-refinement has also been addressed in this stringent highly polymeric-

context, whilst covering an extensive range of elasticity levels. The main achievements in this 

work are borne out through - (i) an exploration of convoluted-model variants, via new 

combinations of f-functionals with some more well-known constitutive models; (ii) the 

exposition of necessity for periodic boundary conditions, in the capture of accurate and 

consistent pressure-drops at ultra-high Wi>1000; (iii) the extraction of epd-plateau 

predictions at high-Wi >1000; and (iv) the prediction of new and rich vortex dynamics for 

these material systems. Such vortex dynamics reveals, both upstream and downstream, 

enhancement and suppression, and Moffatt vortices at high-Wi. This information correlates 

closely with ideal viscometric response for these models (i.e. through extensional viscosity 

and N1Shear). On EPD-plateau capture, this feature is attributed to attainment of second 

Newtonian-plateaux, as reflected in viscometric flow at high deformation-rates, via N1Shear, 

shear viscosity and extensional viscosity. 
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On vortex dynamics and within the widely extended Wi-range, three distinct phases are 

detected in vortex dynamics: i) upstream vortex enhancement and downstream vortex 

suppression in the range 0.1≤Wi≤5; ii) upstream vortex suppression and downstream vortex 

enhancement for 5<Wi≤200; and iii) upstream and downstream vortex enhancement 

200≤Wi≤1000+. In the first stage, larger and more active upstream vortices are observed 

under Conv
+

 response, which correlates with its larger ext-peak. In the second stage, 

upstream vortex suppression is apparent due to softening-thinning effects. This leads to 

upstream vortex disappearance (sustained to Wi=200). In contrast, downstream vortex growth 

begins. In the last stage, rapid downstream vortex growth occurs and is accompanied by a 

second stage of upstream vortex enhancement, under both Conv
+

 and Conv*. Moreover, 

secondary downstream Moffatt-vortices appear by Wi=500 (Conv
+
) and Wi=750 (Conv*), 

which strengthen with further Wi-rise. As a counterpart and in the range 200≤Wi≤500, 

upstream Moffatt-vortices are apparent that behave in a suppressive manner with Wi-rise. 

N1-field-data correspond with the streamline patterns at relatively low elasticity levels 

(Wi=5). Here, an upstream vortex-like structure is recorded, more intense under Conv
+

, 

corresponding to vortex presence and its relatively higher ext-peak. At Wi=200, N1-fields 

dramatically change. Across convoluted models, Conv
+

 N1-field-data is still more intense 

than in Conv* solutions, consistent with stronger Conv
+ 
ext-peak (associated with extension-

dominated centreline trends) and with larger N1-peaks at medium-to-high shear-rates 

(associated wall shear-dominated zone). At extreme levels of Wi=1000+, N1 values decline 

due principally to shear-thinning and strain-softening effects. 

On f-functional and positive definiteness - the ABS model-version ensures f≥1 Wi-

values, and hence retains positive viscosity, with corresponding smaller N1-values and 

smoother centreline profile-shape than for the Natural-signed version. Across models, larger 

Conv* f-maxima are recorded, which correlate with larger Conv*-Wicrit. Moreover, the 

VGR_ABS-option performs in a superior manner (stability-wise) to the Natural-option, 

observed through the second eigenvalue ( 2

eigs ) of the stress-subsystem for the conformation-

tensor. Here, VGR_ABS solutions only marginally conflict with the positivity-retention 

requirement (to avoid ensuing loss of IVP-evolution in time), whilst transcending the Wi-

continuation-step at Wi=5, but subsequently recovering at larger Wi-levels. In contrast, 

Natural-signed 2

eigs -trends are more exaggerated in exposure to such negativity in ( 2

eigs ). 

On excess pressure-drop and at low elasticity levels (Wi<1), all epd data-curves decline, 

much attributed to strong shear-thinning (exaggerated at this solvent-fraction =1/9 and 

N1Shear levels). At larger Wi>1, Conv
+

 data dominates, with most shallow slope of decline. 

This may be correlated to ext-over-estimation in the moderate rate range, as Shear-data 

barely change across models. In the high-Wi range of 200≤Wi≤1000, epd-asymptotes to the 

plateau-level of epd~0.15, which may be associated with the plateaux observed in material 

functions at high deformation-rates. At very high-Wi levels [Wi=O(5000+)], fully-developed 
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exit conditions become more difficult to satisfy. Here, application of periodic boundary 

conditions at the inlet and outlet flow regions become more appropriate.  
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Table 1. {Critical, first-failure} Weissenberg numbers {Wicrit, Wifail} across models 

  Wicrit, (Wifail)

Model f Natural Sign ABS ABS_VGR 

NM_p  4.9, (5) 39, (40) 370, (380) 

EPTT  210, (220) 4000, (4250) 4250, (4500) 

Conv* 
p

EPTT NM _f * f   224, (225) 2500, (2750) -, (5000+) 

Conv+  
1

2 p
EPTT NM _f f   67, (68) 3000, (3250) -, (5000+) 

 

 

 

Table 2a. Mesh characteristics & Wicrit 

*Degrees of freedom 

**Mesh-refinement study conducted with Conv+ model under the parameters settings of {, PTT, , G0}={1/9, 0.25, 4, 0.001} 

***Number of elements around the constriction 

 

 

 

 

 

 

 

 

 

 

 

 
 

Level of  

refinement 
Elements Nodes 

D.O.F
*
 

(u, p, ) 
Rmin Wicrit

**
 

 

Densities*** 

Coarse 1080 2289 14339 0.0099 5000+ 20 

Medium 1672 3519 22038 0.0074 5000+ 33 

Refined_A 2112 4439 27798 0.0058 5000+ 40 

Refined_B 5760 11935 74698 0.0037 5000+ 80 
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Table 2b. N1 @ centreline, mesh-refinement study 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Sampling position around the constriction (z~0) 

 

 

 

 

Level of  

refinement 

 N1 @ centreline
*
 

Wi→ 10 100 250 500 

Coarse  0.713 0.189 0.085 0.019 

Medium  0.700 0.188 0.085 0.019 

Refined_A  0.699 0.187 0.084 0.018 

 Wi→ 5 10 25  

Coarse  0.157 0.713 0.177  

Medium  0.132 0.700 0.169  

Refined_A  0.132 0.699 0.169  

Refined_B  0.130 0.693 0.163  
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Table 3. Vortex intensity (min=-min
*
 x10

-3
) against Wi; Conv*, Conv

+
 {PTT, G0}={0.25, 4.0, 0.001} 

  min=-min
*
 x10

-3


  Conv*  Conv
+

Wi  Natural ABS_VGR  Natural ABS_VGR 

0.1 Upstream 1.36 1.30  1.38 1.34 

 Downsteam 0.96 0.94  0.97 0.96 

       

0.5 Upstream 2.17 1.79  2.24 2.24 

 Downsteam 0.40 0.46  0.39 0.39 

       

1 Upstream 3.41 2.47  3.93 3.21 

 Downsteam 0.23 0.30  0.21 0.27 

       

2 Upstream 6.23 4.68  9.38 7.39 

 Downsteam 0.11 0.16  0.10 0.14 

       

5 Upstream 5.10 4.15  9.93 8.20 

 Downsteam 0.08 0.07  0.09 0.08 

       

10 Upstream 0.91 0.94  1.90 1.92 

 Downsteam 0.10 0.04  0.23 0.08 

       

15 Upstream 0.86 0.86  1.39 1.51 

 Downsteam 0.11 0.11  0.17 0.11 

       

20 Upstream 0.34 0.32  0.49 0.47 

 Downsteam 0.11 0.03  0.15 0.06 

       

50 Upstream 0.01 ~0  0.01 0.01 

 Downsteam 0.09 0.04  0.07 0.05 

       

75 Upstream ~0 ~0  ~0* ~0 

 Downsteam 0.14 0.17  0.08 0.17 

       

100 Upstream ~0 ~0   ~0 

 Downsteam 0.19 0.33   0.33 

       

150 Upstream ~0 ~0   ~0 

 Downsteam 0.58 0.88   0.46 

       

200 Upstream 0.01 ~0   ~0 

 Downsteam 1.27 1.64   1.13 
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Table 3. (cont.) Vortex intensity (min=-min
*
 x10

-3
) against Wi; Conv*, Conv

+
 {PTT, G0}={0.25, 4.0, 

0.001} 

  min=-min
*
 x10

-3


  Conv*  Conv
+


Wi  Natural ABS_VGR  Natural ABS_VGR 

250 Upstream 0.17** 0.13   0.05 

 Downsteam 1.70 2.41   2.01 

       

300 Upstream  0.58 (-7.65x10-3)   0.36 (-1.93x10-2) 

 Downsteam  3.15   2.91 

       

400 Upstream  1.90 (-3.37x10-3)   1.74 (-8.68x10-3) 

 Downsteam  4.47   4.35 

       

500 Upstream  3.29 (-3.29x10-4)   3.14 (-5.66x10-3) 

 Downsteam  5.59   5.24 (-5.10x10-3) 

       

750 Upstream  7.06   7.84 

 Downsteam  7.62 (-6.71x10-3)   7.65 (-2.65x10-2) 

       

1000 Upstream  9.25   10.10 

 Downsteam  9.12 (-1.49x10-2)   9.37 (-3.92x10-2) 

       

2000 Upstream  13.60   14.48 

 Downsteam  11.94 (-3.61x10-2)   12.34 (-7.11x10-2) 

       

3000 Upstream  15.43   14.66 

 Downsteam  13.13 (-4.89x10-2)   13.34 (-9.93x10-2) 
       

4000 Upstream  15.45   15.66 

 Downsteam 
 

13.72 (-6.50x10-2) 
 

 
13.49 (-1.1 x10-2) 

 
       

5000 Upstream  15.79   16.34 

 Downsteam  13.80 (-7.07x10-2)   13.77 (-1.1 x10-2) 

*Wicrit=67 

**Wicrit=224 
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Table 4. N1 maxima against Wi; Conv*, Conv
+

 {PTT, G0}={0.25, 4.0, 0.001} 

 N1 

 Conv* 
 

Conv
+

Wi Natural ABS_VGR 
 

Natural ABS_VGR 

0.1 8.25 7.41  8.59 8.07 

0.5 7.87 6.61  9.67 8.39 

1 5.75 4.97  7.24 6.45 

2 3.75 3.35  4.68 4.31 

5 1.98 1.82  2.41 2.25 

10 1.18 1.11  1.41 1.33 

15 0.87 0.82  1.02 0.97 

20 0.70 0.66  0.81 0.77 

50 0.34 0.32  0.39 0.37 

100 0.19 0.18  1.07* 0.21 

200 0.11 0.10   0.12 

250 0.10** 0.09   0.10 

300  0.07   0.08 

400  0.06   0.06 

500  0.05   0.05 

750  0.03   0.04 

1000  0.03   0.03 

2000  0.01   0.02 

3000  0.01   0.01 

4000  0.01   0.01 

5000  0.02   0.02 

*Wicrit=67 

**Wicrit=224 
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Table 5. f-functional maxima against Wi; Conv*, Conv
+

 {PTT, G0}={0.25, 4.0, 0.001} 

 f 

 Conv* 
 

Conv
+

Wi Natural ABS_VGR 
 

Natural ABS_VGR 

0.1 1.15 1.24  1.08 1.13 

0.5 2.49 2.60  2.09 2.14 

1 4.10 4.23  3.54 3.60 

2 6.80 7.02  6.14 6.18 

5 13.43 13.58  12.30 12.52 

10 23.14 23.51  21.23 21.48 

15 32.47 32.88  29.86 29.95 

20 41.48 41.98  38.58 38.35 

50 98.25 94.90  96.97 87.96 

100 196.08 179.86  130.25* 168.70 

200 393.88 342.70   323.64 

250 433.75** 421.98   404.22 

300  499.90   485.72 

400  653.40   648.39 

500  811.27   809.95 

750  1216.22   1214.11 

1000  1621.54   1618.23 

2000  3254.83   3248.77 

3000  5988.04   10157.40 

4000  1.21x10
5
   25019.30 

5000  5.56x10
10

   1.26x10
14

 

*Wicrit=67 

**Wicrit=224 
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Figure 1. f-functional in a) simple shear and b) uniaxial extensional flows, against Wi; EPTT, NM_p , Conv* and Conv
+
; 

{, PTT, , G0}={1/9, 0.25, 4.0, 0.001} 
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Figure 2. a)Shear, Ext, b) N1Shear and c) rz against deformation rate; EPTT, NM_p , Conv* and Conv
+
; 

{, PTT, , G0}={1/9, 0.25, 4.0, 0.001} 
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b) 

@ centreline 
a) 

Figure 3. Centreline-N1 against Wi; mesh-refinement; a) moderate-to-high Wi={10, 100, 250, 500},  

b) low-to-high Wi={5, 10, 25};Conv
+
 {, PTT, , G0}={1/9, 0.25, 4.0, 0.001} 
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Figure 4a. Streamlines against Wi=[0.5, 150]; ABS_VGR: Conv* and Conv

+
; {, PTT, , G0}={1/9, 0.25, 4.0, 0.001} 
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Figure 4b. Streamlines against Wi=[200, 1000]; ABS_VGR: Conv* and Conv
+

; {, PTT, , G0}={1/9, 0.25, 4.0, 0.001} 
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Figure 5. a) Upstream and b) downstream vortex intensity against Wi; Conv* and Conv+, VGR_ABS; {, PTT, , G0}={1/9, 0.25, 4.0, 0.001} 
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Figure 6. N1 against Wi; ABS_VGR: Conv* and Conv
+
; {, PTT, , G0}={1/9, 0.25, 4.0, 0.001} 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. f-functional against Wi; a) Conv+: Natural and ABS_VGR; b) ABS_VGR: Conv* and Conv+; {, PTT, , G0}={1/9, 0.25, 4.0, 0.001} 
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Figure 8. a) f-functional, b) zz, and c) rr, @ centreline against Wi; Conv+ natural & VGR_ABS; {, PTT, , G0}={1/9, 0.25, 4.0, 0.001} 
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Figure 9. a) s2, b) N1, c) zz, d) rr @ centreline against Wi; Conv+ natural & VGR_ABS; {, PTT, , G0}={1/9, 0.25, 4.0, 0.001} 
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 Figure 10. epd against Wi; a) low-to-moderate Wi, b) high Wi; all models; {, PTT, , G0}={1/9, 0.25, 4.0, 0.001} 
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a) 

Non-periodic BC 

Periodic BC 

b) 

Figure 11. epd against Wi; very high-Wi Wi>103; all models; {, PTT, , G0}={1/9, 0.25, 4.0, 0.001} 

 


