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Subdivision based mixed methods for isogeometric analysis of

linear and nonlinear nearly incompressible materials

C. Kadapa∗, W.G. Dettmer, D. Perić

Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Fabian
Way, Swansea, SA1 8QQ, Wales, UK.

Abstract

This paper addresses the use of isogeometric analysis to solve solid mechanics problems

involving nearly incompressible materials. The present work is focused on extension of two-

field mixed variational formulations in both small and large strains to isogeometric analysis.

Inf-sup stable displacement-pressure combinations for mixed formulations are developed

based on the subdivision property of NURBS. Stability and convergence properties of the

proposed displacement-pressure combinations are illustrated by computing numerical inf-

sup constants and error norms. The performance of the proposed formulations is assessed

by studying several benchmark examples involving nearly incompressible and incompressible

elastic and elasto-plastic materials in both small and large strain regime.

Keywords: Isogeometric analysis; Mixed Galerkin formulations; Nearly incompressible

materials; Subdivision stabilisation; Inf-Sup stability; Elasto-plastic material models.

1. Introduction

The isogeometric analysis (IGA) based on Non-Uniform Rational B-Spline (NURBS)

introduced by Hughes et al. [14, 21] has proven to be an efficient alternative for the conven-

tional Finite Element Method (FEM) as it offers great advantages in terms of accuracy. The

principal reason is a higher order continuity of NURBS across element boundaries, which

when coupled with k-refinement not only increases the continuity across element boundaries
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but also reduces the total number of degrees of freedom (DOF). Isogeometric analysis has

been extended to fluid-structure interaction [5], structural vibrations [15], phase-transition

phenomenon [19] and other areas (see [14]). However, the research on the application of

isogeometric analysis to the problems involving incompressible and nearly incompressible

materials, especially elasto-plastic materials has received a limited attention, with only few

articles published on the topic [16, 17, 23, 25, 27, 44].

In engineering analysis it is very common to perform simulations involving incompress-

ible or nearly incompressible materials such as rubber, elastomers, and pressure-insensitive

elasto-plastic materials. These material models often pose significant problems to the ana-

lyst, both in terms of accuracy and stability. When materials approach incompressible limit,

the stiffening behaviour, often termed ’volumetric locking’, is observed in load-displacement

response. This is accompanied by a poor approximation of the pressure field, which often

displays the so-called checkerboard pattern. To overcome this issue special elements and

refined formulations and a combination of both are developed. Some of the widely used

techniques to overcome locking are: reduced or selectively reduced integration [20], B-bar

formulation for small-strain problems [20, 42, 47] and F-bar formulation for large-strain

problems [29, 30], and hybrid or enhanced strain or stress elements [4, 31, 40, 41, 43].

As NURBS offer higher-order basis functions it is expected that pure displacement for-

mulation based on NURBS should suffice in dealing with the incompressible and nearly

incompressible material models. However, literature and our experience shows that NURBS

still suffer from locking phenomenon and require additional measures to deal with incom-

pressibility. Recently, Adam et al. [2] have studied selective and reduced integration schemes

for NURBS based isogeometric analysis to deal with issue of locking. Elguedj et al. [16, 17]

extended B̄ and F̄ projection methods to NURBS based isogeometric analysis. In our

opinion, however, when B̄ and F̄ formulations are extended to higher order NURBS, the

formulation and implementation becomes very complex, and loses appeal of the original

methodologies that were applied to standard low-order polynomial interpolations. Further-

more, these methods require full matrix inversions on element level and also over an entire

patch, thereby making them computationally expensive. Similar arguments can be made

2
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about the macro-element projection technique used by Sangalli et al. [38] for nearly in-

compressible linear elastic materials. Mathisen et al. [27] and Taylor [44] extended the

classical three-field Hu-Washizu mixed variational formulation to isogeometric analysis to

deal with problems of incompressibility. However, the classical mixed formulation when

applied to NURBS finite elements does not necessarily lead to the stable formulation. In

addition, the three-field formulation increases the number of DOF substantially for higher

order NURBS and as NURBS result in additional DOF because of their tensor product

structure, the overall size of the problem increases exponentially, requiring substantially in-

creased computational resources. Our experience with standard FE formulations also shows

that three-field formulations are superfluous for most of the material models encountered in

engineering simulations and that two-field formulations with displacement and pressure as

independent variables provide sufficient accuracy and stability. In this work, therefore, we

focus on the two-field mixed formulations for NURBS based isogeometric analysis in both

the small and finite strain regimes.

The foremost problem associated with the mixed formulations is that they result in

matrix system of equations with saddle-point nature. In order to obtain an accurate and

stable solution the combination of approximating functions for displacement and pressure

must satisfy the inf-sup or Ladyzhenskaya-Babuska-Brezzi (LBB) condition [9]. Following

the work of Rüberg and Cirak [36, 37], in the present work we develop stable displacement-

pressure NURBS combinations by exploiting the subdivison property of NURBS.

This paper is organised as follows. In Sections 2 and 3 we present the displacement and

mixed variational formulations, respectively, in small and finite strain regimes. In Section 4

we give a brief introduction to NURBS. In Section 5 we discuss inf-sup stability criterion and

construction of the stable displacement-pressure combinations, followed by the numerical

evaluation of inf-sup constants. The accuracy and robustness of the proposed numerical

schemes are demonstrated on a wide range of linear and nonlinear numerical examples in

Sections 6 and 7. The paper is concluded with Section 8 with a summary of the present

work and conclusions drawn from this work.

3
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2. Small strain formulation

2.1. Governing equations

Consider a body Ω with boundary Γ embedded in three-dimensional Euclidian space

R3. The boundary value problem of elasticity can be expressed as: Given b0 : Ω → R3,

ḡ : ΓD → R3 and t̄0 : ΓN → R3, find u : Ω → R3, such that:

∇ · σ + b0 = 0 in Ω, (1)

u = ḡ on ΓD, (2)

σ · n = t̄0 in ΓN , (3)

where u is the displacement vector, σ is the Cauchy stress tensor, b0 is the body force, n is

the unit outward normal on the boundary, Γ, of Ω, ḡ is the prescribed displacement on ΓD

and t̄0 is the prescribed traction on ΓN . Here, Γ = ΓD ∪ΓN . The stress tensor, σ, is related

to strain tensor, ε, by the constitutive relation,

σ = C(ε) (4)

where,

ε = ∇su =
1

2

(
∇u +∇uT

)
(5)

and C is, in general, a nonlinear mapping. The stress-strain relation (4) is linear for linear

elastic material model and nonlinear in case of elasto-plastic material models.

In Galerkin formulations it is convenient to work with strain, stress and elasticity tensors

by representing them in the matrix form. Strains and stresses transformed into matrix form

are written as,

ε =
{

εxx εyy εzz 2εxy 2εxz 2εyz

}T

(6)

σ =
{

σxx σyy σzz σxy σxz σyz

}T

(7)

4
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2.2. Displacement formulation

For a given displacement vector u and stored energy function W(u), the total energy

functional is given by,

Π(u) =

∫

Ω

W(u) dΩ − Πext (8)

where Πext includes the effects of body forces, b0 and surface tractions, t̄0, and is given as,

Πext =

∫

Ω

uTb0 dΩ +

∫

Γ

uTt̄0 dΓ (9)

For the system to be in equilibrium,

δΠ =

∫

Ω

δεTσ dΩ− δΠext = 0 (10)

where,

δΠext =

∫

Ω

δuTb0 dΩ +

∫

Γ

δuTt̄0 dΓ (11)

By taking approximations for displacements as, u = Nuū, a Newton-Raphson iterative

scheme leads to the following algebraic problem,

K dū = −Ru (12)

where Nu is the matrix of shape functions, while dū is the vector of increment in displace-

ments. The stiffness matrix K and residual vector Ru are given as,

K =

∫

Ω

BTDB dΩ ; Ru =

∫

Ω

BTσ dΩ− f (13a)

with f =

∫

Ω

NT
ub0 dΩ +

∫

Γ

NT
u t̄0 dΓ (13b)

where, B is the standard strain-displacement matrix for small strains, and D is termed the

elastic moduli matrix.

For isotropic linear elasticity,

D = 2µ I0 + λmmT ; σ = 2µ ε + λ (∇ · u)m (14)

where,

I0 = diag

[
1 1 1

1

2

1

2

1

2

]
; mT = [1 1 1 0 0 0] (15)

5
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and µ and λ are the Lamé’s constants. The derivation of elastic moduli matrix (D) for

elasto-plastic material models is much involved. For a detailed discussion on this topic we

suggest the reader to refer to de Souza Neto et al. [28].

2.3. Two field mixed variational formulation

The main idea behind mixed formulations is to split the measure of deformation into

deviatoric and volumetric components and replace the volumetric part by an improved

value. In small strain formulation total strain, ε, is the relevant measure of deformation and

is additively decomposed into deviatoric and volumetric parts as,

ε = εdev + εvol (16)

with,

εdev = Idevε and εvol = εvm (17)

where,

εv = mTε ; Idev = I− 1

3
mmT (18)

in which I is the second-order identity tensor.

By defining hydrostatic pressure (also denoted the mean stress) as,

p =
σx + σy + σz

3
=

σTm

3
(19)

the total stress, σ, can be additively split into deviatoric and volumetric parts,

σ = σ̆ = σdev + pm (20)

Pressure, p, is related to the volumetric strain, εv, by the bulk modulus, κ, of the material,

i.e.,

εv = mTε =
p

κ
(21)

6
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By treating hydrostatic pressure, p, as an independent variable in addition to displace-

ments, u, we can formulate the problem using Eq. (10) and the weak form of Eq. (21) as,

∫

Ω

δεTσ̆ dΩ =

∫

Ω

δuTb0 dΩ +

∫

Γ

δuTt̄0 dΓ (22a)
∫

Ω

δp
[
mTε− p

κ

]
dΩ = 0 (22b)

With u = Nuū and p = Npp̄ as approximations for u and p and applying Newton-Raphson

iterative scheme to solve Eq. (22) leads to the following algebraic problem,


Kuu Kup

Kpu Kpp








dū

dp̄



 = −





Ru

Rp



 (23)

where dū and dp̄ are vectors of increments in displacements and pressure respectively. The

corresponding stiffness matrices and residual vectors are given as,

Kuu =

∫

Ω

BTDdevB dΩ ; Kup =

∫

Ω

BTmNp dΩ = KT
pu ; Kpp = −

∫

Ω

1

κ
NT

p Np dΩ (24)

Ru =

∫

Ω

BTσ̆ dΩ− f ; Rp =

∫

Ω

NT
p

[
mTε− p

κ

]
dΩ (25)

and f is same as that given Eq. (13). Here, Ddev is the deviatoric component of D. For

linear isotropic elastic material,

Ddev = 2µ

(
I0 −

1

3
mmT

)
(26)

3. Finite strain formulation

3.1. Governing equations

Let Ω be the reference configuration of a body and ωφ be its deformed configuration. Let

φ : Ω → ωφ be a mapping that takes a point X ∈ Ω to a point x ∈ ωφ. The displacement

of a point from its initial position X to its current configuration x is given by

u(X) = φ(X)−X = x−X (27)

7
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The deformation gradient, F, the right Cauchy-Green deformation tensor, C, the left Cauchy-

Green deformation tensor, b, and the Green-Lagrange strain tensor, E, are defined as,

F =
∂x

∂X
= I +

∂u

∂X
; C = FTF; b = FFT; E =

1

2
(C− I) (28)

For a given free-energy function W (C), the second Piola-Kirchhoff stress tensor, S, is defined

as,

S = 2
∂W

∂C
=

∂W

∂E
(29)

The boundary value problem of elasticity in large strain regime for a body with reference

configuration Ω can be stated as:

Given b0 : Ω → R3, ḡ : ΓD → R3 and t̄0 : ΓN → R3, find u : Ω → R3, such that:

∇X ·P + b0 = 0 in Ω, (30)

u = ḡ on ΓD, (31)

P ·N = t̄0 in ΓN , (32)

where b0 is the body force per unit undeformed volume, N is the unit outward normal on

the boundary, Γ, of Ω, ḡ is the prescribed displacement on ΓD, t̄0 is the prescribed traction

per unit area on ΓN , with Γ = ΓD ∪ ΓN , and P is the first Piola-Kirchhoff stress tensor,

defined as,

P = FS (33)

3.2. Displacement formulation

For a given stored energy function, W , the total energy functional, in the reference

configuration, Ω, is given by,

Π(u) =

∫

Ω

W (C) dΩ − Πext (34)

where, Πext is same as that given Eq. (9).

By taking approximations for displacements as, u = Nuū, and applying the Newton-

Raphson scheme to the nonlinear system of equations resulting from the equilibrium leads

to the following algebraic problem,

K dū = −Ru (35)

8
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where,

Ru =

∫

ω

BTσ dω − f (36)

Assuming that loads are independent of the configuration of the domain, the stiffness matrix

K is given by,

K = KM + KG (37)

where, material stiffness matrix KM and geometric stiffness matrix KG are given as,

KM =

∫

ω

BTDB dω and KG =

∫

ω

(Na,iσijNb,j) I dω (38)

and f is same as that given in small strain formulation in Eq. (13b). Here, the elastic

modulii matrix D depends upon the material model considered in the analysis. For the

comprehensive details on the derivation of D from the energy function of a material model

and for the detailed description of the formulations used in this paper the reader is referred

to Zienkiewicz and Taylor [47] and Bonet and Wood [6].

3.3. Two field mixed variational formulation

The mixed formulation in the finite strain regime is based on the multiplicative split of

the deformation gradient, F, into deviatoric and volumetric components such that,

F = FvolFdev (39)

where,

Fvol = J1/3I, Fdev = J−1/3F with J = detF (40)

Using (40) the modified right Cauchy-Green tensor, C̄, and the modified left Cauchy-Green

tensor, b̄, are defined as,

C̄ = FT
dev Fdev and b̄ = Fdev FT

dev (41)

Considering displacements, u and pressures, p, as independent variables, the modified po-

tential energy functional can be written as,

Π(u, p) =

∫

Ω

[
W (C) + p(J − 1)− 1

2κ
p2

]
dΩ− Πext (42)

9
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For all of the material models considered in the examples presented, W can be represented

as the additive decomposition of deviatoric and volumetric parts, as,

W (C) = W dev(J, C̄) + W vol(J) (43)

Similar to small-strain formulation, by taking approximations for variables u and p as

u = Nuū and p = Npp̄ and after applying Newton-Raphson iterative scheme an algebraic

problem is obtained given as,

Kuu Kup

Kpu Kpp








dū

dp̄



 = −





Ru

Rp



 (44)

where,

Kuu =

∫

Ω

BTD̄11B J dΩ + KG ; Kup =

∫

Ω

BTmNp J dΩ = KT
pu (45)

Ru =

∫

Ω

BTσ̆J dΩ− f ; Rp =

∫

Ω

NT
p

(
J − 1− p

κ

)
dΩ (46)

with,

D̄11 = IdevDIdev − 2

3

(
mσT

dev + σdevm
T
)

+ 2 (p̄− p) I0 −
(

2

3
p̄− p

)
mmT (47)

σ̆ = σ + m(p− p̄) and p̄ =
1

3
mTσ (48)

4. NURBS and Isogeometric Analysis

4.1. Introduction to NURBS

NURBS are the standard tools to model geometries in Computer Aided Design (CAD)

industry. NURBS are a generalization of B-Splines which are composed of linear combina-

tions of B-Spline basis functions.

Given a knot vector Ξ = {ξ0, . . . , ξn+a+1} and degree of polynomial a, B-Spline basis

functions are defined as follows:

For a = 0, (piece-wise constants),

Ni,0(ξ) =





1 if ξi ≤ ξ ≤ ξi+1

0 otherwise

10
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and for a ≥ 1,

Ni,a(ξ) =
ξ − ξi

ξi+a − ξi
Ni,a−1(ξ) +

ξi+a+1 − ξ

ξi+a+1 − ξi+1
Ni+1,a−1(ξ) (49)

NURBS geometries are represented as a linear combination of B-Spline basis functions

along with a set of control points. A NURBS curve of degree a is defined as,

X(ξ) =

n∑

i=0

Ni,a(ξ)P
w
i for 0 ≤ ξ ≤ 1 (50)

where {Pw
i }, i = 0, 1, ..., n is the control polygon and Ni,a is a B-Spline basis function of

degree a defined on a knot vector Ξ. Control points are represented in homogeneous coor-

dinates as they offer many advantages in mathematical treatment as well as programming.

NURBS objects in higher-dimensions are created as tensor products of univariate NURBS.

A NURBS surface of degree a in ξ direction and degree b in η direction is defined as,

X(ξ, η) =
n∑

i=0

m∑

j=0

Ni,a(ξ)Mj,b(η)Pw
i,j for 0 ≤ ξ, η ≤ 1 (51)

where {Pw
i,j}, i = 0, 1, ..., n, j = 0, 1, ..., m is the control net and Ni,a(ξ) and Mj,b(η) are

the B-Spline basis functions, respectively, on knot vectors Ξ1 = {ξ0, . . . , ξn+a+1}, and Ξ2 =

{η0, . . . , ηm+b+1}.
Similarly, a NURBS solid is defined as,

X(ξ, η, ζ) =
n∑

i=0

m∑

j=0

l∑

k=0

Ni,a(ξ)Mj,b(η)Lk,c(ζ)Pw
i,j,k for 0 ≤ ξ, η, ζ ≤ 1 (52)

for a given a control net {Pw
i,j,k}, i = 0, 1, ..., n, j = 0, 1, ..., m, k = 0, 1, ..., l and knot vectors

Ξ1 = {ξ0, . . . , ξn+a+1}, Ξ2 = {η0, . . . , ηm+b+1} and Ξ3 = {ζ0, . . . , ζl+c+1}. The reader is

suggested to refer to [14, 18, 32, 35] for further details on this topic.

4.2. NURBS spaces for isogeometric analysis

The basic idea of isogeometric analysis is to use the same basis functions used to represent

the geometry as the approximating functions for the field variables. Using the NURBS basis

functions as approximating functions the field variables can be approximated as,

u =
∑

α=0

Nα(ξ) ūα; p =
∑

α=0

Nα(ξ) p̄α (53)

11



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

where ξ = {ξ, η, ζ} are the parametric coordinates, ūα and p̄α are the control variables which

similar to nodal values in standard finite element method and N(ξ) are the multivariate basis

functions determined from the knot vectors and degrees of polynomial in each parametric

direction. N(ξ) are computed as tensor products of univariate basis functions, as given by

N(ξ) = M(ξ)⊗M(η) in 2D (54)

N(ξ) = M(ξ)⊗M(η)⊗M(ζ) in 3D (55)

where M(ξ), M(η) and M(ζ) are the univariate basis functions in ξ, η, and ζ directions

respectively. Note that N(ξ) is normally stored in the form of a vector.

As a convention to represent NURBS approximation spaces of different orders, let us

denote Qa as approximations of order a. The continuity of Qa elements within a patch can

be of any order k which varies from 0 to (a − 1), depending upon the multiplicity of the

internal knots. All the knot vectors are assumed to be open, so a patch constructed on

such knot vectors would be interpolatory at the ends and hence in case of problems modeled

with multiple patches, only C0 continuity is achieved across the patch interfaces. For further

details on this topic the reader is referred to Cottrell et al. [14].

5. Mixed formulation and the inf-sup condition

The saddle-point nature of matrix system obtained with the mixed Galerkin formula-

tions, Eqs. (23) and (44), pose difficulties in obtaining stable numerical solutions. The

combination of approximation spaces for displacement and pressure has to be chosen in

such a way that it satisfies the inf-sup or LBB condition and failing to do so results in spu-

rious oscillations in pressure. The standard practice with the Lagrange finite elements is to

choose basis functions for pressure to be one order lower than those for the displacement, the

Taylor-Hood element being a classical example [8, 9]. Several researchers [16, 22, 24, 27, 44]

extended this strategy to mixed formulations for IGA for solid mechanics. However, [11, 36]

and our experience shows that NURBS combination Qa/Qa−1 (Qa for displacement and Qa−1

for pressure with the same knot discretisation) is unstable with respect to LBB condition. To

12
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overcome this issue, Bressan and Sangalli [7] developed several inf-sup stable displacement-

pressure combinations for NURBS based IGA using macro-element projection technique and

employed it for the analysis of linear nearly incompressible elasticity in [3, 38]. However, as

such projection techniques involve element-level matrix inversions, we do not find such tech-

niques to be computationally appealing when used in the context of higher-order elements.

Moreover, as we use the mixed formulations directly, i.e., without condensation, we have

difficulty in justifying the use of discontinuous spaces for pressure discretisation, as the use

of such element-level discontinuous spaces seems to be in contradiction with the idea behind

NURBS based IGA, namely, use of higher-order shape functions with high continuity across

element boundaries. Hence, in the present work we develop inf-sup stable displacement-

pressure combinations for NURBS based IGA based on subdivision properties of NURBS

inspired by the stable velocity-pressure combinations proposed by Rüberg and Cirak [36].

5.1. Subdivision properties of B-Splines

One of the interesting properties of B-Spline functions is their two-scale relation. Ac-

cording to this property B-Spline basis functions on a knot-vector with knot-spacing h can

be represented as a linear combinations of B-Spline basis functions on a knot-vector with

knot-spacing h/2 as illustrated in Fig. 1. The coarse basis functions in Fig. 1(a) and Fig.

1(b) can be presented as a linear combinations of fine basis functions in Fig. 1(c) and Fig.

1(d), respectively.

13
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Figure 1: Subdivision property of B-Spline basis functions in 1D.

The two-scale relation can be written as,

Nk = SNk+1 (56)

where, Nk and Nk+1 are the basis functions, respectively, at levels k and k + 1, and S is

the subdivision matrix. In one-dimension, the subdivision matrices for linear and quadratic

B-Splines are,

SQ1 =
[

1
2

1 1
2

]
; SQ2 =

[
1
4

3
4

3
4

1
4

]
(57)

5.2. Subdivision properties of NURBS

Similarly, NURBS basis functions defined on a knot-spacing h can be represented as

a linear combination of those defined on a knot-spacing h/2. Each of the NURBS basis

functions in Figs. 2(a) and 2(b) can be represented as a linear combination of NURBS basis

14
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functions in Figs. 2(c) and 2(d), respectively. The entries of the subdivision matrix S in

Eq. (56) can be computed by following the definitions of NURBS basis functions.

0 30.0

0.2

0.4

0.6

0.8

1.0

(a) Q2 − (h)

0 40.0

0.2

0.4

0.6

0.8

1.0

(b) Q3 − (h)

0.0 1.5 3.00.0

0.2

0.4

0.6

0.8

1.0
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(d) Q3 − (h/2)

Figure 2: Subdivision property of NURBS basis functions in 1D.

5.3. NURBS spaces for mixed formulation

Based on the subdivision properties, we develop displacement-pressure combinations —

denoted as Qa/Qb-SD — in which Qa NURBS discretisation for displacement is combined

with Qb NURBS discretisation for pressure with the element knot-span for pressure being

double that of displacement. In other words one pressure element in n- spatial dimen-

sions spans 2n displacement elements, as illustrated in Fig. 3. Figures on the left are for

displacement discretisation and those on the right are for the pressure discretisation.
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(a) Displacement elements (b) Pressure elements

(c) Displacement elements (d) Pressure elements

Figure 3: Subdivision based discretisations for displacement and pressure.

5.4. Numerical inf-sup test

Recall that for a given displacement discretisation uh ∈ Uh and pressure discretisation

ph ∈ Ph the inf-sup condition is given by the inequality [9]

inf
ph∈Ph

sup
uh∈Uh

∫
Ω

phdivuh dΩ

‖uh‖‖ph‖
≥ βh > 0 (58)

The displacement and pressure discretisation combination has to satisfy the above inequality

in order to obtain stable pressure solutions using the mixed formulations. Obtaining analyt-

ical proof of inf-sup condition in a general setting is quite challenging and to our knowledge

no such proofs are available yet for NURBS based discretisations. Even many of the widely

used displacement-pressure combinations (and velocity-pressure combinations in fluid me-

chanics) in engineering practice have no analytical proofs yet. Towards addressing this issue

Chapelle and Bathe [12] proposed a numerical test. The test involves the calculation of βh

values over a sequence of mesh refinements. If the value of βh does not decrease towards

zero as the mesh is refined then the test is passed and displacement-pressure combination

16
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is considered to be stable. Otherwise, the displacement-pressure combination is considered

unstable.

The value of βh is computed as the square-root of the smallest non-zero eigenvalue (λh)

of the following generalised eigenvalue system

KpuG
−1
h Kupp̄ = λh Mhp̄ (59)

where,

Gh =

∫

Ω

∇NT
u : ∇Nu dΩ (60)

Mh =

∫

Ω

NT
p Np dΩ (61)

In this work we demonstrate the stability characteristics of different combinations of

NURBS spaces by computing numerically the inf-sup constants for Cook’s membrane and

a thick-walled cylinder. Two different examples are chosen in order to demonstrate the

robustness of the proposed spaces for geometries that are represented by non-rational as

well as rational polynomials.

5.4.1. Inf-sup test - Cook’s membrane

The standard Cook’s membrane is composed of a nearly incompressible elastic material

and loaded by edge load under plane strain conditions. Geometry and boundary conditions

of the problem are shown in Fig. 4. The initial mesh consists of a single element with

linear NURBS and it is k-refined to obtain the meshes shown in Fig. 5. Numerical values

of inf-sup constants computed for the different meshes for different orders of NURBS basis

functions are presented in log-log scale in Fig. 6. It is evident from these graphs that all

the displacement-pressure combinations with subdivision, Qa/Qa-SD and Qa/Qa−1-SD, are

inf-sup stable and those without subdivision, Qa/Qa and Qa/Qa−1, are not.
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44mm

16mm

48mm

F

b A

Material Properties

E = 240.565 M Pa
ν = 0.4999

Figure 4: Cook’s membrane: geometry, loading, boundary conditions and material properties.

Figure 5: Cook’s membrane: meshes used for the analysis.
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Figure 6: Cook’s membrane: numerical inf-sup constants versus number of elements per side (N) for different

orders of NURBS basis functions.

5.4.2. Inf-sup test - thick-walled cylinder

The geometry and boundary conditions of the problem are shown in Figure 7. As the

geometry includes portions of the circle it can be represented exactly with quadratic and

higher-order NURBS. An initial mesh of one element with Q2 NURBS is k-refined to generate

successively refined meshes shown in Fig. 8. The computed values of inf-sup constants,

shown in Fig. 9, follow the same trend as that observed in Cook’s membrane example: for a

particular order of NURBS numerical inf-sup value remains constant with mesh refinement

subdivision stabilised displacement-pressure combinations and it approaches zero for those

without subdivision. In other words, the displacement-pressure combinations Qa/Qa-SD

and Qa/Qa−1-SD are inf-sup stable and the combinations Qa/Qa and Qa/Qa−1 are not.
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Inner radius (ri) = 100 mm

Outer radius (ro) = 200 mm

Young′s modulus (E) = 210 GPa

Internal pressure (p) = 0.1 GPa

Figure 7: Thick-walled cylinder: geometry and boundary conditions.

Figure 8: Thick-walled cylinder: meshes used for the analysis.
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Figure 9: Thick-walled cylinder: numerical inf-sup constants versus the number of elements per side (N) for

different orders of NURBS basis functions.
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6. Numerical examples - small strain

In all of the examples considered to demonstrate the performance of the proposed formu-

lations, an initial coarse geometry is defined and then k-refinement of isogeometric analysis

as introduced by Cottrell et al. [14, 21], is followed to achieve the desired refinement. Ac-

cording to k-refinement, order of the polynomial is increased first and then required knot

insertions are performed. We note that this new type of refinement procedure has no anal-

ogous in the standard FEM. The refinement has the advantage that it reduces the number

of control points and also increases the continuity across the newly inserted knots (element

boundaries).

In the present work we have used a direct solver (PARDISO [1]) to solve the resulting

matrix system.

6.1. Thick-walled cylinder subjected to internal pressure

The first example is the analysis of thick-walled cylinder subjected to internal pressure.

Plane strain condition is assumed because of the geometry of the problem and only quarter

portion of the cylinder is modelled, as shown in Figure 7, due to the symmetry of geometry

and loading conditions. For this problem analytical solutions for displacement and stress are

available [45]. Analytical expressions for radial displacement (dr), radial stress (σrr), hoop

stress (σθθ) and shear stress (τrθ) are given as:

dr =
p r2

i

(r2
o − r2

i ) E

[
(1− ν − 2ν2) r + (1 + ν)

r2
o

r

]
(62)

σrr =
p r2

i

r2
o − r2

i

[
1− r2

o

r2

]
(63)

σθθ =
p r2

i

r2
o − r2

i

[
1 +

r2
o

r2

]
(64)

τrθ = 0 (65)

where r is the radius at an arbitrary point in the domain. These analytical solutions are

used to compute error norms in order to assess the convergence properties of the proposed

numerical scheme.
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The convergence studies are performed on successively refined meshes for two different

values of Poisson’s ratio, ν = 0.4 and ν = 0.49999, in order to demonstrate the robustness

of the proposed displacement-pressure combinations in both the compressible and nearly

incompressible regimes. Convergence graphs of L2-norm of absolute error in displacement,

L2-norm of absolute error in stress and energy norm error are shown in Fig. 10 and Fig. 11,

respectively, for ν = 0.4 and ν = 0.49999. The mesh parameter h is considered to be the

maximum of all element diagonal lengths in the physical domain. These graphs indicate that

optimal convergence rates are obtained for both the displacement-pressure combinations,

Qa/Qa-SD and Qa/Qa−1-SD. Even though the pure displacement formulation results in

better than optimal convergence rates in displacement for ν = 0.49999, the stresses obtained

are of a very poor quality, as can be observed from the graph Fig. 6.1 and the contour plots

Fig. 12(a) and Fig. 13(a). The two-field mixed formulation with the proposed displacement-

pressure combinations results in smooth stress field of substantially reduced errors along with

maintaining optimal convergence. The contour plots of radial and hoop stresses shown,

respectively, in Fig. 12 and Fig. 13, illustrate that the proposed displacement-pressure

combinations produce stress fields without any spurious oscillations.
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Figure 10: Thick-walled cylinder: error norms for ν = 0.4.
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Figure 11: Thick-walled cylinder: error norms for ν = 0.49999.
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Figure 12: Thick-walled cylinder: contour plots of radial stress (σrr) with 16× 16 mesh with Q3, Q3/Q3-SD

and Q3/Q2-SD.
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Figure 13: Thick-walled cylinder: contour plots of hoop stress (σθθ) with 16× 16 mesh with Q3, Q3/Q3-SD

and Q3/Q2-SD.
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6.2. Cook’s membrane

Cook’s membrane is a standard benchmark problem used to assess the quality of finite

element formulation for incompressible solids. In [13, 29, 30] this problem was studied in the

context of standard finite element formulations for large strains, while [16, 22, 24, 27, 23]

have studied it using NURBS based isogeometric analysis. Geometry, material and boundary

conditions of the problem are shown in Fig. 4. The material is assumed to be linear elastic.

The value of load, F = 100 N/mm is uniformly distributed along the edge of the membrane.

Analysis has been performed on successively refined meshes as discussed in 5.4.1, for different

orders of NURBS and for different mesh densities for each order, using both the displacement

and mixed formulations in order to study their relative performances.
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(c) Qa/Qa without subdivision
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Figure 14: Cook’s membrane - small strain: vertical displacement of the top right corner versus number of

elements per side.
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Fig. 14 shows vertical displacement of the top right corner, (point A in Fig. 4), displayed

against the number of elements per side for different orders of approximations. As expected,

lower order elements with pure displacement formulation suffer from severe locking. Note

that even with pure displacement formulation the stiffening effect of locking disappears as the

element order is increased. Mixed formulation has clearly helped to improve the accuracy of

the result for lower order elements (linear and quadratic), even though it has less significant

effect on higher order elements. All of the displacement-pressure combinations studied, with

and without subdivision, give improved results over displacement formulation. However,

contour plots of hydrostatic pressure, shown in Fig. 15, illustrate that pressure plots obtained

with displacement-pressure combinations without subdivision contain spurious oscillations,

validating the observations made in Section 5.4.1 by computing the inf-sup constants and

proves that Qa/Qa−1 NURBS combinations without subdivision are unstable. Based on the

results obtained so far we conclude that the combination Qa/Qa-SD is the best choice. The

remaining examples in this paper are presented with this combination.
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Figure 15: Cook’s membrane - small strain: hydrostatic pressure for 32x32 mesh with quadratic NURBS.
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6.3. Strip footing collapse

This example demonstrates the application of IGA to the determination of the limit load

of a strip footing. The problem has been studied by de Souza Neto et al. [28] using the

standard FEM. The problem consists of a long rectangular footing on top of a soil half-

space. The footing is subjected to a vertical pressure, P, and the purpose of the present

analysis is to determine the collapse pressure Plim. The soil is assumed to be weightless

and is modelled as the von Mises perfectly plastic material. Due to the long length of

the footing, the present problem is solved by assuming a plane strain state. Because of

the symmetry of the problem geometry and loading, only one half of the cross-section is

considered. The geometry, material properties, boundary conditions and loading are shown

in Fig. 16(a). The footing is assumed to be rigid and footing/soil interface is assumed to

be frictionless. This requires prescribing the vertical displacement u at the control points

under the footing and allowing their horizontal displacement to be unconstrained. A total

displacement of u = 0.002m is applied and the problem is solved by incremental increase

of the displacement. The response is measured in terms of the normalized pressure (P/c),

where P is total reaction on the footing and the cohesion or shear strength, c, for the von

Mises model is given as, c = σy/
√

3. The results from numerical simulations are compared

against the theoretical limit calculated by Prandtl and Hill based on the slip-line theory.

For the chosen material properties theoretical limit value is given as Plim = 5.14 c.
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Material Properties
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E = 107 kPa

ν = 0.48

σy = 848.7 kPa

(a) (b) (c)

Figure 16: Strip footing collapse: a) geometry, loading, boundary conditions and material properties b)

initial control mesh of two patch geometry c) mesh considered for the analysis.

The problem is modelled using two patches so that Dirichlet boundary conditions are

applied exactly after refining the mesh using k-refinement. The initial mesh is modelled

using quadratic NURBS with a single element in each patch and the initial control points

used are as shown in Fig. 16(b). The initial control points are chosen such that the mesh

will be suitably refined at the region of interest near the footing and coarse away from it.

Analysis is performed on the mesh shown in Fig. 16(c) for different orders of NURBS using

both the displacement and mixed formulations.

Fig. 17(a) and Fig. 17(b) show the computed normalized pressure(P/c) against normal-

ized settlement(u/B), respectively, for displacement and mixed formulations and the relative

errors in normalized pressure are tabulated in Table.1. Even though the computed collapse

loads are within the acceptable limits for both the displacement and mixed formulations,

the accuracy of slip line resolution obtained with displacement formulation is very poor as

shown in Fig. 18. The use of mixed formulation alleviates this problem and improves the

accuracy of slip line resolution as shown in Fig. 19. Contour plots of hydrostatic pressure

for both the displacement and mixed formulations shown in Fig. 20. and Fig. 21 indicate

again the superior performance of the subdivision based mixed formulation.
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Figure 17: Strip footing collapse: load-displacement curve.

Degree disp-formulation mixed formulation

Q2 0.3 -0.2

Q3 0.1 -0.1

Q4 0.0 -0.1

Table 1: Strip footing collapse: percentage error in normalized pressure.
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Figure 18: Strip footing collapse: equivalent plastic strain with displacement formulation.

28



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

0.0 0.5 1.0 1.5 2.0
3.0

3.5

4.0

4.5

5.0

-0.000

0.001

0.002

0.003

0.004

0.005

(a) Q2/Q2-SD

0.0 0.5 1.0 1.5 2.0
3.0

3.5

4.0

4.5

5.0

-0.000

0.001

0.002

0.003

0.004

0.005

(b) Q3/Q3-SD

0.0 0.5 1.0 1.5 2.0
3.0

3.5

4.0

4.5

5.0

-0.000

0.001

0.002

0.003

0.004

0.005

(c) Q4/Q4-SD

Figure 19: Strip footing collapse: equivalent plastic strain with mixed formulation.
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Figure 20: Strip footing collapse: pressure distribution with displacement formulation.
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Figure 21: Strip footing collapse: pressure distribution with mixed formulation.
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7. Numerical examples - finite strain

7.1. Cook’s membrane with Neo-Hookean hyperelastic material

The geometry, loading and boundary conditions of the problem are same as those used

in small strain example. For the purpose of nonlinear analysis the material is modelled

using the generalized Neo-Hookean hyperelastic material model in which the stored energy

function can be additively decomposed into distortional and volumetric parts, given by,

W (J, b̄) =
1

2
µ (Ib̄ − 3) +

1

2
κ

(
1

2
(J2 − 1)− lnJ

)
(66)

In order to match the material properties in linear range given in Fig. 4, we take, κ =

40.0942 × 104 MPa and µ = 80.1938MPa. A load value of F = 100 N/mm is chosen and

it is assumed that the load is conservative, meaning that a fixed load value and direction,

equal to that in the reference configuration, is assumed to act during the entire deformation.

Similar to small strain formulation, analysis is performed for different discretisations using

both the displacement and mixed formulations and the variation of the vertical displacement

of the top right corner with respect to number of elements per side is presented in Fig. 22.
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Figure 22: Cook’s membrane with Neo-Hookean material: vertical displacement of top right corner versus

number of elements per side.
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In order to evaluate the performance of the present methods, results obtained with the

standard linear quadrilateral element with Fbar formulation of de Souza Neto [29], denoted

by Q1-Fbar, are also presented. Lower order NURBS elements with pure displacement

formulation suffer from severe locking problem and accuracy of the results improves with

increasing the order of approximation. Mixed formulation substantially improves the accu-

racy of results as observed in small strain formulation. Higher order NURBS elements with

mixed formulation give converged solution even for very coarse meshes.

Table 2 shows the evolution of L2 norm of residue over different iterations for the last

substep of 4x4 mesh with quadratic NURBS for both the formulations. Fig. 23 shows contour

plots of hydrostatic pressure for cubic NURBS for 32x32 mesh. Clearly, mixed formulation

gives a smooth variation of pressure when compared to the displacement formulation. It is

worth noting that as the von Mises equivalent stress is independent of hydrostatic pressure,

both formulations give almost identical smooth plots, as shown in Fig. 24.

Iteration

number

Norm of residue

Displacement formulation Mixed formulation

1 4.4096 E+00 4.4096 E+00

2 6.1663 E+02 4.4918 E−01

3 5.7846 E−02 2.0436 E−04

4 1.7704 E−02 5.0414 E−11

5 1.1638 E−08

Table 2: Cook’s membrane with Neo-Hookean material: evolution of norm of residual for the last substep

for 4x4 mesh with quadratic NURBS.
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Figure 23: Cook’s membrane with Neo-Hookean material: hydrostatic pressure for 32x32 mesh with cubic

NURBS.
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Figure 24: Cook’s membrane with Neo-Hookean material: equivalent stress for 32x32 mesh with cubic

NURBS.

7.2. Cook’s membrane with von Mises elasto-plastic material

In this example, the same Cook’s membrane as in previous example is considered but

with a different material model and load value. The material model consists of uncoupled

stored energy with Neo-Hookean hyperelastic model for the elastic deformations and a plas-

ticity model with associative flow rule based on the von Mises yield criterion with isotropic

nonlinear hardening for the plastic portion. Neo-Hookean material model is same as the one
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used in the previous example and the nonlinear isotropic hardening law is given by,

k(α) = σ0 + (σ∞ − σ0) [1− exp(−δα)] + Hα, with δ > 0 (67)

The material properties are: Bulk modulus, κ = 164.21 GPa, shear modulus, µ = 80.1938

GPa, initial flow stress, σ0 = 450 MPa, saturation flow stress, σ∞ = 715 MPa, saturation

exponent, δ = 16.93 and linear hardening coefficient, H = 129.24 MPa.

A load value of F = 20 kN/mm is used. Similar to the previous example, analysis is

performed for different orders of approximations for all five meshes using both displacement

and mixed formulations and a similar pattern in the convergence of results is observed.

Variation of the displacement of top right corner against the number of elements per side,

for different orders of approximations, is shown in Fig. 25. Clearly, mixed formulation

substantially improves the accuracy of the results. Figs. 26 and 27 show the contour plots

of equivalent plastic strain and von Mises equivalent stress, respectively, for cubic NURBS

for both displacement and mixed formulations.
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Figure 25: Cook’s membrane with elasto-plastic material: vertical displacement of top right corner versus

number of elements per side.
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Figure 26: Cook’s membrane with elasto-plastic material: equivalent plastic strain for 32x32 mesh with

cubic NURBS.
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Figure 27: Cook’s membrane with elasto-plastic material: equivalent stress for 32x32 mesh with cubic

NURBS.
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7.3. Plane strain compression of a block

10
m

m

p/p0

5 mm 10 mm 5 mm

b
A

Figure 28: Block under compression: Geometry, loading and boundary conditions.

This problem has been studied by Reese et al. [33] and since then has been used as a

standard benchmark problem to study the performance of various finite element formulations

to deal with incompressibility in finite strains. Elguedj et al. [16] and Kadapa et al. [22, 24]

studied this problem in the context of isogeometric analysis. This problem consists of a

block resting on a rigid surface and subjected to pressure loading at its middle portion. The

geometry, boundary conditions and loading are as shown in Fig. 28. Due to the symmetry

of geometry, boundary and loading conditions, only half of the model is considered for the

analysis. The material is modelled using Neo-Hookean material model with the following

strain energy function,

W (J, b̄) =
1

2
µ (Ib̄ − 3) +

1

4
λ

(
(J2 − 1)− 2 lnJ

)
− µ lnJ (68)

with material parameters λ = 400889.806 MPa and µ = 80.1938 MPa. The load is assumed

to be conservative. The quantity of interest is the compression level (vertical displacement)

of top middle, point A in Fig. 28. Variation of compression level is studied for different

loading conditions, i.e. different p/p0 values with p0 = 20, for different orders of NURBS

approximation spaces using the proposed mixed formulation. Results obtained for Q1/Q1-SD

NURBS are compared with those obtained using the standard 4-node linear-quadrilateral
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element of FEM with Fbar formulation, denoted as Q1-Fbar, (see de Souza Neto et al.

[29]). Convergence is obtained, for all the considered loading conditions, with a mesh of

16x16 and is shown in Fig. 29. Fig. 30 shows the variation of compression level for different

loading conditions, p/p0=20, 40, 60, using both the displacement and mixed formulations for

different orders of NURBS spaces. Again, convergence is obtained with 16x16 meshes, except

for Q1 NURBS. Q1 NURBS for all the meshes and Q2 NURBS for coarse meshes suffer from

sever locking problems and increasing the order of NURBS improves the accuracy. Similar

to the Cook’s membrane response, mixed formulation substantially improves the accuracy

even for coarse meshes and improvement in accuracy, with mixed formulation, becomes

negligible for higher order NURBS with fine meshes. However, it has been observed that

mixed formulation converges with substantially less number of load steps compared to the

pure displacement formulation. Therefore, use of mixed formulation reduces the overall

computational time and also gives more accurate results and smooth variation of stresses.

Figs. 31 and 32 show, respectively, the contour plots of hydrostatic pressure and von Mises

equivalent stress, for 32x32 mesh with cubic NURBS for p/p0=60.
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Figure 29: Block under compression: compression level for Q1/Q0 NURBS compared to Linear-

Quadrilateral(LQ) element in standard FEM with Fbar formulation of de Souza Neto et. al. [29].
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Figure 30: Block under compression: compression level for different orders of NURBS under different loading

conditions.
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Figure 31: Block under compression: contour plots of hydrostatic pressure for 32x32 mesh with cubic

NURBS with p/p0=60.
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Figure 32: Block under compression: contour plots of Von-Mises equivalent stress for 32x32 mesh with cubic

NURBS with p/p0=60.
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7.4. Necking of an elasto-plastic strip

w=12.826

l=
53

.3
34

u

(a) (b)

Figure 33: Necking of an elasto-plastic strip: a) geometry, loading and boundary conditions and b) mesh

used for the analysis. Blue lines indicate patch boundaries.

In this example we study the plane strain localization of a strip subjected to uniform

extension. This problem has been studied by several authors [4, 27, 29, 30, 40, 44] and

is considered as standard benchmark problem for testing the behaviour of finite element

formulations for incompressible plastic materials at finite strains. The geometry and loading

conditions are as shown in Fig. 33. The material model and material properties are same

as those used in Cook’s membrane with finite strain plasticity. Due to obvious symmetry

only quarter portion of the model is considered for the analysis. In order to trigger strain

localization, a width reduction of 1.8% is introduced in the center of the bar. A total vertical

displacement of u = 5.0 is applied on the top edge and the problem is solved in several load

steps. Figs. 34(a) and 34(b) show the plots of variation of necking displacement and necking

force, respectively, with respect to the variation of applied displacement for different orders

of NURBS spaces.

Contour plots of stress component (σyy), pressure (p) and equivalent plastic strain (α)
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are shown in Fig. 35 and Fig. 36, for linear and quadratic NURBS, respectively. The mixed

formulation with the proposed displacement-pressure combination improves the quality of

results substantially for linear elements and the improvement for quadratic NURBS is not so

pronounced as the results obtained by displacement formulation are already of good quality.
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Figure 34: Necking of an elasto-plastic strip: necking displacement and reaction force versus applied dis-

placement.
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Figure 35: Necking of an elasto-plastic strip: contour plots with linear NURBS: (a)-(b) σyy stress and (c)-(d)

equivalent plastic strain (α).
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Figure 36: Necking of an elasto-plastic strip: contour plots with quadratic NURBS: (a)-(b) σyy stress and

(c)-(d) equivalent plastic strain (α).

7.5. Torsion of a square prism

In this example we present the performance of mixed methods under severe mesh distor-

tions, using the torsion of a square prism. This problem was studied by Lipton et al. [26]

using F̄ formulation with NURBS and Kadapa et al. [22, 24] using mixed formulation. Ge-

ometry and boundary conditions of the problem are as shown in Fig. 37(a). Rotation (θz) on

the top face is applied in the form of X and Y directional displacements. Material model and

material properties are same as those used in Cook’s membrane with Neo-Hookean hypere-

lastic material. A 4x4x16 mesh is studied with subdivision stabilised displacement-pressure

combinations with linear, quadratic and cubic NURBS.
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Figure 37: Torsion of a prism: a) geometry, loading and boundary conditions, and b) von Mises stress

contour plot at 720 deg rotation for Q2/Q2-SD.

The quantity of interest in the present example is the maximum angle of twist that a

mesh can sustain before failing to converge. Failure angles for the different discretisations

considered in the study are presented in Table. 3. Analyses performed with mixed formu-

lation have shown exceptional reduction in computational time when compared with the

displacement formulation. Mixed formulation converges with increments of 10 deg while

displacement formulation needs an increment of 1 deg and sometimes even less. On av-

erage, 10-fold reduction in computational time is achieved using mixed formulation. This

reduction in computational time proves to be extremely beneficial in large-scale engineering

simulations. A typical deformed shape of the bar along with von Mises stress distribution

for an intermediate configuration (at θ = 720 deg) is shown in Fig. 37(b).
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Table 3: Torsion of a prism: failure angle in degrees.

NURBS basis Failure angle for Qa/Qa-SD

Linear (Q1) 890

Quadratic (Q2) 830

Cubic (Q3) 990

7.6. Bending of a thick cylindrical shell

This example is used to demonstrate the performance of the finite element formulations

to deal with the issue of ”shear locking” of shells. This problem was studied by [10, 13, 34].

The geometry, loading and material properties are as shown in Fig. 38. As the Poisson’s

ratio is only 0.4 no volumetric locking is expected; however, because of the geometry, this

problem suffers from shear locking. Due to symmetry of geometry and loading conditions,

only a 1/8th portion is considered for the analysis, as shown in Fig. 39(a), along with

boundary conditions and loading and a typical mesh used. Due to circular cross sections

the initial geometry has to be modelled with quadratic NURBS. The load is assumed to be

conservative and a Neo-Hookean material model with the following energy function is used,

Ψ(J, C̄) =
1

2
µ

(
tr[C̄]− 3

)
− µ lnJ +

1

2
λ (lnJ)2 (69)
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Total length L = 30 mm
Inner radius Ri = 8 mm
Outer radius Ro = 10 mm
Young′s modulus E = 16800 MPa
Poisson′s ratio ν = 0.4
Applied load p = 450 N/mm

Figure 38: Bending of a thick cylindrical shell: geometry, loading and material properties.

While only one element is considered in the thickness direction in [10, 13, 34] we con-

sider two elements in the thickness direction in order to use the proposed subdivision-

stabilised displacement-pressure combination. Meshes with densities 2x4x2, 4x8x2, 8x16x2

and 16x32x2, are analysed with linear, quadratic and cubic NURBS using both the displace-

ment and mixed formulations. The 2x4x2 mesh implies that there are 2 elements in axial

direction, 4 elements in circumferential direction and 2 element through the thickness.

The quantity of interest is the vertical displacement of point A shown in Fig. 39(a).

Variation of the vertical displacement at point A, for different discretisations, as shown

in Fig. 40 illustrates the convergence pattern. It is worth mentioning that displacement

formulation suffers to converge with the large load increments for this problem also while

the mixed formulation converges in only 5 load increments. The deformed shape along with

the contour plot of σyy stress for 16x32x2 mesh with Q2/Q2-SD is shown in Fig. 41.
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Figure 39: Bending of a thick cylindrical shell: boundary conditions and a typical mesh used for the analysis.
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Figure 40: Bending of a thick cylindrical shell: downward displacement of point A with respect to number

of elements in the circumferential direction for different order of NURBS with displacement and mixed

formulation.
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Figure 41: Bending of a thick cylindrical shell: contour plot of σyy stress.

8. Summary and conclusions

In this work we have presented robust two-field mixed variational formulations for both

small and finite strain problems to deal with the issues of incompressibility in the context of

NURBS based isogeometric analysis. Inf-sup stable displacement-pressure combinations are

developed based on the subdivision properties of NURBS. The inf-sup stability of proposed

displacement-pressure combinations is demonstrated by computing the numerical inf-sup

constants for Cook’s membrane and thick-walled cylinder. The convergence of the proposed

discretisations is demonstrated, numerically, for linear elastic thick-walled cylinder. Some

important features of the present work can be summarised as:

• The formulations are straightforward two-field mixed Galerkin formulations. They are

simple, elegant and easy to implement.

• Higher-order NURBS basis with higher continuities across element boundaries are used

for both the displacement and pressure discretisations thereby preserving the salient

feature of NURBS based isogeometric analysis.

• The formulations do not involve any element-level or patch-level matrix inversions.

• Optimal convergence rates are obtained for the linear problems.

• The solution can be obtained with large load increments.
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Performance of the proposed formulations is demonstrated by studying a wide range

of benchmark problems. Numerical results show that higher order NURBS with mixed

formulations perform excellently even for coarse meshes. The robustness of the proposed

method for problems involving severe mesh deformations is demonstrated on the torsion of

square prism. Moreover, the results obtained in the present work clearly show that two-field

mixed formulations are sufficient enough to obtain accurate numerical solutions for all the

material models considered without any need to employ the three-field mixed formulations.

All the examples studied in the present work are based on full tensor-product meshes

generated with NURBS. The main disadvantage of the tensor-product meshes is that they

lack local refinement capability because of which the domain has to be refined globally. This

global refinement results in unnecessary DOF far away from the zone of interest, as observed

in strip footing collapse example, thereby increasing the total size of the system. Hence, in

order to increase the efficiency of the mixed formulations studied in the work, we suggest

extending the proposed formulations to the local refinement schemes [39, 46].
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[37] T. Rüberg and F. Cirak. A fixed-grid b-spline finite element technique for fluid-structure interaction.

International Journal for Numerical Methods in Fluids, 74:623–660, 2014.

[38] G. Sangalli. Isogeometric analysis for nearly incompressible materials. London Mathematical Society

49



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

EPSRC Durham Symposium. Building bridges: connections and challenges in modern approaches to

numerical partial differential equations, 2014.
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