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Abstract 

Tephra dispersed during the Millennium eruption (ME), Changbaishan Volcano, NE 

China provides one of the key stratigraphic links between Asia and Greenland for the 

synchronization of palaeoenvironmental records. However, controversy surrounds 

proximal-distal tephra correlations because (a) the proposed proximal correlatives of 

the distal ME tephra (i.e. B-Tm) lack an unequivocal chronostratigraphic context, and 

(b) the ME tephra deposits have not been chemically characterized for a full spectrum 

of element using grain-specific techniques. Here we present grain-specific glass 

chemistry, including for the first time, single grain trace element data, for a composite 

proximal sequence and a distal tephra from Lake Kushu, northern Japan (ca. 1100 km 

away from Changbaishan). We demonstrate a robust proximal-distal correlation and 

that the Kushu tephra is chemically associated with the ME/B-Tm. We propose that 

three of the proximal pyroclastic fall units were erupted as part of the ME. The 
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radiocarbon chronology of the Kushu sedimentary record has been utilised to generate 

a Bayesian age-depth model, providing an age for the Kushu tephra which is 

consistent with high resolution ages determined for the eruption and therefore 

supports our geochemical correlation. Two further Bayesian age-depth models were 

independently constructed each incorporating one of two ice-core derived ages for the 

B-Tm tephra, providing Bayesian modelled ages of 933-949 and 944-947 cal AD 

(95.4%) for the Kushu tephra. The high resolution ice-core tephra ages imported into 

the deposition models help test and ultimately constrain the radiocarbon chronology 

in this interval of the Lake Kushu sedimentary record. The observed geochemical 

diversity between proximal and distal ME tephra deposits clearly evidences the 

interaction of two compositionally distinct magma batches during this caldera forming 

eruption. 

Key words : Changbaishan; Millennium eruption; B-Tm tephra; Lake Kushu; 

Cryptotephra; Tephrochronology; Radiocarbon; Bayesian age modelling 

1. Introduction 

The Millennium eruption (ME) from the Changbaishan Volcano was a very large 

(VEI≈7) eruption with the potential for ash dispersal across the Northern Hemisphere. 

Whilst the eruption was estimated to have had substantial volatile and sulfate aerosol 

emissions (Horn and Schmincke, 2000; Guo et al., 2002), it lacked a global impact on 

climate (Xu et al., 2013; Sun et al., 2014a). Distal products of the ME (i.e. B-Tm) 

have been reported in many localities including the Sea of Japan, the Japanese 

Archipelago (Machida and Arai, 1983; Furuta et al., 1986; Machida et al., 1990; 

Fukusawa et al., 1998; Nanayama et al., 2003; Kamite et al., 2010; Okuno et al., 2011; 

Hughes et al., 2013), northeast China (Sun et al., 2015) and the Greenland ice cores 

(Sun et al., 2014a) (Fig. 1a). As such it provides one of the potential key stratigraphic 

links between Asia and Greenland for the synchronization of palaeoenvironmental 

records. The proposed correlations between the distal ME tephra deposits and the 

Changbaishan Volcano (Machida et al., 1990; Sun et al., 2014a; 2015) require detailed 

chronostratigraphic studies and geochemical analyses of the proximal deposits and 

distal records. However, the proximal correlatives reported therein lack 

chronostratigraphic context and the ME tephra units have not been chemically 

characterized for a full spectrum of element using grain-specific techniques. Here we 

present the results of geochemical investigations of tephra units from proximal 

deposits with chronostratigraphic context, and a distal archive from Japan. This is 

then used to re-evaluate the proximal deposits, distal correlatives and the overall 
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chronology for this eruption.  

2. Background 

2.1. Proximal volcanic deposits 

The Changbaishan Volcano, situated on the border between China and North 

Korea (42°00’ N, 128°03’ E, Fig. 1a), is a polygenetic central stratovolcano with three 

main eruptive stages: early shield building, middle cone construction and a late 

explosive stage (Wei et al., 2007; 2013). During the latest explosive stage (<20ka: 

Wei et al., 2013), a major caldera-forming eruption occurring at ~AD 1000 (i.e. the 

“Millennium” eruption) produced a ca. 4.5 km wide caldera containing the crater lake 

called Tianchi (Machida et al., 1990). 

The latest explosive stage recorded at Tianwen summit, on the Chinese flank of 

the crater contains four sequentially deposited pyroclastic fall units, C-4 [base], C-3, 

C-2 and C-1 [top], which are colored yellow, light grey, dark grey and black, 

respectively (Fig. 1b). Stratigraphic and chronological studies of the Tianwen summit 

profile are summarized in Figure 2. The lowermost C-4 yellow unit was dated by 

different methods and yielded ages around 4~5 ka (Liu et al., 1998; Wang et al., 2001; 

Yang et al., 2014). Hence, it was believed to be the product of an older pre-caldera 

forming eruption (Fig. 2). The overlying C-3 light grey unit is a very widespread 

pyroclastic fall which covers the crater rim and extends eastwards for more than 15 

km from the crater (Horn and Schmincke, 2000; Sun et al., 2014b). At the Tianwen 

summit profile, this light grey unit has been dated at ~1 ka by U-series TIMS (Wang 

et al., 2001) and 40Ar/39Ar (Yang et al., 2014) methods. The same light grey-colored 

tephra was visually identified in the environs of the volcano where extensive 

radiocarbon dating studies of charcoal samples confirmed that it has an age consistent 

with the onset of the last millennium (e.g. Horn and Schmincke, 2000; Nakamura et 

al., 2007; Yatsuzuka et al., 2010; Yin et al., 2012; Xu et al., 2013; Table 1). Therefore, 

the C-3 unit was regarded as the product of the ME. However, there is considerable 

controversy regarding the stratigraphic and chronological significance of the 

overlying C-2 and C-1 units (Fig. 2). None of the previous studies reported a dark 

grey pyroclastic fall (here labelled C-2) overlying the C-3 light grey unit. Fan et al. 

(1999) described a light purplish red welded tuff unit with a post-ME age overlying 

the light grey unit. This cannot be correlated to our C-2 unit on the basis of their color 

and compositional discrepancies. Wang et al. (2001) mentioned two stratigraphically 

upper units without color description, whose age and compositional information did 

not help to clarify the stratigraphic correlation. The two more recent stratigraphic and 
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chronological studies, Yu et al. (2012) and Yang et al. (2014), both failed to identify 

the dark grey unit sitting in between the light grey and the uppermost black units. For 

the C-1 black pyroclastic fall, no age has yet been conclusively confirmed. By 

reviewing the historical records of “abnormal natural phenomenon”, Cui et al. (1995) 

proposed three possible dates (i.e. AD 1668, 1702 and 1903) for the post-caldera 

eruptions of the Changbaishan Volcano. Ji et al. (1999) used thermo-luminescence 

(TL) to date the K-feldspar from the black pumice (C-1) and reported an age of 0.34

±0.03 ka. Based on these two pieces of evidence, Liu et al. (1999) concluded that the 

black unit (C-1) can be correlated to the AD 1668-1702 eruptive record. However, the 

“abnormal natural phenomenon” recorded by ancient people including “thunder” or 

“white ash rain” cannot be confidently and accurately attributed to a particular 

volcanic eruption. Moreover, the TL age from the black pumice cannot completely 

rule out the possibility that this C-1 unit could be an older eruptive, reset by a younger 

eruption. As such, the eruption age of the C-1 unit remains ambiguous and it could be 

either contemporaneous with the ME or post date the ME. 

Controversy also surrounds geochemical studies of the proximal ME stratigraphy 

on the crater rim. Fan et al. (1999) and Yu et al. (2012) suggested that, at Tianwen 

summit, only the light grey unit (i.e. C-3) is the ME product and that it can be 

classified as pantelleritic rhyolite based on bulk rock chemistry. However, Horn and 

Schmincke (2000) argued that the ME deposits should have included two phases: a 

major rhyolitic phase producing white to grey colored pumice, and a minor later phase 

forming trachytic agglutinates mantling the inner crater walls. Meanwhile, their 

electron microprobe glass data indicated that the widespread light grey pumice has a 

peralkalic composition akin to comendite rather than pantellerite. More recently, Sun 

et al. (2014a) reported major element glass chemistry for tephras sampled from the 

Korean side, indicating that the proximal ME deposits have bimodal compositions (i.e. 

trachyte and rhyolite). Although they described the outcrop containing white-yellow, 

grey and black pyroclastic fall, it is not easy to correlate this sequence to the Tianwen 

summit profile because no detailed stratigraphic context was provided.  

2.2. Distal B-Tm records and the proximal correlatives 

The B-Tm tephra, which was named after its source volcano Baegdusan (i.e. 

Changbaishan Volcano) and its type locality in Tomakomai, Hokkaido, was first 

reported to be found in the Sea of Japan and Hokkaido and the northern part of 

Honshu (Machida and Arai, 1983). It was suggested to be the distal equivalent of the 

ME on the basis of its composition and stratigraphic position (i.e. relative age), as 

well as petrographic features (Machida et al., 1990). Later on, the B-Tm tephra was 
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reported in many localities across northeast Asia and in the Greenland ice cores 

(Furuta et al., 1986; Fukusawa et al., 1998; Nanayama et al., 2003; Kamite et al., 2010; 

Okuno et al., 2011; Hughes et al., 2013; Sun et al., 2014a; 2015). However, few of the 

above-mentioned studies have focused on the distal-proximal tephra correlation and 

the proposed proximal correlatives lack either independent dating to corroborate their 

“millennium” age (e.g. Machida et al., 1990) or unequivocal stratigraphic context (e.g. 

Sun et al., 2014a; 2015). As such hardly any clearly described outcrops have been 

reliably confirmed as the proximal equivalent, which leaves the B-Tm tephra almost 

distally described only. Moreover, the identification, characterization and correlation 

of the B-Tm is typically based on major element glass chemistry. Whilst there are 

some effective major element discriminants that can be used to separate 

contemporaneous marker tephras (Sun et al., 2014a), one has to be careful because 

volcanoes can produce eruptions with similar compositions over a considerable time 

window (e.g. Smith et al., 2011a; 2011c; Lane et al., 2012; MacLeod et al., 2015). 

Hence we highly recommend that a full spectrum of major, minor and trace elements 

should be applied when correlating tephras as this greatly increases the reliability of 

the resultant correlations. Since the abundances of trace elements are more sensitive 

to magmatic processes, they are widely used to secure tephra correlations (e.g. Allan 

et al., 2008; Smith et al., 2011a; Tomlinson et al., 2012; Lane et al., 2012; Albert et al., 

2012; 2013; Tomlinson et al., 2014; Albert et al., 2015; Tomlinson et al., 2015; Lane 

et al., 2015).  

3. Sampling 

3.1. Changbaishan tephra 

Proximal fall lapilli samples from the C-1, C-2 and C-3 units were collected at the 

Tianwen summit (42°01’33” N, 128°04’00” E) under tight stratigraphic control. 

Sub-samples of the light grey pumice from Yang et al. (2014) are included in our C-3 

sample set as they were collected from the same profile and the same unit, and were 

dated by 40Ar/39Ar to corroborate the millennium age. Lapilli sized samples were 

crushed, cleaned, dried and clean fragments were examined and picked under the 

microscope then mounted in epoxy resin for geochemical micro-beam analysis. The 

samples from these three fall units contain alkali feldspar as the dominant phenocryst 

phase, with some minor contributions of olivine, pyroxene and quartz. The C-1 unit 

contains the highest percentage of phenocryst among all the three units. SEM images 

were taken to reveal the vesicularity and the location of phenocrysts prior to 

micro-beam analysis (Fig. 3). SEM images show that the C-3 pumice samples are 
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made up of both highly vesiculated and less vesiculated glasses (Fig. 3a-b), with some 

highly vesiculated glasses being very stretched (Fig. 3a). The vesicularity of the C-3 

sample was estimated to be ~60% (Yu et al., 2012). The C-2 pumice samples contain 

highly vesiculated glasses (Fig. 3c) and have a similar level of vesicularity with the 

C-3 samples. The C-1 pumice samples mainly contain poorly vesiculated glasses (Fig. 

3d), with the mount of vesicles decreasing significantly relative to the C-2 and C-3 

samples. The vesicularity of C-1 sample was estimated to be less than 50% (Yu et al., 

2012), which is consistent with the observation that the C-1 samples are slightly 

welded whereas the C-2 and C-3 samples are not. 

3.2. Lake Kushu tephra 

Lake Kushu (45°25’55” N, 141°02’13” E), ca. 1100 km away from the 

Changbaishan Volcano, is the only fresh-water lake of Rebun Island in the Sea of 

Japan, northwest off Hokkaido (Fig. 1a). Located in the northern part of the island, 

about 230-400 m from the coast, the lake has a kidney bean shape and a maximum 

length of ca. 1100 m. The maximum water depth reaches ca. 6 m in the eastern part of 

the lake with average depths of about 3 to 5 m. The bottom sediment of Lake Kushu 

has been considered as a valuable natural archive which stores detailed, 

high-resolution information about post-glacial environmental changes (Kumano et al., 

1990). Therefore, Lake Kushu has been selected as one of the key study sites in the 

Baikal-Hokkaido Archaeology Project (BHAP), aiming to fill the existing gap in the 

current knowledge and to address the role of climate and environmental change in the 

life of northern hunter-gatherers (Weber et al., 2013). In February 2012, two parallel 

sediment cores (RK12-01 and RK12-02) were collected in the central part of the lake 

from the thick ice cover. The recovered composite core (RK12) revealed a continuous, 

partly laminated, organic-rich ca. 19.5 m long sediment column. The RK12 core age 

model built upon the 57 calibrated AMS radiocarbon dates suggests that the 

sedimentation continued over the past ca. 17,000 years (Müller et al., in press).  

This lake was also selected for visible tephra and crypto-tephra analyses due to 

the potential for tephras to be located from Japanese, Korean and Chinese volcanoes, 

and coupled with the high precision radiocarbon chronology and palaeoenvironmental 

record. The tephra study covered the entire core archive, although here we focus only 

on the tephra of approximate millennium age, based on the radiocarbon chronology. A 

detailed tephrochronological study of the whole core is currently in preparation (Chen 

et al., in progress). Distal tephras were separated using procedures outlined by 

Blockley et al. (2005). The extracted glass shards were mounted in Canada Balsam on 

glass slides and examined using an Olympus CX-41 microscope fitted with 
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cross-polarising filters. In order to identify the location of each discrete tephra layer, 

two steps of sub-sampling on the core materials were carried out. In the first scanning 

phase, 20 cm sampling interval was used to produce the range-finder counts that 

revealed the quantitative distribution of shards per gram of dry sediment for the 

complete composite core. A detailed analysis phase termed point-sample count, with 1 

or 2 cm sampling interval, was undertaken later to locate the precise depth of the 

tephra where range-finders showed high concentration of glass shards. The 

point-sample counts relative to this research clearly show that the initial onset of the 

tephra input appears at the composite depth of 152-151 cm whilst the peak of it sits at 

151-150 cm (Fig. 4). No visible ash layer was identified at these depths during core 

opening and sediment description though the tephra counts show quite large numbers. 

Individual shards (Fig. 5) were picked in the interval of 150-152 cm and embedded in 

resin, sectioned and polished ready for geochemical analysis. 

4. Analytical methods 

4.1. Electron micro-probe analysis (EMPA) 

Major and minor element concentrations of glasses of proximal pumices and 

distal tephra shards were determined using Jeol JXA-8600 wavelength-dispersive 

electron microprobe (WDS-EMPA), equipped with 4 spectrometers and SamX 

software, at the Research Laboratory for Archaeology and the History of Art, 

University of Oxford. An accelerating voltage of 15 kV, low beam current (6 nA), and 

defocused (10 µm) beam were used to minimize Na migration. Count times were 30 s 

for Si, Al, Mg, Ti, Ca, K and Fe on each peak. Na was analysed for 12 s, Cl and Mn 

for 50 s and P for 60 s on each peak. The instrument was calibrated for each set of 

beam conditions using a suite of appropriate mineral standards. The calibration was 

verified using a range of secondary glass standards (MPI-DING suite) including the 

ATHO-G (rhyolite), StHs6/80-G (andesite) and GOR132-G (komatiite) glasses from 

the Max Planck Institute (Jochum et al., 2006). Samples with analytical totals <94% 

were discarded. All the analyses presented in the text, plots and tables are normalised 

to 100 wt.% for comparative purposes. Analytical precision is typically <0.8% 

relative standard deviation (RSD) for Si; <5% RSD for analytes with 

concentrations >0.8 wt.% with the exception of Na (7-10%). All standard data is 

presented in the supplementary material.  
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4.2. Laser ablation inductively coupled plasma mass spectrometry 

(LA-ICP-MS) 

Trace element analyses of glasses of proximal and distal tephras were performed 

using a Thermo Scientific iCAP Q ICP-MS coupled to an Analyte Excite excimer 

laser-ablation system at the Department of Geology, Trinity College Dublin. Spot 

sizes of 18, 24, 30 and 36 µm were used, depending on the size of the area available 

for analysis in different samples. The repetition rate was 5Hz and the count time was 

40 s (200 pulses) on the sample and 40 s on the gas blank (background). The ablated 

sample was transported in He gas flow (0.65Lmin-1) with additional N2 (5mlmin-1) via 

a signal smoothing device. Concentrations were calibrated using NIST612 with 29Si as 

the internal standard. Data reduction was performed manually using Microsoft Excel 

that allowed removal of portions of the signal compromised by the microcryst, void or 

resin component. Full details of the analytical and data reduction methods are 

described in Tomlinson et al. (2010). Accuracies of ATHO-G and StHs6/80-G 

MPI-DING glass analyses are typically <5% for most elements, <10% for Y, Zr, Nb, 

Gd and <15% for Ta. Reproducibility of ATHO-G analyses is <5% RSD for all trace 

elements with the exception of U (<7%).  

5. Results 

Glasses from juvenile clasts found in both proximal and distal deposits have 

compositions ranging from trachyte to rhyolite, with the rhyolitic population 

straddling the alkaline-subalkaline boundary (Fig. 6a). On a molecular basis, all the 

rhyolitic glasses and the majority of trachytic glasses reported herein have 

(Na2O+K2O)>Al2O3, whereas only few trachytic glasses show subtle (Na2O+K2O)

Al 2O3. By definition, they are peralkaline trachyte and rhyolite. According to the 

classificatory scheme for peralkaline extrusive rocks (MacDonald, 1974), they can be 

further classified as comenditic trachyte and comendite, respectively (Fig. 6b). 

Representative major, minor and trace element glass compositions of proximal 

pumices and distal shards are given in Table 2. The full geochemical data sets are 

presented in the supplementary material.  
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5.1. Glass chemistry of proximal deposits 

5.1.1. C-1 fall deposits 

The uppermost C-1 fall unit at Tianwen summit has a comenditic trachyte glass 

composition (Fig. 6b). The glasses are characterized by low CaO (1.1-1.5 wt.%) and 

MgO (0.1-0.3 wt.%), high K2O (4.8-6.2 wt.%) and significantly high FeOt (4.3-5.1 

wt.%) with homogeneous SiO2 (64.7-66.6 wt.%; Fig. 7a-d). They show an overall 

trend of decreasing total alkalis with increasing SiO2 (Fig. 6a). Trace element data 

reveal that these glasses have limited compositional variations with 9-16 ppm Th, 

14-40 ppm Ba, 3-5 ppm Ta, 49-73 ppm Nd and 30-45 ppm Y. They form 

compositional clusters in most of the trace element bi-plots (Fig. 7f-h). C-1 glasses 

have light rare earth element (LREE) enrichment relative to the heavy rare earth 

element (HREE) with La/Yb ratios ranging from 21 to 25. Mantle-normalised spider 

diagram reveals that C-1 glasses are up to more than 200 times more enriched than the 

primitive mantle (Fig. 8). They are characterized by pronounced negative anomalies 

in Ba, Sr and Eu in response to the fractionation of K-feldspar, which is a dominant 

phenocryst phase in the juvenile clasts. 

5.1.2. C-2 fall deposits 

There is significant overlap in glass compositions of the C-2 fall unit and the 

overlaying C-1 unit. The C-2 glasses are also classified as comenditic trachyte (Fig. 

6b). They extend to slightly more evolved SiO2 (65.4-67.7 wt.%), have less variable 

K2O (5.5-6.1 wt.%), comparable CaO (1.0-1.4 wt.%), FeOt (4.4-5.2 wt.%) and MgO 

(0.1-0.3 wt.%) relative to those of the C-1 glasses (Fig. 7a-d). The compositional 

similarity between the two units can also be seen in the trace element data. C-2 

glasses show trace element concentrations of 12-19 ppm Th, 14-39 ppm Ba, 4-6 ppm 

Ta, 61-78 ppm Nd, and 36-51 ppm Y, which form almost identical compositional 

clusters overlapping the C-1 glasses (Fig. 7e-h). Mantle-normalised spider diagram 

reveals that the multi-element profiles of C-2 glasses have similar distribution pattern 

and incompatible element enrichment level with those of the C-1 glasses (Fig. 8). 

Nevertheless, some subtle differences in composition can be observed: (1) C-1 glasses 

have some least evolved components that are not seen in C-2 deposits (e.g. lower SiO2 

content and lower incompatible element enrichment level; Figs. 6a, 8); (2) C-2 glasses 

extend to more evolved compositions than C-1 glasses (e.g. higher SiO2 content and 

higher incompatible element enrichment level; Figs. 6a, 8). 
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5.1.3. C-3 fall deposits 

Glasses of the lower C-3 fall unit have a composition straddling the boundary 

between alkaline and subalkaline rhyolite (Fig. 6a) and can be specifically classified 

as comendite (Fig. 6b). C-3 glasses are highly homogeneous with restricted major 

element compositional ranges. They have concentrations of highly evolved SiO2 

(74.4-75.3 wt.%) with lower CaO (0.1-0.3 wt.%), MgO (<0.1 wt.%), K2O (4.3-4.6 

wt.%) and FeOt (3.8-4.3 wt.%) than those of the overlying trachytic units (i.e. C-1 and 

C-2; Fig. 7a-d). Trace element concentration data for C-3 glasses form linear clusters 

in element bi-plots (Fig. 7e-h). They have higher contents of Th (44-57 ppm), Ta 

(14-18 ppm), Nd (111-149 ppm), Y (117-156 ppm) and lower Ba (7-10 ppm) relative 

to the upper trachyte units (Fig. 7e-h). C-3 glasses show LREE enrichment relative to 

the HREE with a lower LREE/HREE fractionation level (La/Yb=11-13) than those of 

the trachytic glasses. Mantle-normalised spider diagram shows that the C-3 glasses 

are up to more than 600 times more enriched than the primitive mantle, with more 

pronounced depletions in Ba, Sr and Eu relative to the trachytic units (Fig. 8). It is 

worth noting that, in their multi-element profiles, the trachytic glasses and the C-3 

rhyolitic glasses show different trends in anomalies of Nb-Ta (Fig. 8). 

5.2. Glass chemistry of distal tephra 

The distal tephra found in Lake Kushu shows significant heterogeneity with 

compositions ranging from trachyte to rhyolite (Fig. 6a). This can be further classified 

as comenditic trachyte and comendite respectively (Fig. 6b). The less evolved 

trachytic components are characterized by relatively homogeneous SiO2 (typically 

between 65.3-67.0 wt.%), low CaO (typically between 1.1-1.4 wt.%) and MgO 

(typically between 0.1-0.3 wt.%), high K2O (5.3-6.0 wt.%) and FeOt (4.4-5.5 wt.%), 

while the more evolved rhyolitic shards have heterogeneous SiO2 (70.3-76.1 wt.%), 

lower CaO (typically <0.8 wt.%), MgO (<0.1 wt.%), K2O (typically <4.7 wt.%) and 

FeOt (typically < 4.2wt.%; Fig. 7a-d). The two populations collectively show an 

overall trend of decreasing TiO2, CaO, MgO, FeOt and K2O (Fig. 7a-d) with 

increasing SiO2, while the Na2O contents between the trachyte and rhyolite remain 

fairly constant (4.3-6.0 wt.% and 3.3-6.0 wt.% respectively).  

Mantle-normalized spider diagrams shows that the distal trachytic and rhyolitic 

glasses are comparable in incompatible element distribution patterns and enrichment 

levels to the proximal trachytic and rhyolitic glasses respectively (Fig. 8). All the 

distal glasses show LREE enrichment relative to HREE and pronounced negative 

anomalies in Ba, Sr and Eu (Fig. 8). Nevertheless, the less evolved trachytic glasses 
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show more pronounced fractionation of LREE/HREE (La/Yb=21-29) and less 

significant Ba, Sr and Eu anomalies relative to the highly evolved rhyolitic glasses 

(La/Yb typically <15). The two compositional groups clearly define two evolutionary 

trends in most of the trace element bi-plots (Fig. 7e-h). The trachytic glasses have 

trace element variations with 11-18 ppm Th, 10-76 ppm Ba, 4-6 ppm Ta, 54-88 ppm 

Nd and 37-50 ppm Y, while the rhyolitic glasses show significantly higher contents of 

Th (30-56 ppm), Ta (10-17 ppm), Nd (78-144 ppm), Y (66-144ppm) and lower Ba 

(6-12 ppm; Fig. 7e-h). The rhyolitic glasses contain an analysis that is characterized 

by noticeably lower concentrations in most of the measured trace elements (Th=30 

ppm, see Table 2: RH554-37) and higher La/Yb ratio (La/Yb=22) than any other 

rhyolite. Nevertheless, this analysis lies on the evolutionary trend of the rhyolitic 

members (Fig. 7g). 

6. Interpretation 

6.1. Proximal-distal glass correlation 

Proximal-distal relationships are assessed in this section based on the glass 

geochemistry presented above. Overall, glass shards found in Lake Kushu are highly 

heterogeneous and broadly overlap all three proximal fall units at a major, minor and 

trace element level (Figs. 7, 8). 

The two proximal trachytic units, C-1 and C-2, share broadly overlapping major, 

minor and trace element glass chemistries, which makes it problematic to distinguish 

between these two units based on glass chemistry alone. The trachytic glasses of the 

distal Kushu tephra overlap with the two proximal trachytic units (Figs. 7, 8). Subtle 

differences can be recognized between the proximal and distal trachytic glasses: a) 

Kushu trachytic glasses have a least evolved composition that is not seen in proximal 

trachytic glasses (Fig. 7a); b) Kushu trachytic glasses have greater compositional 

variations of highly depleted trace element (e.g. Ba and Sr) than proximal trachytic 

glasses (Fig. 7e), which might be affected by analysis of microlite of distal shards in 

LA-ICP-MS.  

The proximal rhyolitic unit C-3 geochemically overlaps the most evolved 

compositions of the distal rhyolitic glasses. These most evolved distal compositions 

(SiO2 74.0 wt.%, n=41) make up the majority of the Kushu rhyolitic glasses (n=46) 

and could not be separated from the C-3 glasses in the major or trace element bi-plots 

(Fig. 7). The mantle-normalised spider diagram corroborates the geochemical 

overlaps at a full spectrum of element level (Fig. 8). Nevertheless, Kushu rhyolitic 

glasses have some less fractionated compositions that are not seen in the C-3 glasses 
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(Fig. 6a).  

In summary, the distal Kushu tephra shows compositional heterogeneity and a 

continuum of compositions ranging from trachyte to rhyolite. The three proximal fall 

units collectively comprise compositionally identical trachyte and rhyolite but without 

the intervening compositional continuum. Given the similarity between the trachyte 

and rhyolite end-members we propose a correlation between the distal Kushu tephra 

and all three of the investigated proximal units.  

6.2. Comparison with the published data 

In order to determine the provenance of the tephras reported herein and to 

investigate the geochemical diversity between the well-correlated proximal and distal 

tephras, we compare our glass chemistries with those of the published proximal ME 

tephra and B-Tm, along with other widespread late Quaternary marker tephras in and 

around the Northeast Asia area. Since all the available data are major element glass 

chemistry, comparison can only be made at a major element level. 

 Major element glass chemistry provides some basic discriminants for the 

identification of the B-Tm tephra. The B-Tm tephra has distinctive compositional 

heterogeneity ranging from trachyte to alkaline/subalkaline rhyolite with a fairly high 

total alkali content (8-12 wt.%; Fig. 9a). However, the late Quaternary Kyushu tephra 

layers (e.g. K-Ah, AT, Aso-4 and Ata) and Holocene Kamchatka tephra deposits 

typically plot into the subalkaline area, and the early Holocene Ulleungdo tephra (i.e. 

U-Oki) straddles the boundary between phonolite and trachyte (Fig. 9a). The B-Tm 

tephra has lower CaO than that of the Kyushu and Kamchatka tephras in a given SiO2, 

and higher SiO2 than that of the Ulleungdo tephra (Fig. 9b). The FeOt vs. CaO bi-plot 

is an excellent discriminant (Fig. 9c) since the B-Tm tephra has a fairly high FeOt 

content (typically between 3.8-5.6 wt.%) coupled with a relatively low CaO content 

(typically <1.5 wt.%), given its highly evolved composition (SiO2 >63 wt.%). All the 

proximal and distal tephras reported herein show major element compositions that 

correspond precisely to the published B-Tm chemistries, and can be separated from 

tephras from other volcanic settings in the same region (Fig. 9). On this basis we 

conclude that all our proximal and distal tephra deposits are the product of the ME. 

 Sun et al. (2014a) reported the major element glass chemistry for a proximal ME 

sequence in North Korea which included the white-yellow, grey and black fall pumice. 

The major element chemistry for glasses from this ME sequence reveal an overlap 

with the proximal units described herein (Fig. 10a-b), suggesting both sequences 

relate to the ME. Most importantly, the proximal ME tephra units at Chinese and 

Korean sequences on the crater rim are both characterized by significant geochemical 
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bimodality (i.e. trachyte and rhyolite) with no composition continuum plotting in the 

range of 69-74 wt.% of SiO2 (Fig. 10a-b). This is in contrast to the B-Tm glass 

chemistries. The mid-range to distal ME tephra layers found in the Sihailongwan 

Lake (NE China; Sun et al., 2015), Sea of Japan (Machida et al., 1990), Utasai Bog 

(Hokkaido; Hughes et al., 2013) and Lake Kushu (Hokkaido, this study) reveal 

continuous compositions with data plotting in the compositional gap between the 

end-member compositions defined by proximal samples (Fig. 10c-d). Interestingly, 

although the ultra-distal B-Tm found in the Greenland ice cores contains very few 

shards (Coulter et al., 2012; Sun et al., 2014a), their compositions plot within the 

proximal compositional gap (Fig. 10c-d). Overall the proximal fall units deposited on 

the crater rim only preserve bimodal compositions for the caldera forming eruption, 

whereas the mid-range to distal tephras preserve a complete compositional range 

including the bimodal end-member compositions and intermediate compositions. 

7. Discussion 

7.1. Proximal-distal expression of the ME 

As in the case of B-Tm tephra deposits reported from other localities, the single 

distal tephra layer found in Lake Kushu has compositional variation ranging from 

trachyte to rhyolite. This indicates the magmatic system that produced this distal ME 

tephra must have had the same compositional heterogeneity. In contrast the proximal 

C-3 unit is characterized by homogeneous rhyolite without any trachytic component. 

As such the C-3 unit alone cannot be the proximal equivalent of the B-Tm, though it 

is the most widespread unit in the Changbaishan volcanic region (Horn and 

Schmincke, 2000). Our glass chemistry shows that the geochemical bimodality 

observed between the proximal units C-3 to C-1 is comparable to the end-member 

compositions of the distal Kushu tephra. Importantly there is major, minor and trace 

element geochemical overlap between the proximal and distal end-member 

compositions which significantly increases the reliability of the tephra correlation. 

Hence, we propose that the proximal record of the ME at Tianwen summit is a 

composite sequence that includes the light grey, dark grey and black (i.e. C-3 to C-1) 

sub-units. This is also consistent with the field observation that there is no time 

break/erosional unconformity or paleosol between the three investigated fall units. 

Proximal fall deposits preserved on the crater rim are dominated by bimodal 

compositions whereas distal tephras record a full range of geochemical heterogeneity. 

The presence of intermediate glass compositions in the distal tephras, not currently 

observed in the proximal records, clearly evidences the interaction of two 
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compositionally distinct magma batches during the caldera forming eruption. 

Moreover, the interaction of the two magma batches was not substantial otherwise this 

would be reflected in the proximal record with evidence of mingling in the pumices. 

In fact, there is no such evidence in our pumice samples. Overall, the observed 

compositional diversity indicates that the trachytic and rhyolitic magmas were not 

thoroughly mixed so only a minor portion of intermediate compositions were 

generated during magmatic interaction, which were then transferred into the 

stratosphere during the syn-eruptive process and were consequently recorded in the 

distal realms. 

The preservation of bimodal proximal deposits (comprising the least and most 

fractionated components) has been reported from calderas elsewhere including in 

Afro-Arabia (Ukstins Peate et al., 2003; Ukstins Peate et al., 2008). As reported herein, 

the proximal units in Arabia are markedly bimodal and contrast with the 

contemporaneous distal tephra layers from 3000 km away in the Indian Ocean. These 

distal tephras display a continuum of compositions with end-members identical to the 

bimodal end-members found proximally. The bias between proximal and distal 

magma sequences is controversial and may relate to high level sub-volcanic processes 

that include fractionation processes involving silica rich magmas (Grove and 

Donnelly-Nolan, 1986), large scale liquid immiscibility (Charlier et al., 2011) and/or 

melt-crystal dynamics (Dufek and Bachmann, 2010).  

7.2. Bayesian age modelling for Kushu tephra 

The ME tephra deposits have been dated either directly or indirectly by multiple 

methods in many localities over the past two decades (Table 1). The proximal ages are 

mainly derived from the indirect dating method of 14C dating of charcoals preserved 

in the pyroclastic fall and flow deposits (e.g. Horn and Schmincke, 2000; Nakamura 

et al., 2007; Yatsuzuka et al., 2010; Yin et al., 2012; Xu et al., 2013). Besides, direct 

dating of primary minerals using U-series TIMS (Wang et al., 2001) and 40Ar/39Ar 

(Yang et al., 2014) methods has also provided additional age constraints on the 

eruption. Distally, B-Tm tephra deposits were found in varve lakes in Japan and 

northeast China where the eruption was dated by varve chronology (Fukusawa et al., 

1998; Kamite et al., 2010; Sun et al., 2015). Ultra-distal B-Tm tephra deposits were 

reported from the Greenland ice cores and as such the eruption has ages derived from 

the GICC05 and GISP2 ice-core chronologies (Sun et al., 2014a). Most recently, Sigl 

et al. (2015) has proposed a slight revision to the GICC05 chronology for the past 

2,500 years. This new NS1-2011 chronology, based on 10Be and 14C synchronization 

of ice-core and tree-ring timescales, has shifted the age of the ME from AD 941±1 
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(GICC05) to AD 946-947 (Sigl et al., 2015). 

In order to test our chemical correlation of the Kushu tephra to the proximal units 

and distal B-Tm, we have constructed a formal Bayesian age model for the late 

Holocene radiocarbon ages in the Kushu core (Fig. 11), for comparison with the 

highest resolution distal age reported for this tephra. In this age model, we have 

modelled the AMS 14C dates reported in Müller et al. (in press), for Kushu along with 

the depth information (Table 3) in a Bayesian P_Sequence model with the addition of 

sediment deposition modelling to calculate the highest likelihood age ranges for every 

1.6 cm, incorporating formal outlier detection (Bronk Ramsey, 2009a; 2009b; 2013). 

As there are no radiocarbon dates in the same centimeter of the core as the proposed 

B-Tm tephra, it was necessary to determine the age range for its depth at 151.5 cm, 

which is the average position in the core for the initial onset of Kushu tephra. The age 

range for the depth of 151.5 cm is 913-1395 cal AD (Fig. 11; supplementary material), 

and while at fairly low resolution this comfortably overlaps with the ice-core ages of 

the ME/B-Tm. 

Due to the low resolution generated by the requirement to model the ages and 

associated uncertainty of the depths between the radiocarbon ages in this approach we 

also attempted to test the chronological relationship between the Kushu tephra and the 

high resolution age for the B-Tm in more detail. The logic of the test is that, while the 

radiocarbon ages for the Kushu site (Fig. 11) show a broadly last millennium age for 

the tephra sitting at 151 cm, if our correlation is correct then the tephra and 

radiocarbon ages should all be compatible with a high precision age model. We have 

thus constructed two more constrained age models (Fig. 12). We again use the above 

radiocarbon ages and their depths (Table 3), without interpolation and have also 

imported the GICC05 (Sun et al., 2014a; Fig. 12a) and NS1-2011 (Sigl et al., 2015; 

Fig. 12b) ages for the ME/B-Tm at the depth of our proposed correlative tephra in 

Kushu. We have applied a P_Sequence depositional model in Oxcal (Bronk Ramsey, 

2013), with a variable K factor and automatic outlier detection, following Bronk 

Ramsey (2008; 2009a; 2009b) with boundaries at the top and bottom of the selected 2 

meters sequence. The outlier model selection used the general outlier model and 

outlier probabilities were set to 0.05%. The results of the modelling exercise are 

reported as 95% confidence highest probability density function and depositional 

model plots. In these higher resolution, more constrained models, we are testing if the 

B-Tm ages are fully consistent with the Kushu radiocarbon ages and the depths in the 

core in which they sit. If our data is incompatible with the B-Tm on chronological 

grounds we would expect that the B-Tm ages we have incorporated, or the 

radiocarbon ages above and below the tephra would be reported as being anomalous 

by the outlier detection software. In these cases, however only the uppermost date 

Poz-51689 reported significant potential to be an outlier and thus the weighting of this 
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date was reduced automatically in each age model. The dates close to the tephra layer, 

were, however, in reasonable agreement with the imported tephra ages. The two final 

modelled ages associated with GICC05 and NS1-2011 timescales, taking into account 

the depth and all chronological information are 933-949 and 944-947 cal AD (95.4%), 

respectively (Fig. 12; Table 3). We, thus, suggest on this rigorous basis, using formal 

deposition models the Kushu tephra is both chemically and chronologically well 

correlated to the ME/B-Tm. 

7.3. Implication for future studies 

High-resolution (annual to decadal-scale) reconstructions of past environments, 

and better understanding which role environmental and climatic changes played in the 

cultural dynamics remains extremely important, though an empirically challenging 

question for the Hokkaido region (Weber et al., 2013). Despite, the northern part of 

Japan, including Hokkaido and adjacent islands are rich in archaeological and 

environmental archives, the main challenge remains the scarcity of published records 

with high temporal resolution and adequate dating control (Nakagawa et al., 2012; 

Müller et al., in press and references therein). These two common problems hinder 

direct correlation between individual archives, thus preventing inter-regional 

comparison and identification of leads and lags in reconstructed climate variability. A 

multidisciplinary research on the RK12 core from Lake Kushu started in 2012 has a 

significant potential to fill the existing gap in the current knowledge and to build up 

the high-resolution environmental archive spanning the past ca. 17,000 years (Müller 

et al., in press). However, in order to serve as a link between the high-resolution and 

accurately-dated records from central Japan (e.g. Lake Suigetsu: Nakagawa et al., 

2012), China (e.g. Sihailongwan Maar Lake: Stebich et al., 2009; 2015), and North 

Atlantic region, the Kushu 14C chronology must be checked, and when necessary, 

improved. The current study demonstrates the potential of cryptotephra analysis for 

improving the age constraints on the Kushu sedimentary record. The ice-core ages 

imported into the deposition models significantly help constrain the age of the 

sediments around the tephra layer and improve the radiocarbon chronology in this 

interval (Fig. 12). This provides encouragement for the identification of additional 

cryptotephra layers in the Lake Kushu sediment. Though it still could be improved, 

we believe that the existing RK12 core chronology based on the 57 AMS dates 

(Müller et al., in press) is robust enough to provide reliable age estimations for the 

tephra layers preserved in the sediment. This will facilitate search of the source 

volcano and identification of the eruption, which produced each given tephra. 
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8. Conclusions 

a) Three proximal pyroclastic fall units (i.e. C-3 to C-1) from Tianwen summit on 

the crater rim of Changbaishan Volcano, NE China display bimodal glass 

compositions comprising trachyte and rhyolite end-member compositions. 

b) A distal tephra layer in Lake Kushu of northern Japan contains glass shards that 

define a complete compositional continuum ranging from trachyte to rhyolite that 

in themselves are chemically identical to the investigated proximal glasses. 

c) The chemical constraint and radiocarbon-based Bayesian age-depth model 

indicate that the analysed Kushu tephra is the distal expression of the Millennium 

eruption. 

d) Proximal-distal geochemical correlation at a full spectrum of element level (i.e. 

major, minor and trace elements) requires that the three proximal pyroclastic fall 

units were erupted as part of the Millennium eruption as alluded to by previous 

studies (Horn and Schmincke, 2000; Sun et al., 2014a). 

e) Bayesian age-depth modelling of Kushu sediments involving the AMS 14C dates 

and two ice-core derived ages for the B-Tm provides 95% confidence interval 

ranges of 933-949 and 944-947 cal AD for the Kushu tephra. The high resolution 

ice-core tephra ages imported into the deposition models help test and ultimately 

constrain the radiocarbon chronology in this interval of the Lake Kushu 

sedimentary record. 

f) The presence of intermediate glass compositions in the distal tephra layers, not 

currently observed in the proximal records, clearly evidences the interaction of 

two compositionally distinct magma batches (with end-member compositions) 

during the caldera forming eruption. 
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Fig. 1. (a) Location of the Changbaishan Volcano and the Lake Kushu distal archive 

on Rebun Island, northern Japan. The dashed line shows the previously reported 

distribution of B-Tm according to Machida and Arai (1983). Other occurrences of this 

tephra where the geochemical data used for comparison come from are marked on the 

map as well. (b) Sampled stratigraphy at the Tianwen summit on the Chinese flank of 

the Tianchi crater, Changbaishan Volcano, modified from Chen et al. (2014). 

Fig. 2. Schematic illustration of previous stratigraphic and chronological studies of 

the Tianwen summit profile, Changbaishan Volcano. The solid arrows (black, grey, 

yellow) indicate correlations based on stratigraphy and the dashed arrows plus 

question mark indicate where correlations cannot be confirmed due to conflicting or 

inadequate stratigraphic information. Asterisks denote no color description of tephra 

units and a question mark denotes uncertainty about the nature of an eruptive deposit. 

This paper focuses on the three upper pyroclastic fall units above the yellow pumice 

(i.e. light grey, dark grey and black units). 

Fig. 3. SEM images of the proximal Changbaishan tephras. (a-b) the C-3 light grey 

pumice, both highly vesiculated and less vesiculated glasses with some highly 

vesiculated glasses being strongly stretched; (c) the C-2 dark grey pumice, vesicular 

and stretched glasses; (d) the C-1 black pumice samples that have the highest content 

of phenocryst and the least vesicularity among all the three proximal fall units. 

Fig. 4. Tephra shard concentrations measured in sediments in the top 2 meters of 

samples from Lake Kushu. Shard counts are given as numbers of shards per gram of 

dry sediment. The star marks the peak of the tephra input. 

Fig. 5. Light microscope photographs of tephra shards extracted from Lake Kushu 

sediments at 150-152 cm composite depth. 

Fig. 6. (a) TAS classification (Le Bas et al., 1986) diagram showing the glass 

compositions of proximal fall deposits (i.e. C-1, C-2 and C-3) and distal Kushu tephra. 

The boundary separating the alkaline and subalkaline series is from Irvine and 

Baragar (1971). (b) Classificatory diagram for peralkaline extrusive rocks 

(MacDonald, 1974) showing the glasses compositions of the peralkaline proximal and 

distal tephras. 

Fig. 7. Major and trace element variation diagrams showing the glass compositions of 

proximal fall deposits and distal Kushu tephra.  

Fig. 8. Primitive mantle normalized trace element compositions of glasses from 

proximal fall deposits and distal Kushu tephra. Primitive mantle values are from Sun 

and McDonough (1989). 

Fig. 9. (a) TAS classification (Le Bas et al., 1986) diagram and (b-c) major element 

variation diagrams showing the glass compositions of tephras reported herein along 

with the published data for comparison. The published data are glass compositions of 

the B-Tm and the widespread late Quaternary tephras from other volcanic settings in 
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the Northeast Asia area. B-Tm includes the reported distal ME tephra deposits found 

in northeast China (Sun et al., 2015), Sea of Japan (Machida et al., 1990), Hokkaido 

(Hughes et al., 2013) and Greenland (Coulter et al., 2012; Sun et al., 2014a). Kyushu 

represents late Quaternary tephras (e.g. K-Ah, AT, Aso-4 and Ata) from volcanoes in 

Kyushu Island, Japan (Smith et al., 2013). Ulleungdo represents the early Holocene 

U-Oki tephra erupted from Ulleungdo, South Korea (Smith et al., 2011b). Kamchatka 

represents the tephra layers from major Holocene eruptions in Kamchatka Peninsula, 

Russia (Kyle et al., 2011).  

Fig. 10. Major element variation diagrams showing the glass compositions of (a-b) 

proximal tephra deposits in both Chinese (this study) and N. Korean ME sequences; 

(c-d) distal ME tephra deposits found in northeast China, Sea of Japan, Hokkaido and 

Greenland. ME-K represents the proximal ME sequence in N. Korean side of the 

crater (Sun et al., 2014a). Kushu represents the Lake Kushu in Rebun Island, 

Hokkaido, Japan (this study). Utasai represents the Utasai Bog in Hokkaido, Japan 

(Hughes et al., 2013). SHL represents the Sihailongwan Lake in northeast China (Sun 

et al., 2015). Japan Sea represents the distal ME tephra deposits found in Sea of Japan 

marine cores (Machida et al., 1990). NGRIP and NEEM represent the ultra-distal ME 

tephra deposits found in Greenland ice cores (Coulter et al., 2012; Sun et al., 2014a). 

Fig. 11. 95% confidence Highest Probability Density output for radiocarbon-based 

Bayesian age-depth model for the uppermost 2 meters sequence of Lake Kushu (run 

using a Poisson process model). The model was constructed purely using AMS 14C 

dates of Kushu sediments from Müller et al. (in press), for providing independent age 

constraint on the Kushu tephra. The deposition model age range for the depth of 151.5 

cm, which is the average position for the initial onset of the Kushu tephra, is 

913-1395 cal AD. 

Fig. 12. (a) 95% confidence Highest Probability Density output for Bayesian 

age-depth model for the uppermost 2 meters sequence of Lake Kushu (run using a 

Poisson process model). The model was constructed using the AMS 14C dates 

reported in Müller et al. (in press) and the GICC05 ice-core age for B-Tm tephra (Sun 

et al., 2014a) imported in the appropriate position where our proposed correlative 

tephra was identified; (b) As above but with the B-Tm age from the revised NS1-2011 

timescale after Sigl et al. (2015). 

Table 1. 

Age results for the Millennium eruption from the dating of proximal and distal (B-Tm) 

tephra deposits. 

Table 2. 

Representative major, minor and trace element data for glasses from proximal 

volcanic deposits at Tianwen summit and distal Kushu tephra. Full geochemical data 

sets are available in the Supplementary material file. 
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Table 3. 

Summary of radiocarbon dates from Kushu sediments and ice-core ages for B-Tm that 

were used to construct the Bayesian age-depth models, the modelled date results 

shown in 95% confidence, and the relative depth information. AMS 14C uncal. dates 

are from Müller et al. (in press). Date shown in italic font may be an age inversion 

although after calibration this still contributes significant probability to the deposition 

model. GICC05 ice-core tephra age for the B-Tm is from Sun et al. (2014a), the 

revised B-Tm age based on NS1-2011 timescale is from Sigl et al. (2015). The 

Bayesian age-depth models are produced using OxCal v4.2.4 (Bronk Ramsey, 2013). 

The modelled date results for the set of 6 AMS-dated samples are from the model 

with GICC05 tephra age imported as shown in Fig. 12a. 
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Location Method Age Ref. 

Proximal 

Changbaishan 
environs 
(pyroclastic fall and 
flow deposits) 

14C wiggle-match 
dating 

AD 940-952 (2σ) Xu et al. (2013) 
AD 923-939 (2σ) Yin et al. (2012) 
AD 945-960 (2σ) Yatsuzuka et al. (2010) 
AD 930-943 (2σ) Nakamura et al. (2007) 
AD 945-984 (2σ) Horn and Schmincke (2000) 

Tianwen summit 
(light grey fall) 

40Ar/39Ar 1.24±0.51 ka Yang et al. (2014) 

U-series TIMS 1.0±0.6 ka Wang et al. (2001) 

Distal 

Lake Kushu (Rebun, 
northern Japan) 

Bayesian Modelling AD 933-949 (2σ) 
AD 944-947 (2σ) 

This study 

Greenland ice cores Ice-core chronology AD 946-947 
(NS1-2011 timescale) 

Sigl et al. (2015) 

AD 941±1  
(GICC05 timescale) 
AD 945±4  
(GISP2 timescale) 

Sun et al. (2014a) 

Sihailongwan Maar 
Lake (NE China) 

Varve chronology AD 953±37 Sun et al. (2015) 
Conventional 14C AD 940-1020 (2σ) 

Lake Ni-no-Megata/ 
San-no-Megata (NE 
Japan) 

Varve chronology AD 929 Kamite et al. (2010) 

Lake Ogawara (NE 
Japan) 

Varve chronology AD 937-938 Fukusawa et al. (1998) 
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Locality Tianwen summit Lake Kushu 

Unit/group C-3 C-2 C-1 Rhyolite Trachyte 

Sample 10CB-2-1 14-1-1 14-1-4 14-5-1 14-5-9 14-4-1 14-4-5 RH490-20 RH555-33 RH554-37 RH555-30 RH554-6 Rh554-8 

Material Pumice Tephra shard 

Major elements wt.% 

SiO2 74.98 74.73 74.93 66.06 66.42 66.08 66.24 74.90 74.97 70.34 66.15 66.12 66.20 

TiO2 0.21 0.23 0.19 0.41 0.52 0.45 0.44 0.24 0.20 0.30 0.48 0.48 0.42 

Al2O3 10.06 10.15 10.23 15.37 15.26 15.69 15.09 10.58 10.36 14.60 15.49 15.66 15.86 

FeOt 4.15 4.23 4.08 4.96 4.91 4.37 4.92 3.92 4.13 2.98 4.81 4.64 4.35 

MnO 0.13 0.10 0.02 0.13 0.12 0.08 0.20 0.10 0.08 0.09 0.17 0.16 0.12 

MgO 0.00 0.04 0.00 0.19 0.17 0.22 0.17 0.00 0.00 0.00 0.23 0.18 0.17 

CaO 0.20 0.16 0.21 1.25 1.30 1.25 1.23 0.23 0.23 0.19 1.25 1.26 1.26 

Na2O 5.12 5.45 5.26 5.68 5.54 6.06 5.90 5.27 5.25 6.05 5.45 5.67 5.81 

K2O 4.51 4.27 4.50 5.76 5.57 5.58 5.65 4.26 4.30 5.16 5.76 5.62 5.63 

P2O5 0.01 0.02 0.00 0.04 0.06 0.09 0.04 0.00 0.00 0.03 0.06 0.07 0.05 

Cl 0.63 0.62 0.57 0.15 0.13 0.14 0.12 0.51 0.48 0.25 0.15 0.14 0.13 

Analytical total 98.02 99.61 98.08 99.29 98.47 98.13 99.89 97.02 97.97 98.60 98.98 98.26 99.19 

K2O+Na2O 9.63 9.72 9.76 11.44 11.11 11.64 11.55 9.53 9.55 11.21 11.21 11.29 11.44 

Trace elements ppm 

Rb 419 426 428 153 157 143 143 417 403 308 143 157 150 

Sr 2.7 3.0 6.1 6.3 5.9 8.4 6.8 2.8 2.7 2.7 6.6 10.6 8.6 

Y 125 143 156 43 43 37 42 144 130 66 37 48 38 

Zr 2152 2377 2305 655 682 564 653 2395 2252 1260 589 792 585 

Nb 280 302 299 93 95 79 88 303 286 195 84 107 87 
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Ba 7.7 9.1 9.9 19.2 17.6 28.6 19.9 8.5 9.7 10.8 19.9 31.0 30.1 

La 135 152 173 89 92 77 87 163 148 127 82 101 79 

Ce 288 316 336 175 175 154 170 328 307 246 159 197 155 

Pr 31.8 35.4 39.6 19.0 19.1 16.5 18.3 34.7 33.2 23.6 17.2 20.6 17.7 

Nd 118 130 149 71 71 62 69 136 123 78 63 77 61 

Sm 26.0 29.3 32.2 13.4 14.3 11.7 13.0 31.6 26.6 16.5 12.1 14.3 13.1 

Eu <LOD 0.4 <LOD <LOD <LOD 0.4 0.4 0.4 <LOD <LOD <LOD <LOD <LOD 

Gd 23.9 27.2 29.3 10.3 10.5 9.6 10.1 27.4 23.0 13.3 9.3 11.4 9.1 

Dy 23.3 28.2 29.7 9.1 9.3 7.8 8.7 25.9 24.0 12.6 7.7 9.7 8.0 

Er 12.9 14.4 15.0 4.6 4.5 3.8 4.2 13.7 11.9 7.3 4.1 5.0 4.0 

Yb 10.7 12.7 12.9 4.0 4.1 3.5 4.0 11.9 10.7 5.9 3.5 4.9 3.6 

Hf 52.2 60.9 56.7 16.2 16.2 13.2 15.1 58.1 51.3 30.3 13.9 18.2 13.9 

Ta 15.9 17.1 17.0 4.7 4.8 4.0 4.5 15.4 14.3 9.7 4.0 5.4 4.1 

Th 48.9 56.8 52.4 15.1 15.2 12.4 14.5 52.9 46.1 30.1 12.9 17.7 13.4 

U 11.4 12.7 12.8 3.4 3.4 2.8 3.0 11.5 10.7 7.0 2.7 3.7 3.0 
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Table 3 

 

Laboratory 
number 

Composite 
depth 

AMS 14C date 
Modelled date (OxCal v4.2.4),  

95% range 

cm uncal. yr BP 
From, 
cal. BP 

To, 
cal. BP 

From, 
cal. AD 

To, 
cal. AD 

Poz-51689 64.5 470 ± 25 528 325 1422 1626 
Poz-51700 96.5 415 ± 30 569 449 1381 1502 
Poz-51713 126.5 510 ± 35 653 500 1297 1450 
Poz-51721 164.5 1065 ± 25 1055 1004 895 947 
Poz-51731 196.5 1290 ± 30 1285 1180 666 771 
Poz-51735 226.5 1445 ± 30 1386 1296 565 655 

Imported tephra 
Imported 
position 

Imported ice-core 
ages 

 

B-Tm  151 

AD 941±1 
(GICC05 timescale) 

1017 1001 933 949 

AD 946-947 
(NS1-2011 timescale) 

1006 1003 944 947 
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Highlights 
 
Grain-specific major and trace element glass chemistry for Millennium eruption 
tephra. 
  
A robust proximal-distal tephra correlation demonstrated chemically and 
chronologically. 
 
Clarification on the problematic proximal stratigraphy via proximal-distal correlation. 
 
The use of ice-core tephra ages to test and constrain Lake Kushu radiocarbon 
chronology. 
 
The observed compositional diversity helps understand the nature of the eruption. 


