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A B S T R A C T

Smith-Lemli-Opitz syndrome (SLOS) is a severe autosomal recessive disorder resulting from defects in
the cholesterol synthesising enzyme 7-dehydrocholesterol reductase (D7-sterol reductase, DHCR7, EC
1.3.1.21) leading to a build-up of the cholesterol precursor 7-dehydrocholesterol (7-DHC) in tissues and
blood plasma. Although the underling enzyme deficiency associated with SLOS is clear there are likely to
be multiple mechanisms responsible for SLOS pathology. In an effort to learn more of the aetiology of
SLOS we have analysed plasma from SLOS patients to search for metabolites derived from 7-DHC which
may be responsible for some of the pathology. We have identified a novel hydroxy-8-dehydrocholesterol,
which is either 24- or 25-hydroxy-8-dehydrocholesterol and also the known metabolites 26-hydroxy-8-
dehydrocholesterol, 4-hydroxy-7-dehydrocholesterol, 3b,5a-dihydroxycholest-7-en-6-one and 7a,8a-
epoxycholesterol. None of these metabolites are detected in control plasma at quantifiable levels (0.5 ng/
mL).
ã 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Smith-Lemli-Opitz syndrome (SLOS, MIM no. 270400) was first
described in 1964 [1]. It is an autosomal recessive disorder
resulting from deficiency of the enzyme 7-dehydrocholesterol
reductase (DHCR7, EC 1.3.1.21, 3b-hydroxysterol D7-reductase) [2].
DHCR7 reduces the D7-double bond in 7-dehydrodesmosterol
(7-DHD, cholesta-5,7,24-trien-3b-ol) and in 7-dehydrocholesterol
(7-DHC, cholesta-5,7-dien-3b-ol) leading to the formation of
desmosterol (cholesta-5,24-dien-3b-ol) and cholesterol (cholest-
5-en-3b-ol) via the Bloch and Kandutsch-Russel pathways,
respectively (Fig. 1A) [3]. SLOS patients show decreased levels of
cholesterol and increased levels of 7-DHC and its isomer
8-dehydrocholesterol (8-DHC, cholesta-5,8(9)-dien-3b-ol) in
serum and tissues [4]. SLOS was the first human syndrome
discovered due to an inborn error of sterol synthesis [2]. The
phenotypic spectrum of SLOS is extremely broad; while severe
cases may die in utero, mild cases show only minor physical,
learning and behavioural problems [5]. Limb abnormalities are
common in SLOS, and patients often show a distinctive cognitive
and behavioural phenotype, although normal intelligence is also
possible [6].

The DHCR7 gene is encoded by nine exons, and over
100 mutations have been identified in SLOS patients [7].
Genotype-phenotype correlations are poor, although many mis-
sense mutations result in residual enzyme activity which is
associated with a less severe phenotype [7]. SLOS has a high carrier
frequency in Caucasians. In European populations the combined
carrier frequency of two of the most common mutations c.964-
1G > C (IVS8-1G > C) and p.W151X ranges from 1 to 2.3% [8].
Considering these numbers, the clinical incidence of SLOS
(1:10,000–1:70,000 in Northern and Central European popula-
tions, 1:50,000 in the USA) is much lower than that predicted [5].
This is most likely due to several factors, including under-diagnosis
of mild cases, and early prenatal pregnancy loss in severe cases. It is
tempting to speculate that the high carrier frequency, particularly
in populations from Northern and Central Europe, conveys a
heterogeneous advantage [5]. 7-DHC is a precursor of vitamin D3

(Fig. 1B), and increased vitamin D3 levels in the skin could protect
against vitamin D deficiency.

SLOS can be diagnosed biochemically based on increased 7-DHC
in serum and tissues [9]. 7-DHC levels are typically more than 50-
fold elevated in SLOS cases, although there are equivocal cases of
SLOS with serum 7-DHC levels just above normal levels [5]. Gene
sequencing of DHCR7 is an alternative to biochemical analysis, but
is limited by known pathogenic mutations.

Dietary supplementation with cholesterol to reduce de novo
synthesis of 7-DHC and increase cholesterol levels is a standard
treatment for SLOS. Dietary cholesterol supplementation is
reported to improve behaviour [10], but as cholesterol does not
pass the blood brain barrier (BBB), this improvement may be
mediated by cholesterol metabolites, e.g. oxysterols, which can
cross the BBB. Theoretically, statin therapy should also reduce
7-DHC biosynthesis and also tissue levels [11].

Although the underlying enzymatic defect in SLOS is well
established there are likely to be multiple mechanisms responsible
for SLOS pathology. For instance, cholesterol has numerous
biological functions and substitution of 7-DHC for cholesterol,
and 7-DHD for desmosterol, may alter physiochemical properties

and function of membranes. Also 7-DHC, its isomer 8-DHC, their
metabolites and 7-DHD analogues may have a direct toxic effect on
cells [12]. Cholesterol is the precursor of steroid hormones and bile
acids and dehydrocholesterol analogues of pregnenolone, pregna-
netriol, dehydroepiandrosterone and androstenediol have been
reported [13]. 7-DHC derived bile acid precursors have been
reported to be formed in liver mitochondrial incubations from a rat
model of SLOS, including 26-hydroxy-7-dehydrocholesterol
(26-OH-7-DHC, cholesta-5,7-diene-3b,26-diol) and 26-hydroxy-
8-dehydrocholesterol (26-OH-8-DHC, cholesta-5,8(9)-dien-3b,26-
diol) (Fig. 1C) [14]. Note, we use here the systematic nomenclature
where a hydroxy group introduced to the terminal carbon of the
sterol side-chain is at carbon-26 [15]. Unless stated otherwise, this
is assumed to introduce R stereochemistry at carbon-25. Further
metabolism remains to be fully elucidated, although Natowicz and
Evans reported unusual bile acids in the urine of SLOS patients [16].
These results have not been confirmed by others. 26-OH-7-DHC
and 26-OH-8-DHC have been reported to be present in plasma
from SLOS patients at levels of 0.04–0.51 mM (16–204 ng/mL), the
D7 isomer being an inhibitor of sterol synthesis and a ligand to the
liver X receptor a [17]. The mitochondrial enzyme, cytochrome
P450 (CYP) 27A1, oxidises cholesterol to 26-hydroxycholesterol
(26-OHC, cholest-5-en-3b,(25R) 26-diol) and it is likely that this is
the mitochondrial enzyme which also oxidises 7- and 8-DHC to D7

and D8 analogues of 26-OHC (Fig.1C) [18]. In a study of infants with
SLOS, Björkhem et al. found reduced plasma levels of 24S-
hydroxycholesterol (24S-OHC, cholest-5-ene-3b,24S-diol), but
increased levels of 26-OHC [19]. The reduced level of brain derived
24S-OHC was not surprising in light of the reduced abundance of
its precursor, cholesterol, but the elevated level of 26-OHC was less
easy to explain [19].

In a more recent study Liu et al. have identified 4a- and 4b-
hydroxy-7-dehydrocholesterol (4a- and 4b-OH-7-DHC, cholesta-
5,7-diene-3b,4a/b-diol) in plasma of SLOS patients [20]. The 4b-
hydroxy compound could be formed enzymatically via a
CYP3A4 catalysed reaction analogous to that which forms 4b-
hydroxycholesterol from cholesterol. Liu et al. also found elevated
levels of 7-oxocholesterol (7-OC, 3b-hydroxycholest-5-en-7-one)
in SLOS plasma which correlated positively with SLOS severity
scores [20]. Interestingly, 7-OC, is a product of the
CYP7A1 oxidation of 7-DHC (Fig. 1E) [21]. Goyal et al. have also
found 7-DHC to be a substrate for other CYP enzymes [22]. They
found that CYP46A1 can oxidise 7-DHC to 24-hydroxy-7-dehy-
drocholesterol (24-OH-7-DHC, cholesta-5,7-dien-3b,24-diol) and
to 25-hydroxy-7-dehydrocholesterol (25-OH-7-DHC, cholesta-5,7-
dien-3b,25-diol, Fig. 1E) [22]. Endo-Umeda et al. have shown that
7-DHC can also be metabolised by CYP27A1 to 25-OH-7-DHC and
that this oxysterol and 26-OH-7-DHC are present in SLOS plasma at
levels of 4 ng/mL and 33 ng/mL, respectively [18]. 24-OH-7-DHC,
4a- and 4b-OH-7-DHC, 7-OC and also 3b,5a-dihydroxycholest-7-
en-6-one (DHCEO) have been identified in tissues and fluids from a
rat model of SLOS [23,24] and/or Dhcr7-null mouse embryos
[25,26]. DHCEO is formed non-enzymatically via free radical
oxidation of 7-DHC (Fig. 1E) [26]. This reaction occurs in vivo, at
least in Dhcr7-deficient Neuro2a cells and SLOS fibroblasts [27], but
the propensity of 7-DHC to undergo free radical oxidation
reactions highlights the importance of sample handling proce-
dures to avoid the ex vivo formation of 7-DHC oxidation products.
In regard of the free radical oxidation of 7-DHC, Porter and
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Fig. 1. Metabolism of cholesterol, 7-DHC and 8-DHC in SLOS patients. Where known, enzymes are shown.
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colleagues found 7-DHC to be 200 times more reactive towards
free radical chain oxidation than cholesterol and identified
15 oxysterols derived from 7-DHC through these reactions [28].
This makes sample handling of SLOS samples a key aspect of their
analysis.

Historically, biochemical diagnosis of SLOS has been by gas
chromatography (GC) � mass spectrometry (MS) based on 7-DHC
levels in blood [9], although in recent years atmospheric pressure
ionisation (API)-and liquid chromatography (LC)–MS methods
have been adopted [20,29–31]. In addition to 7-DHC, its
metabolites, formed either enzymatically or non-enzymatically,
have a potential as biochemical markers [20]. An advantage of
profiling for 7- and/or 8-DHC metabolites is that their identity may
reveal more details of the aetiology of the SLOS phenotype. In the
current study we have exploited an LC—electrospray ionisation
(ESI)—MS with multistage fragmentation (MSn) approach for the
profile-analysis of cholesterol, 7-DHC, 8-DHC and their oxysterol
metabolites [32,33]. By using a charge-tagging approach analytical
sensitivity is maximised (Supplementary Fig. S1A).

2. Materials and methods

2.1. SLOS samples

Historical residual clinical plasma samples from SLOS patients
were analysed along with samples from newly diagnosed patients
and controls provided with written informed consent and

institutional review board ethical approval and were collected
according to the principles of the Declaration of Helsinki
[29,32,34]. Data from two patient samples was previously reported
in Ref. [34]. Additional control samples were those reported earlier
in Ref. [35].

2.2. Analytical methods

Sterols and oxysterols were analysed by LC-ESI–MSn using a
charge-tagging approach (enzyme-assisted derivatisation for
sterol analysis, EADSA) described fully in [32,33] and in
supplementary information. In brief, non-polar sterols including
cholesterol, 7-DHC and 8-DHC were separated from more-polar
oxysterols by reversed-phase solid phase extraction (RP-SPE). The
separated fractions were individually treated with cholesterol
oxidase to convert 3b-hydroxy-5-ene and 3b-hydroxy-5,7(or 8)-
diene to their 3-oxo-4-ene and 3-oxo-4,7(or 8)-diene equivalents,
then derivatised with Girard P (GP) reagent (Supplementary
Fig. S1A) to add a charged quaternary nitrogen group to the
analytes which greatly improve their LC-ESI–MS and MSn

response. When fragmented by MS2 GP-tagged analytes give an
intense [M-Py]+ ion, corresponding to the loss of the pyridine (Py)
ring (Fig. S1B), which can be fragmented further by MS3 to give a
structurally informative pattern (Fig. S1C-J). Some sterols and
oxysterols naturally contain an oxo group and can be differentiated
from those oxidised to contain one by omitting the cholesterol
oxidase enzyme from the sample work-up procedure [32]. No

Fig. 2. 7-DHC + 8-DHC and their metabolites are elevated in SLOS plasma. (A) Dot plot showing 7-DHC + 8-DHC concentrations in ng/mg of cholesterol for the ten SLOS
samples analysed. The bar shows the mean value. For comparison the 7-DHC + 8-DHC level in the NIST standard reference material 1950 (Control) is shown [37]. This is a
pooled plasma sample representative of the US population [38]. (B) Concentrations of monohydroxycholesterols (OHC) and of 7a-hydroxycholest-4-en-3-one (7a-OHCO)
formed enzymatically from cholesterol. (C) Levels of oxysterols enzymatically derived from 7-DHC via oxidation of C-7. (D) Levels of dihydroxycholesterols (diOHC),
dihydroxychelestenones (diOHCO) and hydroxy-8-dehydrocholesterols (OH-8-DHC). For (B)–(D) control data is from 50 samples reported in Theofilopoulos et al. [35] or if not
measured in that study from a pool of 8 adult plasma samples analysed in this work. The absence of a metabolite in the controls is indicated by a double-headed arrow. 26-OH-
7-DHC was present in the pooled plasma but below the limit of quantification (0.5 ng/mL). All data is for free sterols as a hydrolysis step was not carried out. *, P < 0.05; **,
P < 0.01.
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Fig. 3. 7-DHC and 8-DHC are identified at elevated levels in plasma from a SLOS patient. (A) Upper panel, reconstructed ion chromatogram (RIC) of m/z 516.3948 � 10 ppm
displaying partially resolved 7-DHC and 8-DHC. The inset shows the two isomers partially separated in a chromatogram for the MS3 transition 516 ! 437 ! ([M]+! [M-
Py]+! ). Lower panel, RIC of m/z 518.4105 showing cholesterol. Both panels are plotted on the same scale. MS3 ([M]+! [M-Py]+! ) spectrum (B) of the peak eluting at
11.30 min and corresponding to 7-DHC, (C) of authentic 7-DHC, (D) of the peak eluting at 11.43 min and corresponding to 8-DHC (8,9-isomer), (E) of authentic 8-DHC (8,9-
isomer), (F) of authentic 8-DHC (8,14-isomer), (G) of authentic 6-DHC, and (H) of authentic desmosterol. Sterols were analysed as GP-derivatives. All data is for free sterols as a
hydrolysis step was not carried out.
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Fig. 4. The oxysterols 7b-hydroxycholesterol and 7-oxocholesterol are identified at elevated levels in plasma from SLOS patients. (A) RIC for m/z 539.4363 � 10 ppm
corresponding to mono-hydroxycholesterols (OHC). Upper panel, an SLOS patient. For comparison, the lower panel shows the NIST standard reference material 1950 [37].
Both panels are plotted on the same scale. MS3 (539 ! 455 ! ) spectra of (B) 24S-OHC, (C) 25-OHC, (D) 26-OHC, (E) 7b-OHC, and (F) 7a-OHC from the SLOS patient. In (A) � (F)
oxysterols were analysed as [2H5]GP-derivatives. (G) RIC for m/z 534.4054 �10 ppm corresponding to [2H0]GP-derivatives of 7-OC and 7a-OHCO. The upper panel is from the
SLOS patient, the lower panel from the NIST sample, both panels are plotted on the same scale. (H) MS3 (534 ! 455 ! ) spectrum of 7-OC from the SLOS patient. All data is for
free oxysterols as a hydrolysis step was not carried out. GP-derivatives give syn and anti conformers, some of which e.g. 7b-OHC are resolved, while others e.g. 7-OC give a
single peak.
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hydrolysis step was carried out so free sterols and oxysterols were
exclusively analysed.

2.3. Statistical analysis

All values are shown as mean (�standard error of mean). The
unpaired two grouped two tailed Student’s t-test was performed to
asses significant differences.

3. Results

3.1. Sterols

The non-polar sterol fraction from control adult samples is
totally dominated by cholesterol. Desmosterol, 7-DHC and 8-DHC
are almost invisible without overloading the chromatographic and
MS systems with cholesterol. In control samples the ratio of 7-DHC
plus 8-DHC to cholesterol is about 1:1000 (1 in units of ng/mg), and
the desmosterol to cholesterol ratio is similar (Fig. 2A). The
situation is different with samples from most SLOS patients where
7-DHC and 8-DHC are readily quantifiable allowing diagnosis of
the syndrome (Figs. 2A and 3A). Note, one SLOS patient sample
gave a similar DHC to cholesterol ratio to that measured in controls
but showed an oxysterol pattern characteristic of SLOS (see below).
As is evident from Fig. 3A (inset), 7-DHC and 8-DHC can only just be
chromatographically resolved, however, they give distinct MS3

spectra (Fig. 3B–E and S1C-1D). There are in-fact two isomers of 8-
DHC, cholesta-5,8(9)-diene-3b-ol and cholesta-5,8(14)-diene-3b-
ol, which essentially co-elute. However, they give different MS3

spectra allowing their differentiation (Fig. 3E and F and S1D-1E).
Two other dehydrocholesterol isomers, i.e. cholesta-4,6-dien-3b-
ol (6-DHC) (Fig. 3G and S1F) and desmosterol (Fig. 3H and Fig. S1G)
both give different MS3 spectra to the other isomers and are also
chromatographically resolved from 7- and 8-DHC. A further non-
polar sterol identified in SLOS samples but absent from controls
corresponds to a cholestatrien-3b-ol. The MS3 spectrum (Fig. S2)
does not correspond to 7-DHD [36] and may correspond to
cholesta-5,7,9(11)-trien-3b-ol an ex vivo photoxoidation product
of 7-DHC [23].

3.2. Enzymatically derived oxysterols

The pattern of enzymatically derived oxysterols in plasma from
SLOS patients resembles that of controls, but there are differences
(Fig. 2B–D). Considering the monohydroxycholesterols first
(Fig. 4), the levels of 24S-OHC, 25-hydroxycholesterol (25-OHC,
cholest-5-en-3b,25-diol) and 26-OHC show only small differences
between SLOS patients and controls, and for the latter two
compounds these are statistically significant. 7a-Hydroxycholes-
terol (7a-OHC, cholest-5-ene-3b,7a-diol) and 7a-hydroxychol-
est-4-en-3-one (7a-OHCO) are both formed enzymatically, and
like 7b-hydroxycholesterol (7b-OHC, cholest-5-ene-3b,7b-diol)
and 7-OC, 7a-OHC can also be formed non-enzymatically. 7-OC is
often thought of as an ex vivo autoxidation product of cholesterol
[37,38], however, Shinkyo et al. showed that it can also be formed
from 7-DHC in a CYP7A1 catalysed reaction (Fig. 1E) [21], while
others suggest it can be formed via free radical pathways in vivo
[39]. In all SLOS samples studied the level of either 7-OC and/or of
7b-OHC was elevated (Fig. 2C). 7b-OHC may be derived
enzymatically from 7-OC (Fig. 1E). 11b-Hydroxysteroid dehydro-
genase 1 (HSD11B1) can act as an oxo-reductase inter-converting
7-OC and 7b-OHC in man [40,41]. Shinkyo et al. also suggested that
cholesterol-7,8-epoxide (3b-hydroxycholest-5-en-7a,8a-epoxide,
7,8-EC) was formed from 7-DHC by CYP7A1 in a side-reaction to
the formation of 7-OC [21]. This was confirmed in a recent study by
Björkhem et al. who showed that plasma from some patients with

cerebrotendinous xanthomatosis or SLOS had a marked increase in
7,8-EC [34]. We confirm this finding in the current study where
patients with SLOS have elevated levels of 7,8-EC (Figs. 2C and 5A )
which is absent from control plasma.

25- and 26-OHC are 7a-hydroxylated by CYP7B1 to 7a,25-
dihydroxycholesterol (cholest-5-ene-3b,7a,25-triol, 7a,25-
diOHC) and 7a(25R)26-dihydroxycholesterol (cholest-5-ene-
3b,7a(25R)26-triol, 7a,26-diOHC), respectively, then oxidized by
HSD3B7 to 7a,25-dihydroxycholest-4-en-3-one (7a,25-diOHCO)
and 7a(25R)26-dihydroxycholest-4-en-3-one (7a,26-diOHCO),
respectively. All four metabolites are found in plasma. The levels
in the SLOS patients are similar to those in controls (Fig. 2D).

There is evidence in the literature for enzymatically formed 24-
OH-7-DHC and 25-OH-7-DHC from 7-DHC by CYP46A1 [22], and
Xu et al. have identified the former compound in plasma from a rat
model of SLOS [23,24]. Additionally, 26-OH-7-DHC and 26-OH-8-
DHC, 4a-OH-7-DHC and 4b-OH-7-DHC have been identified
plasma from SLOS patients [17,18,20]. We therefore searched for
the presence of OH-7-DHCs and OH-8-DHCs in plasma samples
from SLOS patients (Fig. 5A and B). We identified two chro-
matographic peaks with retention times and giving MS3 spectra
compatible with (i) either 24-OH-8-DHC (cholesta-5,8(9)-diene-
3b,24-diol) and/or 25-OH-8-DHC (cholesta-5,8(9)-diene-3b,25-
diol), and (ii) 26-OH-8-DHC (Fig. 5C and D). These compounds are
present in SLOS plasma but absent from control samples. The
earlier eluting peak may well be a composite of 24- and 25-OH-8-
DHC, while the latter peak is predominantly 26-OH-8-DHC, but
could contain a small amount of unresolved 26-OH-7-DHC.
Identification of these components in the absence of authentic
standards is facilitated by the MS3 spectra recorded and by
reference to the equivalent spectra of the DHC precursor molecules
and to their hydroxycholesterol analogues. Chromatographic
elution time provides another dimension for identification with
the presence of an additional double bond reducing elution time by
about 0.5 min. With our chromatographic system we cannot
resolve 4a- from 4b-OH-7-DHC. However, we do find a compound
eluting with the appropriate retention time (Fig. 5B) and giving an
MS3 spectrum identical to that of the authentic standard (Fig. 5G
and H). This compound was at a level below our limit of
quantification (0.5 ng/mL).

3.3. Non-enzymatically derived oxysterols

There is always considerable debate whether non-enzymati-
cally formed oxysterols are generated in vivo or ex vivo during
sample handling or storage [37,42]. The analytical protocol used in
this work essentially eliminates ex vivo autoxidation during sample
work-up by separating polar oxysterols from non-polar sterols like
cholesterol, 7-DHC and 8-DHC. However, the possibility of
autoxidation during sample collection and storage is difficult to
eliminate when dealing with clinical samples from patients,
especially when historical samples are analysed, as in the present
study.

DHCEO is the major metabolic product of 7-DHC in SLOS
fibroblasts generated through free radical oxidation (Fig. 1E) [27]
and it has been identified in brain from a Dhcr7 knock-out mouse
model of SLOS [25,26]. We thus searched for the presence of
DHCEO in plasma from SLOS patients. Shown in Fig. 6 is the
appropriate chromatogram for dihydroxycholestenones. DHCEO
elutes late in the chromatogram and was not found in plasma from
all SLOS patients. However, it was not detected in any control
plasma (Fig. 2D).

As is evident from Figs. 5A and 6A there numerous other peaks
present in the SLOS plasma which are absent from controls.
Although their MS3 spectra were recorded, their identification was
not obvious.
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Fig. 5. Oxysterols derived from 7- or 8-DHC are identified at elevated levels in SLOS plasma. (A) RIC for m/z 537.4206 � 10 ppm corresponding to mono-
hydroxydehydrocholesterols (OH-DHC). Upper panel, an SLOS patient. For comparison, the lower panel shows NIST standard reference material 1950 [37]. Both panels
are plotted on the same scale. The peak at 8.62 min corresponds to 25-hydroxyvitamin D3 (25-OH-D3). (B) Upper panel, total ion chromatogram (TIC) for the
537 !453 ! ([M]+! [M-Py]+! ) transition. Lower panel, RIC for the transition 537 !453 ! 231 targeting on metabolites derived from 8-DHC (see Fig. S1D). Both panels are
from the same SLOS sample. MS3 (537 !453 ! ) spectra of (C) 24- and/or 25-OH-8-DHC, (D) 26-OH-8-DHC, (E) 7,8-EC, (F) 7,8-EC authentic standard, (G) 4-OH-7-DHC and (H)
4b-OH-7-DHC authentic standard. Oxysterols in (A)–E) and (G) were analysed as [2H5]GP-derivatives, those in (F) and (H) as [2H0]GP-derivatives. All data is for free oxysterols
as a hydrolysis step was not carried out.
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Fig. 6. DHCEO is elevated in SLOS plasma (A) RIC for m/z 550.4003 � 10 ppm corresponding to dihydroxycholestenones. Upper panel, an SLOS patient. For comparison, the
lower panel shows NIST standard reference material 1950 [37]. Both panels are plotted on the same scale. MS3 (550 ! 471 ! ) spectra of (B) 7a,25-dihydroxycholest-4-en-3-
one, (C) 7a,26-dihydroxycholest-4-en-3-one, (D) DHCEO and (E) authentic DHCEO. Oxysterols were analysed as GP-derivatives. All data is for free oxysterols as a hydrolysis
step was not carried out.
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4. Discussion

In the current study we are able to identify 24- or 25-OH-8-DHC
and 26-OH-8-DHC at elevated levels in plasma of SLOS patients
(Fig. 2D). This was found for each of the SLOS samples analysed.
These molecules were not detected at quantifiable levels in control
plasma (<0.5 ng/mL). Wassif et al. have previously identified 26-
OH-8-DHC in SLOS plasma in the range of 16–204 ng/mL [17],
somewhat higher than the current range of 1.41–15.75 ng/mL, but
neither 24- or 25-OH-8-DHC have previously been found in human
plasma. We also confirmed the earlier findings of elevated levels of
7-OC and 7,8-EC in SLOS plasma [20,34]. 7,8-EC was not found in
control plasma and was detected in seven of the ten SLOS patients
studied. 7-OC can be converted to 7b-OHC by HSD11B1 (Fig. 1E)
[40,41] and every SLOS patient showed elevated 7-OC and/or 7b-
OHC. In the present study we do not have data on disease severity
so we are not able to correlate metabolite levels with SLOS severity.
We also identified 4-OH-7-DHC in some SLOS samples, but only at
the limit of detection (0.1 ng/mL), below the limit of quantification
(0.5 ng/mL). 4a- and 4b-OH-7-DHC have previously been identi-
fied in SLOS plasma [20].

In an earlier study Björkhem et al. found reduced plasma levels
of 24S-OHC in SLOS patients, this was readily explained by reduced
cholesterol content of brain, the source of this metabolite [19]. 24S-
OHC levels are known to vary with age, and in the current study we
were not able to age match SLOS patients with controls so
differences between SLOS and controls are likely lost in the case of
24S-OHC. In contrast to the previous study by Björkhem et al. we
found lower levels of 26-OHC in SLOS plasma than controls [19].
The difference is likely to be methodological as in the earlier study
total 26-OHC was measured following alkaline hydrolysis of sterol
esters while here only free sterols were measured.

7-DHC is known to readily undergo free radical oxidation [23],
one of the products of which, DHCEO (Fig. 1E), has been found in
rodent models of SLOS. Here we were able to identify DHCEO in
four of our ten SLOS samples. DHCEO is not detected in control
plasma.

One of the SLOS patient samples investigated in this study
showed an almost normal DHC to cholesterol ratio. Unfortunately,
there was limited clinical information available relating to this
patient. However, the pattern of plasma oxysterols from this patient
clearly identifies SLOS. Of particular note were the high levels of 7b-
OHC (24.46 ng/mL cf. 0.92 � 0.49 ng/mL) and 7-OC (130.71 ng/mL cf.
3.86 � 1.91 ng/mL) in plasma compared to controls. Further confir-
mation of SLOS was provided by the presence of elevated 26-OH-8-
DHC (1.41 ng/mL cf. <0.5 ng/mL) in the patient plasma.

In summary, we have identified a number of metabolites
derived from 7- or 8-DHC in SLOS plasma. Further studies will be
directed at investigating how their values vary with disease
severity and their merit as markers for disease stratification.
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