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Development of true-stress creep model through analysis 

of constant-load creep data with application to finite 

element methods 

Martin Connolly*, Mark Whittaker*, Steve Williams^ 

*Department of Engineering, Swansea University, ^Rolls-Royce Plc. 

1. Abstract 
The creep behaviour of the nickel-superalloy RR1000 is studied through a number of constant-load 

creep tests. It is often assumed that creep data generated by constant-load testing are unsuitable for 

building a generalised creep model due to the non-constant stresses incurred. Analysis of existing 

models shows that significant errors may occur in many approaches, which attempt to recreate the 

strain evolution with time. A model is presented which is not reliant on time as a parameter and is 

therefore able to utilise constant-load creep data without enforcing the assumption of a constant 

stress. This model is demonstrated through numerical analyses to replicate the creep behaviour 

across a large range of stresses accurately. The proposed model is then adapted as an Abaqus™ user-

subroutine to demonstrate capability within finite element analysis.  

2. Introduction 
Nickel superalloys are often chosen for applications where a combination of high temperature and 

high stress is anticipated. In order to achieve efficient component design, it is necessary to accurately 

model the behaviour of components in this extreme environment. Under such conditions, 

components can be expected to undergo creep deformation, which can result in a changing 

geometry during the life of the component. These changes can be modelled using finite element 

analyses provided an appropriate creep model can be applied to describe the evolution of material 

strain as a function of time.  

Creep testing is often performed with a constant applied load. The effect of maintaining a constant 

load throughout the duration of a test is that the applied stress increases monotonically with 

accumulated strain. This is regularly considered negligible when producing a creep model for typical 

applications where creep strain is limited by design. However, by neglecting this effect, any model 

based on constant-load creep data is tied to the bulk behaviour of the test specimen, rather than 

providing a geometrically independent representation of the material behaviour.  

Generating creep data under constant stress conditions allows for the removal of this problem. 

However, materials currently in service may have been described by models based on data generated 

under constant load conditions. It is not economical to repeat a set of existing tests in order to 

improve accuracy for high strain events when limited benefit would be provided for the majority of 

engineering cases.  

There are a number of creep models available in the literature which describe the creep behaviour of 

nickel alloys, which are both mechanistic and empirical in derivation. A number of these models use 

time as a parameter1-4, and as a result require constant stress creep data to provide a consistent 



representation of the creep behaviour. The requirement for constant stress data is derived from the 

fact that the models described require a constant stress as an input. Constant-load tests, which 

produce a non-constant stress are therefore unsuitable and should not be used for such analyses. 

A commonly used power-law based representation5 provides a means to determine the change of 

steady-state creep rate with stress, independent of the time at condition. However, some materials, 

including nickel superalloys, only demonstrate a transition from primary to tertiary, with only a 

momentary minimum creep rate 6-8.  

More recently, work has been undertaken to describe the creep behaviour under the assumption of 

a varying stress during a constant load creep test. A time independent creep formulation was 

produced9 by combining a continuum damage mechanics (CDM) based damage parameter with the 

Norton power law. A CDM based model, designed to replicate different types of damage and 

therefore the evolution of the microstructure during creep is proposed10. This approach is shown to 

allow the production of accurate creep behaviour under both constant stress/load, without requiring 

assumptions to be made, such as whether to use strain or time hardening. Another approach11 

demonstrated a formulation capable of replicating the change in microstructure due to heat 

treatments, and the resulting creep properties of a nickel alloy (C263). 

The method of power law creep typically uses a reference creep strain at which the creep rate is 

defined, for example the minimum rate. This means that the strain rate is defined as a function of 

stress alone. In order for a full creep curve to be generated from this type of model, additional terms 

must be applied to introduce primary and tertiary behaviours. As the alloy RR1000 does not 

demonstrate a significant secondary creep behaviour, the proposed model attempts to model the 

creep rate evolution directly as a function of both stress and strain.  

This paper presents a method for generating a true-stress creep model from a set of constant-load 

creep data, which will allow consistent large strain creep behaviour to be recreated without requiring 

detailed knowledge of the material microstructure. This model is then adapted for use with the finite 

element package Abaqus™ for more general application.  

3. Experimental Method 
A number of creep tests were performed on the nickel-base superalloy RR1000 using material 

provided by Rolls-Royce plc. The data used for this study was produced in creep tests performed at a 

temperature of 700°C, as the focus was on interpreting engineering stress results to produce a true 

stress model. The specimens were machined to a design with a gauge length of 25.3mm and a 

nominal gauge section diameter of 5mm. At each end of the gauge length, a ridge was machined to 

allow for secure attachment of the extensometer cages, see Figure 1.  

 

Figure 1 - Photograph of unused creep specimen 



The creep tests were performed on constant-load cantilever creep rigs with a cam ratio of 10:1. The 

applied stress was calculated and corrected to account for the thermal expansion of the specimen 

during heating. This correction was applied, as it can be demonstrated that for the temperatures 

used in this study the change in cross-sectional area approaches 2%. Contrasting this to the 

requirement in the British standard for uniaxial creep testing12, that the applied load must be known 

to within 1%, suggests that this is an effect that should be noted.  

The creep data were analysed to calculate the evolution of the true-stress and true-strain rate with 

time. The true-stress was calculated based on the assumption of incompressibility during inelastic 

strain. This assumption leads to equation (1), where eEL and ec are the elastic and creep components 

of the engineering strain and S and σ are the engineering and true stresses. The Poisson’s ratio of the 

material is represented by ν. Values of 180 GPa for the elastic modulus and 0.37 for the Poisson’s 

ratio at 700°C were taken from the Rolls-Royce materials database. 
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The strain rate was calculated using the slope function in Microsoft Excel to calculate the rate at 

which the true strain changes with time. The true strain was calculated according to equation (2). 

The symbols et and εt represent the total engineering and true strain measures. Unless otherwise 

stated, any future reference to stress or strain within this paper should be taken to mean the true 

values. The true stresses and strains were calculated in this way to ensure full consistency with 

Abaqus™. 
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4. Model development 

4.1 Stress-Strain Rate Relationship 

Figure 2 demonstrates strain rate values as a function of applied stress at two distinct values of creep 

strain. The values shown are measured at the points of 1% and 9.8% creep strain, from a series of 

constant-load creep tests at 700°C. A least squares fit for each dataset is also provided to 

demonstrate the linear relation between stress and the log of the strain rate. A similar relation has 

previously been shown3 in the single crystal nickel-base superalloy CMSX-10.  

The values in Figure 2 demonstrate how the relationship of the strain rate to applied stress varies 

with strain. For lower stresses, this shows the strain rate increases with strain. This is the normal 

behaviour for a creep test, whereby after primary creep has completed the strain rate will accelerate 

to failure if the stress is held constant. However, for the higher stresses, a strain hardening behaviour 

is presented, where for a constant stress the strain rate will decrease with accumulated strain.  



For the highest stress tests shown in Figure 2, the strain hardening effect does not produce a creep 

curve with a decreasing rate. This is because the effect of the stress increase due to strain 

accumulation is greater than the strain hardening effect seen in these tests. It is likely that a constant 

stress test performed at these conditions would result in a creep curve with a decreasing rate.  

 

Figure 2 - Typical relationship between instantaneous strain rate and stress for two levels of creep strain at 700°C 

The linear relationship demonstrated provides a framework for building a model for the creep rate as 

a function of stress and strain, see equation (3). The variables A and B will be defined as functions of 

creep strain. This relation can be inverted to show that the strain rate ( ) increases exponentially with 

stress.   

          (3) 

Although this framework holds for finite stresses, it predicts a non-zero strain rate at zero stress. A 

correction can be applied by including an offset to the strain rate equal to the rate predicted at zero 

stress. This correction is small enough that it can be considered negligible in the stress range under 

study. Equation (4) therefore provides a representation of the creep behaviour shown in Figure 2 

whilst providing consistent zero stress behaviour. The trend described by Equation (4) is expected to 

hold during tertiary creep only, i.e.: after primary creep has completed and before the deformation 

becomes heterogeneous.   

         (4) 

The parameters A and B were determined for five levels of strain by fitting to a set of creep tests 

performed at 700°C. The fitting process was carried out using the Solver function in Microsoft Excel. 

The resulting values for these parameters are shown in Figure 3. Both parameters appear to indicate 

a linear relationship with strain, which suggests a simple method for fitting to a larger set of data 

points is possible.  



 

Figure 3 – Relationship between the parameters ‘A’ and ‘B’ and creep strain 

The parameters A and B can therefore be described by equations (5) and (6). The linear assumption is 

a simplification, but it was taken to be suitable for the purposes of this paper.  

           (5) 

           (6) 

To confirm whether the linear relationship between the parameters A and B and the current creep 

strain allows the model to recreate creep rate evolution accurately, the model has been integrated 

under conditions of constant load, and the rate as a function of strain plotted in Figure 4. The model 

is plotted alongside experimental data for a creep test performed at 700°C under an initial applied 

stress of 500MPa. The resultant curve in Figure 4 demonstrates that the model can recreate the rate 

evolution reasonably well, if the effects of primary creep are ignored. The predicted curve does not 

match the strain rate evolution exactly due to the inherent scatter within the original dataset. It does 

however, confirm that the overall curve shape is replicated reasonably well, as the magnitude is 

maintained at approximately half that seen experimentally. 

 

Figure 4 – Typical creep curve for RR1000 at 700°C under an initial applied stress of 500MPa 

4.2 Primary Creep 

The model described by equation (4) is able to replicate the shape of the creep curve during tertiary 

creep. The effects of primary creep are to be produced by lowering the stress response, such that the 

material is softened at low strains. This is achieved by multiplying the stress response by a value 

smaller than one.  



The primary term is based on an exponential decay equation, which reaches a negligibly small value 

after the effects of primary creep are no longer expected. Modelling primary creep in this way is 

similar to the primary term in the theta-projection method2, except that the primary variable here is 

strain and not time. The form of the primary softening term is shown by equation (7). The basic 

model, capable of replicating primary and tertiary creep is shown by equation (8). This is produced 

by multiplying equations (4) and (7).  

           (7) 

         

 (8) 

The parameter C0 controls the strength of the softening effect and C1 controls the rate at which the 

effect of the term decays. Due to the difficulty of accurately measuring the strain rate at the start of a 

creep test, C0 is to be determined by fitting to the creep curves. The parameter C1 can be estimated 

by measuring the strain to minimum rate and using this to guide the rate at which the primary term 

decays.  

 

Figure 5 - Strain to minimum rate shown as a function of the initial applied creep stress.  

The relationship between strain to minimum rate and the applied initial stress during a creep test is 

shown by Figure 5. The data contains a significant amount of scatter due to the methods used to the 

record the original creep data. It is presumed that this scatter is a result of the difficulty in measuring 

the small strains associated with primary creep. The strain to minimum rate can be seen to increase 

with applied stress. The y-axis on the chart shows the log of strain to minimum rate and therefore 

the relationship between the two can be expressed by an exponential function. The resultant 

equation for the strain to minimum rate is shown by equation (9), where I and J are taken from 

Figure 5. J is equal to the slope of the straight line and I is e (the base of the natural log) to the power 

of the gradient.  

          

 (9) 

By assuming the strain to minimum rate represents a sensible cut-off point for the primary softening 

term, the value for C1 can be estimated. If the exponential term in equation (7) reaches a small value 

at the strain to minimum rate, then the value for C1 is determinable by rearranging the exponential 



term. The value is arbitrarily taken as 0.1 for all further calculations. Equation (11) shows the 

resultant equation for C1, where the parameter I* is introduced to simplify the equation.  
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        (11) 

The full creep model is constructed by combining equations (7), (8) and (11), to produce equation 

(12). This equation is therefore capable of recreating the shape of a creep curve from initial loading 

up until heterogeneous deformation begins. Due to the inclusion of the primary term, the stress 

parameter is now found on both sides of the equation. This complicates the process of using this 

model to produce a stress response for a set condition, which is sometimes used to compare the 

accuracy of a creep model. However, the model is still simple to rearrange, giving the strain rate as a 

function of loading condition, and this is the required arrangement for adapting the model to a finite 

element simulation.  

      

 (12) 

The parameter C1 in equation (7) is derived using the initial applied stress from a range of creep tests. 

However, the stress parameter in equation (12) is the instantaneous true stress, a value that varies 

throughout a creep test as a function of accumulated strain. In order to maintain simplicity the initial 

applied stress in the C-term is replaced with the true stress. Due to the small strains associated with 

primary creep in RR1000, the difference between the true stress and the engineering stress is 

negligible during the phase in which the primary term is active. 

Equation (12) has been designed such that it can be easily rearranged to produce the instantaneous 

strain rate, given the current stress-strain condition; see equation (13). This equation can be 

integrated simply to produce creep curves representing constant load or constant stress tests as 

required.  

        
 (13) 

5. Results 

A comparison has been made between the proposed model and experimentally produced creep 

curves. Equation (13) was integrated under constant load conditions within a spreadsheet 

environment. The spreadsheet used included the effects of thermal expansion of the specimen and 

elastic deformation. The true stress evolution throughout the test was therefore reproduced as 

faithfully as possible. 

The model was compared against a set of three constant load creep tests, all performed at a 

temperature of 700°C. The three different stresses are chosen to produce significantly different creep 

curves. The lowest stress used in this comparison is 500MPa. This stress-temperature combination 

produces a relatively long rupture life, under well understood conditions. The highest stress is 



1074MPa, which is set above the material yield stress at this temperature and therefore produces a 

relatively short rupture life.  

 

Figure 6 - Comparison between predicted and measured creep behaviours for different stresses at 700°C 

The test results are compared with the predictions in Figure 6, with the predictions represented by 

the lines and the experimental results by the points. The test results demonstrate at least an order of 

magnitude difference between the rupture times for each stress. The predictions match this 

behaviour excellently, demonstrating that the model is capable of replicating the creep behaviour 

over a large range of stresses. The curvature of each prediction matches reasonably with the 

corresponding test result.  

The parameters required to produce the predictions in Figure 6 are shown in Table 1. These were 

generated utilising the same method as used to produce Figure 3. The numbers produced are 

different due to the inclusion of primary creep and a greater number of strain points at which values 

were calculated. 

A1 A0 B1 B0 

367.4 69.8 4184 1830 

I* J C0  

15143 3.6E-3 0.06  
Table 1 – Model parameters to produce creep curves 

To demonstrate the applicability of the model to a range of temperatures, the model has been 

refitted to experimental data produced at three further temperatures. The extra data was produced 

at 675, 725 and 750°C. These fits were then used to model the time to 5% creep strain given an initial 

applied stress. The resulting curves are compared with experimental data in Figure 7, where the lines 



represent the predictions and the dots represent test results. It can be seen that the predictions 

readily align with the measurements suggesting that the model is not restricted to use at a single 

temperature.  

 

Figure 7 – Normalised stress versus time to 5% creep strain for RR1000 at 675, 725 and 750°C. 

6. Discussion and Finite Element Application 
The proposed creep model was implemented in a finite element model by adapting it to an Abaqus™ 

user creep routine. The process of adapting the model was relatively simple because the model was 

designed for use with finite element simulations. The user subroutine is required to provide Abaqus™ 

with a uniaxial strain rate given the von Mises stress and equivalent creep strain. This value is 

produced by equation (13) without modification. The Abaqus™ software is capable of implementing 

an automatic time-stepping process, allowing the run-times to be optimised whilst maintaining 

solution accuracy. This process requires the definition of the differentials of the strain rate with 

respect to stress and strain. The derived differentials are shown by equations (14) and (15). 

      (14) 
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Equations (13), (14) and (15) were coded in FORTRAN as a user subroutine and applied to a 

simulation of a creep test. The model used is shown in Figure 8. The specimen, shown by 

Figure 1, was recreated by a 2d axisymmetric mesh representing one half of the specimen. 

The parallel sections of the specimens were meshed using 8-node brick elements, whilst the 

curved section uses 6-node triangular elements. The model includes a ridge feature, 

designed to allow the secure attachment of an extensometer cage across the specimen. This 

feature was included as it affects the global strain measured across the gauge length.  



 

Figure 8 – Finite element model of half specimen showing applied boundaries (orange edges) and gauge measurement 
location (blue arrow) 

The model was set up to use elastic and thermal expansion properties typical for this 

material. The creep condition was achieved by applying a uniform temperature (of 700°C) 

and a constant load to the right-hand surface, equal to that applied during the original test 

(816MPa over a surface area of 19.64mm², or ~16kN). The effects of changing geometry 

were including by setting the Abaqus™ parameter ‘nlgeom’ to ‘yes’.  

The model was run until the engineering strain matched that achieved by the specimen 

under test. The resultant creep curves are shown by Figure 9. As is common practice for 

analysing creep tests, the strains were zeroed once the load application was complete to 

remove any instantaneous strain contributions.  

 

Figure 9 – Comparison of creep curves produced by Abaqus™ model and experiment at 700°C and 816MPa 

The creep curves in Figure 9 follow a similar curvature and do not differ significantly in terms of time 

to the failure strain. The gradients at failure are different, with the test result reaching a slightly 

higher rate just before reaching the failure strain than seen in the Abaqus™ model. This is attributed 

to the fact that the Abaqus™ model maintains homogenous deformation up to this point, whilst the 

test specimen showed signs of necking upon post-test examination. 

The creep model recreated the creep behaviour expected and presented no difficulties in terms of 

model stability. The model was able to maintain a consistent time step for the majority of the 

simulation. The current implementation of the creep model requires a small time-step to allow 

successful completion of the model. This resulted in run times of approximately 2 hours. It is 

expected that this can be decreased by relaxing the time control settings within Abaqus™, although 

this would require a sensitivity study to ensure no accuracy is lost. 



7. Conclusions 

 A creep model has been presented, which is based upon the true-stress true-strain 

interpretation of a set of constant load creep tests. 

 The effects of primary creep are included through an assumed relationship between the 

strain to minimum rate and the applied engineering stress. 

 The model is demonstrated to replicate creep curves using reasonably simple, numerical 

integration techniques over a large stress range. 

 It has been demonstrated that the model is easily adaptable as a user defined creep model in 

the finite element package Abaqus™. This suggests that the model would also apply to other 

finite element software, as the standard format for user models is often similar.   
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